fhsness
OBJECTIVE-C

STEVEN HOLZNER
From the Library of Bill Wiecking

VISUALQUICKSTART GUIDE

OBJECTIVE=C

Steven Holzner

Peachpit Press

Visual QuickStart Guide
Objective-C

Steven Holzner

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.
To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2010 by Steven Holzner

Editor: Judy Ziajka

Production Coordinator: Myrna Vladic
Compositor: Deb Roberti

Proofreader: Wendy Sharp

Indexer: FireCrystal Communications
Cover Design: Peachpit Press

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Any
other product names used in this book may be trademarks of their own respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-69946-6
ISBN 10: 0-321-69946-7

987654321

Printed and bound in the United States of America

From the Library of Bill Wiecking

www.peachpit.com

Dedication

To Nancy, of course!

Acknowledgments

The book you hold in your hands is the
product of many people’s work. I would
particularly like to thank Wendy Sharp
and Judy Ziajka for their tireless efforts
to make this book the best it can be and
Danny Kalev for his careful technical
review of the entire manuscript.

From the Library of Bill Wiecking

TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter 1:

Chapter 2:

Chapter 3:

Introduction viii
Getting Started: Essential Objective-C 1
Creating Your First Program...................... 3
Compiling and Running Your First Program 6
Using Variables ... 8
Displaying Values in Variables.................... 9
Working with Data Types....................... 11
Adding Comments.c..cooiiiiiian.. 13
Using Arithmetic Operators..................... 15
Using Assignment Operators.................... 17
Using the Increment and

Decrement Operators 19
Changing Type with Cast Operators 21
Directing Program Flow 23
Using the if Statement 26
Using the else Statement........................ 27
Using the switch Statement..................... 29
Using Comparison Operators 31
Using Logical Operators 32
Using the Conditional Operator................. 33
Usingthefor Loop..........coocoviiiiiiiia. 35
Using the while Loop ..o, 37
Using the do..while Loop 39
Using the break Statement 41
Handling Data 43
About Creating NS-Class Objects................ 45
Creating Arrays...........cooviiiiiiiiiin... 46
Initializing Arrays. ... 47
Looping over Arrayscooovviuiinnn.. 48
Creating Two-Dimensional Arrays 49
Using Pointers.....................oooooat 51
Using PointerMath......................oL. 52
Interchanging Pointers and Arrays.............. 53
Using Strings ... 54
Passing Messages to String Objects.............. 56
Using Enumerations 57

From the Library of Bill Wiecking

Table of Contents

Chapter 4: Creating Functions 59
Defininga Function......................oooo. 61
Declaring Functions Using Prototypes........... 62
Passing Arguments to Functions 64
Returning Values from Functions................ 66
Using Function Scope...................ooooiae 68
Passing Pointers to Functions................... 70
Passing Arrays to Functions 72
Passing Constant Data to Functions............. 74
Using Recursioncocoooiiiiiiint 76
Using Pointers to Functions 77

Chapter 5: Classes and Objects 79
Creating Objective-C Classes and Objects 82
Using Class Methods........................o... 84
Creatingan Object.......................oooooe. 86 —
Creating Object Methods 87 ;
Storing Datain Objects 88 o
Passing Multiple Arguments to Methods 90 o
Storing the Interface in a Header File............ 92 ;
Adding the Implementation to the Header File. .. 94 o
Linking Multiple Files 95 2
Using Constructors................ooovivenn.. 97 g

Chapter 6: Object-Oriented Programming 99 @
About Access Specifiers..............c.oooall 100
Using Public Accesscoooiii.... 102
Using Private Accesso.... 103
Using Protected Accessc..ccooeun... 105
Using Class Variables 107
Accessing the Current Object 109
Creating a Variable for Multiple

Object Types........covvuiiiiiiiiiiia.. 111

Verifying That an Object Belongs to a Class113
Checking an Object's Class with
isKindOfClass.................ooooiiinet. 115
Verifying That an Object Supports a Method. ... 117
Checking Whether Objects Support a Method. .. 118

Chapter 7: Working with Object-Oriented

Inheritance 119
Inheriting fromaClass 121
Inheriting Base-Class Data Members 122
Inheriting Base-Class Methods 124
Overriding Base-Class Methods 126
Overloading Base-Class Methods 128

\'

From the Library of Bill Wiecking

TABLE OF CONTENTS

Table of Contents

Chapter 8:

Chapter 9:

Chapter 10:

Using Multi-level Inheritance 130
Limiting AcCessoooviiiiiiiiiiiint. 132
Restricting Access ...t 134
Using Constructors with Inheritance 136
Using Polymorphism 138
Categories, Posing, and Protocols 141
About Categoriesc..coiiiii. 143
Categories: Creating the Base Class 145
Categories: Creating Categories 146
Categories: Putting It All Together.............. 147
AboutPosing ... 149
Posing: Creating the Base Class................. 151
Posing: Creating the Derived Class 152
Posing: Putting It All Together.................. 153
About Protocols ..., 155
Protocols: Defining the Protocol and

Interfacesooiiiiit, 157
Protocols: Creating the Class

Implementations.......................... 159
Protocols: Putting It All Together............... 161
Using Arrays and Dictionaries 163
Creatingan Arraycooovvviininnn.. 165
Accessing Array Elements...................... 166
Using Enumeration to Loop over an Array...... 167
Creating a Mutable Array 169
Adding Elements to a Mutable Array 171
Sortingan Arrayooooiiiiiiiiien 173
Releasing Array Memory..........c..c.ooeueunen.. 175
Creating a Dictionary.......................... 176
Enumerating a Dictionary 178
Creating a Mutable Dictionary 180
Adding Objects to a Mutable Dictionary........ 181
Managing Memory in Objective-C 183
Creating Test Objects 185
Displaying the Retain Count 186
Incrementing an Object’s Retain Count......... 188
Decrementing an Object’s Retain Count 190
Deallocating Objects from Memory 192
Using an Autorelease Pool 194
Using Self-Managed Memory 195
Deallocating Memory Yourself: Creating

theClass.............oooiiii 197

From the Library of Bill Wiecking

Table of Contents

Deallocating Memory Yourself: Storing

Internal Objects...........cocoviiiiniint. 198
Deallocating Memory Yourself: Creating
the main Method.......................... 200
Deallocating Memory Yourself: Performing
DeallocationooooalL 201
Chapter 11: Exception Handling 203
Catching Exceptions.....................oo.... 205
Handling Exceptions........................... 206
Usingthe EndHandler......................... 207
Creating an Exception 209
Checking What Exception Occurred 211
Handling Multiple Exceptions.................. 213
Passing Exceptions Up the Call Stack........... 215
Returning Values from Exception Handlers. 217
Returning void from an Exception Handler-. 219 ;'
Catching Uncaught Exceptions 221 =
m
Index 223 Q
()
(=}
=
-
m
=
-
(2]
vii

From the Library of Bill Wiecking

INTRODUCTION

INTRODUCTION

Welcome to Objective-C. This book is your
guided tour of this exciting language, and
it gives you what you need to start working
with Objective-C at once.

Using Objective-C, you can write professional
programs that make use of many object-
oriented features—from the basics up to
advanced class inheritance and exception
(run-time error) handling.

Objective-C runs on many different platforms.
For the most part, your code should work
unchanged on all platforms that Objective-C
supports, but where differences in support
exist, this book points them out to you.

This book starts with the basics and contin-
ues on through advanced topics. You'll begin
by looking at how to get Objective-C started
and how to run basic programs. From there,
you'll explore data handling, again start-

ing with the basics and moving on through
advanced topics.

After looking at how to write your own
functions, you'll wrap functions and data
together into objects—the core of Objective-C
programming. And when you start working
with object-oriented programming, the lid is
off—and we'll push the envelope as far as it
can go.

That's the plan, then: to present a guided tour
of Objective-C, taking you from the beginning
to the most advanced topics. Let’s get started
with Chapter 1 now.

viii

From the Library of Bill Wiecking

GETTING
STARTED:
ESSENTIAL OBJECTIVE-

This book takes you on a guided tour of
Objective-C, from the basics on up through
the cool stuff.

Objective-C is a cross-platform language, so
you'll find it on many systems: the Mac, of
course, but also Linux, UNIX, Windows, and
more—and its core programming code stays
the same across all those platforms.

Objective-C is actually a layer built on

top of the C language, and everything that
works in standard (that is, ANSI) C works

in Objective-C. Objective-C also adds tons
of object-oriented features to the original

Clanguage.

The way it uses objects is what makes
Objective-C so popular, but just what is an
object? Object-oriented programming was
introduced when programs began to get very
large and the structure of the code began to
get in the way. Object-oriented programming
lets programmers wrap whole sections of
their code into easily handled, self-contained
objects and so let them break up their code.

J-3AI11D3(9Q 1VILNISS] :d3LYVLG ONILLID

continues on next page

From the Library of Bill Wiecking

ESSENTIAL OBJECTIVE-C

GETTING STARTED

Chapter 1

For example, say you have a bowl of pudding
that you want to keep cold. You could set

up a system of coolant pipes, switches, and
dials that cool your pudding but which take
your constant attention: you have to watch
the temperature, and when the pudding gets
too warm, you have to turn on the coolant
compressor and pump and so on; when the
pudding gets cold enough, you have switch
those things off.

That was the old way of programming, with
the guts of every item in your program laid
bare to the whole rest of the program.

Object-oriented programming, by contrast,
lets you wrap all that functionality into a sin-
gle object: a refrigerator. The refrigerator’s job
is to keep things like pudding cold without
alot of fuss on your part. It is responsible for
maintaining its own internal state—that is,
remaining cold inside. It has thermostats and
relays and the like to automatically handle
the jobs you previously did manually. So if
you want your pudding kept cold, simply put
it in the refrigerator. All the details are hidden
from view, and your kitchen becomes a much
easier place to handle conceptually.

So it is with object-oriented programming.
Now you can wrap code and data together into
objects that are self-contained, and because all
the details are hidden, your interaction with
those objects becomes a lot simpler.

That’s the secret behind object-oriented
programming; divide and conquer.

In this book, you'll see what makes the
objects in Objective-C tick. Theyre different
than the objects in other languages—they
communicate with messages; you don't call
the code in them directly—but theyre just as
powerful, and often more so.

We'll start in this chapter with the basics:
handling basic data items, printing results
from Objective-C programs, running your
programs, and more.

2

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Creating Your First

Program

WeTe going to jump right into Objective-C by
creating and running a program, which we'll
name first.m.

We'll start by creating a function—that is,
a bit of code that you can call by name—
named main():

int main(void)

{

}

Functions can be passed data, as you'll see
later, but this function isn't passed any data,
which is why we use the keyword void in

the parentheses. Functions can also return
values, and the main() function returns

an integer value to Objective-C indicating
whether the program succeeded. The int in
front of main() tells Objective-C to expect an
integer return value. The code for the main()
function goes inside curly braces: { and }.

Next, we'll use the built-in Objective-C func-
tion named printf() to display some text.
We pass the text we want printf() to display
inside parentheses:

WVYYIO0dd LSUI{ d4NOA ONILYIY)

int main(void)
{
printf ("Welcome to Objective-C!");

v Tip
B The extension for Objective-C code files
is.m. }

continues on next page

From the Library of Bill Wiecking

CREATING YOUR FIRST PROGRAM

Chapter 1

To use the printf() function, we have to

tell Objective-C about that function with a
function declaration, as you'll see when we
discuss how to create functions. The decla-
rations for the standard I/0 functions like
printf() are contained in an Objective-C file
named stdio.h, where .h stands for “header
file”; we include stdio.h in our program as
shown here so Objective-C knows about the
printf() function:

#include <stdio.h>
int main(void)
{
printf ("Welcome to Objective-C!");

}

When the program ends, Objective-C will
expect some indication of whether the func-
tion succeeded. We'll return a value of 0 to
Objective-C, which means there were no
errors. Listing 1.1 shows the entire program,
which you will create step by step in the
following tasks.

v Tip

B Note that #import and #include are the
same for our purposes. You can use them
interchangeably and in any order.

#include <stdio.h>

int main(void)

{
printf ("Welcome to Objective-C!");
return 0;

}

Listing 1.1 Your first Objective-C program.

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

To create your first Objective-C
program on the Mac:

1. From http://developer.apple.com/
iphone, download and install the Xcode
Integrated Development Environment.

2. RunXcode.
3. Choose File > New Project.

4. Inthe New Project window, choose
Application.

5. Click the Command-Line Tool icon to
select it.

6. From the Type drop-down menu,
choose Foundation.

Click the Choose button.

8. Enter First as the name of your
application.

9. Select a save location and click the
Save button.

10. In the text editor window, enter the code
in Listing 1.1.

11. Choose File > Save.

To create your first Objective-C
program in Linux, UNIX, or Windows:

1. Open a text editor.

WVYYIO0dd LSUI{ d4NOA ONILYIY)

2. Enterthe codein Listing 1.1.

3. Save the file as first.m in a directory of
your choice.

From the Library of Bill Wiecking

http://developer.apple.com/

COMPILING AND RUNNING YOUR FIRST PROGRAM

Chapter 1

Compiling and Running
Your First Program

To run an Objective-C program, you first
have to compile it, which makes Objective-C
convert your code into the machine language
that your computer can understand.

When you run the first program, you should
see this result:

Welcome to Objective-C!

The Objective-C language comes built
into Mac OX 10.6, but not Linux, UNIX, or
Windows, so you'll have to download it.

If youre using Linux or UNIX, go to http://
www.GNUstep.org/resources/sources.html
and download and install GNUstep, which
gives you the Objective-C compiler.

If youre using Windows, go to http://www.
GNUstep.org/experience/Windows.html
and download the Windows installer for
GNUstep and run it to install GNUstep.

To compile and run your first
Objective-C program on the Mac:
1. In Xcode, on the Project window toolbar,
click the Build and Run button.
You should see this message:
Welcome to Objective-C!

Congratulations, youve run your first
Objective-C program!

From the Library of Bill Wiecking

http://www.GNUstep.org/resources/sources.html
http://www.GNUstep.org/resources/sources.html
http://www.GNUstep.org/experience/Windows.html
http://www.GNUstep.org/experience/Windows.html

Getting Started: Essential Objective-C

To compile and run your first
Objective-C program in Linux or UNIX:

1. Open a command prompt window.

2. Change to the directory containing
first.m.

3. Enter the following command, prefacing
gcc with the path to the GNUstep gcc
compiler if your computer can't find the
compiler:

$ gcc -o first first.m

4. Run the program, like this:
$./first
You should see this message:

Welcome to Objective-C!

Congratulations, you've run your first
Objective-C program!

v Tip

W This book uses $ as a generic command
prompt.

To compile and run your first
Objective-C program in Windows:

1. Choose Start > Programs > GNUstep > Shell.

2. Inthe shell, change to the directory con-
taining first.m/. For example, if first.m is
in the directory C:\objectivec, you would
enter the following (where $ is a generic
command prompt):

$ cd c:\objectivec

WVYY90dd LS¥UI{ 4NOA OSNINNNY ANV ONITIdWO)

3. Inthe shell, enter the following command
to compile first.m into first.exe:

$ gcc -o first first.m

4. Execute the first.exe program, like this:
$./first
You should see this message:
Welcome to Objective-C!

Congratulations, you've run your first
Objective-C program!

From the Library of Bill Wiecking

USING VARIABLES

Chapter 1

Using Variables

In Objective-C programs, you can store your
data in variables, which are placeholders for
that data.

For example, say you have $1 million in your
bank account and want to keep track of

it; you can store that amount in a variable
named amount, like this:

int amount = 1000000;

This code creates a variable that stores inte-
gers (again, that's the int part) and initializes
the value in the amount variable to 1000000.

To display the value in the amount variable,
you can use printf():

printf ("The amount in your account is
$%i\n", amount);

This code prints the string "The amount in
your account is "to start. The %i codeisa
placeholder that will be replaced by the inte-
ger variable that follows the quoted string,
which is the amount variable. (The \n entry is
the newline code, which makes the text skip
to anew line.)

When this program runs, you'll see the value
in the amount variable displayed like this:

The amount in your account is $1000000
To use variables:

1. Enter the code shown in Listing 1.2 in
anew program, account.m.

2. Create the new variable named amount
and initialize it to 1000000 (Listing 1.3).

3. Display the value in the amount variable
(Listing 1.4).

4. Build and run the account.m program.
You should see this result:

The amount in your account is
$1000000

#include <stdio.h>
int main(void)

{

}

Listing 1.2 Creating account.m.

#include <stdio.h>
int main(void)
{
int amount = 1000000,

¥

Listing 1.3 Editing account.m.

#include <stdio.h>
int main(void)
{
int amount = 1000000;
printf ("The amount in your account is
$%i\n", amount);
return 0;

}

Listing 1.4 Using an integer variable.

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Table 1.1

Common printf() Codes

CopE

%1

%C

%d or %1
%e

%E

%f
%g
%G
%s
%u

DispLAY

Integer

Character

Signed decimal integer

Scientific notation (mantissa/
exponent) using e character

Scientific notation (mantissa/
exponent) using E character

Floating-point decimal
The shorter of %e or %f
The shorter of %E or %f
String of characters
Unsigned decimal integer

Displaying Values
in Variables

The capability to display the values stored
in variables with the Objective-C built-in
printf() function is very useful. In the
previous task, you saw that the code %1 is
aplaceholder for integer variables:

printf ("The amount in your account is
$%i\n", amount);

Table 1.1 shows some of the most popular
printf() codes.

For example, if you change the amount vari-
able in the previous task from the integer
(int) type to a floating-point value (float),
you can display its value using printf() and
%f (for float):

#include <stdio.h>
int main(void)
{
float amount = 1000000;
printf ("The amount in your account is
$%f\n", amount);
return 0;

}

In this task, you'll create a program named
temperature.m that will display a time (as

an integer) and a temperature (as a floating-
point number). To do that, you'll use commas
in printf() to separate the variables whose
values you want to display:

#include <stdio.h>
int main(void)
{
int time = 4;
float temperature = 73.6;
printf ("At %i o'clock, the temperature
is %f degrees.\n", time,
temperature);
return 0;

continues on next page

9

From the Library of Bill Wiecking

S3T1AaVIdVA NI SINTVA ONIAVIHSIQ

DISPLAYING VALUES IN VARIABLES

Chapter 1

Given the finite precision of computers,
however, you'll actually see this instead of
73.6 degrees:

At 4 o'clock, the temperature is
73.599998 degrees.

You need to round the floating-point value
up, which you can do by using the code %4 . 1f
instead of just %f. The code %4 . 1f tells the
program that you want your number to be
four total places long with one place after the
decimal point. That gives you

At 4 o'clock, the temperature is 73.6
degrees.

which is what you want.
To show variable values:

1. Create a new program named
temperature.m.

2. Intemperature.m, enter the code shown
in Listing 1.5.

3. Save temperature.m.
4. Run the temperature.m program.

You should see the following:

At 4 o'clock, the temperature is 73.6
degrees.

#include <stdio.h>
int main(void)
{
int time = 4;
float temperature = 73.6;
printf ("At %i o'clock, the temperature
is %4.1f degrees.\n", time,
temperature);
return 0;

}

Listing 1.5 Displaying an int and a float variable.

10

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Working with Data Types

Objective-C comes with some built-in data
types that you can use to create variables. For
example, youve already seen the int type,
which you can use to create integer variables.

The int type is called a primitive in Objective-C,
because it’s built in to the language and it’s

a simple type. Table 1.2 shows the primitive
types in Objective-C.

In this task, we'll create a program named
datatype.m that has four variables: a charac-
ter, an integer, along, and a float variable:

char ¢ = 'a';

int i = 4;

long 1 = 123454321,
float f = 3.1415926;

The code will display the values of them all:

The character is 'a'.
The integer is 4.

The long is 123454321.
The float is 3.141593.

S3dA] ViVQ HLIM SNDIRIOM

Table 1.2

Objective-C Primitive Data Types

TYPE DESCRIPTION SizE

char A character of the local character set 1 byte (8 bits)
double float Double precision 8 bytes

float Floating-point number (for example, 3.1415926) 4 bytes (32 hits)
int An integer (whole numbers; for example, -1, 100, 34) 4 bytes (32 hits)
long Adouble short 4 bytes

long long Adouble long 8 bytes

short Ashort integer 2 bytes

11

From the Library of Bill Wiecking

WORKING WITH DATA TYPES

Chapter 1

To
1.

display variable values:

Create a new program named
datatype.m.

. Indatatype.m, enter the code shown in

Listing 1.6.

. Save datatype.m.

. Run the datatype.m program.

You should see the following:

The character is 'a'.
The integer 1is 4.
The long is 123454321.

The float is 3.141593.

#include <stdio.h>

int main(void)
{

char ¢ =

a’;
int i = 4;

long 1 = 123454321;
float f = 3.1415926;

printf("The character is '%c'.\n",);
printf ("The integer is %i.\n", 1i);
printf ("The long is %i.\n", 1);
printf ("The float is %10.6f.\n", f);

return 0;

¥

Listing 1.6 The datatype.m program.

12

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

#include <stdio.h>

int main(void)
{
/* Declare
* the
* variables.
*/

v

char c = 'a';
int 1 = 4;
long 1 = 123454321;

float f = 3.1415926;

/* Display the results. */

printf ("The character is '%c'.\n", c);
printf ("The integer is %i.\n", 1i);
printf ("The long is %i.\n", 1);

printf ("The float is %10.6f.\n", f);

return 0;

}

Listing 1.7 The datatype.m program with comments.

Adding Comments

Objective-C lets you include English-
language comments to yourself or others
in programs. Such comments are useful to
provide documentation or to indicate how
code needs to be modified.

Objective-C ignores any text between the
markers /* and */, so you can insert com-
ments like this in your code:

/* Here is a comment. */

You also can change such comments into
multiline comments, like this:

/* Here

* is

*a

* comment.
*/

Objective-C also recognizes another type of
comment that is commonly used in the C++
language: one-line comments that begin with
//.Objective-C ignores everything after // on
aline, so these comments are often used to
annotate single lines of code:

int i = 4; //Here is a comment.

In this task, we'll add comments to the
datatype.m program from the previous task.

To add comments:
1. Open datatype.m for editing,

2. Indatatype.m, enter the two comments
shown in Listing 1.7.

continues on next page

13

From the Library of Bill Wiecking

SINIWWO) 9NIaay

ADDING COMMENTS

Chapter 1

3. Indatatype.m, enter the one-line comment
shown in Listing 1.8.

#include <stdio.h>

4. Save datatype.m. int main(void)
{
5. Run the. dat.atype..m program to confirm /% Declare
that Objective-C ignores the comments. * the
* variables.
*/
char c = 'a';
int i = 4;

long 1 = 123454321; //A long value
float f = 3.1415926;

/* Display the results. */

printf ("The character is '%c'.\n", c);
printf ("The integer is %i.\n", i);
printf ("The long is %i.\n", 1);

printf ("The float is %10.6f.\n", f);

return 0;

Listing 1.8 The datatype.m program with a single-line
comment.

14

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Using Arithmetic
Operators

Like most programming languages,
Objective-C comes stocked with arithmetic
operators to let you perform basic math.
These operators let you add values, subtract
them, multiply them, and more (Table 1.3).

You can use these operators with the values
in variables, like this:

sum = operandl + operand?2;

We'll put together a program, operators.m, to
test these operators.

v Tip

B Ifyoure not familiar with the modulus
operator, %, it just returns the integer
remainder after division. For example,
since 10 divided by 3 is 3 with a remainder
of1,10% 3 =1.

SYOLVIIdQ JILIWHLINY ONISN

Table 1.3

Objective-C Arithmetic Operators

OPERATOR FuncTioN

+ Addition

- Subtraction

/ Division

* Multiplication
% Modulus

15

From the Library of Bill Wiecking

USING ARITHMETIC OPERATORS

Chapter 1

To

use the Objective-C arithmetic

operators:

1.

Create a new program named
operators.m.

. In operators.m, enter the code shown in

Listing 1.9.
This code declares two operands: x and y.

. Add the code to put the arithmetic opera-

tors to use (Listing 1.10).

. Save operators.m.

5. Run the operators.m program.

You should see the following:

5+ 2= 7.
5- 2= 3.
5* 2=10.
5/ 2=2.5.

#include <stdio.h>

int main(void)

{

float x = 5;
float y = 2;
return 0;

}

Listing 1.9 Starting operators.m.

#include <stdio.h>

int main(void)

{

float x = 5;

float y = 2;

X, Y, X +Y);

X,)’,X'y);

X, ¥, X * y);

X, ¥, X/ ¥);

return 0;

¥

printf ("%2.0f + %2.0f = %2.0f.\n",

printf ("%2.0f - %2.0f = %2.0f.\n",

printf ("%2.0f * %2.0f = %2.0f.\n",

printf ("%2.0f / %2.0f = %2.1f.\n",

Listing 1.10 The operators.m program using

arithmetic operators.

16

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

#include <stdio.h>

int main(void)

{

float x = 0;
float y = 5;
return 0;

}

Listing 1.11 Starting as

Table 1.4

signment.m.

Objective-C Assignment Operators

OPERATOR

FuncTion

Assignment

Addition assignment
Subtraction assignment
Division assignment
Multiplication assignment
Modulus assignment

Using Assignment
Operators

You've already seen that you can assign
values to variables with the assignment
operator =, as shown here:

X = 5;

You can also combine operators with the
assignment operator as a shortcut. For
example, you can write

X =X+ 5;

using the shortcut assignment operator + =
as shown here:

X +=5;
Table 1.4 lists the assignment operators.

To use the Objective-C assignment
operators:

1. Create anew program named
assignment.m.

2. Inassignment.m, enter the code shown in
Listing 1.11.

This code declares two variables: x and y.

continues on next page

17

From the Library of Bill Wiecking

SYO0LVIId(Q LNIWNDISSY ONISN

USING ASSIGNMENT OPERATORS

Chapter 1

3. Add the code to put the assignment
operators to use (Listing 1.12).

4. Save assignment.m.

5. Run the assignment program.

You should see the following:

x = 0.

x= 5-->x: 5.
X += 5 --> x: 10.
X -= 5 -->x: 5.
X *= 5 --> x: 25.
X /= 5-->x: 5.

#include <stdio.h>

int main(void)

{

float x = 0;
float y = 5;

printf ("x = %2.0f.\n", x);

X=Y;
printf ("x = %2.0f --> x: %2.0f.\n", vy,
x);

X +=Y;
printf ("x += %2.0f --> x: %2.0f.\n",
Yy X3

X -=Y;
printf ("x -= %2.0f --> x: %2.0f.\n",
Yy X3

X *=y;
’
printf ("x *= %2.0f --> x: %2.0f.\n",
Y5 X5
X /=y;
printf ("x /= %2.0f --> x: %2.0f.\n",

Y, X);

return 0;

Listing 1.12 The assignment.m program using
assignment operators.

18

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Using the Increment and
Decrement Operators

Objective-C also supports two more operators:
the ++ increment operator and the -- decrement
operator. For instance, to increment the value
in the variable named temperature, you write
temperature++, which adds 1 to the value in
temperature. To decrement the value, you
enter temperature--, which decreases the
value in temperature by 1.

You can use ++ and -- either before or after
avariable, and the position makes a differ-
ence. The expression ++x adds 1 to x and then
evaluates the rest of the line of code, and the
expression x++ first evaluates the line of code
and then, after the current line of code has
finished executing, increments the value in x.

For example, say you have this code:

float x = 0;
float y = 5;

X = y++;
printf (

"After x = y++ x: %2.0f y: %2.0f.\n",
X, ¥;

This code would print x: 5 y:6, because
the increment operation was performed
after the assignment. On the other hand,
say you execute:

X = ++Y;
printf (
"After x = ++y x: %2.0f y: %2.0f.\n",
X, ¥J;

SYO0LVIId(Q LNIWIUII[ANV LNIWIUION] FHL ONISN

This code would printx: 7 y: 7, because the
increment operation was completed first and
then the assignment.

Let’s test the increment operator.
v Tip

B The decrement operator works the same
way as the increment operator.

19

From the Library of Bill Wiecking

USING THE INCREMENT AND DECREMENT OPERATORS

Chapter 1

To use the Objective-C increment
operator:

1. Create a new program named
increment.m.

2. Inincrement.m, enter the code shown in
Listing 1.13.
This code declares two variables: x and y.

3. Add the code to put the increment opera-
tor to use (Listing 1.14).

4. Save increment.m.

5. Run the increment.m program.
You should see the following:
x: Qy; 5.
After x = y++ x: 5y: 6.
After x = ++y x: 7 y: 7.

#include <stdio.h>

int main(void)

{
float x = 0;
float y = 5;
return 0;

}

Listing 1.13 Starting increment.m.

#include <stdio.h>

int main(void)

{

float x
float y = 5;

I
S

printf ("x: %2.0f y; %2.0f.\n", X, y);

X = y++;
printf (

"After x = y++ x: %2.0f y: %2.0f.\n",
X, Y3

X = ++Y;

printf (
"After x = ++y x: %2.0f y: %2.0f.\n",
X, ¥);

return 0;

}

Listing 1.14 The increment.m program using the
increment operator.

20

From the Library of Bill Wiecking

Getting Started: Essential Objective-C

Changing Type with
Cast Operators

Suppose you want to find the modulus of two
floating-point numbers in a program named
cast.m. You might enter the following code:

float x = 5;
float y = 3;
int result = 0;

result = x % y;

When you run this code, however, the
Objective-C compiler returns an error
message:

cast.m: In function “main’:
cast.m:12: error: invalid operands to
binary %

The problem is that the modulus opera-
tor needs integer operands. To solve this
problem, you can temporarily convert the
floating-point variables to integer variables
with the (int) cast operator, like this:

float x = 5;
float y = 3;
int result = 0;

result = (int) x ¥ (int) y;
Now everything works fine.

You can use cast operators to convert
between various types: (int), (float),
(long), and so on.

SYOLVIId(Q LSV) HLIM IdA] ONIONVH)

21

From the Library of Bill Wiecking

CHANGING TYPE WITH CAST OPERATORS

Chapter 1

To use a cast operator:
1. Create a new program named cast.m.
2. In cast.m, enter the code shown in
Listing 1.15.
This code declares three variables: x, y,

and result.

3. Add the code to put the modulus opera-
tor and the (int) cast operator to work
(Listing 1.16).

4. Save cast.m.

5. Run the cast.m program.
You should see the following:
x: 5vy; 3.
The result of x mod y is 2

#include <stdio.h>

int main(void)

{

float x = 5;
float y = 3;

int result = 0;

return 0;

}

Listing 1.15 Starting cast.m

#include <stdio.h>

int main(void)

{

float x = 5;
float y = 3;
int result = 0;

printf ("x: %2.0f y; %2.0f.\n", X, y);

result = (int) x ¥ (int) y;
printf (
"The result of x mod y is %i\n",
result);

return 0;

¥

Listing 1.16 The cast.m program using a cast operator.

22

From the Library of Bill Wiecking

DIRECTING
PROGRAM FLOW

This chapter is all about taking control of
your code by making programs flow as you
want. You'll see how to make choices with the
if statement, loop over and over with loops,
and more.

The primary program flow statement that
allows you to make choices is the if state-
ment. With the 1 f statement, you can test a
condition and execute code depending on
whether or not the statement is true. For
example, say you have a variable named
temperature, which is set to 72:

#include <stdio.h>
int main(void)
{

int temperature = 72;

MOT1{ WYH¥90dd ONILOFNIQ

continues on next page

23

From the Library of Bill Wiecking

DIRECTING PROGRAM FLOW

Chapter 2

You can use the == equality operator to test
whether the value of the temperature vari-
able is equal to 72 and, if so, execute specific
code like this:

#include <stdio.h>
int main(void)
{
int temperature = 72;
if (temperature == 72)
{
printf("Perfect weather.\n");
1

return 0;

}

You can also add an else statement that
executes code if the condition in the 1 f
statement turns out to be false:

#include <stdio.h>
int main(void)
{

int temperature = 78;

if (temperature == 72)
{

printf("Perfect weather.\n");
}

else

{
printf("Weather could be better.\n");

}

return 0;

24

From the Library of Bill Wiecking

Directing Program Flow

Loops provide another tool for controlling
the flow of your programs. Loops let you
perform specific actions over and over, such
as summing a group of numbers or drawing
lines. For example, in a for loop, the most
common type of loop, you initialize a variable
called 1oop_index (usually by setting it to
zero), specify the condition that causes the
loop to end, and an operation to perform
after the body of the loop is executed. In the
example here, the loop ends when the loop_
index variable contains a number greater
than 5; after the body of the loop runs, the
loop_index value is incremented:

#include <stdio.h>
int main(void)
{
int loop_index;
for (loop_index = @; loop_index < 5;
loop_index++)

{
printf("You'll see this five
times.\n");
}
return 0;
h

This example displays the text “You'll see this
five times”

More on the for loop and the other loops in
Objective-C is coming up in this chapter.

MOT{ WYY¥90dd ONILOFNIQ

25

From the Library of Bill Wiecking

USING THE IF STATEMENT

Chapter 2

Using the if Statement

The if statement is the most basic of the
program flow control statements. This state-
ment lets you test a condition, and if the con-
dition is true, lets you execute specific code.

For example, if you set a variable named
temperature to 72, you can use an if state-
ment to test to make sure that the variable
does contain 72. You place the condition you
want to test, which in this case is temperature
== 72, using the = = equality operator, inside
parentheses, and the code you want to exe-
cute if the condition is true in curly braces
following the parentheses, like this:

#include <stdio.h>

int main(void)
{
int temperature = 72;
if (temperature == 72)
{
printf("Perfect weather.\n");

}

return 0;

}

In this case, the temperature does equal

72, so the code in the curly braces will be
executed. Here, that code prints the message
“Perfect weather”

To use the Objective-C if statement:
1. Create anew program named if.m.

2. Inifm, enter the code shown in Listing 2.1.
This code creates the temperature vari-
able and checks to see if it equals 72.

3. Add the code to display the “perfect
weather” message if the temperature
equals 72 (Listing 2.2).

4, Saveifm.

5. Run the if.m program.
You should see the following:
Perfect weather.

#include <stdio.h>

int main(void)
{

int temperature = 72;

if (temperature == 72)
{

return 0;

}

Listing 2.1 Starting if.m.

#include <stdio.h>

int main(void)

{
int temperature = 72;
if (temperature == 72)
{

}

return 0;

}

printf("Perfect weather.\n");

Listing 2.2 The if.m program.

26

From the Library of Bill Wiecking

Directing Program Flow

Using the else Statement

The if statement allows you to specify code
that runs if a condition you specify (such as
temperature == 72)is true. The else state-
ment lets you specify alternative code that
runs when an if statement’s condition turns
out to be false.

For example, as shown here, you can modify
the previous task’s code to display the mes-
sage “Weather could be better.” if the tem-
perature is not 72.

#include <stdio.h>
int main(void)
{

int temperature = 78;

if (temperature == 72)

{
printf("Perfect weather.\n");

}

else

{
printf("Weather could be better.\n");

}

return 0;

}
v Tip

B Ifyouusean else statement, it must
immediately follow an if statement.

INIW3ILVLG 3S73 IHL ONISN

27

From the Library of Bill Wiecking

USING THE ELSE STATEMENT

Chapter 2

To use the Objective-C else statement:
1. Create a new program named else.m.
2. Inelse.m, enter the code shown in
Listing 2.3.
This code creates the temperature vari-

able and checks to see if it equals 72.

3. Add the else statement to display alter-
native text if the temperature does not
equal 72 (Listing 2.4).

4, Save else.m.

5. Run the else.m program.
You should see the following:
Weather could be better.

#include <stdio.h>
int main(void)
{

int temperature = 78;

if (temperature == 72)
{

printf("Perfect weather.\n");

}

return 0;

}

Listing 2.3 Starting else.m.

#include <stdio.h>
int main(void)
{

int temperature = 78;

if (temperature == 72)
{

printf("Perfect weather.\n");

¥

else

{

printf("Weather could be better.\n");

}

return 0;

¥

Listing 2.4 The else.m program.

28

From the Library of Bill Wiecking

Directing Program Flow

Using the switch
Statement

If you have many conditions to test, you may
want to use a switch statement instead of
multiple if-else statements. You can test
text strings (coming up in the next chapter)
or integers with the switch statement. When
a case statement that matches the value

in the variable youTe testing is found in the
switch statement, the corresponding code

is executed.

The following example tests for various tem-
peratures, executing code for each temperature:

#include <stdio.h>

int main(void)

{
int temperature = 73;
switch(temperature)
{
case 71: cC
printf("Could be a little v
warmer.\n"); g
break; :-=|
case 72: m
printf("Perfect weather.\n"); =
break; m
case 73: g?
printf("It's a little warm.\n"); 3
break; m
default: ﬁ
printf("Unknown temperature.\n"); E'
}
return 0;
}

29

From the Library of Bill Wiecking

USING THE SWITCH STATEMENT

Chapter 2

To use the Objective-C switch
statement:

1. Create a new program named switch.m.

2. In switch.m, enter the code shown in
Listing 2.5.
This code creates the temperature vari-
able and the switch statement.

3. Add the case statements to display a mes-

sages corresponding to the temperature
(Listing 2.6).

4, Save switch.m.

5. Run the switch.m program.
You should see the following:

It's a little warm.
v Tip

B Ifno case statement matches the vari-
able youTe testing, the default case is
executed.

#include <stdio.h>

int main(void)
{

int temperature = 73;

switch(temperature)

{

¥

return 0;

}

Listing 2.5 Starting switch.m.

#include <stdio.h>

int main(void)
{

int temperature = 73;

switch(temperature)
{
case 71:
printf("Could be a little
warmer.\n");
break;
case 72:
printf("Perfect weather.\n");
break;
case 73:
printf("It's a little warm.\n");
break;
default:
printf("Unknown temperature.\n");

return 0;

}

Listing 2.6 The switch.m program.

30

From the Library of Bill Wiecking

Directing Program Flow

#include <stdio.h>

int main(void)
{

int temperature = 71;

if (temperature < 72)
{

return 0;

}

Listing 2.7 Starting compare.m.

#include <stdio.h>

int main(void)
{

int temperature = 71;

if (temperature < 72)

{
printf(
"Could be a little warmer.\n");

return 0;

}

Listing 2.8 The compare.m program.

Table 2.1

Objective-C Comparison Operators

OPERATOR DESCRIPTION

== Equality

I= Inequality

> Greater than

< Less than

y= Greater than or equal to
(= Less than or equal to

Using Comparison
Operators

So far we've compared values with the ==
equality comparison operator:

#include <stdio.h>

int main(void)

{
int temperature = 72;
if (temperature == 72)

{
printf("Perfect weather.\n");

}

return 0;

}

The equality operator is just one of the
Objective-C comparison operators, which
are listed in Table 2.1.

To use comparison operators:

1. Create a new program named
compare.m.

2. In compare.m, enter the code shown in
Listing 2.7.
'This program compares the temperature
to 72, and if the temperature is less than
72, it executes code.

3. Add the case statements to display a
messages if the temperature is below 72
(Listing 2.8).

4. Save compare.m.

5. Run the compare.m program.
You should see the following:
Could be a little warmer.

31

From the Library of Bill Wiecking

SYO0LVYIId() NOSIIVdWO) ONISN

USING LOGICAL OPERATORS

Chapter 2

Using Logical Operators

In the previous task, we checked to see if the
temperature was less than 72:

#include <stdio.h>

int main(void)
{

int temperature = 71;

if (temperature < 72)

{
printf(
"Could be a little warmer.\n");

}

return 0;

}

What if you want to check whether the tem-
perature is between 70 degrees and 74 degrees?
For that, you can use a logical operator. Logical
operators let you connect true-or-false clauses.
Table 2.2 lists the logical operators.

To use logical operators:
1. Create anew program named logical.m.

2. Inlogical.m, enter the code shown in
Listing 2.9.
This code sets up the if statement to
check whether the temperature is less
than 74 and greater than 70.

3. Display a message if the temperature is
within the tested range (Listing 2.10).

4. Savelogical.m.

5. Run thelogical.m program.
You should see the following:

Nice weather.

#include <stdio.h>

int main(void)
{

int temperature = 71;

if (temperature < 74
&& temperature > 70)
{

return 0;

}

Listing 2.9 Starting logical.m.

#include <stdio.h>

int main(void)
{

int temperature = 71;

if (temperature < 74
&& temperature > 70)
{

printf("Nice weather.\n");

¥

return 0;

}

Listing 2.10 The logical.m program.

Table 2.2

Objective-C Logical Operators

OPERATOR DESCRIPTION

! Not. Reverses the true/false value of
a condition.

&& And. Both clauses have to be true for

the resulting expression to be true.

Il Or. Either clause can be true for the
resulting expression to be true.

32

From the Library of Bill Wiecking

Directing Program Flow

Using the Conditional
Operator

We've seen how you can make decisions in
code using the if statement and execute other
code to match the results of those decisions.

You can also use the conditional operator to
make decisions. This operator lets you evalu-
ate an expression and execute code depend-
ing on the result. The conditional operator
has this format:

conditional ? expressionl : expressionZ;

Objective-C evaluates conditional, and if
it’s true, executes espressionl; ifit’s false, it
executes expressionZ. The returned value
from this operator is the expression that is
executed. For example, you may want to cap
the temperature at 72, and if it's greater than
72, set it to 72. Here's how to do that with a
conditional operator:

#include <stdio.h>

int main(void)
{
int temperature = 78;
temperature = temperature > 72 ?
temperature = 72 : temperature;

printf("The temperature is %i.\n",
temperature);

return 0;

}

Here, if the temperature is greater than 72,
the first expression, 72, is returned from the
conditional operator. If it’s less than 72, the
temperature itself is returned.

JOLVviId(Q TVYNOILIANO) IHL ONISN

33

From the Library of Bill Wiecking

USING THE CONDITIONAL OPERATOR

Chapter 2

To use the Objective-C conditional
operator:

1. Create a new program named
conditional.m.

2. In conditional.m, enter the code shown in
Listing 2.11.

This code creates the temperature vari-
able and the statement that uses the
conditional operator to make sure the
temperature is capped.

3. Add the code to display the results
(Listing 2.12).

4. Save conditional.m.

5. Run the conditional.m program.
You should see the following:

The temperature is 72.

#include <stdio.h>
int main(void)
{

int temperature = 78;

temperature = temperature > 72 ?

temperature = 72 : temperature;

}

Listing 2.11 Starting conditional.m.

#include <stdio.h>

int main(void)
{

int temperature = 78;

temperature = temperature > 72 ?

temperature = 72 : temperature;

printf("The temperature is %i.\n",
temperature);

return 0;

}

Listing 2.12 The conditional.m program.

34

From the Library of Bill Wiecking

Directing Program Flow

Using the for Loop

Loops let computers do what they excel at:
perform many operations rapidly. Loops let
you execute a section of code over and over,
typically operating on different data in each
loop iteration (that is, each time through
the loop).

The for loop has this format:

for(initilialization; end_condition;
after_loop_expression)

{
body

}

Here, initilization is an expression evalu-
ated before the loop starts; you typically set a
loop_index variable (which keeps track of the
number of times the loop has executed) to
zero here. The end_condition specification

is an expression (such as loop_index < 5)
that, when it is no longer true, ends the loop.
The after_loop_expression specification

is executed after the body of the loop (in
curly braces following the for statement) is
executed; you typically increment the loop_
index value here.

Here's an example that uses a for loop to dis-
play the message “You'll see this five times.:

int main(void)
{

int loop_index;

dOO07 404 FHL 9NISN

for (loop_index = @; loop_index < 5;
loop_index++)

{
printf(
"You'll see this five times.\n");

return 0;

}

35

From the Library of Bill Wiecking

USING THE FOR LooP

Chapter 2

To use the Objective-C for loop:
1. Create a new program named for.m.

2. Infor.m, enter the code shown in
Listing 2.13.

This code creates a for loop that executes
five times.

3. Add the code to display the message each
time through the loop (Listing 2.14).

4, Save for.m.

5. Run the form program.
You should see the following:
You'll see this five times.
You'll see this five times.
You'll see this five times.
You'll see this five times.

You'll see this five times.

int main(void)
{

int loop_index;

for (loop_index = @; loop_index < 5;
loop_index++)

{

return 0;

}

Listing 2.13 Starting for.m.

int main(void)
{

int loop_index;

for (loop_index = @; loop_index < 5;
loop_index++)

{
printf(
"You'll see this five times.\n");

return 0;

¥

Listing 2.14 The for.m program.

36

From the Library of Bill Wiecking

Directing Program Flow

Using the while Loop

Objective-C offers another popular loop: the
while loop. This loop keeps executing its
body while a certain condition is true. The
while loop has this format:

while(condition)

{
body

}

The while loop checks the condition expres-
sion, and it it’s true, executes the code in

the body of the loop. When the condition

is tested and turns out to be false, the loop
stops executing.

Here's an example of awhile loop that dis-
plays the message “You'll see this five times.”:

#include <stdio.h>
int main(void)

{

int loop_index = 0;

c

&

while (loop_index < 5) 2
{ @
-]

printf("You'll see this five ﬁ
times.\n"); s
loop_index++; x

} -
m

)

return 0; o
} v

37

From the Library of Bill Wiecking

USING THE WHILE LooP

Chapter 2

To use the Objective-C while loop:
1. Create a new program named while.m.

2. Inwhile.m, enter the code shown in
Listing 2.15.

This code creates awhile loop that
executes five times.

3. Add the code to display the message each
time through the loop and to increment
loop_index, which is checked by the
while loop before each loop iteration
(Listing 2.16).

4, Save while.m.

5. Run the while.m program.
You should see the following:
You'll see this five times.
You'll see this five times.
You'll see this five times.
You'll see this five times.

You'll see this five times.

#include <stdio.h>

int main(void)
{

int loop_index = 0;

while (loop_index < 5)
{

return 0;

}

Listing 2.15 Starting while.m.

#include <stdio.h>

int main(void)
{

int loop_index = 0;

while (loop_index < 5)
{

times.\n");
loop_index++;

¥

return 0;

¥

printf("You'll see this five

Listing 2.16 The while.m program.

38

From the Library of Bill Wiecking

Directing Program Flow

Using the do...while Loop

One more popular loop that Objective-C
offersis the do...while loop. Like the while
loop, this loop keeps executing its body while
a certain condition is true, but unlike the
while loop, it checks its condition after the
loopss body executes. The do. . .while loop
has this format:

do {
body
} while(condition);

The do. . .whileloop executes its body and
then checks the condi tion expression; it
it’s true, the loop executes again. When the
condition is tested and turns out to be false,
the loop stops executing.

Why do you need the do. . .whileloop in
addition to the while loop? You typically use
ado...whileloop when the loop condition
is set for the first time within the loop: for
example, if youre reading from a file and ter-
minating the loop at the end of the file, you
need to try to read from the file at least once
to see if the file contains any data for you to
read before the loop is terminated.

Here's an example that displays the message
“You'll see this five times.” This time, a
do...whileloop was used:

#include <stdio.h>

d0O7 3TIHM" *°°0d FHL ONISN

int main(void)
{

int loop_index = 0;

do {
printf(
"You'll see this five times.\n");
loop_index++;
} while (loop_index < 5);

return 0;

}

39

From the Library of Bill Wiecking

USING THE DO...WHILE LooP

Chapter 2

To use the Objective-C do...while loop:
1. Create a new program named do.m.

2. In do.m, enter the code shown in
Listing 2.17.

This code creates ado. . .while loop that
executes five times.

3. Add the code to display the message each
time through the loop and to increment
loop_index, which is checked by the
do...whileloop after each loop iteration
(Listing 2.18).

4, Save do.m.

5. Run the do.m program.
You should see the following:
You'll see this five times.
You'll see this five times.
You'll see this five times.
You'll see this five times.

You'll see this five times.

#include <stdio.h>
int main(void)
{

int loop_index = 0;

do {

} while (loop_index < 5);

return 0;

}

Listing 2.17 Starting do.m,

#include <stdio.h>
int main(void)
{

int loop_index = 0;

do {
printf(

loop_index++;

return 0;

¥

"You'll see this five times.\n");

} while (loop_index < 5);

Listing 2.18 The do.m program.

40

From the Library of Bill Wiecking

Directing Program Flow

Using the break Statement

Sometimes you may want to break out of a
loop—that is, terminate it. For example, say
that you're happily printing the reciprocals
of -1/5upto 1/5:

#include <stdio.h>

int main(void)
{

float loop_index;

for (loop_index = 5; loop_index > -5;
loop_index--)
{
printf("1/%2.1f = %10.6f\n",
loop_index, 1.0/loop_index);

return 0;

}

However, when you get to 1/0 (division by
zero), Objective-C will report an error. To
avoid that, you can use a break statement to
break the loop execution before the attempt
to divide by 0 occurs:

#include <stdio.h>
int main(void)
{

float loop_index;

for (loop_index = 5; loop_index > -5;
loop_index--)
{
if (loop_index == 0.0) {
break;
}
printf("1/%2.1f = %10.6f\n",
loop_index, 1.0/loop_index);

INIW3ILVLG MV3IYg IHL ONISN

}

return 0;

}

The break statement causes the loop to
end—in this case, avoiding division by zero,

41

From the Library of Bill Wiecking

USING THE BREAK STATEMENT

Chapter 2

To

use the Objective-C break

statement:

1.
2.

Create a new program named break.m.

In break.m, enter the code shown in
Listing 2.19.

This code prints the reciprocals from -1/5

to 1/5, but will report an error for 1/0.

. Add the code to break loop execution

before the attempt to divide by zero

#include <stdio.h>

int main(void)
{
float loop_index;
for (loop_index = 5; loop_index > -5;
loop_index--)
{
printf("1/%2.1f = %¥10.6f\n",
loop_index, 1.0/loop_index);

(Listing 2.20). ’
4, Save break.m. return 0;
5. Run the break.m program. ’
You should see the following: Listing 2.19 Starting break.m.
1/5.0 = 0.200000
1/4.0 = 0.250000 : :
1/3.0 = 0.333333 #1nc1uée <st10.h>
int main(void)
1/2.0 = 0.500000 {
1/1.0 = 1.000000 float loop_index;
for (loop_index = 5; loop_index > -5;
loop_index--)
{
if (loop_index == 0.0) {
break;
1
printf("1/%2.1f = %¥10.6f\n",
loop_index, 1.0/loop_index);
}
return 0;
}
Listing 2.20 The break.m program.
42

From the Library of Bill Wiecking

HANDLING DATA

This chapter is all about working with data
in Objective-C. You'll use arrays, pointers,
strings, and more.

An array is a set of data items, called elements,
that you can refer to with an array index. For
example, if you store numbers in an array
named array, you can address each element
with an index number like this: array[0],
which refers to the first element; array[1],
which refers to the second element; and so
on. The following code creates an array of five
elements, stores a value of 51 in array[0],
and then displays that value:

#include <stdio.h>
int main(){
int array[5];
array[@] = 51,
printf("array[0] is %i.\n", array[@]);
return 0;}

vivQ ONITANVH

Pointers are special variables that hold the

address in memory of data items. You can

store the address of a variable named integer

in a pointer with the & operator like this:
pointer = &integer;

continues on next page

43

From the Library of Bill Wiecking

HANDLING DATA

Chapter 3

You can then refer to the value of integer as
*pointer like this:

#include <stdio.h>
int main(){
int integer, *pointer;
integer = 1;
pointer = &integer;
*pointer = 2;
printf(
"The value of the integer is: %i",
*pointer);
return 0;}

Pointers are very important in Objective-C
because you use them to create objects. For
example, text strings in Objective-C are usu-
ally NSString objects (the “NS” part stands
for NeXtStep, the name of the organization
that originally created these objects). To
create a text string in Objective-C, you create
a pointer to a NSString object. You can pass
that object the message cString to have it

return a C-style string that printf() can print:

#include <stdio.h>
#include <Foundation/Foundation.h>
int main(void){
NSString *helloString =
@"Hello there.";
printf("%s\n", [helloString cString]);
return 0;}

v Tip

B Here's an important point: To create
objects of any class that begins with
NS, you must include the Objective-C
Foundation header file (the #include
<Foundation/Foundation.h> line in the
code here).

44

From the Library of Bill Wiecking

Handling Data

About Creating
NS-Class Objects

To create objects of any class that begins
with NS, you must include the Objective-C
Foundation header file. If youTe using Xcode
on the Mac, make sure that the Foundation
option is selected on the New Project page
when you create a project. If youre using
Objective-C in Windows, Linux, or UNIX,
you need a makefile named GNUmakefile
like the following, which compiles a program
named source.m and creates an executable
application named app (which is app.exe

in Windows):

include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = app

app_OBJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/tool.make

In Linux and UNIX (not Windows), you also
have to set up the GNUstep environment
variables. You do that in the C shell like this:

source <GNUstep root>/System/Library/
Makefiles/GNUstep.csh

And you do it like this in the Bourne shell:

. <GNUstep root>/System/Library/
Makefiles/GNUstep.sh

On most UNIX systems, <GNUstep root> is
/usr/lib/GNUstep. To run the makefile, just
change to the directory with the makefile
(GNUmakefile) and type make, which creates
the executable application in a subdirectory
named obj. In this example, you can run that
application by typing ./obj/app.

S123(4Q SSY1)-SN ONILV3IY) Lnoay

45

From the Library of Bill Wiecking

CREATING ARRAYS

Chapter 3

Creating Arrays

Arrays are sets of elements (which can be of
any Objective-C type) that you can access
using an index value. In the following task,
you'll declare an array of five elements, assign
the value 51 to the first element, array[@],
and then display that value.

To create an Objective-C array:
1. Create anew program named array.m.

2. Inarray.m, enter the code shown in
Listing 3.1.
This code creates the array named array
and sets array[0] equal to 51.

3. Add the code to display the value in
array[0] (Listing 3.2).

4. Save arraym.

5. Run the array.m program.
You should see the following:
array[@] is 51

#include <stdio.h>
int main()
{

int array[5];

array[@] = 51;

return 0;

}

Listing 3.1 Starting array.m.

#include <stdio.h>
int main()
{

int array[5];

array[@] = 51;

printf("array[@] is %i.\n",
array[01);

return 0;

3

Listing 3.2 The array.m program.

46

From the Library of Bill Wiecking

Handling Data

Finclude <stdio.h> Initializing Arrays
int main(You can initialize the value of the elements in
. an array when you declare that array by enclos-

. ing the initialization values in curly braces:

int scores[5] = {92 , 73 , 57 , 98 ,

89 1; #include <stdio.h>
int main()
. {

return 0; int scores[5] = {92, 73, 57, 98 ,

} 89 };
Listing 3.3 Starting initializearray.m. printf(

"The array is %i elements long.",

sizeof(scores) / sizeof(int));
#include <stdio.h>
return 0;
int main() 1
{ 0 e .
int scores[5] = {92 , 73, 57 , 98 , To initialize an array:
8 1 1. Create anew program named
initializearray.m.
printf(
"The array is %i elements long.", 2. Ininitializearray.m, enter the code shown
sizeof(scores) / sizeof(int)); in Listing 3.3.
'This code creates the array and initializes
return 0; the values of its elements.
} .
3. Calculate the number of elements in the

Listing 3.4 The initializearray.m program. array, using the sizeof operator to get
the size of the whole array and dividing

by the size of a single element (Listing 3.4).
4, Saveinitializearray.m.

5. Run the initializearray.m program.

You should see the following:

SAVYYUY SONIZITVILIN|

The array is 5 elements long.

47

From the Library of Bill Wiecking

LOOPING OVER ARRAYS

Chapter 3

Looping over Arrays

Arrays and loops are made for each other.
Arrays hold sets of data, and loops let you
iterate over such data sets. Looping over

long sets of data in arrays is one of the things

computers are really good at.

For example, if you have an array of student

scores and want to find their average, you can

use a for loop:.

int student_index, scores[5] =
{92 ,73,57,98, 89},
float sum = 0;

for (student_index = @, sum = 0;
student_index < 5; student_index++)

{

sum += scores[student_index];

}

printf("Average score is %2.1f",
sum / 5);

To loop over an array:

1. Create anew program named
arrayloop.m.

2. Inarrayloop.m, enter the code shown in
Listing 3.5.
This code creates the scores array and
initializes it.

3. Addthe code to sum all the elements

in the array and find their average
(Listing 3.6).

4. Save arrayloop.m.

5. Run the arrayloop.m program.
You should see the following:

Average score is 81.8

#include <stdio.h>

int main()
{
int student_index, scores[5] =
{92 ,73,57,098, 891,
float sum = 0;

return 0;

}

Listing 3.5 Starting arrayloop.m.

#include <stdio.h>

int main()
{
int student_index, scores[5] =
{92,73,57,98, 89 };
float sum = 0;

for (student_index = @, sum = 0;
student_index < 5; student_index++)

{

sum += scores[student_index];

}

printf("Average score is %2.1f",
sum / 5);

return 0;

}

Listing 3.6 The arrayloop.m program.

48

From the Library of Bill Wiecking

Handling Data

Creating Two-Dimensional
Arrays

So far we've been working with arrays in

one dimension, but you can create multi-
dimensional arrays as well. While you
access an element in a one-dimensional
array as array[el ement_number], you access
elements in a two-dimensional array as
array[row][column].

For example, if you have an array of student
scores for each of three tests and want to
find the average score for each of the three
tests, you can use a two-dimensional array.
You initialize the two-dimensional array with
nested lists in curly braces and loop over the
lists with nested for loops:

int test_index, student_index,
scores[3][5] = {
{92 ,73,57,98, 891,
{8 ,7 ,23,9,72%,
{9 ,82,63,9, 941}
b
float sum;
for (test_index = 0; test_index < 3;
test_index++)
{
for (student_index = @, sum = 0;
student_index
< 5; student_index++)
{
sum +=
scores[test_index][student_index];
}
printf(
"Average for test %i is %2.1f.\n",
test_index + 1, sum / 5);

SAVYYY TVNOISNIWIQ-OM] ONILYVIY)

49

From the Library of Bill Wiecking

CREATING TWO-DIMENSIONAL ARRAYS

Chapter 3

To create a two-dimensional array:
1. Create a new program named array2.m.

2. Inarray2.m, enter the code shown in
Listing 3.7.

This code creates an array and loops over
each row.

3. Add the code to loop over each column
and display the average for each test
(Listing 3.8).

4. Save array2.m

5. Run the array2.m program.
You should see the following:
Average for test 1 is 81.8
Average for test 2 is 70.8
Average for test 3 is 86.4

#include <stdio.h>

int main()
{
int test_index, student_index,
scores[3][5] = {
{92 ,73,57,98, 891},
{8 ,7 ,23,95, 721,
{94,82,63,99, 9%}
b
float sum;
for (test_index = 0; test_index < 3;
test_index++)

{

}

return 0;

}

Listing 3.7 Starting array2.m.

#include <stdio.h>
int main()
{
int test_index, student_index,
scores[3][5] = {
{92,73,57,98, 891,
{8 ,7 ,23,95,72%,
{94 ,82,63,9 ,94}
1

float sum;

for (test_index = 0; test_index < 3;
test_index++)
{
for (student_index = @, sum = 0;
student_index
< 5; student_index++)
{
sum +=
scores[test_index][student_index];
}
printf(
"Average for test %i is %2.1f.\n",
test_index + 1, sum / 5);
}
return 0;

¥

Listing 3.8 The array2.m program.

50

From the Library of Bill Wiecking

Handling Data

#include <stdio.h>
int main()
{
int integer, *pointer;

integer = 1;

pointer = &integer;

return 0;

}

Listing 3.9 Starting pointers.m.

#include <stdio.h>
int main()
{
int integer, *pointer;
integer = 1;
pointer = &integer;
*pointer = 2;
printf(
"The value of the integer is: %i",

*pointer);

return 0;

}

Listing 3.10 The pointers.m program.

Using Pointers

Pointers hold the address in memory of data
items. You declare a pointer by prefacing it
with an asterisk (¥):

int integer, *pointer;

Then you can use the & operator to get the
address of a variable in memory and assign it
to the pointer:

integer = 1;

pointer = &integer;

Using the asterisk again, you can refer to the
data pointed to by the pointer::

*pointer = 2;
To use pointers:

1. Create a new program named
pointers.m.

2. In pointers.m, enter the code shown in
Listing 3.9.
This code creates the pointer and
assigns it the address of the variable
named integer.

3. Assign anew value to the memorylocation
pointed to by the pointer and display the
data stored in that location (Listing 3.10).

4. Save pointers.m.

5. Run the pointers.m program.
You should see the following;:

The value of the integer is: 2

51

From the Library of Bill Wiecking

SYILNIOd 9NISN

USING POINTER MATH

Chapter 3

Using Pointer Math

If you point to items arranged one after
another in memory, such as in an array,

you can increment or decrement pointers

to point to the next or previous item. For
instance, the following example prints the
first number in an array and then the second
number by incrementing a pointer:

float values[4] = {0.0, 1.0, 2.0,
3.0%;

float *pointer = &values[0];
printf("*pointer = %2.1f\n", *pointer);

printf("*(++pointer) = %2.1f",
*(++pointer));

To use pointer math:

1. Create anew program named
pointermath.m.

2. Inpointermath.m, enter the code shown
in Listing 3.11.

This code simply points to the first item in
the array and prints it.

3. Add the code to increment the pointer
and display the next element in the array
(Listing 3.12).

4. Save pointermath.m.

5. Run the pointermath.m program.
You should see the following:
*pointer = 0.0

*(++pointer) = 1.0

#include <stdio.h>
int main()
{
float values[4] = {0.0, 1.0, 2.0,
3.0%;

float *pointer = &values[0];

printf("*pointer = %2.1f", *pointer);

}

Listing 3.11 Starting pointermath.m.

#include <stdio.h>
int main()
{
float values[4] = {0.0, 1.0, 2.0,
3.0%,
float *pointer = &values[0];

printf("*pointer = %2.1f\n", *pointer);

printf("*(++pointer) = %2.1f",
*(++pointer));

return 0;

}

Listing 3.12 The pointermath.m program.

52

From the Library of Bill Wiecking

Handling Data

#include <stdio.h>
int main()
{

double values[10];

double *pointer = values;

pointer[2] = 3.14159;

}

Listing 3.13 Starting pointersarray.m.

#include <stdio.h>

int main()

{
double values[10];
double *pointer = values;

pointer[2] = 3.14159;

printf("values[2] = %10.6f",
values[2]);

return 0;

}

Listing 3.14 The pointersarray.m program.

Interchanging Pointers
and Arrays

Array names and pointers are in many ways
interchangeable in Objective-C. For example,
you can create an array, assign the name of
the array to a pointer, and treat the pointer as
you would the array name:

double values[10];
double *pointer = values;

pointer[2] = 3.14159;
To use arrays as pointers:

1. Create a new program named
pointersarray.m.

2. In pointersarray.m, enter the code shown
in Listing 3.13.
This code creates an array and assigns the

array name to a pointer.

3. Add the code to display the value of the
assigned element (Listing 3.14).

4. Save pointersarray.m.

5. Run the pointersarray.m program.
You should see the following:
values[2] = 3.141590

53

From the Library of Bill Wiecking

SAVYYY ANV SYILNIOd ONIONVHIUILN]|

USING STRINGS

Chapter 3

Using Strings

You might think that Objective-C comes
with a built-in string data type, much like the
built-in types float and char, but it doesn't.
Instead, Objective-C uses the Foundation
class NSString.

You first include the Foundation classes
(which means you have to use a makefile in
Windows, Linux, and UNIX); then you can
create a string object of class NSString. As
with all Objective-C objects, you get a pointer
to the object and can initialize your string
like this:

#include <Foundation/Foundation.h>

NSString *helloString =
@"Hello there.";

The @ sign in front of the quoted text indi-
cates that you want to use an Objective-C
style of string, not the default C-style of
strings (Objective-C strings have a lot more
power built into them than C strings do).

To use Objective-C strings:
1. Create anew program named string.m.

2. Instring.m, enter the code shown in
Listing 3.15 to create and display a string.
To print the string with printf(), youre
converting the string to a C-style string
by sending it the message cString (you
communicate with Objective-C objects by
sending them messages in this way).

#include <stdio.h>

#include <Foundation/Foundation.h>

int main(void)
{
NSString *helloString =
@"Hello there.";

printf("%s\n", [helloString cString]);

return 0;

¥

Listing 3.15 Creating string.m.

54

From the Library of Bill Wiecking

Handling Data

include $(GNUSTEP_MAKEFILES)/common.make 3. Save string.m.
4. Ifyoure using Linux, UNIX, or Windows,
TOOL_NAME = string create a makefile named GNUmakefile,
string_OBJC_FILES = string.m as shown in Listing 3.16, and follow the
directions in “About Creating NS-Class
include $(GNUSTEP_MAKEFILES)/tool.make Objects” earlier in this chapter to compile

L . string.m with the makefile.
Listing 3.16 The GNUmakefile file.

5. Save GNUmakefile.

6. Compile and run the string.m program (in
Linux, UNIX, and Windows, you run the
program as ./obj/string).

You should see the following;
Hello there.

SONIYLS 9NISN

55

From the Library of Bill Wiecking

PASSING MESSAGES TO STRING OBJECTS

Chapter 3

Passing Messages to
String Objects

As with other Objective-C objects, you commu-
nicate with NSString objects by passing them
messages. For example, passing a string the
message length returns its length, and passing
it the message getSubstringFromIndex lets
you get a substring.

For example, if you want to convert a string
that contains an integer into an actual inte-
ger, you use the intValue message, which you
send like this:

printf("The number is %i\n",
[numberString intValue]);

To call Objective-C string methods:

1. Create anew program named
stringtoint.m.

2. Instringtoint.m, enter the code shown in
Listing 3.17.
This code creates a string named
numberString, initializes it, and then
sends it the message intValue to convert
it to an integer and print that integer.

3. Save stringtoint.m.

4, Ifyoure using Linux, UNIX, or Windows,
create a makefile named GNUmakefile,
as shown in Listing 3.18, and follow the
directions in “About Creating NS-Class
Objects” earlier in this chapter to compile
stringtoint.m with the makefile.

5. Save GNUmakefile.

6. Compile and run the stringtoint.m pro-
gram (in Linux, UNIX, and Windows, you
run the program as ./obj/string).

You should see the following:

The number is 5

#include <stdio.h>

#include <Foundation/Foundation.h>

int main(void)
{
NSString *numberString = @"5";

printf("The number is %i\n", [numberString
intValuel);

return 0;

}

Listing 3.17 Creating stringtoint.m.

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = stringtoint
stringtoint_OBJC_FILES = stringtoint.m

include $(GNUSTEP_MAKEFILES)/tool.make

Listing 3.18 The GNUmakefile file.

v Tips

B You can find all the messages NSString
objects can take at http://developer.
apple.com/mac/library/documentation/
Cocoa/Reference/Foundation/Classes/
NSString_Class/Reference/NSString.
html.

B A function like intValue that’s built into
an object is called a method.

56

From the Library of Bill Wiecking

http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html

Handling Data

Finclude <stdio.h> Using Enumerations
int mainC) Objective-C lets you define your own named
. types, called enumerations. For example, you
enum day can tell Objective-C that an enumeration
. named day holds values named for the days
of the week, like this:
Sunday,
Monday , enum day
Tuesday, {
Wednesday, Sunday,
Thursday, Monday,
Friday, Tuesday,
Saturday Wednesday,
1; Thursday,
Friday,
enum day today = Friday; Saturday
1Y
You can then assign a variable of that type to
} one of those values:

enum day today = Friday;
Listing 3.19 Starting enumeration.m.

To create an enumeration:

1. Create a new program named
enumeration.m.

2. In enumeration.m, enter the code shown
in Listing 3.19.
This code creates the enumeration and

assigns the variable today to one of the
allowed named values.

continues on next page

SNOILYYIWNNT 9NISN

57

From the Library of Bill Wiecking

USING ENUMERATIONS

Chapter 3

3. Add the code to test whether today is
Friday (Listing 3.20).

4, Save enumeration.m.

5. Run the enumeration.m program.
You should see the following:
Today is Friday.

#include <stdio.h>

int main()
{
enum day
{
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday
b

enum day today = Friday;

if(today == Friday){

printf("Today is Friday.");

}

return 0;

¥

Listing 3.20 The enumeration.m program.

58

From the Library of Bill Wiecking

CREATING
FUNCTIONS

This chapter is all about functions, which are
chunks of code you can call to make them
run—and they won't run unless you call them.

So far, the code in the programs we've discussed
has executed automatically when the programs
start. But functions are different; you have to
explicitly call a function by name in your code
before its code will run. That means that using
functions, you can divide your code into smaller
parts: the divide and conquer technique.

In Objective-C, functions are a crucial stop on
the way to building your own objects. Objects
let you package both data and functions—
called methods when theyTe built into
objects—together, as you'll soon see.

Here is an example of how you might create a

function named greeter(): 9
m

#include <stdio.h> E'
=

void greeter(void) .
{ c
printf("Hello there."); E

} .
o

2

(7]

Note the function’s structure: In front of its
name (here, greeter), you specify a return
type, which indicates the type of the data item

continues on next page

59

From the Library of Bill Wiecking

CREATING FUNCTIONS

Chapter 4

that the function can return. Since greeter()
doesn't return any data, the return type is void.

Then, in parentheses following the name
comes a list of arguments; these are the data
items you pass to the function to let it do its
work. Since the greeter() function takes no
arguments, it uses void for the argument list
as well. Then comes the body of the function—
the actual code that runs when you call the
function—enclosed in curly braces: { and }.

In this case, the greeter() function simply
displays a message: “Hello there”

The whole thing—the line that gives the func-
tion’s return type, name, and argument list, as
well as the body of the function—is called the
function’s definition.

You can call the greeter() function by name
to run it from the code in main()—which
itselfis a function:

#include <stdio.h>

void greeter()
{

printf("Hello there.™);
}

int main()

{
greeter();

return 0;

}

Now when your program runs, it will start
automatically by calling the main() function.
The code in the main() function includes a
call to the greeter() function, which then
will display its message. Nice.

You'll get the full story on functions here: how
to pass data to them, how to return data from
them, how to pass pointers to them to access
the data in the calling code directly, how to
make them call themselves (a process called
recursion), and how to set up pointers to
them and then call them using those pointers.

60

From the Library of Bill Wiecking

Creating Functions

#include <stdio.h> Deﬁning a FUI'ICtiOI'I

In this first task, we'll put to work the
example introduced in the chapter opener:
the greeter() function.

void greeter()

{
printf("Hello there.");

} To create a function:

1. Create a new program named
function.m.

2. Infunction.m, enter the code shown in
Listing 4.1.
This code creates the greeter() function.

Listing 4.1 Starting function.m.

#include <stdio.h> 3. Add the code shown in Listing 4.2.
This code adds the main() function and

void greeter() the call to the greeter() function.

{

printf("Hello there."; 4, Save function.m.

¥ 5. Run the function.m program.
You should see the following:

int mai
int main() Hello there.

{
greeter();

return 0;

}

Listing 4.2 The function.m program.

NOILONN{ V ONINI43Q

61

From the Library of Bill Wiecking

DECLARING FUNCTIONS USING PROTOTYPES

Chapter 4

Declaring Functions
Using Prototypes

In the previous example, we defined the
function in the code before calling it, so
Objective-C knew about the greeter() func-
tion before it was called. But the function
definition can also come after the call to that
function in your code, like this:

#include <stdio.h>

int main()

{
greeter();

return 0;

}

void greeter()

{
printf("Hello there.");

}

In this case, you must tell Objective-C about
the greeter() function with a function

prototype:

#include <stdio.h>
void greeter(void);

int main()

{
greeter();

return 0;

}

void greeter()

{
printf("Hello there.");

}

62

From the Library of Bill Wiecking

Creating Functions

A function prototype is just like the line
where you declare a function (the line just
before the function body inside curly braces),
except that you remove the names of any
function arguments (leaving just their types)
and end the prototype with a semicolon.

#include <stdio.h>

void greeter(void);

void greeter() The function prototype is also called the

{ function declaration (as opposed to the func-
printf("Hello there."; tion definition, which includes the body of
} the function).
Listing 4.3 Starting functionprototype.m. You can also put function prototypes in

header files, whose names end with .h, and
then include them with stdio.h as shown in

#include <stdio.h> the listings here. That include statement
includes the stdio.h header file, which includes
void greeter(void); prototypes for functions such as printf().
To create a function prototype:
int main()
{ 1. Create a new program named
greeter(); functionprototype.m.
2. Infunctionprototype.m, enter the code
return 0; shown in Listing 4.3.
}

This code creates the greeter() func-
tion after the main() function and adds a
prototype before the main() function so
Objective-C knows about the greeter()
function.

void greeter()

{
printf("Hello there.");

}

3. Addthemain() function to call the

Listing 4.4 The functionprototype.m program. greeter() function (Listing 4.4).

4. Save functionprototype.m.

5. Run the functionprototype.m program.
You should see the following:
Hello there.

S3dALOLO¥d ONISM SNOILINNZ ONIEVIIIQ

63

From the Library of Bill Wiecking

PASSING ARGUMENTS TO FUNCTIONS

Chapter 4

Passing Arguments
to Functions

You can pass data to functions so they can
work on that data. For example, you can cre-
ate a function named adder() that you want
to add two integers and display the results.

To indicate which arguments a function
takes, you include an argument list in the
parentheses following the function name
when you define the function. For example,
the adder()function takes two arguments:
the two integers to add, which we'll name
xandy:

void adder(int x, int y)

Now in the body of the function, you can refer
to the first argument as x and the second
argument asy.

When you create a function prototype, on
the other hand (when you call the function
before defining it in your code), you omit the
names of the arguments, instead including
just the type:

void adder(int, int);

Now you can write the body of the adder()
function to add the two integers, which you
can refer to by name, x and y:

void adder(int x, int y)

{
printf("%i + %i = %i", X, y, X + y);
}

v Tip

B You specify the type (int here) of every
argument in the list just before its name.

64

From the Library of Bill Wiecking

Creating Functions

To pass arguments to a function:

#include <stdio.h>

1. Create a new program named
void adder(int x, int y) functionargs.m.

{
printf("%i + %i = %i", X, ¥, X + y); 2. Infunctionargs.m, enter the code shown

, in Listing 4.5.
This code creates the adder() function.
3. Enter the code to specify the main() func-

tion and the call to the adder() function
to add 5 plus 10 (Listing 4.6).

Listing 4.5 Starting functionargs.m.
4. Save functionargs.m.

. Run the functionargs.m program.
#include <stdio.h> 5 e functionargs.m progra

You should see the following;

void adder(int x, int y) 5+ 10 =15
{
printf("%i + %i = %i", X, y, x +y);
}
int main()
{

int valuel = 5, value2 = 10;

adder(valuel, value2);

return 0;

}

Listing 4.6 The functionargs.m program.

SNOILONN{ OL SINFWNOAY ONISSVd

65

From the Library of Bill Wiecking

RETURNING VALUES FROM FUNCTIONS

Chapter 4

Returning Values from
Functions

In addition to passing data to functions, you
can have functions return data. They can
return a single data item—an integer, for
example—or an array or an object.

To indicate that a function returns a value,
you specify the type of that data value first
in a function definition or declaration. For
example, you can alter the adder() function
from the previous task to return an integer
value holding the sum of the two values
passed to it, like this:

int adder(int x, int y)

To actually return the sum of the two values
passed to the adder() function, you use a
return statement:

int adder(int x, int y)
{
return x + y;

}

That's how it works: to return a value from
a function, you place the value you want to
return right after the keyword return.

Now when you call the adder() function and
pass data to that function, the call itself will
be replaced by the function’s return value. So
to add 5 and 10 and display the results, you
can use this code:

int valuel = 5, value2 = 10;

printf("%i + %i = %i", valuel, value2,
adder(valuel, value2));

66

From the Library of Bill Wiecking

Creating Functions

To return values from functions:

#include <stdio.h>

1. Create a new program named

int adder(int x, int y) functionreturn.m.
{

return x + y; 2. In functionreturn.m, enter the code
} shown in Listing 4.7.

This code creates the adder() function
and sets it up to return the sum of the two
integers passed to it.

3. Add the code to call the adder() function

Listing 4.7 Starting functionreturn.m. .) L
and pass two integers to it (Listing 4.8).

4, Save functionreturn.m.

#include <stdio.h> .
5. Run the functionreturn.m program.

int adder(int x, int y) You should see the following:
{ 5+10 =15

return x + y;

}

int main()

{

int valuel = 5, value2 = 10;

printf("%i + %i = %i", valuel, value2,
adder(valuel, value2));

return 0;

}

Listing 4.8 The functionreturn.m program.

SNOILONNJ WOU4 SINTVA ONININLIY

67

From the Library of Bill Wiecking

UsING FUNCTION SCOPE

Chapter 4

Using Function Scope

Scope refers to the range of visibility of data
items. Functions define their own scope. That
is, when you define a variable in a function, it
becomes alocal variable for that function and
takes precedence over other versions of the
same variable. For example, you can define an
integer named number and set it to 1 like this:

int number = 1;

And then you can also define an integer
named number inside a function:

int number = 1;

void function(void)

{
int number = 2;
printf(
"In the function the number is %i\n",
number);
3

The local version of number will take prece-
dence in the function, so here the printf()
statement will display a value of 2 for number.
If number hadn't been defined locally in the
function, the version from outside the func-
tion would have been used, and the printf()
statement would have shown a value of 1.

In Objective-C, any code block—that is, code
enclosed in curly braces such as function
bodies or the bodies of if statements—
defines its own scope, so local variables

will always take precedence over variables
defined outside the code block.

To use function scope:

1. Create a new program named
functionscope.m.

2. Infunctionscope.m, enter the code shown
in Listing 4.9.
This code declares an integer named
number displays its value in main(), and
then calls a function.

#include <stdio.h>
void function(void);
int number = 1;

int main()

{

printf("In main the number is %i\n",

number);
function();
return 0;

}

Listing 4.9 Starting functionscope.m.

68

From the Library of Bill Wiecking

Creating Functions

#include <stdio.h>
void function(void);
int number = 1;
int main()
{
printf("In main the number is %i\n",
number);
function();

return 0;

void function(void)

{

int number = 2;

printf(
"In the function the number is %i\n",
number);

{
int number = 3;;
printf(
"In the block the number is %i\n",
number);
}
printf(
"After the block the number is %i\n",
number);

Listing 4.10 The functionscope.m program.

3. Add the function that redefines number
locally as well as in a code block
(Listing 4.10).

4. Save functionscope.m.

5. Run the functionscope.m program.
You should see the following;
In main the number is 1
In the function the number is 2
In the block the number is 3
After the block the number is 2

From the Library of Bill Wiecking

69

31d0DG NOILONN{ 9NISN

PASSING POINTERS TO FUNCTIONS

Chapter 4

Passing Pointers
to Functions

When you pass a pointer to a function, that
function can use the pointer to change data
in the calling code. For instance, here’s an
example that passes a pointer to a function
that changes a variable:

int data = 1;
int* datapointer = &data;

printf("Before changer(), data = %i\n",
data);

changer(datapointer);

printf("After changer(), data = %i\n",
data);

void changer(int* pointer)
{
*pointer = 2;

}
To pass a pointer to a function:

1. Create anew program named
functionpasspointers.m.

2. Infunctionpasspointers.m, enter the code
shown in Listing 4.11.
This code passes a pointer to a function
named changer().

#include <stdio.h>

void changer(int*);
int main()
{

int data = 1;

int* datapointer = &data;

printf("Before changer(), data = %i\n",
data);

changer(datapointer);

printf("After changer(), data = %i\n",
data);

return 0;

3

Listing 4.11 Starting functionpasspointers.m.

70

From the Library of Bill Wiecking

Creating Functions

3. Add the code for the changer() function,
which changes the data back in the call-

#include <stdio.h>

void changer(int*);

ing code (Listing 4.12).
int main() 4. Save functionpasspointers.m.
{
int data = 1; 5. Run the functionpasspointers.m program.
You should see the following;
int* datapointer = &data; Before changer(), data =1

After changer(), data = 2
printf("Before changer(), data = %i\n",

data);

changer(datapointer);

printf("After changer(), data = %i\n",
data);

return 0;

void changer(int* pointer)
{
*pointer = 2;

}

Listing 4.12 The functionpasspointers.m program.

SNOILIONN{ Ol SYILNIOd DONISSVd

71

From the Library of Bill Wiecking

PASSING ARRAYS TO FUNCTIONS

Chapter 4

Passing Arrays
to Functions

You can also pass arrays to functions. For
instance, the following example adds the

elements of an array and returns the sum:

int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

long adder(int array[], int number_
elements)

{
long sum = 0;
int loop_index;

for (loop_index = @; loop_index <
number_elements; loop_index++)
sum = sum + array[loop_index];

return sum;
}
To pass arrays to functions:

1. Create anew program named
functionpassarrays.m.

2. Infunctionpassarrays.m, enter the code

shown in Listing 4.13.

This code creates an array and passes it to

a function named adder().

#include <stdio.h>

long adder(int array[], int number_elements);
int main()

{

int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

return 0;

}

Listing 4.13 Starting functionpassarrays.m.

72

From the Library of Bill Wiecking

Creating Functions

#include <stdio.h>

long adder(int array[], int number_elements);

int main()

{
int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

return 0;

long adder(int array[], int number_elements)
{

long sum = 0;

int loop_index;

for (loop_index = @; loop_index <
number_elements; loop_index++)
sum = sum + array[loop_index];

return sum;

}

Listing 4.14 The functionpassarrays.m program.

3. Addthe code to create the adder()
function (Listing 4.14).

4. Save functionpassarrays.m.

5. Run the functionpassarrays.m program.
You should see the following;
The total is 10

73

From the Library of Bill Wiecking

SNOILDNN4 OL SAVYYIY DNISSVd

PASSING CONSTANT DATA TO FUNCTIONS

Chapter 4

Passing Constant Data
to Functions

As you know, if you pass pointers to func-
tions, those functions can change the data

to which the pointers point. Since arrays

can double as pointers, if you pass an array
as a pointer in a function, the function can
change your original array. To avoid that,
when you pass a copy of your array to the
function, mark it as a constant so it can't be
changed. You mark data as constant with the
const keyword:

int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

long adder(const int array[], int
number_elements)
{

long sum = 0;

int loop_index;

for (loop_index = @; loop_index <
number_elements; loop_index++)
sum = sum + array[loop_index];

return sum;

}

In this task, we'll modify the previous task’s
code to use constant arrays.

To pass constant arrays to functions:

1. Create anew program named
functionpassconstarrays.m.

2. Infunctionpassconstarrays.m, enter the
code shown in Listing 4.15.
This code creates an array and passes it to
a function named adder() whose proto-
type indicates that it takes constant arrays.

#include <stdio.h>

long adder(const int array[], int number_
elements);

int main()
{

int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

return 0;

¥

Listing 4.15 Starting functionpassconstarrays.m.

74

From the Library of Bill Wiecking

Creating Functions

#include <stdio.h>

long adder(const int array[], int number_
elements);

int main()

{
int data[] = {1, 2, 3, 4};

int total = adder(data,
sizeof(data)/sizeof(int));

printf("The total is %i\n", total);

return 0;

long adder(const int array[], int number_
elements)
{

long sum = 0;

int loop_index;

for (loop_index = @; loop_index <
number_elements; loop_index++)
sum = sum + array[loop_index];

return sum;

}

Listing 4.16 The functionpassconstarrays.m program.

Add the code to create the adder() func-
tion, marking the array passed to this
function as a constant in the function’s
argument list (Listing 4.16).

Save functionpassconstarrays.m.

Run the functionpassconstarrays.m
program.

You should see the following;
The total is 10

75

From the Library of Bill Wiecking

SNOILDNNJ OL V1V LNVLSNO) ONISSVd

USING RECURSION

Chapter 4

Using Recursion

Functions can call themselves in Objective-C,
a process called recursion, and this process is
often useful. For example, say you're writ-

ing a function that calculates factorials: for
example, 6! =6 x 5x4x3x2x1="720. Heres a
function that calls itself recursively to figure
out factorials:

int factorial(int value)
{
if (value == 1) {
return value;
} else {
return value * factorial(value - 1);
}
}

Let’s use this function to calculate 6!.
To use recursion:

1. Create anew program named
functionrecursion.m.

2. Infunctionrecursion.m, enter the code
shown in Listing 4.17.
This code calls the factorial() function,
passing it a value of 6.

3. Addthe code to implement the recursive
factorial() function (Listing 4.18).

4. Save functionrecursion.m.

5. Run the functionrecursion.m program.
You should see the following:
6! =720

#include <stdio.h>

int main()

{
printf("6! = %i\n", factorial(6));

return 0;

}

Listing 4.17 Starting functionrecursion.m.

#include <stdio.h>

int factorial(int value);

int main()

{
printf("6! = %i\n", factorial(6));

return 0;

int factorial(int value)
{
if (value == 1) {
return value;
} else {
return value * factorial(value - 1);
}
}

Listing 4.18 The functionrecursion.m program.

76

From the Library of Bill Wiecking

Creating Functions

#include <stdio.h>

void printem(void);

void caller_function(void (*pointer_to_

function)(void));

int main()

{

caller_function(printem);

return 0;

void printem(void)
{

printf("Hello there");;
}

Listing 4.19 Starting functionpointers.m.

Using Pointers
to Functions

In Objective-C, function names are actually
pointers. You can pass function names to
other functions, and in the receiving func-
tion, you can call the passed function name
ifyou treat it as a pointer.

For example, you can pass function names
to this function, named caller_function(),
and it will call the passed function:

void caller_function(void (*pointer_to_
function)(void))

{
(*pointer_to_function)();

}
To call a function pointer:

1. Create a new program named
functionpointers.m.

2. Infunctionpointers.m, enter the code
shown in Listing 4.19.
This code sets up a function named
printem() and passes its name to
caller_function().

continues on next page

77

From the Library of Bill Wiecking

SNOILONN4 Ol SY3ILNIOd ONISN

USING POINTERS TO FUNCTIONS

Chapter 4

3. Add the code to implement caller_
function(), which will call the function
pointer you pass to it (Listing 4.20).

4. Save functionpointers.m.

5. Run the functionpointers.m program.
You should see the following:
Hello there

#include <stdio.h>

void printem(void);

void caller_function(void (*pointer_to_
function)(void));

int main()

{

caller_function(printem);

return 0;

void printem(void)
{
printf("Hello there");

void caller_function(void (*pointer_to_
function)(void))
{

(*pointer_to_function)();

}

Listing 4.20 The functionpointers.m program.

78

From the Library of Bill Wiecking

CLASSES
AND OBJECTS

As discussed in Chapter 1, object-oriented
programming was introduced to let you
handle bigger programming problems, letting
you package programming components into
easily remembered objects.

The example used in Chapter 1 was a refriger-
ator. Instead of starting the pumps, regulating
the temperature, and starting the compres-
sor yourself in open code, you wrap all those

S173(dQ ANV S3ASSV1)

actions into an object containing data (such
as the temperature) and methods (that is,
functions, such as startCompressor()) into
an easily remembered object: a refrigerator.
You just put food in the refrigerator, and the
refrigerator cools it for yous; all the implemen-
tation details are hidden from view.

Objective-C object-oriented programming
(OOP) lets you use classes and objects.
Classes are like cookie cutters—they specify
the cookies you can create—and those cook-
ies are the objects. So you first create a class
that specifies the data and methods (that is,
built-in functions) for your objects, and then
you create objects of that class.

continues on next page

79

From the Library of Bill Wiecking

CLASSES AND OBJECTS

Chapter 5

Objective-C has its own syntax for classes

and objects, and if you haven't programmed

in Objective-C before, this syntax will take
alittle time to learn. Here's an example that
we'll dissect in this chapter. This example

defines a class, then creates an object of that

class, then stores an integer in that object,
and then prints the stored integer:

#include <stdio.h>
#include <Foundation/Foundation.h>
@interface Container: NSObject
{
int number;
}
-(void) setNumber: (int) n;
-(int) intValue;
@end
@implementation Container
-(void) setNumber: (int) n
{
number = n;
}
-(int) intValue
{
return number;
}
@end
int main(void)
{
Container *object = [Container new];
[object setNumber: 5];
printf("The number is %i\n", [object
intValuel);
return 0;

}
The result of this code looks like this:

The number is 5

80

From the Library of Bill Wiecking

Classes and Objects

Besides using this different syntax, you
communicate with objects by sending them
messages, not by calling object methods
directly. For example, to send a message to
the setNumber method of an object named
object to set its internally stored number
to 5, you send a message like this: [object
setNumber: 5].

Objective-C classes are usually based on

the Foundation class NSObject, so if youre
using Linux, UNIX, or Windows, you need to
create a GNUmakefile, make sure you'e in
the same directory as that file, and type make
in the GNUstep shell (see the introduction to
Chapter 3 for more information about setting

(@)
up the environment variables to use make). If S
you enter code in a file named xxxx.m, your &
GNUmakefile file should look like this: A
include $(GNUSTEP_MAKEFILES)/common.make ;
TOOL_NAME = xxxx O
xxxx_0BJC_FILES = xxxx.m 8
include $(GNUSTEP_MAKEFILES)/tool.make E

-
Then to run your code, enter this at the]
GNUstep command prompt:
./0obj/xxxx

81

From the Library of Bill Wiecking

CREATING OBJECTIVE-C CLASSES AND OBJECTS

Chapter 5

Creating Objective-C
Classes and Objects

In this task, you'll see how to create classes
and objects to get an overview of the
Objective-C syntax. The subsequent tasks
will fill in the details.

To create a class and object:

1. Create anew program file with the
extension .m.

2. Tocreateaclass, you create an@interface
section, which lists the data in the class
and the method prototypes, and an
@implementation section, which sup-
plies the bodies of the methods, using
the syntax shown in Listing 5.1.

#include <Foundation/Foundation.h>
@interface class_name: NSObject
{
data_type variable_name;
data_type variable_name;
3
-(return_type) object_method_name;
+(return_type) class_method_name;
@end

@implementation class_name
-(return_type) object_method_name
{

[code]
}
+(return_type) class_method_name
{

[code]

}
@end

Listing 5.1 Creating the class.

82

From the Library of Bill Wiecking

Classes and Objects

#include <Foundation/Foundation.h>
@interface class_name: NSObject
{
data_type variable_name;
data_ptype variable_name;
}
-(return_type) object_method_name;
+(return_type) class_method_name;
@end

@implementation class_name
-(return_type) object_method_name
{

[code]
}
+(return_type) class_method_name
{

[code]

}
@end

int main(void)
{

[class_name class_method_name];

class_name *object = [class_name new];

[object object_method_name];
return 0;

}

Listing 5.2 Using a class method and creating

an object.

3. Inthemain() function, you execute the

class methods by sending class_narme
the name of the method as a message:
[class_name class_method_name].

You can also create objects, handled as
pointers in Objective-C, with the new
message, like this: class_name *object =
[class_name new].Then you can execute
object methods by sending the object
the method name as a message, like this:
[object object_method_name]. Listing
5.2 shows the code.

v Tip

B Class methods (defined with a “+” in front

of their names) can be run using just

the class name, while object methods
(defined with a “-” in front of their names)
require you to create an object before you
run them.

83

From the Library of Bill Wiecking

S123(dQ ANV S3SSV1))-IAILDA(EQ ONILYIY)

UsING CLASS METHODS

Chapter 5

Using Class Methods

A class method is a method you can
execute using just the class name—no
object is required. You define class methods
with a plus sign, “+”, in front of their names
in both the class’s @interface section and
@implementation section, as shown here,
where a class returns some text:

#include <stdio.h>
#include <Foundation/Foundation.h>

@interface Container
+ (const char *) classMethod;
@end

@implementation Container
+ (const char *) classMethod
{

return "Hello there.";

}
@end

Now you can execute the class method by
sending the class the name of the method
as a message, like this:

int main(void)
{
printf("%s\n", [Container
classMethod]);
return 0;

}

You'll see this example at work in this task.

84

From the Library of Bill Wiecking

Classes and Objects

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface Container
+ (const char *) classMethod;
@end

@implementation Container
+ (const char *) classMethod
{

return "Hello there.";

}
@end

Listing 5.3 Starting classmethod.m.

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface Container
+ (const char *) classMethod;
@end

@implementation Container
+ (const char *) classMethod
{

return "Hello there.";

}
@end

int main(void)
{
printf("%s\n", [Container
classMethod]);
return 0;

}

Listing 5.4 The classmethod.m program.

To create and execute a class method:

1.

2.

Create a new program named
classmethod.m.

In classmethod.m, enter the code shown
in Listing 5.3.

This code creates a class named Container
with one method, classMethod, which
returns a string,

Add the main() function to execute
classMethod and display the returned
string (Listing 5.4).

Save classmethod.m.

Run the classmethod.m program.
You should see the following;
Hello there.

85

From the Library of Bill Wiecking

SAOHLIW SSV1) ONISN

CREATING AN OBJECT

Chapter 5

Creating an Object

In this task, you'll start creating objects. Here,
you'll simply create a class with an empty
@interface section (while indicating that
the class is derived from the NSObject class)
and an empty @implementation section:

@interface FirstClass : NSObject
@end
@implementation FirstClass

@end

You'll create an object by passing the class
the new message and then display the mes-
sage “Object created.” as shown here:

FirstClass *object = [FirstClass new];
printf("Object created.\n");
return 0;

To create an object:
1. Create anew program named object.m.
2. Inobject.m, enter the code shown in
Listing 5.5.
This code creates the FirstClass class.
3. Add the code to create the new object of
the FirstClass class and display a mes-

sage indicating that the object has been
created (Listing 5.6).

4. Save object.m.

5. Run the object.m program (disregard
the warning about not using the variable
‘object” when you compile the code).

You should see the following:
Object created.

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface FirstClass :

@end

@implementation FirstClass

@end

NSObject

Listing 5.5 Starting object.m.

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface FirstClass :

@end

@implementation FirstClass

@end

int main(void)
{
FirstClass *object = [

printf("Object created.\n");

return 0;

}

NSObject

FirstClass new];

Listing 5.6 The object.m program.

86

From the Library of Bill Wiecking

Classes and Objects

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface ClassWithMethod : NSObject
- (const char *) stringValue;
@end

@implementation ClassWithMethod
- (const char *) stringValue;

{

return "Hello there.";

}
@end

Listing 5.7 Starting objectmethod.m.

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface ClassWithMethod : NSObject
- (const char *) stringValue;
@end

@implementation ClassWithMethod
- (const char *) stringValue;

{

return "Hello there.";

}
@end

int main(void)
{
ClassWithMethod *object =
[ClassWithMethod new];

return 0;

}

printf("%s\n", [object stringValue]);

Listing 5.8 The objectmethod.m program.

Creating Object Methods

While you can execute a class method with
just the name of the class, you need an object
to be able to execute object methods—and
object methods are more useful because class
methods have restrictions on how they store
data that object methods don't. You define
an object method in a class by preceding

its prototype and definition with a minus
sign, “-”, in both the @interface section and
@implementation section, as shown here,
where we create an object method named
stringValue that returns a string:

@interface ClassWithMethod : NSObject
- (const char *) stringValue;
@end

@implementation ClassWithMethod
- (const char *) stringValue;

{

return "Hello there.";

}
@end

SAOHLI LD3(9Q ONILYIY)

To create an object method:

1. Create a new program named
objectmethod.m.

2. Inobjectmethod.m, enter the code shown
in Listing 5.7.
This code creates the ClassWithMethod
class and the stringValue method in
that class.

3. Add the code to execute the stringValue
object method from the main() function
(Listing 5.8).

4. Save objectmethod.m.

5. Run the objectmethod.m program.
You should see the following:
Hello there.

87

From the Library of Bill Wiecking

STORING DATA IN OBJECTS

Chapter 5

Storing Data in Objects

In the previous task, you saw how to set up a
method in an object. But objects can contain
both methods and data. In this task, you'll see
how to store data in objects. You'll also see
how to pass arguments to object methods.

You set up your data in variables in the
@interface section. Then your code can
access those variables by name in the
methods in the @implementation section.
For example, the code here stores an integer:

@interface Container: NSObject
{

int number;
3
-(void) setNumber: (int) n;
-(int) intValue;
@end

@implementation Container
-(void) setNumber: (int) n

{

number = n;
}
@end

Then you can execute an object of this class,
sending it the value 5 to store:

[object setNumber: 5];
To store data in an object:

1. Create anew program named
objectdata.m.

2. Inobjectdata.m, enter the code shown in
Listing 5.9.
This code sets up an internal integer
named number and a method named
setNumber to store a value in that integer.

#include <stdio.h>

{

int number;

}

-(int) intValue;
@end

{

number = n;

-(int) intValue
{

return number;

}
@end

#include <Foundation/Foundation.h>

@interface Container: NSObject

-(void) setNumber: (int) n;

@implementation Container
-(void) setNumber: (int) n

Listing 5.9 Starting objectdata.m.

From the Library of Bill Wiecking

Classes and Objects

3. Create an object, set the value of the
internally stored number, and display
that number (Listing 5.10).

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface Container: NSObject 4. Save objectdata.rn.

! int number: 5. Run the objectdata.m program.
1 You should see the following;
-(void) setNumber: (int) n; The number is 5

-(int) intValue;

@end

@implementation Container
-(void) setNumber: (int) n

int main(void)
{
Container *object = [Container new];
[object setNumber: 5];
printf("The number is %i\n", [object
intValue]);
return 0;

{
number = n; t—?
1 o
Z
=
-(int) intValue @
O
{ >
return number; >
} S
@end o
W
—
m
(2
-
w0

Listing 5.10 The objectdata.m program.

89

From the Library of Bill Wiecking

PASSING MULTIPLE ARGUMENTS TO METHODS

Chapter 5

Passing Multiple
Arguments to Methods

When you pass multiple arguments to a
method, you can name the arguments to
keep them straight. For example, you can
create a method that takes two numbers
and name the second argument second
(you can choose any name):

-(void) setNumbers: (int) nl second:
(int) n2;

Then when you call this method, you specify
the value for the second argument by name:

[object setNumbers: 5 second: 107;

To pass a multiple arguments to
a method:

1. Create a new program named
multipleargs.m.

2. In multipleargs.m, enter the code shown
in Listing 5.11.
This code creates the setNumbers method,
which can take two arguments.

#include <stdio.h>

{
int numberl;

int number2;

}

(int) n2;
-(int) intValuel;
-(int) intValueZ;
@end

(int) n2

numberl = nl;
number2 = n2;

}
-(int) intValuel

{
return numberl;

}
-(int) intValue2

{
return number2;

}
@end

#include <Foundation/Foundation.h>

@interface Container: NSObject

-(void) setNumbers: (int) nl second:

@implementation Container

-(void) setNumbers: (int) nl second:

Listing 5.11 Starting multipleargs.m.

90

From the Library of Bill Wiecking

Classes and Objects

#include <stdio.h>
#include <Foundation/Foundation.h>
@interface Container: NSObject
{
int numberl;
int number2;
}
-(void) setNumbers: (int) nl second:
(int) n2;
-(int) intValuel;
-(int) intValue2;
@end

@implementation Container
-(void) setNumbers: (int) nl second:
(int) n2

numberl = nl;
number2 = n2;

}
-(int) intValuel

{
return numberl;

}
-(int) intValue2

{
return number2;

}
@end

int mainCvoid)
{
Container *object = [Container new];
[object setNumbers: 5 second: 10];
printf("The first number is %i\n",
[object intValuell);
printf("The second number is %i\n",
[object intValue2]);
return 0;

}

4. Save multipleargs.m.

Listing 5.12 The multipleargs.m program.

3. Add the code to call the setNumbers
method (Listing 5.12).

5. Run the multipleargs.m program.
You should see the following;
The first number is 5

The second number is 10

SAOHLIW OL SINIWNODAYY IT1dILTINN ONISSVYd

91

From the Library of Bill Wiecking

STORING THE INTERFACE IN A HEADER FILE

Chapter 5

Storing the Interface in a
Header File

In Objective-C, it's common to put the
interface part of a class declaration (the
part declared by the @interface keyword)
in its own header file with the extension .h.
To keep things simple, we've not been doing
that here, but the process is easy. You just
store the @implementation section of a class
in a file such as header.h:

#include <Foundation/Foundation.h>
@interface Container: NSObject
{
int number;
}
-(void) setNumber: (int) n;
-(int) intValue;
@end

Then you include header.h in your program:
#include "header.h"

To store the interface in a header file:
1. Create anew program named header.m.

2. Inheader.m, enter the code shown in
Listing 5.13.
This code is just our example that lets
you store numbers in an object, with the
interface section in header.h (make sure
you use the line #include "header.h" at
the top of the code).

#include "header.h"

#include <stdio.h>

#include <Foundation/Foundation.h>

@implementation Container
-(void) setNumber: (int) n

{

number = n;

-(int) intValue
{

return number;

}
@end

int main(void)

{

Container *object = [Container new];

[object setNumber: 5];

printf("The number is %i\n", [object

intValuel);
return 0;

¥

Listing 5.13 The header.m program.

92

From the Library of Bill Wiecking

Classes and Objects

#include <Foundation/Foundation.h> 3. Save header.m.

@interface Container: NSObject 4. Create headerh in the same directory

{ as header.m and add the code shown in
int number; Listing 5.14.

}

-(void) setNumber: (int) n; 5. Save headerh.

-(int) intValue; 6. Run the header.m program.

@end

You should see the following;

Listing 5.14 The header.h file. The number is 5

3714 ¥43AV3H V NI 3DV4¥3LN| FHL ONI¥OLS

93

From the Library of Bill Wiecking

ADDING THE IMPLEMENTATION TO THE HEADER FILE

Chapter 5

Adding the Implementation
to the Header File

Objective-C lets you store a class's implementa-
tion (the part that follows the @implementation
keyword) in a header file in addition to its
interface (see the previous task).

To store the interface and
implementation in a header file:

1. Create a new program named
header2.m.

2. In header2.m, enter the code shown in
Listing 5.15.

This code creates an object of the
Container class, which is declared
and defined in header2.h.

3. Save header2.m.

4. Add the code for the interface and
implementation of the Container
class to header2.h (Listing 5.16).

5. Save header2.h.

6. Run the header2.m program.
You should see the following:

The number is 5

#include "header2.h"
#include <stdio.h>

#include <Foundation/Foundation.h>

int main(void)
{
Container *object = [Container new];
[object setNumber: 5];
printf("The number is %i\n", [object
intValuel);
return 0;

}

Listing 5.15 The header2.m program.

#include <Foundation/Foundation.h>
@interface Container: NSObject
{
int number;
}
-(void) setNumber: (int) n;
-(int) intValue;
@end

@implementation Container
-(void) setNumber: (int) n
{
number = n;

3
-(int) intValue
{

return number;

}
@end

Listing 5.16 The header2.h file.

94

From the Library of Bill Wiecking

Classes and Objects

#include "container.h"
#include <stdio.h>

#include <Foundation/Foundation.h>

int main(void)
{
Container *object = [Container new];
[object setNumber: 5];
printf("The number is %i\n",
[object intValuel);
return 0;

}

Listing 5.17 The main.m program.

#include <Foundation/Foundation.h>
@interface Container: NSObject
{
int number;
}
-(void) setNumber: (int) n;
-(int) intValue;
@end

Listing 5.18 The container.h file.

Linking Multiple Files

You can link together multiple files to create
a single executable file. You simply need to
modify your make file (GNUmakefile) to list
all the .m files, like this:

include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = main
main_OBJC_FILES = main.m container.m

include $(GNUSTEP_MAKEFILES)/tool.make

In this task, you'll create an executable file
based on three files: main.m, container.h, and
container.m.

To link multiple files:
1. Create anew program named main.m.

2. In main.m, enter the code shown in
Listing 5.17.

3. Save main.m.
4, Create anew file named container.h.

5. In container.h, enter the code shown in
Listing 5.18.

6. Save container.h.
7. Create a new file named container.m.

continues on next page

95

From the Library of Bill Wiecking

S3714 31dILTNIN SNDINIT]

LINKING MULTIPLE FILES

Chapter 5

8. In container.m, enter the code shown in) R . R
L. #include "container.h
Llstlng 5.19. #include <Foundation/Foundation.h>
9. Save container.m.
@implementation Container
10. Create a new file named GNUmakefile.) o
-(void) setNumber: (int) n
11. In GNUmakefile, enter the code shown {
in Listing 5.20. number = n;
}
12. Save GNUmakefile. _Cint) intValue
13. Run the main.m program. {
You should see the following: return number;
The number is 5 ’
@end
Listing 5.19 The container.m program.
include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = main
main_OBJC_FILES = main.m container.m
include $(GNUSTEP_MAKEFILES)/tool.make
Listing 5.20 The GNUmakefile file.
96

From the Library of Bill Wiecking

Classes and Objects

#include <stdio.h> Using Constructors

#include <Foundation/Foundation.h>

In Objective-C, as in many OOP languages,
you can use constructors, which are spe-
cial methods used to initialize the data

in an object when you create that object.
Constructors can be named anything, but
theye often named init. The constructor
returns a pointer to the object, and you get
that pointer by calling the super class’s init
method (the super class is the class from

@interface Container: NSObject
{

int number;
}
-(void) setNumber: (int) n;
-(int) intValue;

-(Container*) init: (int) n;

@end
° which the current class is derived, typically
NSObject):
-(Container*) init: (int) n
o : { -
Listing 5.21 Starting constructor.m. self = [super init];)
=
(1]
if (self) {)
[self setNumber: n]; g
} 4
A
=
return self; (9]
-]
} o
bl
(7,

In your code, you can then pass values to the
constructor when you create an object. For
example, the following code initializes the
number stored in the object to 3:

Container *object = [[Container new]
init: 3];
To use a constructor:

1. Create a new program named
constructor.m.

2. In constructor.m, enter the code shown in
Listing 5.21.
This code starts constructor.m with the
interface of the Container class.

continues on next page

97

From the Library of Bill Wiecking

UsING CONSTRUCTORS

Chapter 5

3. Enter the code to add the implementa-
tion of the class methods and use the
constructor method to create a new
Container object and initialize the inte-
ger stored internally in that object to 3
(Listing 5.22).

4, Save constructor.m.

5. Run the constructor.m program.
You should see the following:
The number is 3

#include <stdio.h>

#include <Foundation/Foundation.h>

@interface Container: NSObject
{

int number;
}
-(void) setNumber: (int) n;
-(int) intValue;
-(Container*) init: (int) n;

@end

@implementation Container
-(void) setNumber: (int) n
{

number = n;

-(int) intValue
{

return number;

-(Container*) init: (int) n

{
self = [super init];
if (self) {
[self setNumber: n];
}
return self;
}
@end

int main(void)

{
Container *object = [[Container new]
init: 3];
printf("The number is %i\n", [object
intValue]);
return 0;
}

Listing 5.22 The constructor.m program.

98

From the Library of Bill Wiecking

OBJECT-
ORIENTED
PROGRAMMING

In this chapter, we take a deeper look at
object-oriented programming in Objective-C.

We start by using access specifiers—@public
(the default), @private, and @protected—to
set the access allowed to members (both
methods and data members such as vari-
ables) of an object.

We also explore how to use class variables—
that is, variables that are associated with a
class, not just an object (in fact, all objects of
that class share the class variables).

Polymorphism refers to using the same code
for different kinds of objects, and we see how
that works in Objective-C, too.

ONIWWVIOO0Id dILNIINQ-1D39Q

In addition, we explore how to check whether
an object supports a particular method
before trying to use that method, how to
determine the class of an object—and more.

99

From the Library of Bill Wiecking

ABOUT ACCESS SPECIFIERS

Chapter 6

About Access Specifiers

There are three access specifiers: @ublic
(the default), which puts no restriction on the
scope of a member;@private, which restricts
access to code that is in the class in which
the member is declared; and @protected,
which restricts access to code that is in the
class in which the member is defined and
classes derived from that class

So, for example, you can use this code to
access an object’s public variable outside
that object:

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Access: NSObject {
@public
int publicVariable;

}
@end

@implementation Access
@end

int main(void)
{

Access *a = [Access new];

a->publicVariable = 1;
printf("The public variable is %i\n",
a->publicVariable);

return 0;
3
v Tip
B See Chapter 7, “Working with Object-

Oriented Inheritance” for a discussion of
how to derive one class from another.

100

From the Library of Bill Wiecking

Object-Oriented Programming

Here, weTe accessing the public variable as
a->publicVariable. You use the arrow nota-
tion to access members of an object, given a
pointer (a here) to the object. You'll also need
a GNUmakefile file if youre running in Linux,
UNIX, or Windows:

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = access
access_OBJC_FILES = access.m

include $(GNUSTEP_MAKEFILES)/tool.make

However, declaring a variable private restricts
access to just code in its class implementation,
which means that this code won't compile:

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Access: NSObject {
@private
int privateVariable;

3
@end

@implementation Access
@end

SY3141D3dS SSIIDY Lnoay

int main(void)
{

Access *a = [Access new];

a->privateVariable = 2;
printf("The private variable 1is
%i\n", a->privateVariable);

return 0;

}

You'll see how to use all three access speci-
fiers in the upcoming tasks.

101

From the Library of Bill Wiecking

UsING PuBLIC ACCESS

Chapter 6

Using Public Access

Public access is the default for object
members, but you can also indicate that
any members are public with the @public
access specifier.

To use public access:

1. Create a new program file named access.m.

2. Enter the code to create a new class
called Access with one public member
(Listing 6.1).

3. Access the public member in the main()
function (Listing 6.2).

4. Save access.m.

5. Run the access.m program.

You should see the following:
The public variable is 1

#import <stdio.h>

#import <Foundation/NSObject.h>

@interface Access: NSObject {

@public
int publicVariable;

}
@end

@implementation Access
@end

Listing 6.1 Creating access.m.

#import <stdio.h>

#import <Foundation/NSObject.h>

@interface Access: NSObject {

@public
int publicVariable;

}
@end

@implementation Access
@end

int main(void)

{

Access *a = [Access new];

a->publicVariable = 1;

printf("The public variable is %i\n",

a->publicVariable);

return 0;

}

Listing 6.2 The access.m program.

102

From the Library of Bill Wiecking

Object-Oriented Programming

#inport <stdio.h> Using Private Access

#import <Foundation/NSObject.h> . X
You make class members private with the

@private access specifier. Making members

@interface Access: NSObject { i
private restricts access to them to the code

@public
P) . in the class in which they are declared.
int publicVariable;
@private To use private access:
int privateVariable;
@end 1. Open the access.m program from the
previous task for editing.
@implementation Access 2. Inaccess.m, enter the new code high-
@end lighted in Listing 6.3.

This code creates a private data member.

continues on next page

Listing 6.3 Starting access.m.

SS370Y ILVAINd ONIS()

103

From the Library of Bill Wiecking

USING PRIVATE ACCESS

Chapter 6

3.

Add code to try to access the private
data member from outside the object
(Listing 6.4).

Save access.m.

Try to run access.m.

When you try to compile access.m,

you'll get either a warning or a hard error
(depending on your version of Objective-C
and the platform it's running on), because
you're trying to access a private member
from outside an object. (Note that the
warnings will become hard errors in

the future.)

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Access: NSObject {
@public

int publicVariable;
@private

int privateVariable;
@end

@implementation Access
@end

int main(void)
{
Access *a = [Access new];
a->publicVariable = 1;
a->publicVariable);
a->privateVariable = 2;

%i\n", a->privateVariable);

return 0;

}

Listing 6.4 The access.m program.

104

From the Library of Bill Wiecking

printf("The public variable is %i\n",

printf("The private variable is

Object-Oriented Programming

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Access: NSObject {
@public

int publicVariable;
@private

int privateVariable;
@protected

int protectedVariable;
}
@end

@implementation Access
@end

}

Listing 6.5 Starting access.m.

Using Protected Access

You make class members protected with the
@protected access specifier. Making mem-
bers protected restricts access to them to the
code in the class in which they are declared
and classes based on that class.

To use protected access:

1. Open the access.m program from the
previous task for editing.

2. Inaccess.m, enter the new code high-
lighted in Listing 6.5.
This code creates a protected data
member.

continues on next page

$S3J0Yy A3ld3ILodd ONIS()

105

From the Library of Bill Wiecking

USING PROTECTED ACCESS

Chapter 6

3. Add the code shown in Listing 6.6, which
attempts to access the protected member
from outside its containing object.

4, Save access.m.

5. Trytorun access.m,

When you try to compile access.m, you'll
get either a warning or a hard error (depend-
ing on your version of Objective-C and the
platform it’s running on), because youre
trying to access a protected member from
outside an object. (Note that the warnings
will become hard errors in the future.)

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Access: NSObject {
@public

int publicVariable;
@private

int privateVariable;
@protected

int protectedVariable;

}
@end

@implementation Access
@end

int main(void)
{

Access *a = [Access new];

a->publicVariable = 1;
printf("The public variable is %i\n",
a->publicVariable);

//a->privateVariable = 2;
//printf("The private variable is

%i\n", a->privateVariable);

a->protectedvariable = 3;

printf(
"The protected variable is %i\n",
a->protectedVariable);

return 0;

}

Listing 6.6 The object.m program.

106

From the Library of Bill Wiecking

Object-Oriented Programming

Fimport <stdio.h> Using Class Variables

#import <Foundation/NSObject.h> . .
You can create class variables for use with

your classes, but there’s a hitch: every object
of that class shares the same variable, so

if one object changes a class variable, that
variable is changed for all objects. You create

@interface TheClass: NSObject
static int count;
+(int) getCount;

eend class variables with the static keyword.

@implementation TheClass Class variables are often useful: for example,

-(TheClass*) init you can use a class variable to keep track of

{ the number of objects of a particular class cre-
self = [super init]; ated in a program. You'll do that in this task.
count++;

To use class variables:

return self;

} 1. Create a new program named
classvariables.m.
+(int) getCount
{ 2. In classvariables.m, enter the code shown
return count; in Listing 6.7.
1 This code creates a class with a class vari-
@end able named count.

continues on next page

Listing 6.7 Starting classvariables.m.

S319VIVA SSV1) ONISN

107

From the Library of Bill Wiecking

UsING CLASS VARIABLES

Chapter 6

3. Add the code to create two objects
and display the object count each time
(Listing 6.8).

#import <stdio.h>
#import <Foundation/NSObject.h>

4, Save classvariables.m. @interface TheClass: NSObject
static int count;

5. Run the classvariables.m program. +(int) getCount;

You should see the following: @end

TheClass count is 1

TheClass count is 2 @implementation TheClass
-(TheClass*) init
{

self = [super init];
count++;

return self;

+(int) getCount

{

return count;
}
@end

int main(void)
{
TheClass *tcl = [TheClass new];

printf("TheClass count is %i\n",
[TheClass getCount]);

TheClass *tc2 = [TheClass new];

printf("TheClass count is %i\n",
[TheClass getCount]);

return 0;

}

Listing 6.8 The classvariables.m program.

108

From the Library of Bill Wiecking

Object-Oriented Programming

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface TheClass: NSObject
static int count;

+(int) getCount;

@end

@implementation TheClass
-(TheClass*) init
{

self = [super init];

count++;

+(int) getCount

{

return count;
}
@end

int main(void)
{
TheClass *tcl = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

TheClass *tc2 = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

return 0;

}

Listing 6.9 Editing classvariables.m.

Accessing the
Current Object

Sometimes, you need to access the current
object while executing code in that object.
For example, from constructors you need to
return a pointer to the current object after
you've finished configuring it.

To get a pointer to the current object, use the
self keyword. You've seen self before, but it
deserves its own task.

To access the current object:

1. Open the classvariables.m program from
the previous task for editing.

2. Assign the pointer returned by the base
class’s constructor to the self pointer
(Listing 6.9).

continued on next page

109

From the Library of Bill Wiecking

123(9Q LNI¥AIN) FHL ONISSIIIY

ACCESSING THE CURRENT OBJECT

Chapter 6

3. Use the self keyword to get a pointer to
the current object (Listing 6.10).
Here, youe returning a pointer to the
current object from the constructor. @interface TheClass: NSObject

#import <stdio.h>
#import <Foundation/NSObject.h>

static int count;
+(int) getCount;
@end

@implementation TheClass
-(TheClass*) init

{
self = [super init];
count++;
return self;

}

+(int) getCount
{

return count;

}
@end

int main(void)
{

TheClass *tcl = [TheClass new];

printf("TheClass count is %i\n",
[TheClass getCount]);

TheClass *tc2 = [TheClass new];

printf("TheClass count is %i\n",
[TheClass getCount]);

return 0;

}

Listing 6.10 The classvariables.m program with a
pointer to the current object.

110

From the Library of Bill Wiecking

Object-Oriented Programming

#import <stdio.h> Creating a Variable fOI'

#include <Foundation/Foundation.h> M ulti ple Obiect Types

@interface Classl: NSObject In Objective-C, the id type can stand for any

-(void) print; type of object. That's useful when you have

@end one variable that you want to contain mul-
tiple types of objects.

@implementation Classl . . .
In this task, you create objects of two differ-

-(void) print .
ent class types and place them in the same

{ . .

printf("This is Class 1.\n"); variable of type id.
} To use the id type:
@end

1. Create a new program named id.m.
@interface Class2: NSObject 2. Inid.m, enter the code shown in
-(void) print; Listing 6.11.
@end This code creates the two classes
you'll use.

@implementation Class?2
~(void) print continues on next page
{

printf("This is Class 2.\n");
}
@end

Listing 6.11 Starting id.m.

S3dA] 123190 31dILTIN|A ¥04 ITAVIIVA V ONILYIY)

111

From the Library of Bill Wiecking

CREATING A VARIABLE FOR MULTIPLE OBJECT TYPES

Chapter 6

3. Add the code to create two objects of
different classes and store those objects,
one after the other, in the id variable
(Listing 6.12).

4. Saveid.m.
5. Run the id.m program.
You should see the following:

This is Class 1.
This is Class 2.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: NSObject
-(void) print;
@end

@implementation Class2

-(void) print

{

printf("This is Class 2.\n");
}
@end

int main(void)

{
Classl *cl1 = [Classl new];
Class2 *c2 = [Class2 new];
id container;

container = c1;
[container print];

container = c2;
[container print];

return 0;

}

Listing 6.12 The id.m program.

112

From the Library of Bill Wiecking

Object-Oriented Programming

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

Listing 6.13 Starting isMemberOfClass.m.

Verifying That an Object
Belongs to a Class

You can determine whether an object

is a member of a certain class with the
isMember0fClass method. You'll put that
method to use in the next task to verify
that a certain object is a member of a cer-
tain class, here called Class1. You can get
the class’s name simply by sending it the
message class like this: [Class1 class].

To use isMemberOfClass:

1. Create anew program named
isMemberOfClass.m.

2. InisMemberOfClass.m, enter the code
shown in Listing 6.13.

This code creates the Class1 class.

continues on next page

113

From the Library of Bill Wiecking

SSVY1) V O1L SONO13g 103/dQ NV LVH] ONIAAINIA

VERIFYING THAT AN OBJECT BELONGS TO A CLASS

Chapter 6

3. Add the code to create an object of the
Class1 class and verify that the object
really is a member of the Class1 class
(Listing 6.14).

4, Save isMemberOfClass.m.

5. Run the isMemberOfClass.m program.
You should see the following:
cl is a member of Classl.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

int main(void)
{
Classl *c1 = [Classl new];

if ([c1l isMemberOfClass: [Classl
class]] == YES)
{

printf("cl is a member of Classl.\n");

}

return 0;

}

Listing 6.14 The isMemberOfClass.m program.

114

From the Library of Bill Wiecking

Object-Oriented Programming

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

Listing 6.15 Starting isKindOfClass.m.

Checking an Object's
Class with isKindOfClass

You can also use isKind0fClass to deter-
mine whether an object is a member of

a class. What is the difference between
isMember0fClass and isKind0fClass? You
can use 1sKind0fClass to determine whether
an object is a member of a class—or of any
class derived from that class.

For example, we've been deriving our
classes from the NSObject class, and while
isMember0f(Class wouldn't detect that fact
for any class we've based on NSObject,
isKind0fClass would.

v Tip

B See Chapter 7 for all the details on deriv-
ing one class from another.

To use isKindOfClass:

1. Create a new program named
isKindOfClass.m.

2. InisKindOfClass.m, enter the code shown
in Listing 6.15.
This code creates the Class1 class, which
is based on the NSObject class.

continues on next page

115

From the Library of Bill Wiecking

SSV1)AQANI)|SI HLIM SSV1) S,103(90 NV ONDIDIH)

CHECKING AN OBJECT'S CLASS WITH ISKINDOFCLASS

Chapter 6

3. Add the code to use isKind0fClass to
determine whether Class1 is a kind of
NSObject class (Listing 6.16).

4, Save isKindOfClass.m.

5. Run the isKindOfClass.m program.
You should see the following:
cl is a kind of NSObject.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

int main(void)
{
Classl *c1 = [Classl new];

if ([c1 isKindOfClass: [NSObject
class]] == YES)

{

}

return 0;

}

Listing 6.16 The isKindOfClass.m program.

116

From the Library of Bill Wiecking

printf("cl is a kind of NSObject.\n");

Object-Oriented Programming

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
}
@end

Listing 6.17 Starting responds.m.

#import <stdio.h>
#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

int main(void)
{
Classl *cl = [Classl new];

if ([cl respondsToSelector:
@selector(print)] == YES) {
printf("cl has a print method.\n");
}

return 0;

}

Listing 6.18 The responds.m program.

Verifying That an Object
Supports a Method

In Objective-C, objects can support methods.
But how do you know if a particular object
supports a particular method? To check
whether an object supports a method, you
can use the respondsToSelector()function.

To check whether an object will
respond to a specific message:

1. Create a new program named
responds.m.

2. Inresponds.m, enter the code shown in
Listing 6.17.

This code creates the Class1 class that
has a method named print.

3. Enter the code to check whether an
object of Class1 supports a method
named print (Listing 6.18).

4. Saveresponds.m.

5. Run the responds.m program.
You should see the following:

cl has a print method.

117

From the Library of Bill Wiecking

QOHL3IW V SLY¥0ddNS 1D3(9Q NV LVH] ONIAINIA

CHECKING WHETHER OBJECTS SUPPORT A METHOD

Chapter 6

Checking Whether Objects
Support a Method

Besides checking whether an object supports
a particular method, you can check whether
a class will create objects that support a
particular method. To do that, you use the
instancesRespondToSelector method.

To verify that a class creates objects
that support a particular method:

1. Create a new program named
instances.m.

2. Ininstances.m, enter the code shown in
Listing 6.19.

This code creates the Class1 class that
supports the print method.

3. Add the code to check whether objects
created from the Class1 class will support
the print method (Listing 6.20).

4, Save instances.m.

5. Run the instances.m program.
You should see the following:

Classl objects have a print method

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
}
@end

Listing 6.19 Starting instances.m.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
}
@end

int main(void)
{
if ([Classl instancesRespondToSelector:
@selector(print)] == YES) {
printf(
"Classl objects have a print method\n"
DH
}

return 0;

}

Listing 6.20 The instances.m program.

118

From the Library of Bill Wiecking

WORKING
WITH OBJECT-
ORIENTED INHERITANCE

This chapter discusses the process of deriving
one class from another—a process called
inheritance.

You can derive one class from another in
Objective-C. The class you derive from is
called the base class, and the new class youre
deriving from the base class is called the
derived class.

The derived class can inherit all the functional-
ity of the base class, and it can customize that
functionality as well. For example, you might
have a base class named Animal that creates a
generic animal. The Animal class might have
amethod to set the animal’s name, setName,
and another to get the animal’s name, getName.
Then, no matter what kind of animal you want
to create, Animal can serve as a base class for
it, and all the derived animals will have built-in
setName and getName methods.

You might use Animal as a base class for other
classes, such as Cat and Dog. If you create

a class named Cat, for example, you might
want more than just setName and getName
methods; for instance, you might also want
add your own method, the meow method,
which prints out “Meow.”

FDNVLI¥IHN| GILNIINQ-1D3(9Q HLIM ONDINOM

continues on next page

119

From the Library of Bill Wiecking

WORKING WITH OBJECT-ORIENTED INHERITANCE

Chapter 7

If you also derive a class named Dog from the
Animal class, you might add a method named
bark to it.

The Cat class would then have the methods
setName, getName, and meow. The Dog class
would have the methods setName, getName,
and bark. So as you can see, although the

Dog and Cat classes share some functionality,
because they are both classes of animals, they
also have been customized.

That's the idea behind inheritance: you

use inheritance when you want to create
classes that share some functionality. Using
inheritance, you can save a lot of work. In
this example, in addition to the Cat and Dog
classes, you might use the Animal class to
derive the Tiger, Leopard, Lion, Squid, and
Ocelot classes.

You can also have multi-level inheritance.
So, for example, you might use the Dog class
as the base class for the Terrier and Collie
classes.

v Tip

B Although inheritance in Objective-C is a
powerful tool, it lacks some capabilities
found in C++ and some other object-
oriented programming languages. For
instance, it lacks operator overloading
and also multiple inheritance (in which
a single class can inherit from multiple
other classes).

120

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

Fimport <stdio.h> Inheriting from a Class

#include <Foundation/Foundation.h>

We'll start by taking a look at how to inherit
one class from another. In fact, the programs
you've been working with have already been
inheriting classes from NSObject, and extend-
ing that capability to any class is easy.

@interface Classl: NSObject
@end

@implementation Classl
@end Here, you'll create one class, Class1, based on
NSObject:

@interface Class2: Classl . .
@interface Classl: NSObject

@end

@end
@implementation Class2 Then you'll create another class, Classz,
@end based on Class1:

@interface Class2: Classl
@end

These classes won't actually do anything—
weTe just looking at the syntax of inheritance
at this point. In the subsequent tasks, you'll

Listing 7.1 Creating inheritance.m.

add data members and methods to base and E
#import <stdio.h> derived classes. m
#include <Foundation/Foundation.h> EE
To inherit from a class: g
@interface Classl: NSObject 1. Create a new program file named 2
@end inheritance.m. g
@implementation Classl 2. Ininheritance.m, enter the code shown E
@end in Listing 7.1 to create Class1 and base A
Class2 onit. g
@interface Class2: Classl 3. Display a message in the main() function ©
@end to indicate that the inheritance worked
(Listing 7.2).
@implementation Class2
@end 4, Save inheritance.m.

5. Run the inheritance.m program.
int main(void)

{

printf("The inheritance worked.\n");

You should see the following;
The inheritance worked.

return 0;

3

Listing 7.2 The access.m program.

121

From the Library of Bill Wiecking

INHERITING BASE-CLASS DATA MEMBERS

Chapter 7

Inheriting Base-Class
Data Members

When you base one class on another, all data
members not declared as @rivate are acces-
sible in the derived class.

In this example, you'll declare a data member
named data in the base class and reference it
from an object of the derived class.

To inherit base-class data members:
1. Create a program named inheritdata.m.

2. Ininheritdata.m, enter the new code
highlighted in Listing 7.3.
This code creates Class1 with a data
member named data and derives a class
named Class2 based on it. Note that the
data member is declared @public, which
makes it accessible from code in the base
class, the derived class, and any other
code in the program.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
{
@public

int data;

}
@end

@implementation Classl
@end

@interface Class2: Classl
@end

@implementation Class2
@end

Listing 7.3 Starting inheritdata.m.

122

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
{
@public

int data;

}
@end

@implementation Classl
@end

@interface Class2: Classl
@end

@implementation Class2
@end

int main(Cvoid)

{
Class2 *c2 = [Class2 new];
c2->data = 5;

printf("The data is %i.\n", c2->data);

return 0;

}

Listing 7.4 The inheritdata.m program.

3. Add code to create an object of the
derived class, Class2, and access the data
member using that object (Listing 7.4).

4, Saveinheritdata.m.

5. Run the inheritance.m program.
You should see the following;
The data is 5.

SYIAWIW YLV SSV1)-ISVY ONILIYIHN]

123

From the Library of Bill Wiecking

INHERITING BASE-CLASS METHODS

Chapter 7

Inheriting Base-Class
Methods

When a derived class inherits a base class,
the methods of the base class are available
to you in the derived class unless theyre
marked @private.

In this task, a derived class will inherit a base
class that has one method, and the derived
class will add a new method. Then you'll call
both methods to verify that they work as
they should.

To inherit base-class methods:

1. Create a program named
inheritmethods.m.

2. Ininheritmethods.m, enter the new code
highlighted in Listing 7.5.

This code creates Class1 and Class2, each
with a built-in method..

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: Classl
-(void) print2;
@end

@implementation Class2
-(void) print2

{

printf("This is Class 2.\n");
}
@end

Listing 7.5 Starting inheritmethods.m.

124

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: Classl
-(void) print2;
@end

@implementation Class2
-(void) print2

{

printf("This is Class 2.\n");
}
@end

int main(void)
{
Class2 *c2 = [Class2 new];

[c2 print];
[c2 print2];

return 0;

}

Listing 7.6 The inheritmethods.m program.

3. Add the code to create an object of the

derived class and call both the base class
method and the derived class method to
verify that they work (Listing 7.6)

Save inheritmethods.m.

Run the inheritmethods.m program.
You should see the following;

This is Class 1.

This is Class 2.

SAOHLI SSV1)-3ISVY ONILIYIHN]

125

From the Library of Bill Wiecking

OVERRIDING BASE-CLASS METHODS

Chapter 7

Overriding Base-Class
Methods

Say that you have a method in a base class
that you need to change. For example, say
you have a method named print in the base
class Class1 that prints “This is class 1”
Clearly, in the derived class, Class2, the
message should say, “This is class 2.

You can override the base class print method
just by redefining it in the derived class.
When you override a method in a derived
class, the overriding method must have the
same prototype (same return type and argu-
ments) as the method you're overriding,

To override base-class methods:

1. Create anew program named
override.m.

2. Inoverride.m, enter the code shown in
Listing 7.7.
This code creates Class1 and derives
Class2 from it. Each class has a method
named print with the same prototype,
so the Class2 version will override the
Class1 version.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print
{
printf("This is Class 1.\n");

}
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2
-(void) print
{
printf("This is Class 2.\n");

}
@end

Listing 7.7 Starting override.m.

126

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print
{
printf("This is Class 1.\n");

}
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2
-(void) print
{
printf("This is Class 2.\n");

}
@end

int main(void)
{
Class2 *c2 = [Class2 new];

[c2 print];

return 0;

}

Listing 7.8 The override.m program.

3.

Save override.m.

Add the code to create an object of Class2
and call the overridden print method
(Listing 7.8).

Run the override.m program.
You should see the following;
This is Class 2.

SAOHLIW SSV1)-3ISVg ONIAINYIAQ

127

From the Library of Bill Wiecking

OVERLOADING BASE-CLASS METHODS

Chapter 7

Overloading Base-Class
Methods

You can also overload methods. When you
overload a method, you give it multiple defi-
nitions, and Objective-C chooses the correct
version of the method based on the param-
eter list—the type and number of parameters
must be different for each version of an
overloaded method.

To overload a base-class method:

1. Create anew program named
overload.m.

2. Inoverload.m, enter the code shown in
Listing 7.9.
This code creates Class1 and derives
Class2 fromit; Class1 has a print method
with no arguments, and Class2 has a
print method that takes one argument.

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl

-(void) print

{

printf("Hello there.\n");
}
@end

@interface Class2: Classl
-(void) print: (int) x;
@end

@implementation Class2
-(void) print: (int) x
{

printf("Your number is %i.\n", x);

}
@end

int main(void)
{
Class2 *c2 = [Class2 new];

[c2 print];
[c2 print: 5];

return 0;

Listing 7.9 Starting overload.m.

128

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

3. Add the code to create an object of
Class2 and call the two print methods:
one with an argument. and one without

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject (Llstlng 7'10)'
-(void) print; 4. Save overload.m.
@end
5. Run the overload.m program.
@implementation Classl You should see the following;
-(void) print Hello there.
{ Your number is 5.
printf("Hello there.\n");
}
@end

@interface Class2: Classl
-(void) print: (int) x;
@end

@implementation Class2
-Cvoid) print: (int) x
{

printf("Your number is %i.\n", x);

}
@end

int main(void)
{
Class2 *c2 = [Class2 new];

[c2 print];
[c2 print: 5];

return 0;

}

SAOHLIW SSV1)-3ISVg 9NIAVOTIIAQ

Listing 7.10 The overload.m program.

129

From the Library of Bill Wiecking

USING MULTI-LEVEL INHERITANCE

Chapter 7

Using Multi-level
Inheritance

Inheritance in Objective-C isn't limited to a

single level. Classes can inherit as many lev-
els of base classes as you want. The example
in this task shows two-level inheritance.

To use multi-level inheritance:

1. Create anew program named
multilevel.m.

2. In multilevel.m, enter the code shown
in Listing 7.11.
This code creates the three classes
you'll use.

#import <stdio.h>

#include <Foundation/Foundation.h>
@interface Classl: NSObject
-(void) print;

@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: Classl
-(void) print2;

@end

@implementation Class2
-(void) print2

{

printf("This is Class 2.\n");
}
@end

@interface Class3: Class2
-(void) print3;

@end

@implementation Class3
-(void) print3

{

printf("This is Class 3.\n");
}
@end

Listing 7.11 Starting multilevel.m.

130

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>
#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: Classl
-(void) print2;
@end

@implementation Class2
-(void) print2

{

printf("This is Class 2.\n");
}
@end

@interface Class3: Class2
-(void) print3;
@end

@implementation Class3
-(void) print3

{

printf("This is Class 3.\n");
}
@end

int main(void)

{
Class3 *c3 = [Class3 new];
[c3 print];
[c3 print2];
[c3 print3];
return 0;
}

Listing 7.12 The multilevel.m program.

3. Add the code to create two objects of the

Save multilevel.m.

different classes and store those objects,
one after the other, in the id variable
(Listing 7.12).

Run the multilevel.m program.
You should see the following;
This is Class 1.

This is Class 2.

This is Class 3..

IDNVLIIIHN] TIATT-ILTINN ONISN

131

From the Library of Bill Wiecking

LIMITING ACCESS

Chapter 7

Limiting Access

By default, the data members and methods
of a base class are available to code in the
derived class. That may not always be a good
idea, however: for example, if the base class
has an internal variable that keeps track of
some count that the derived class doesn't
need access to. In such cases, you can use
the @private access specifier to mark such
a data member as private. You saw @private
in the previous chapter, but here you'll use it
with inheritance.

To stop inheritance:
1. Create anew program named private.m.
2. In private.m, enter the code shown in

Listing 7.13.

This code creates the classes you'll use
and marks a data member of the base
class as private.

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Classl: NSObject {
@private
int privateVariable;

}
@end

@implementation Classl
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2

-(void) print
{

@end

Listing 7.13 Starting private.m.

132

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Classl: NSObject {
@private
int privateVariable;
}
@end

@implementation Classl
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2
-(void) print
{

privateVariable = 5;

printf("The private variable is %i.",

privateVariable);

}
@end

int main(void)
{
Class2 *c = [Class2 new];

[c print];

return 0;

}

Listing 7.14 The private.m program.

3. Add the code to try to access the private
variable of the base class using code in the
derived class (Listing 7.14).

4. Save private.m.

5. Try to run the private.m program.

Depending on your platform, you'll either
get a hard error (the program will not
compile) or a warning with a message
that, in the future, the warning will be a
hard error.

SS3JDY SNILIWIT]

133

From the Library of Bill Wiecking

RESTRICTING ACCESS

Chapter 7

Restricting Access

You can also restrict inheritance if you mark
class members with @protected. This access
specifier is less restrictive than @private;
derived classes can still use the protected
members of the base class, but no other code
can. That is, protected members are avail-
able only to the code in the base class and
any classes derived from the base class. You
learned about @protected in the previous
chapter; here, you'll use it with inheritance.

To restrict inheritance:

1. Create anew program named
protected.m.

2. Inprotected.m, enter the code shown
in Listing 7.15.

This code creates the two classes
you'll use.

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface Classl: NSObject {
@protected
int protectedVariable;

}
@end

@implementation Classl
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2

-(void) print
{

@end

Listing 7.15 Starting protected.m.

134

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

3. Add the code to access the protected
data member in the derived class

#import <stdio.h>
#import <Foundation/NSObject.h>

(Listing 7.16).
@interface Classl: NSObject { 4. Save protected.m.
@protected
int protectedvariable; 5. Run the protected.m program.
} You should see the following;
@end The protected variable is 5.

@implementation Classl
@end

@interface Class2: Classl
-(void) print;
@end

@implementation Class2
-(void) print
{
protectedvariable = 5;
printf("The protected variable is %i.",

protectedVariable); ﬁ
} ("))
—|
@end E
(g}
=
int mainCvoid) g
t >
Class2 *c = [Class2 new]; Q
m
w0
[c print]; n

return 0;

1

Listing 7.16 The protected.m program.

135

From the Library of Bill Wiecking

UsING CONSTRUCTORS WITH INHERITANCE

Chapter 7

Using Constructors
with Inheritance

What if the base class has a constructor? You
can call a base class’s constructor, passing to
it any arguments you want, when you use the
super keyword. The super keyword allows
you to access the base class in your code

In this task, you'll access the base class’s
constructor.

v Tip
B Super refers to superclass, another word
for the base class.

To use constructors with inheritance:

1. Create a new program named
constructor.m.

2. In constructor.m, enter the code shown in
Listing 7.17.
This code creates the Class1 class that
has a constructor named init that uses
the super keyword.

#import <stdio.h>

#import <Foundation/NSObject.h>
@interface TheClass: NSObject
static int count;

+(int) getCount;

@end

@implementation TheClass
-(TheClass*) init

{
self = [super init];
count++;
return self;

}

+(int) getCount

{

return count;
}
@end

int main(void)
{
TheClass *tcl = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

TheClass *tc2 = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

return 0;

Listing 7.17 Starting constructor.m.

136

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

#import <stdio.h>
#import <Foundation/NSObject.h>

@interface TheClass: NSObject
static int count;

+(int) getCount;

@end

@implementation TheClass
-(TheClass*) init

{
self = [super init];
count++;
return self;

}

+(int) getCount

{

return count;
}
@end

int main(void)

{

TheClass *tcl = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

TheClass *tc2 = [TheClass new];

printf("TheClass count is %i\n",

[TheClass getCount]);

return 0;

}

Listing 7.18 The constructor.m program.

3. Enter the code to create an object of
Class1, which will call the constructor
(Listing 7.18).

4. Save constructor.m.
5. Run the constructor.m program.
You should see the following;

TheClass count is 1

TheClass count is 2

AINVLIIHN| HLIM SY0OLONYLSNO) ONISN

137

From the Library of Bill Wiecking

USING POLYMORPHISM

Chapter 7

Using Polymorphism

Polymorphism refers to using the same code
with different objects: that is, when you use
polymorphism, the actual object that is used
when you pass it a message is determined at
run time.

For example, in this task, you'll execute the
same code twice:

[pointerToObject print];

The pointerToObject variable will hold a
pointer to a different object each time the
code is executed, so the object to which the
message is sent is determined when the
code runs.

To use polymorphism:

1. Create anew program named
polymorphism.m.

2. In polymorphism.m, enter the code
shown in Listing 7.19.

This code creates the two classes
you'll use.

#import <stdio.h>

#include <Foundation/Foundation.h>
@interface Classl: NSObject
-(void) print;

@end

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
}
@end

@interface Class2: NSObject
-(void) print;

@end

@implementation Class2

-(void) print

{

printf("This is Class 2.\n");
}
@end

Listing 7.19 Starting polymorphism.m.

138

From the Library of Bill Wiecking

Working with Object-Oriented Inheritance

3. Add the code to load a variable of the id
type with pointers to the two objects, one
after the other, and execute the same line
of code for each object (Listing 7.20).

#import <stdio.h>

#include <Foundation/Foundation.h>

@interface Classl: NSObject

-(void) print; 4. Save polymorphism.m.
@end
5. Run the polymorphism.m program.

@implementation Classl You should see the following;
-(void) print This is Class 1.
1 This is Class 2.

printf("This is Class 1.\n");
}
@end

@interface Class2: NSObject
-(void) print;
@end

@implementation Class2
-(void) print
{
printf("This is Class 2.\n");

}
@end

int main(void)

{
Classl *cl = [Classl new];
Class2 *c2 = [Class2 new];
id pointerToObject;

WSIHdYOWAT0d DNISN

int loopIndex;

pointerToObject = c1;

for(loopIndex = @; loopIndex < 2;
loopIndex++){

[pointerToObject print];

pointerToObject = c2;
}

return 0;}

Listing 7.20 The polymorphism.m program.

139

From the Library of Bill Wiecking

This page intentionally left blank

From the Library of Bill Wiecking

CATEGORIES,
POSING, AND
PROTOCOLS

In this chapter, were going look at three
features of Objective-C object-oriented pro-
gramming: categories, posing, and protocols.

Categories let you extend a class by adding
methods to a class—and you don’'t need
access to the base class’s code to do it; you
can create new methods for a class without
editing the class’s definition in code. That can
be useful when you don't have access to the
source code for a class, or when you don't
want to change the source code, or when you
want to customize a class in different ways.

To use categories, you create a new file with
the interfaces for the new methods, use
Objective-C syntax to indicate that youre
extending another class, and then put the
implementations of the new methods in
another file. “Categories” is the actual name
of the new methods you add to the class.

Posing involves making one class “pose” as
another. Say that you have a class, Class1,
and another class, Class2, derived from
Classl. You can create objects of Class1, of
course. But you can also tell Class2 to pose
as Classl. From then on in your code, when-
ever you create an object of Class1, you'll
really be creating an object of Class2. In other
words, Class? is posing as Class1.

S1010010dd ANV ‘ONISOd ‘SIIU0DILY)

continues on next page

141

From the Library of Bill Wiecking

CATEGORIES, POSING, AND PROTOCOLS

Chapter 8

There are other ways of doing the same thing—
you could use polymorphism, for example (see
the previous chapter). But using posing can be
cleaner because you don't have to keep track of
what kind of pointer is stored in your variables
all the way through your code.

Protocols are much like what are called
interfaces in Java. A protocol is a specifica-
tion for a method, much like its prototype.
When you indicate that a certain class uses
specific protocols, youre indicating that that
class implements those methods. In other
words, protocols let you declare methods; it’s
up to you to define the implementation in
your class.

This is the closest Objective-C comes to mul-
tiple inheritance, in which you inherit from
multiple classes, because using protocols,
you can make sure all your derived classes
implement the same methods (although the
actual implementation in each class may

be different). That’s useful if, for example,
you have two base classes, named Animal
and Pet, and want to derive classes named
Cat and Dog from them. You can make sure
that Cat and Dog implement the methods of
Animal and Pet by using protocols. When Cat
and Dog use the protocols defined by Animal
and Pet, Cat and Dog both automatically
implement a list of methods.

142

From the Library of Bill Wiecking

Categories, Posing, and Protocols

About Categories

Categories let you extend a class by defining
new methods, even if you don't have access
to that class’s source code or can't change it.

Say you have a class, Class1, with a single
method, methodl, in the class’s header file:

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(return_type) methodl;
@end

Suppose also that the method is defined in
the class’s implementation file:

#import <stdio.h>
#include <Foundation/Foundation.h>

@implementation Classl
-(return_type) methodl
{

ks
@end

If you want to extend Classl by adding a
new method, method2, you can create a new
header file that lists the method2 interface,
like this:

S3IN0931VY) 1Lnogy

@interface Classl (Extender)
-(return_type) methodZ;
@end

continues on next page

143

From the Library of Bill Wiecking

ABOUT CATEGORIES

Chapter 8

Note the term Extender in parentheses after
the class name. You can use whatever term
you want here to indicate that youre extend-
ing the base class and to give a name to that
extension. You use the same term in paren-
theses when you create the implementation
of method? in its own file:

#import <stdio.h>
#include <Foundation/Foundation.h>

@implementation Classl (Extender)
-(return_type) method2
{

}
@end

In this way, Objective-C allows you to
extend classes without modifying their
source code files.

144

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h>
#include <Foundation/Foundation.h>

#import "Classl.h"

@implementation Classl

@end

Listing 8.1 Starting class1.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
1
@end

Listing 8.2 The class1.m program.

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

Listing 8.3 The class1.h file.

Categories: Creating the
Base Class

In this task, you'll create a base class that
you'll extend in the next task using catego-
ries. You'll create a class named Class1 that
contains a method named print. Here's what
the print method looks like; it just prints the
message “This is Class 17

-(void) print
{
printf("This is Class 1.\n");

}

To create the base class that will
be extended:

1. Create a program named classl.m.

2. Inclassl.m, enter the code in Listing 8.1.
This code creates the Class1 class.

3. Inclassl.m, add the code to create the
print method (Listing 8.2).

4, Save classl.m.
5. Create a header file named class1.h.

6. In classl.h, enter the code shown in
Listing 8.3.

7. Save classl.h.

Now youre ready to extend the class.

145

From the Library of Bill Wiecking

S31¥0931VY)

SSV1) 3SVg 3HL ONILVIY)

CREATING CATEGORIES

CATEGORIES

Chapter 8

Categories: Creating
Categories

In the preceding task, you created Class1,
complete with a print method. In the task
here, you'll extend Class1 using categories
to include a new method, print2.

The print2 method looks like this:

-(void) print2
{

printf(

"This is Class 1 extended.\n");
}

After adding this method to Class1, you'll call

both methods, methodl and method2, in the
next task.

To add categories to a class:

1. Create a program named
classlextender.m.

2. Inclasslextender.m, enter the code in
Listing 8.4.
This code indicates that you want to
extend Class1 using categories.

3. Inclasslextender.m, add the code to
create the print2 method (Listing 8.5).

Save classlextender.m.

Create a file named classlextender.h.

N o v oF

Save classlextender.h.

#import <stdio.h>

#include <Foundation/Foundation.h>
#import "Classl.h"

#import "Classlextender.h"

@implementation Classl (Extender)

@end

Listing 8.4 Starting classiextender.m.

#import <stdio.h>

#include <Foundation/Foundation.h>
#import "Classl.h"

#import "Classlextender.h"

@implementation Classl (Extender)
-(void) print2

{

printf(

"This is Class 1 extended.\n");
}
@end

Listing 8.5 The classiextender.m program.

@interface Classl (Extender)
-(void) print2;
@end

In class1.h, enter the code in Listing 8.6.

Listing 8.6 The classiextender.h file.

146

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h> CategorieS: Putting It
#import "Classl.h"

#import "Classlextender.h" All Together
In the previous two tasks, you created Class1
int main(void) and extended it using categories. In this task,
{ you'll put the Class1 class and its extension
category to work.

To use the base class with categories:

¥ 1. Create anew program named main.m.
Listing 8.7 Starting main.m. 2. In main.m, enter the code shown in
Listing 8.7.
This code includes the class1.h and
#import <stdio.h> classlextender.h header files to make
#import "Classl.h" sure your code knows about Classl
#import "Classlextender.h" and its extending categories.
. . . 3. Inmain.m, add the code to create a new
int mainCvoid) object of Class1 (Listing 8.8).
{
Classl *cl = [Classl new]; continues on next page 9
—|
m
@
o
2
m
: @
Listing 8.8 Editing main.m. g
—|
=
=2
@
=y
>
-
-
—|
o
@
m
—|
x
m
P

147

From the Library of Bill Wiecking

PUTTING IT ALL TOGETHER

CATEGORIES

Chapter 8

4,

In main.m, add the code shown in
Listing 8.9.

This code calls the print method built into
the Class1 class and the print2 method
with which you've extended Class1.

Save main.m.

If youe using Linux, UNIX, or
Windows, create a new makefile
named GNUmakefile.

In GNUmakefile, enter the code shown in
Listing 8.10.

. Save GNUmakefile.

Run the main.m categories program.

You should see the output from both
the print method and the extending
print2 method:

This is Class 1.

This is Class 1 extended.

#import <stdio.h>
#import "Classl.h"
#import "Classlextender.h"

#import "FractionMath.h"

int main(void)

{
Classl *cl = [Classl new];
[cl print];
[cl print2];
return 0;
}

Listing 8.9 Calling the print and print2 methods.

include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = categories
categories_OBJC_FILES = Classl.m

Classlextender.m main.m

include $(GNUSTEP_MAKEFILES)/tool.make

Listing 8.10 GNUmakefile.

148

From the Library of Bill Wiecking

Categories, Posing, and Protocols

About Posing

Posing lets one class stand in for another.
Say you have a class, Class1, with a single
method, methodl, in the class’s header file:

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(return_type) methodl;
@end

Suppose also that the method is defined in
the class’s implementation file:

#import <stdio.h>
#include <Foundation/Foundation.h>

@implementation Classl
-(return_type) methodl
{

ks
@end

Now say that the method is redefined in
another class's implementation file, and
that Class2 is based on Class1:

#import <stdio.h>
#include <Foundation/Foundation.h>

DONISOd Lnogy

@implementation Classl : Class2
-(return_type) methodl
{

@end

continues on next page

149

From the Library of Bill Wiecking

ABOUT POSING

Chapter 8

You can have Class2 pose as Class1 in your
main method like this:

[Class2 poseAsClass: [Classl class]];

Now when you create an object of Class1,
like this:

Classl *c2 = [Classl new];

[c2 method1];

you'e really creating an object of Class2.
The method that will be run in this code
is the method1 defined in the Class2
implementation.

This technique is useful as a shortcut way

of handling polymorphism, but you have to
remember that youre having one class pose
as another when youre writing the code that
follows the poseAsClass line.

150

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h>
#include <Foundation/Foundation.h>

#import "Classl.h"

@implementation Classl

@end

Listing 8.11 Starting class1.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"

@implementation Classl

-(void) print

{

printf("This is Class 1.\n");
1
@end

Listing 8.12 The class1.m program.

#include <Foundation/Foundation.h>

@interface Classl: NSObject
-(void) print;
@end

Listing 8.13 The class1.h file.

Posing: Creating the
Base Class

When a class poses as another class, it can
function as a stand-in for that class. You
tell Objective-C that one class is posing for
another, and from then on in your code,
Objective-C uses the class that's posing as
the original class, even when you use the
original class in your code.

To create the base class for which
another class can pose:

1. Create afile named classl.m.

2. Inclassl.m, enter the code in Listing 8.11.
This code creates the Class1 class.

3. Inclassl.m, add the code to create the
print method (Listing 8.12).

. Save classl.m.
. Create a file named classl.h.

4
5
6. Inclassl.h, enter the code in Listing 8.13.
7. Save classl.h.

151

From the Library of Bill Wiecking

DNISOd

SSV1) 3Svg IHL ONILYIYN)

CREATING THE DERIVED CLASS

POSING

Chapter 8

Posing: Creating the
Derived Class

One class can pose as another only ifit’s
based on the class it’s posing as, so in this
task, you'll derive a class from the base class,
Class1. This new class will be called Class2,
and it will redefine the print method to dis-
play a message indicating that this is Class2:

@implementation Class2
-(void) print
{
printf("This is Class 2.\n");

}

This way, when Class2 poses as Class1 and
you call the print method, you'll see the mes-
sage “This is Class 27, not “This is Class 1.

To create the derived class:
1. Create afile named class2.m.

2. Inclass2.m, enter the code in Listing 8.14.
This code creates the Class2 class.

3. Inclass2.m, add the code to create the
print method (Listing 8.15).

Save class2.m.
Create a header file named class2.h.

In class2.h, enter the code in Listing 8.16.

N o v &

Save class2.h.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"
#import "Class2.h"

@implementation Class2

@end

Listing 8.14 Starting class2.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"
#import "Classl.h"

@implementation Class2
-(Cvoid) print

{

printf("This is Class 2.\n");
}
@end

Listing 8.15 The class1.m program.

#include <Foundation/Foundation.h>
#import "Classl.h"

@interface Class2: Classl
-(void) print;
@end

Listing 8.16 The class2.h file.

152

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h>
#import "Classl.h"
#import "Class2.h"

int main(void) {

Classl *c = [Classl new];

[c print];

Listing 8.17 Starting main.m.

#import <stdio.h>
#import "Classl.h"
#import "Class2.h"

int main(void) {
Classl *c = [Classl new];

[c print];

[Class2 poseAsClass: [Classl class]];

Classl *c2 = [Classl new];

[c2 print];

return 0;

}

Listing 8.18 The main.m program.

Posing: Putting It
All Together

To make posing happen, you use the
poseAsClass keyword. In the example here,
to make Class2 pose as Class1, you can use
this line:

[Class2 poseAsClass: [Classl class]];

From then on, when you create an object of
Class1, youll really be creating an object
of Class2, as you'll see in this task.

To make one class pose as another:
1. Create anew program named main.m.
2. In main.m, enter the code shown in
Listing 8.17.
This code creates an object of Class1 and

calls its print method.

3. Add the code to make Class2 pose as
Classl, create an object of Class1, and
callits print method (Listing 8.18).

This time, it's actually the Class2 print
method that will be called.

continues on next page

153

From the Library of Bill Wiecking

9NISOd

¥3H1390] 11V 1] ONILLNg

PUTTING IT ALL TOGETHER

PosING

Chapter 8

4, Save main.m.

5. Ifyoure using Linux, UNIX, or Windows,
create a makefile named GNUmakefile
as shown in Listing 8.19.

6. Run the main.m posing program.
You should see:
This is Class 1.
This is Class 2.

include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = posing
posing_OBJC_FILES = Classl.m Class2.m

main.m

include $(GNUSTEP_MAKEFILES)/tool.make

Listing 8.19 GNUmakefile.

154

From the Library of Bill Wiecking

Categories, Posing, and Protocols

About Protocols

Protocols let you specify an interface for
amethod or methods that can be used in
multiple classes. For instance, if you have
amethod named print and want to cre-
ate a protocol for it, you can do that in a file
named, say, printing.h:

@protocol Printing
-(void) print;
@end

Then you can include printing.h in the
interface files of other classes. Doing so adds
print to the interfaces of those classes in the
header file for Class1:

#include <Foundation/Foundation.h>
#import "printing.h"

@interface Classl: NSObject
-(void) print;
@end

And you can also include printing.h in
another class header, for Class2:

#include "Classl.h"
#import "printing.h"
@interface Class2: Classl
@end

Now you can implement print one way for
Classl:

$107010¥d Lnoay

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"

@implementation Classl
-(void) print

{

printf("This is Class 1.\n");
3
@end

continues on next page

155

From the Library of Bill Wiecking

ABOUT PROTOCOLS

Chapter 8

And you can implement print another way
for Class2:

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"
#import "Class2.h"

@implementation Class2
-(void) print

{

printf("This is Class 2.\n");
}
@end

Then you can create objects of Class1 and
Classl and call each of their print methods
like this:

#import <stdio.h>
#import "Classl.h"
#import "Class2.h"

int main(void) {
Classl *c = [Classl new];
[c print];

Class2 *c2 = [Class2 new];
[c2 print];

return 0;

}

And each of these print methods will be dif-
ferent, so although there was only one proto-
col, there are two different implementations.

Protocols let you define the interface of a
method in this way. Although Objective-C has
no true multiple inheritance capability, you
can use multiple protocols (not classes) as the
basis for derived classes. The protocols say
what methods youre including and specify
their return types, but it's up to you to imple-
ment those methods in the derived classes.
That's as close as Objective-C gets to multiple
inheritance (in true multiple inheritance, you
can derive a class from multiple base classes).

156

From the Library of Bill Wiecking

Categories, Posing, and Protocols

Protocols: Defining the
Protocol and Interfaces

When you define a protocol for a method or
methods, you usually store that protocol in
a header file. You'll create a protocol named
Printing for a method named print in a file
named printing h:

@protocol Printing
-(void) print;
@end

Then you'll use that protocol for one class in
an interface file named ClassFirst.h:

#include <Foundation/Foundation.h>
#import "printing.h"

@interface Classl: NSObject
-(void) print;
@end

You'll also use the Printing protocol in
an interface file, ClassSecond.h, for a class
derived from that first class:

$107010¥d

#include "Classl.h"
#import "printing.h"

@interface Class2: Classl
@end

Then you'll implement the print method for
Class1and Class? in different ways (in the
next task).

S!DVJH!lNl/10)OlOUd JHL1 9NINI43Q

157

From the Library of Bill Wiecking

DEFINING THE PROTOCOL/INTERFACES

PrRoOTOCOLS

Chapter 8

To define the protocol and interfaces:
1. Create a new file named printing.h.

2. In printing.h, enter the code shown in
Listing 8.20.
This code creates the protocol for the
print method.

3. Save printing.h.
4, Create anew file named ClassFirst.h.

5. In ClassFirst.h, enter the code to create
the interface for the first class, which
makes use of the new protocol we've
defined (Listing 8.21).

6. Save ClassFirst.h.
7. Create a new file named ClassSecond.h.

8. In ClassSecond.h, store the code to set up
the interface for the second class, which
is derived from the first class and also
makes use of the new protocol for the
print method (Listing 8.22).

9. Save ClassSecond.h.

@protocol Printing
-(void) print;
@end

Listing 8.20 The printing.h file.

#include <Foundation/Foundation.h>

#import "printing.h"

@interface Classl: NSObject
-(void) print;
@end

Listing 8.21 The ClassFirst.h file.

#include "Classl.h"
#import "printing.h"

@interface Class2: Classl
@end

Listing 8.22 The ClassSecond.h file.

158

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h>
#include <Foundation/Foundation.h>

#import "Classl.h"

@implementation Classl

@end

Listing 8.23 Starting ClassFirst.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"

@implementation Classl

-(Cvoid) print

{

printf("This is Class 1.\n");
}
@end

Listing 8.24 The ClassFirst.m program.

Protocols: Creating the
Class Implementations

Now that you've defined the protocol and
used it in the interfaces with two classes, you
need to define the implementation of the
method in the protocol, here named print.

To define the implementation with

protocols:

1. Create anew program named

2.

ClassFirst.m.

Save ClassFirst.m.

Create a new program named
ClassSecond.m.

In ClassFirst.m, enter the code shown in
Listing 8.23.

This code creates the implementation of

Add the code to create the implementa-
tion of the print method (Listing 8.24).

continues on next page

SNOILVLINIWITdW] SSV1) FHL ONILVIY) :ST0D0.10dd

159

From the Library of Bill Wiecking

PROTOCOLS: CREATING THE CLASS IMPLEMENTATIONS

Chapter 8

6. In ClassSecond.m, enter the code shown
in Listing 8.25.
This code creates the implementation of
Classz2.

7. In ClassSecond.m, add the code to create
the implementation of the print method
in Class2 (Listing 8.26).

8. Save ClassSecond.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"
#import "Class2.h"

@implementation Class2

@end

Listing 8.25 Starting ClassSecond.m.

#import <stdio.h>
#include <Foundation/Foundation.h>
#import "Classl.h"
#import "Class2.h"

@implementation Class2
-(void) print

{

printf("This is Class 2.\n");
}
@end

Listing 8.26 The ClassSecond.m program.

160

From the Library of Bill Wiecking

Categories, Posing, and Protocols

#import <stdio.h>
#import "Classl.h"
#import "Class2.h"

int main(void) {
Classl *c = [Classl new];

[c print];

return 0;

}

Listing 8.27 Starting main.m.

#import <stdio.h>
#import "Classl.h"
#import "Class2.h"

int main(void) {
Classl *c = [Classl new];

[c print];

Class2 *c2 = [Class2 new];
[c2 print];

return 0;

}

Listing 8.28 The main.m program.

Protocols: Putting It
All Together

Now that you've defined a protocol for the
print method and implemented that method
in two classes, you can create objects of those
classes and call the print method in each:

int main(void) {
(Classl *c = [Classl new];

[c print];

Class2 *c2 = [Class2 new];
[c2 print];

return 0;

}

Each method will print a different method,
so although the protocol defines an interface
for one method, the actual implementation
depends on the classes that put the method
to use.

To use protocols:
1. Create anew program named main.m.

2. In main.m, enter the code shown in
Listing 8.27.
This code creates an object of the first
class and executes its print method.

3. Add the code to create an object of
the second class and execute its print
method as well (Listing 8.28).

continues on next page

161

From the Library of Bill Wiecking

$107010¥d

¥3H1390] 11V 1| ONILLINg

PUTTING IT ALL TOGETHER

PrRoTOCOLS

Chapter 8

4, Save main.m.

5. Ifyoure using Linux, UNIX, or Windows,
create a makefile named GNUmakefile as
shown in Listing 8.29.

6. Run the main.m protocols program.
You should see the following:
This is Class 1.
This is Class 2.

include $(GNUSTEP_MAKEFILES)/common.make
TOOL_NAME = protocols
protocols_OBJC_FILES = ClassFirst.m

ClassSecond.m main.m

include $(GNUSTEP_MAKEFILES)/tool.make

Listing 8.29 GNUmakefile.

162

From the Library of Bill Wiecking

USING ARRAYS
AND DICTIONARIES

In this chapter, weTe going to explore two
important features of the Objective-C
Foundation classes: arrays and dictionaries.

You saw C-style arrays in Chapter 3. Those
arrays let you handle your data as a set of val-
ues accessible by index. For example, here’s
how to create a standard array and display
some information about it:

#include <stdio.h>

int main()
{
int scores[5] = {92 , 73 , 57, 98 ,
89 1;

printf(
"The array is %i elements long.",
sizeof(scores) / sizeof(int));

return 0;

}

In this chapter, youe going to build arrays
using the Foundation classes that come with
Objective-C. Those array classes let you do
more with arrays, such as sort them, as you'll
see in this chapter.

SIINVNOILIIJ ANV SAVIYY ONISN

continues on next page

163

From the Library of Bill Wiecking

USING ARRAYS AND DICTIONARIES

Chapter 9

You can also create dictionaries in Objective-C
using the Foundation classes. A dictionary

in Objective-C is just like an array, but it uses
words as index values, not numerical values.
So while an array might be indexed by the
numbers 0, 1, 2, 3, and so on, a dictionary
would use the index terms “zero,” “one,” “two,
“three,” and so on. The index values need not
be sequential; you could as well have used
“banana,” “apple,” and “orange.’

In addition, you can create mutable arrays
and dictionaries: that is, arrays and dictionar-
ies whose length can be changed on the fly in
your code. You'll see how that works here.

All that and more is coming up in this
chapter, which includes: the NSArray,
NSMutableArray, NSMutableDictionary, and
NSDictionary classes, as well as some others.

164

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

return 0;

}

Listing 9.1 Starting createarray.m.

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

printf("Array has been created.");

return 0;

}

Listing 9.2 The createarray.m program.

Creating an Array

You can create an array using the Foundation
class NSArray. Such arrays are static and can-
not be changed at run time..

Here's how you might create such an array,
initializing it to "red", "white", and "blue".

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

}
To create a static array:
1. Create a program named createarray.m.

2. Increatearray.m, enter the code shown in
Listing 9.1.
This code creates the array and initializes
it with data.

3. Add the code to display a message indi-
cating success (Listing 9.2).

4. Save createarray.m.

5. Run the createarray.m program (ignor-
ing the warning about the unused array
variable).

You should see the following:

AVYYY NV ONILVIY)

Array has been created.
v Tips

B It'sagoodidea to end all arrays with the
nil object, and as previously discussed,
be sure to use the @ sign to differentiate
Objective-C strings from C-style strings:

B You'll need a GNUmakefile file as detailed
in previous chapters if youre using Linux,
UNIX, or Windows.

165

From the Library of Bill Wiecking

ACCESSING ARRAY ELEMENTS

Chapter 9

Accessing Array Elements

You created an array in the previous task.
Now how do you access individual elements
in that array? For example, what if you want
to access the element at array[0]?

To do that, you send the array an
objectAtIndex message along with
the index value you want to access:

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]

initWithObjects: @"red", @"white",
@"blue", nil];

printf("array[@] = %s", [[array
objectAtIndex: @] cString]);
}

In this task, you'll see how to access individual
elements with the objectAtIndex message.

To access individual elements:

1. Create a program named
accesselements.m.

2. Inaccesselements.m, enter the code
shown in Listing 9.3.

This code creates the array and initializes
it with data.

3. Add the code to access the elements of
your choice with the objectAtIndex mes-
sage and turn the Objective-C string into
a C-style string before passing it to the
printf() function (Listing 9.4).

4, Save accesselements.m.

5. Run the accesselements.m program.
You should see the following:
array[0] = red.

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

return 0;

}

Listing 9.3 Starting accesselements.m.

#import <Foundation/Foundation.h>

int main()

{
NSArray *array = [[NSArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

printf("array[@] = ¥s", [[array
objectAtIndex: @] cString]);

return 0;

}

Listing 9.4 The accesselements.m program.

v Tip

B Toinsert an object into an array, you use
the insertObjectAtIndex message.

166

From the Library of Bill Wiecking

Using Arrays and Dictionaries

L] L]
#import <Foundation/Foundation.h> USIng Enumeratlon to
#import <stdio.h> Loop over an Array
int main(int argc, const char *argv[]) { Objective-C provides an easy way to loop
NSAutoreleasePool *pool = over an array: you can use a NSEnumerator
[[NSAutoreleasePool alloc] init]; object. Here's how to create an enumerator

for an array:
NSArray *array = [[NSArray alloc]

initWithObjects:
@"red", @"white", @"blue", nil];

NSArray *array = [[NSArray alloc]
initWithObjects:
@"red", @"white", @"blue", nil];

NSEnumerator *enumerator = [array
NSEnumerator *enumerator = [array

objectEnumerator];
id obj; objectEnumerator];
Then you can use the enumerator’s nextObject
message to get the next element as you iter-
ate the array in a loop.
’ To use enumeration to loop over
Listing 9.5 Starting enumerator.m. an array:

1. Create a new program named
enumerator.m.

2. In enumerator.m, enter the code shown in
Listing 9.5.
This code creates the array, an enumera-

tor for the array, and a placeholder vari-
able for objects from the array.

continues on next page

AVYYY NV 43AO0 dOOT] OL NOILVIIWNNT ONISN

167

From the Library of Bill Wiecking

USING ENUMERATION TO LOOP OVER AN ARRAY

Chapter 9

3. In enumerator.m, enter the code shown in
Listing 9.6.
This code uses the nextObject message
to get the next object from the enumera-
tor in awhile loop. We also create an
NSAutoreleasePool object to keep track
of memory use.

4. Save enumerator.m.

5. Ifyoure using Linux, UNIX, or Windows,
create a new makefile named GNUmakefile.

6. Run the enumerator.m program.
You should see the following:
red
white
blue

v Tip

B Ifyouwant toloop over an array with a
for loop, you can send the array the mes-
sage count to get the number of elements
in the array.

#import <Foundation/Foundation.h>

#import <stdio.h>

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSArray *array = [[NSArray alloc]
initWithObjects:
@"red", @"white", @"blue", nil];

NSEnumerator *enumerator = [array
objectEnumerator];
id obj;

while ((obj = [enumerator nextObject]))

{
printf("%s\n", [[obj description]
cString]);

[pool release];

return 0;

}

Listing 9.6 Editing enumerator.m.

168

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h> Creating a Mutable Array

#import <stdio.h> .
The arrays you create with NSArray are fixed

arrays—you cannot change their length at
run time. However, the length of arrays you
create with the NSMutableArray class can be
changed when your program runs.

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSMutableArray *array = In the next task, you'll use NSMutableArray to
[[NSMutableArray add elements to a mutable array.
alloc] initWithObjects:
@'red”, @"white", @"blue", nill: To create a mutable array:
1. Create a new program named
NSEnumerator *enumerator = [array createmutablearray.m.
objectEnumerator];
id obj; 2. Increatemutablearray.m, enter the code

shown in Listing 9.7.
This code creates the mutable array.

continues on next page

}

Listing 9.7 Starting createmutablearray.m.

AVIYY 379VLINN V ONILYIY)

169

From the Library of Bill Wiecking

CREATING A MUTABLE ARRAY

Chapter 9

3. Increatemutablearray.m, enter the code
shown in Listing 9.8.

This code uses an enumerator and the
nextObject message to get the next object
from the enumerator in awhile loop.

4. Save createmutablearray.m.

5. Ifyoure using Linux, UNIX, or Windows,

create a new makefile named GNUmakefile.

6. Run the createmutablearray.m program.
You should see the following:
red
white
blue

In the next task, you'll add elements to
this mutable array.

#import <Foundation/Foundation.h>

#import <stdio.h>

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSMutableArray *array =
[[NSMutableArray
alloc] initWithObjects:
@"red", @"white", @"blue", nil];

NSEnumerator *enumerator = [array
objectEnumerator];
id obj;

while ((obj = [enumerator nextObject]))

{
printf("%s\n", [[obj description]
cString]);

[pool release];

return 0;

}

Listing 9.8 Editing createmutablearray.m.

170

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h> Addlng Elements to a
#import <stdio.h> Mutable Array
int main(int argc, const char *argv[]) { It's easy to add new elements to a mutable
NSAutoreleasePool *pool = array at run time: you just send the
[[NSAutoreleasePool alloc] init]; addObject message.

NSMutableArray *array = To add elements to a mutable array:

[[NSMutableArray alloc] 1. Create a file named addelements.m.
initWithObjects: @"red", @"white",
@"blue”. nill: 2. In addelements.m, enter the code shown
ue", nil];
in Listing 9.9.
This code creates the mutable array you'll
) use and initializes it to "red", "white",
1 and "blue".

Listing 9.9 Starting addelements.m. continues on next page

AVYYY 3719VLINN V OL SLNIW313 ONIAAyY

171

From the Library of Bill Wiecking

ADDING ELEMENTS TO A MUTABLE ARRAY

Chapter 9

3.

Enter the code to add the elements
"orange", "green", and "azure" and then
loop over the array to print a list of all the
elements (Listing 9.10).

Save addelements.m.

Run the addelements.m program.

You should see the following:

#import <Foundation/Foundation.h>

#import <stdio.h>
int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =

[[NSAutoreleasePool alloc] init];

NSMutableArray *array =

red [[NSMutableArray alloc]
white initWithObjects: @"red", @"white",
blue @"blue", nil];
orange
NSEnumerator *enumerator = [array
green objectEnumerator];
azure id obj;
[array addObject: @"orange"];
[array addObject: @"green"];
[array addObject: @"azure"];
while ((obj = [enumerator nextObject])) {
printf("%s\n", [[obj description]
cString]);
}
[pool release];
return 0;
}
Listing 9.10 The addelements.m program.
172

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h>

#import <stdio.h>

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSMutableArray *array =
[[NSMutableArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

NSEnumerator *enumerator = [array
objectEnumerator];

id obj;

[array addObject: @"orange"];
[array addObject: @"green"];
[array addObject: @"azure"];

while ((obj = [enumerator nextObject])) {
printf("%s\n", [[obj description]
cString]);

Listing 9.11 Starting sortarray.m.

Sorting an Array

You can sort an array by sending it a
sortUsingSelector message. For example,
here’s how you perform a case-insensitive
sort, using the caseInsensitiveCompare
selector:

[array sortUsingSelector: @selector(
caselnsensitiveCompare:)];
To sort an array:
1. Create a file named sortarray.m.

2. Insortarray.m, enter the code shown in
Listing 9.11.

This code creates the array and prints it.

continues on next page

AVYYY NV ONILIOS

173

From the Library of Bill Wiecking

SORTING AN ARRAY

Chapter 9

3. Add the code to sort the array and then
print it (Listing 9.12).

4. Save sortarray.m.

5. Run the sortarray.m program.

You should see the unsorted array fol-
lowed by this:

Sorting the array.
azure

blue

green

orange

red

white

#import <Foundation/Foundation.h>

#import <stdio.h>

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSMutableArray *array =
[[NSMutableArray alloc]
initWithObjects: @"red", @"white",
@"blue", nil];

NSEnumerator *enumerator = [array
objectEnumerator];

id obj;

[array addObject: @"orange"];
[array addObject: @"green"];
[array addObject: @"azure"];

while ((obj = [enumerator nextObject])) {
printf("%s\n", [[obj description]
cString]);

printf("Sorting the array.\n");
[array sortUsingSelector: @selector(
caselInsensitiveCompare:)];

NSEnumerator *enumerator2 = [array
objectEnumerator];

while ((obj = [enumerator2
nextObject])) {
printf("%s\n", [[obj description]
cString]);

}

[pool release];
return 0;

Listing 9.12 The sortarray.m program.

174

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h>

#import <stdio.h>

int main(int argc, const char *argv[]) {
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NSMutableArray *array =
[[NSMutableArray alloc]
initWithObjects:

@"red", @"white", @"blue", nil];

NSEnumerator *enumerator = [array
objectEnumerator];
id obj;

[array addObject: @"orange"];
[array addObject: @"green"];
[array addObject: @"azure"];

while ((obj = [enumerator nextObject])) {
printf("%s\n", [[obj description]
cString]);

printf("Sorting the array.\n");
[array sortUsingSelector: @selector(
caseIlnsensitiveCompare:)];

NSEnumerator *enumerator2 = [array
objectEnumerator];

while ((obj = [enumerator2
nextObject])) {
printf("%s\n", [[obj description]
cString]);

printf("Freeing memory.\n");
[array release];

[pool release];

return 0;

Listing 9.13 The releasememory.m program.

Releasing Array Memory

The memory used by a large array can be con-

siderable. You can release the memory used
for an array by sending the array a release
message.

To release array memory:

1. Copy the sortarray.m program to a pro-
gram named releasememory.m.

2. Inreleasememory.m, add the code high-
lighted in Listing 9.13.

3. Savereleasememory.m.

4. Run the releasememory.m program.
You should see the following
red
white
blue
orange
green
azure
Sorting the array.
azure
blue
green
orange
red
white

Freeing memory.

175

From the Library of Bill Wiecking

AYOWI N AVHYIY ONISVITTY

CREATING A DICTIONARY

Chapter 9

Creating a Dictionary

A dictionary lets you use words or other
objects as keys and retrieve or store objects
accessed by that key. In this task, you'll create
adictionary to see how it works.

To create a dictionary:
1. Create afile named createdictionary.m.

2. In createdictionary.m, enter the code
shown in Listing 9.14.

This code creates the dictionary and adds
keys and values to it.

continues on next page

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSDictionary *dictionary =
[[NSDictionary alloc]
initWithObjectsAndKeys:
@"banana", @"fruit",
@"onion", @"vegetable",
@"turkey", @"meat",
nil];

Listing 9.14 Starting createdictionary.m.

176

From the Library of Bill Wiecking

Using Arrays and Dictionaries

3. Add the code to display the value for a
particular key (Listing 9.15).

#import <Foundation/Foundation.h>

#import <stdio.h>

4. Save createdictionary.m.

int main()
{ 5. Run the createdictionary.m program.
NSAutoreleasePool *pool = You should see the unsorted array fol-
[[NSAutoreleasePool alloc] init]; lowed by this:
NSDictionary *dictionary = Entry for fruit: banana

[[NSDictionary alloc]

initWithObjectsAndKeys:
@"banana", @"fruit",
@"onion", @"vegetable",
@"turkey", @"meat",
nil];

printf("Entry for fruit: %¥s\n",
[[dictionary objectForKey:@"fruit"]
cString]);

[dictionary release];
[pool release];

return 0;

}

Listing 9.15 The createdictionary.m program.

AYVNOILDIQ V ONILYIY)

177

From the Library of Bill Wiecking

ENUMERATING A DICTIONARY

Chapter 9

Enumerating a Dictionary

You can use an enumerator object to loop
over a dictionary just as you can use an
enumerator to loop over an array. In this
task, you'll use an enumerator to print the
keys and values of an dictionary.

To enumerate a dictionary:

1. Create anew program named
enumeratordictionary.m.

2. Inenumeratordictionary.m, enter the
code shown in Listing 9.16.

This code creates the dictionary you'll use.

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSDictionary *dictionary =
[[NSDictionary alloc]
initWithObjectsAndKeys:
@"banana", @"fruit",
@"onion", @"vegetable",
@"turkey", @"meat",
nil];

Listing 9.16 Starting enumeratordictionary.m.

178

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSDictionary *dictionary =
[[NSDictionary alloc]
initWithObjectsAndKeys:
@"banana", @"fruit",
@"onion", @"vegetable",
@"turkey", @"meat",
nil];

NSEnumerator *enumerator = [dictionary
keyEnumerator];
id key;

while (Ckey = [enumerator nextObject]))
{
printf("%s => %s\n",
[[key description] cString],
[[[dictionary objectForKey: key]
description] cString]);

[dictionary release];

[pool release];

return 0;

}

Listing 9.17 The enumeratordictionary.m program.

3.

Add the code to create the enumerator
and loop over the dictionary (Listing 9.17).

Save enumeratordictionary.m.

Run the enumeratordictionary.m
program.

You should see the following;
vegetable => onion
meat => turkey

fruit => banana

179

From the Library of Bill Wiecking

AYVNOILDIQ V ONILVIIWNN]T

CREATING A MUTABLE DICTIONARY

Chapter 9

Creating a Mutable
Dictionary

You can extend a mutable dictionary by add-

ing new items or reduce it by removing items.

You'll see how to create a mutable dictionary
in this task, and you'll see how to extend it in
code in the next task.

To create a mutable dictionary:

1. Create anew program named
createmutabledictionary.m.

2. Increatemutabledictionary.m, enter the
code shown in Listing 9.18.
This code creates an object of the
NSMutableDictionary class.

3. Addthe code to display a message
indicating that the creation process went
smoothly and to deallocate the memory
used by the mutable dictionary before
ending the program (Listing 9.19).

4. Save createmutabledictionarym.

5. Run the createmutabledictionarym
program.

You should see the following:

Created mutable dictionary.

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSMutableDictionary *dictionary =
[[NSMutableDictionary alloc] init];

Listing 9.18 Starting createmutabledictionary.m.

#import <Foundation/Foundation.h>
#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSMutableDictionary *dictionary =
[[NSMutableDictionary alloc] init];

printf(
"Created mutable dictionary.\n");

[dictionary release];

[pool release];

return 0;

}

Listing 9.19 The createmutabledictionary.m program.

180

From the Library of Bill Wiecking

Using Arrays and Dictionaries

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSMutableDictionary *dictionary =
[[NSMutableDictionary alloc] init];

[dictionary setObject: @"banana"
forKey: @"fruit"];

[dictionary setObject: @"onion" forKey:

@"vegetable" J;
[dictionary setObject: @"turkey"
forKey: @"meat" J;

Listing 9.20 Starting addkeys.m.

Adding Objects to a
Mutable Dictionary

In the previous task, you created a mutable
dictionary, but didn't add any data to it. In
this task, you'll add keys and values to the
mutable dictionary.

To add objects to a mutable
dictionary:

1. Create anew program named
addkeys.m.

2. Inaddkeys.m, enter the code shown in
Listing 9.20.

This code creates the mutable dictionary
and uses the addObject message to add
key and value pairs to the dictionary.

continues on next page

181

From the Library of Bill Wiecking

AYVNOILDIQ 3718VLN V OL S1D3(9Q 9NIaay

ADDING OBJECTS TO A MUTABLE DICTIONARY

Chapter 9

3. Add the code to print the contents of the
mutable dictionary (Listing 9.21).

4. Save addkeys.m.

5. Run the protected addkeys.m program.
You should see the following:
vegetable => onion
meat => turkey

fruit => banana

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSMutableDictionary *dictionary =
[[NSMutableDictionary alloc] init];

[dictionary setObject: @"banana"
forKey: @"fruit"];

[dictionary setObject: @"onion" forKey:
@"vegetable" J;

[dictionary setObject: @"turkey"
forKey: @"meat" J;

NSEnumerator *enumerator = [dictionary
keyEnumerator];

id key;

while ((key = [enumerator nextObject]))
{
printf("%s => %s\n",
[[key description] cString],
[[[dictionary objectForKey: key]
description] cString]);

[dictionary release];

[pool release];

return 0;

¥

Listing 9.21 The addkeys.m program.

182

From the Library of Bill Wiecking

MANAGING
MEMORY IN
OBJECTIVE-C

In this chapter, you'll learn about memory
management in Objective-C. Objective-C
keeps track of all the objects you create with a
retain count, and when that count goes down
to zero, Objective-C automatically deallocates
the memory allocated to an object.

For example, say that you create two objects:

Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];
Now the retain count of each objectis 1, as
you can verify by asking each object what its
retain count is and printing that result:

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

You can also explicitly increment the retain
count yourself, like this:.

[objectl retain];
[objectl retain];
[object2 retain];

continues on next page

J-3AILD3[EQ NI AYOWIN ONIDVNVIN

183

From the Library of Bill Wiecking

MANAGING MEMORY IN OBJECTIVE-C

Chapter 10

When you pass an object the retain mes-
sage, it increments its own retain count. So in
this case, the retain count for object1 would
increase from 1 to 2 to 3, and the retain count
for object2 would increase from 1 to 2.

To decrement the retain count, you send an
object a release message:

[objectl release];
[object2 release];

These two lines of code reduce the retain
count of objectl to 2 and the retain count
ofobject2to 1.

When you send a release message that
reduces the retain count of an object to 0,
Objective-C automatically deallocates that
object. You'll implement the dealloc method
for objects yourself in this chapter to see how
Objective-C deallocates your objects.

184

From the Library of Bill Wiecking

Managing Memory in Objective-C

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

Listing 10.1 Starting createobject.m.

#import <Foundation/Foundation.h>
#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

printf("Created objectl\n");
printf("Created object2\n");

return 0;

}

Listing 10.2 The createobject.m program.

Creating Test Objects

In this task, you'll create two test objects
whose retain count you'll track in the upcom-
ing tasks as you increase and decrease the
retain count.

The two objects will be objects of Class1,
which just looks like this (you'll add methods
to this class in a later task):

@interface Classl: NSObject
@end

@implementation Classl
@end

All right—now let’s create the test objects.
To create test objects:
1. Create a program named createobject.m.

2. Increateobject.m, enter the code shown
in Listing 10.1.
This code creates the two test objects.

3. Add the code to display a message indi-
cating success (Listing 10.2).

4. Save createobject.m.

5. Run the createobject.m program
(ignoring the warning about not using
the objects).

You should see the following
Created objectl
Created object?2

185

From the Library of Bill Wiecking

S123(4Q 1S3] 9NILYIY)

DISPLAYING THE RETAIN COUNT

Chapter 10

Displaying the Retain
Count

When you create objects, Objective-C keeps
track of them with a retain count. To find out
what that retain count is, you send an object
aretainCount message.

For example, in the previous task, you cre-
ated two new objects:

(Classl *objectl = [[Classl alloc]
init];

(Classl *object2 = [[Classl alloc]
init];

You can display their retain count (which will
be 1) like this:

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

To display the retain count:
1. Create a program named retaincount.m.

2. Inretaincount.m, enter the code shown in
Listing 10.3.

This code creates the two test objects.

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

Listing 10.3 Starting retaincount.m.

186

From the Library of Bill Wiecking

Managing Memory in Objective-C

3. Add the code to display the retain count
of each new object (Listing 10.4).

#import <Foundation/Foundation.h>
#import <stdio.h>

4, Save retaincount.m.

@interface Classl: NSObject)
5. Run the retaincount.m program.

@end

You should see the following;
@implementation Classl objectl retain count: 1
@end object2 retain count: 1

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

printf("objectl retain count: ¥i\n",
[objectl retainCount]);

printf("object2 retain count: ¥i\n",
[object2 retainCount]);

return 0;

}

Listing 10.4 The retaincount.m program.

INNO) NIVLIY FHL ONIAVIdASIQ

187

From the Library of Bill Wiecking

INCREMENTING AN OBJECT’S RETAIN COUNT

Chapter 10

Incrementing an Object’s
Retain Count

You can increment the retain count of an
object yourself by sending it a retain mes-
sage. In this task, you'll increment the retain
counts of two objects and then verify that the
retain counts were indeed incremented.

To increment the retain count:

1. Create anew program named
incrementcount.m.

2. Inincrementcount.m, enter the code
shown in Listing 10.5.
This code creates the two test objects and
displays their retain counts.

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

¥

Listing 10.5 Starting incrementcount.m.

188

From the Library of Bill Wiecking

Managing Memory in Objective-C

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl retain];
[objectl retain];
[object2 retain];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

return 0;

}

Listing 10.6 The incrementcount.m program.

3.

Add the code to increment the retain
counts and display the results
(Listing 10.6).

Save incrementcount.m.

Run the incrementcount.m program.
You should see the following;

objectl retain count:
object2 retain count:

objectl retain count:

N WP -

object2 retain count:

From the Library of Bill Wiecking

189

LNNOD NIVL3IY S, 1030 NV ONILNIWIUIN|

DECREMENTING AN OBJECT’S RETAIN COUNT

Chapter 10

Decrementing an Object’s
Retain Count

You can decrement an object’s retain count
by sending it a release message. You do that
here and confirm that the retain count has
been decremented.

To decrement the retain count:

1. Create anew program named
decrementcount.m.

2. Indecrementcount.m, enter the code
shown in Listing 10.7.
This code creates the two test objects and
increments their retain counts.

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
@end

@implementation Classl
@end

int main(void)

{
Classl *objectl = [[Classl alloc]
init];
Classl *object2 = [[Classl alloc]
init];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl retain];
[objectl retain];
[object2 retain];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

Listing 10.7 Starting decrementcount.m.

190

From the Library of Bill Wiecking

Managing Memory in Objective-C

3. Add the code to decrement the retain
count of each object by 1 and display the
resulting retain count for each object
(Listing 10.8).

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject

@end 4, Save decrementcount.m.

@implementation Classl 5. Run the decrementcount.m program.

@end You should see the following:

objectl retain count: 1

int mainCvoid) object2 retain count: 1

{ objectl retain count: 3
Classl *objectl = [[Classl all . .

?S§ Iee [[Classt attoc] object2 retain count: 2
init]; i]

Classl *object2 = [[Classl alloc] objectl retain count: 2

init]; object2 retain count: 1

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl retain];
[objectl retain];
[object2 retain];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl release];
[object2 release];

printf("objectl retain count: ¥i\n",
[objectl retainCount]);

printf("object2 retain count: ¥i\n",
[object2 retainCount]);

return 0;

Listing 10.8 Editing decrementcount.m.

LNNOD NIVL3IY S, 10380 NV ONILNIW3I¥I3Q

191

From the Library of Bill Wiecking

DEALLOCATING OBJECTS FROM MEMORY

Chapter 10

Deallocating Objects
from Memory

When the retain count of an object reaches
zero, Objective-C deallocates that object
from memory. You'll see how this works by
overriding your objects’ dealloc method and
displaying a message when the objects are
deallocated.

To deallocate an object:
1. Create anew program named dealloc.m.

2. Indealloc.m, enter the code shown in
Listing 10.9.
This code overrides the Class1 dealloc
method to display a message confirming
the deallocation.

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Classl: NSObject
-(void) dealloc;
@end

@implementation Classl

-(void) dealloc

{
printf("Deallocing the object\n");
[super dealloc];

}
@end

Listing 10.9 Starting dealloc.m.

192

From the Library of Bill Wiecking

Managing Memory in Objective-C

3. Add the code shown in Listing 10.10.

#import <Foundation/Foundation.h>

#import <stdio.h> This code creates two Class1 objects and
increments and decrements the retain
@interface Classl: NSObject counts of object1 and object2, finally

~(void) dealloc; setting their retain counts to zero. At that

eend point, Objective-C deallocates the objects,
@implementation Classl as confirmed by a message from the over-
-(void) dealloc ridden dealloc method.
! printf("Deallocing the object\n"); 4. Save dealloc.m.

[super dealloc]; 5. Run the dealloc.m program.
;en d You should see the following:

objectl retain count: 1
int main(void)

‘ object2 retain count: 1
Classl *objectl = [[Classl alloc] objectl retain count: 3
init]; object2 retain count: 2
Cl;:::]:‘objectz = [[Classl alloc] objectl retain count: 2
object2 retain count: 1

printf("objectl retain count: %i\n", Deallocing the object
[objectl retainCount]);

printf("object2 retain count: ¥i\n",
[object2 retainCount]);

Deallocing the object

[objectl retain];
[objectl retain];
[object2 retain];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl release];
[object2 release];

printf("objectl retain count: %i\n",
[objectl retainCount]);

printf("object2 retain count: %i\n",
[object2 retainCount]);

[objectl release];
[objectl release];
[object2 release];

AYOWI N WOJ4 S1D3(dQ 9NILYIOT11Va(Q

return 0;

Listing 10.10 Editing dealloc.m.

193

From the Library of Bill Wiecking

USING AN AUTORELEASE PooL

Chapter 10

Using an Autorelease Pool

If you use alloc or new to create an object,
you're responsible for managing the object’s
memory yourself (if memory is a concern).
But for objects that you don't create with
alloc or new, you can have Objective-C man-
age them for you using an autorelease pool.

Just create a pool object, and the objects will
be placed in it automatically. At the end of
the program, you have only to release the
pool to release all the objects.

To use an autorelease pool:
1. Create afile named pool.m.

2. Inpool.m, enter the code shown in
Listing 10.11.
This code creates the pool and a pool-
managed object: stringl.

3. Add the code to print the object’s retain
count and release the pool when the
program ends (Listing 10.12).

4. Save pool.m.

5. Run the pool.m program.
You should see the following:

Pool-managed string's retain count: 1

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSString *stringl = [NSString
stringWithString: @"Pool-managed
string"];

¥

Listing 10.11 Starting pool.m.

#import <Foundation/Foundation.h>
#import <stdio.h>

int main()
{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSString *stringl = [NSString
stringWithString: @"Pool-managed
string"];

printf("%s's retain count: %¥x\n",
[stringl cString], [stringl
retainCount]);

[pool release];

return 0;

}

Listing 10.12 The pool.m program.

194

From the Library of Bill Wiecking

Managing Memory in Objective-C

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSString *stringl = [NSString
stringWithString: @"Pool-managed
string"];
NSString *string2 = [[NSString alloc]
initWithString: @"Self-managed
string"];

printf("%s's retain count: %x\n",
[stringl cString], [stringl

retainCount]);

Listing 10.13 Editing pool.m.

Using Self-Managed
Memory

If you create objects using alloc or new,
you'e responsible for managing their
memory yourself (if memory is a concern).
That means that when youre done with an
object and want to release its memory, it's up
to you to do so until its retain count reaches
zero and Objective-C deallocates it.

In this task, you'll add a self-managed object
to the previous task’s pool.m program so you
can compare the procedures for self-managed
memory and pool-managed memory.

To use self-managed memory for an
object:

1. Open pool.m.

2. Add the code to create a self-managed
string (Listing 10.13).

continues on next page

195

From the Library of Bill Wiecking

AYOWI W @I9VYNVW-413S ONISN

USING SELF-MANAGED MEMORY

Chapter 10

3. Add the code to print the self-managed
string’s retain count and release the
object (Listing 10.14).

4. Save pool.m.

5. Run the edited pool.m program.
You should see the following:

Pool-managed string's retain count: 1

Self-managed string's retain count: 1

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];
NSString *stringl = [NSString
stringWithString: @"Pool-managed
string"];
NSString *string2 = [[NSString alloc]
initWithString: @"Self-managed
string"];

printf("%s's retain count: %x\n",
[stringl cString], [stringl
retainCount]);

printf("%s's retain count: ¥x\n",
[string2 cString], [string2
retainCount]);

[string2 release];

[pool release];

return 0;

¥

Listing 10.14 The edited pool.m program.

196

From the Library of Bill Wiecking

Managing Memory in Objective-C

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Friend: NSObject
{
NSString *firstName;
NSString *lastName;
}
-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last;
-(void) setName: (NSString*) first
lastName: (NSString*) last;
-(void) print;
@end

@implementation Friend

-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last

{

self = [super init];

if (self) {
[self setName: first lastName: last];

return self;

-(void) setName: (NSString*) first
lastName: (NSString*) last

{
[self setFirst: first];
[self setlLast: last];

-(void) print
{
printf("Your friend's name is %s %s",
[firstName cString], [lastName
cString]);
}
@end

Listing 10.15 Creating friends.m.

Deallocating Memory
Yourself: Creating the Class

If you create objects of your own classes that
store other objects internally, youre respon-
sible for releasing the internal objects when
the overall object is deallocated.

In the remaining tasks in this chapter,

you'll see how this works using an example
class named Friend that internally stores
two NSString objects that correspond to
the friend’s first and last names. When the
Friend object is deallocated, you'll manually
release the two internal strings.

To create the Friend class:
1. Create afile named friends.m.

2. Infriends.m, enter the code shown in
Listing 10.15.
This code creates the Friend class and
internally stores the friend’s first and
last names.

3. Save friends.m.

197

From the Library of Bill Wiecking

SSV1) FHL ONILVIY)

STORING INTERNAL OBJECTS

Chapter 10

Deallocating Memory
Yourself: Storing Internal
Objects

In this task, you'll continue working with the
Friend class from the previous task. Here,
you'll internally store the friend’s first and last
names as NSString objects.

To store internal objects:

1. Open friends.m.

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Friend: NSObject
{
NSString *firstName;
NSString *lastName;
}
-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last;
-(void) setName: (NSString*) first
lastName: (NSString*) last;
-(void) setFirst: (NSString*) first;
-(void) setLast: (NSString*) last;
-(void) print;
@end

@implementation Friend

-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last

{

self = [super init];

if (self) {
[self setName: first lastName: last];

return self;

-(void) setName: (NSString*) first
lastName: (NSString*) last

{
[self setFirst: first];
[self setlLast: last];

(code continues on next page)

Listing 10.16 Editing friends.m.

198

From the Library of Bill Wiecking

Managing Memory in Objective-C

-(void) setFirst: (NSString*) first
{

[first retain];

[firstName release];

firstName = first;

}

-(void) setlLast: (NSString*) last
{

[last retain];

[lastName release];

lastName = last;

}

-(void) print
{
printf("Your friend's name is %s %s",
[firstName cString], [lastName
cString]);
}
@end

Listing 10.16 continued

Add the code to store the friend’s first
and last names in the Friend object as
NSString objects (Listing 10.16).

Save friends.m.

199

From the Library of Bill Wiecking

S123(d(Q TYNYILN| ONI¥OLS

CREATING THE MAIN METHOD

Chapter 10

Deallocating Memory
Yourself: Creating the
main Method

In this task, you'll create the main method
for the deallocation example to release any
internal objects when the containing object
is deallocated.

To create the main method:
1. Open friends.m.

2. Add the code to create an object of the
Friend class named dan (Listing 10.17).

3. Add the code to print the friend’s
name and release the Friend object
(Listing 10.18).

4, Save friends.m.

int main(void)
{
NSString *first =[[NSString alloc]
initWithCString: "Dan"]J;
NSString *last = [[NSString alloc]
initWithCString: "Green"];

Friend *dan = [[Friend alloc]
initWithName: first lastName: last];

[first release];

[last release];

¥

Listing 10.17 Editing friends.m.

int main(void)
{
NSString *first =[[NSString alloc]
initWithCString: "Dan"]J;
NSString *last = [[NSString alloc]
initWithCString: "Green"];

Friend *dan = [[Friend alloc]
initWithName: first lastName: last];

[first release];
[last release];

[dan print];

[dan release];

return 0;

¥

Listing 10.18 Editing friends.m.

200

From the Library of Bill Wiecking

Managing Memory in Objective-C

#import <Foundation/Foundation.h>

#import <stdio.h>

@interface Friend: NSObject
{
NSString *firstName;
NSString *lastName;
}
-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last;
-(void) setName: (NSString*) first
lastName: (NSString*) last;
-(void) setFirst: (NSString*) first;
-(void) setlLast: (NSString*) last;
-(void) print;
@end

@implementation Friend

-(Friend*) initWithName: (NSString*)
first lastName: (NSString*) last

{

self = [super init];

if (self) {
[self setName: first lastName: last];

return self;

-(void) setName: (NSString*) first
lastName: (NSString*) last

{
[self setFirst: first];
[self setlLast: last];

-(void) setFirst: (NSString*) first
{

[first retain];

[firstName release];

firstName = first;

}

(code continues on next page)

Listing 10.19 Editing friends.m.

Deallocating Memory
Yourself: Performing
Deallocation

This task completes the examples illustrating
how to release internal memory for custom
objects. Here, you actually release the inter-
nally stored objects when the whole object is
deallocated.

To deallocate internal memory:
1. Open friends.m.

2. Add the code to release the internal
strings when the complete Friend object
is deallocated (Listing 10.19).

continues on next page

201

From the Library of Bill Wiecking

NOILYIOT11VIQ ONIWJO04d3d

PERFORMING DEALLOCATION

Chapter 10

3. Save friends.m.

4. Run the friends.m program.
You should see the following:
Your friend's name is Dan Green

The Friends object is deallocated, and its
internally stored objects, first and last,
are released.

-(void) setlLast: (NSString*) last
{

[last retain];

[lastName release];

lastName = last;

-(void) print
{
printf("Your friend's name is %s %s",
[firstName cString], [lastName
cString]);

-(void) dealloc

{
[firstName release];
[LastName release];
[super dealloc];

}

@end

int main(void)
{
NSString *first =[[NSString alloc]
initWithCString: "Dan"]J;
NSString *last = [[NSString alloc]
initWithCString: "Green"];

Friend *dan = [[Friend alloc]
initWithName: first lastName: last];

[first release];
[last release];

[dan print];

[dan release];

return 0;

¥

Listing 10.19 continued

202

From the Library of Bill Wiecking

EXCEPTION
HANDLING

Errors are a fact of life. Even the most perfect
programmer has code that creates run-time
errors at times. This chapter is about han-
dling such cases.

You'll commonly encounter two kinds of
errors: compile-time errors and run-time
errors. Compile-time errors are those raised
by the compiler, and you have to fix those
before you continue with your program. Run-
time errors happen at run-time, even though
your code compiled fine. Run-time errors are
commonly called exceptions.

ONITANVH NOILd3DX3

Objective-C can handle exceptions, but the way
it does so varies by platform. In this chapter,
we'll use the GNUstep way of handling excep-
tions, which is the most common method.

Here, you use macros like NS_DURING and
NS_HANDLER to handle exceptions when they
happen. For example, this code creates a
custom exception and then reports on it:

#import <Foundation/Foundation.h>
#import <stdio.h>

int main()

{

NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

continues on next page

203

From the Library of Bill Wiecking

EXCEPTION HANDLING

Chapter 11

NS_DURING
{

NSException *myException =
[[NSException
alloc] initWithName: @"MyException"
reason: @"Meltdown!" userInfo:
nil];

[myException raise];

[pool release];

}

NS_HANDLER

{
printf("In error handler.\n");

if ([[localException name]
isEqualToString: @"MyException"])
{
printf("Meltdown error.\n");

}

NS_ENDHANDLER

{
printf("In end handler.");

}

return 0;

}

We'll take a look at the details in this chapter.

204

From the Library of Bill Wiecking

Exception Handling

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{
NS_DURING

{

return 0;

}

Listing 11.1 Starting main.m.

#import <Foundation/Foundation.h>
#import <stdio.h>

int main()

{
NS_DURING

{

[Sensitive code]

}

return 0;

}

Listing 11.2 The main.m program.

Catching Exceptions

Whenever your code may cause an exception—
for example, by dividing by zero—you can
enclose it in a NS_DURING macro like this:

NS_DURING
{

[Sensitive code]

}

This is the first step in GNUstep exception
handling: any exceptions that happen inside
an NS_DURING macro can be handled in an
NS_HANDLER macro, which is covered in the
next task.

To catch exceptions:
1. Create a program named main.m.

2. In main.m, enter the code shown in
Listing 11.1.

This code creates an NS_DURING block.

3. Add your exception-prone code to the
NS_DURING block (Listing 11.2).

4, Save main.m.

205

From the Library of Bill Wiecking

SNOILd3IDX3 ONIHIOLY)

HANDLING EXCEPTIONS

Chapter 11

Handling Exceptions

When an exception occurs, you can handle
that exception in an NS_HANDLER macro—
that's where you place your exception-
handling code, as you'll see in this task.

To handle exceptions:
1. Create a program named main.m.

2. In main.m, enter the code shown in
Listing 11.3.

This code creates the NS_DURING macro.

3. Enter the code to add the NS_HANDLER
macro, which runs when an exception
occurs (Listing 11.4).

4. Save main.m.

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{

NS_DURING
{

return 0;

¥

Listing 11.3 Starting main.m.

#import <Foundation/Foundation.h>
#import <stdio.h>

int main()

{

NS_DURING
{

NS_HANDLER
{

return 0;

¥

Listing 11.4 The main.m program.

206

From the Library of Bill Wiecking

Exception Handling

#import <Foundation/Foundation.h> USIng the En d H al'ld ler
#import <stdio.h> . .
You can handle exceptions in the NS_HANDLER
int mainC) block. After the code in the NS_HANDLER block
. runs, you can have the code in another block,
NS DURTNG the NS_ENDHANDLER block, run, giving you a
. N chance to add cleanup code.
To use the end handler:
1. Create anew program named main.m.
} 2. In main.m, enter the code shown in
Listing 11.5.
NS_HANDLER This code creates the NS_DURING and
{ NS_HANDLER blocks.
. c
continues on next page 2
(1]
} =
m
m
return 0; =
} O
=X
>
Listing 11.5 Starting main.m. g
=
m
P

207

From the Library of Bill Wiecking

USING THE END HANDLER

Chapter 11

3. Enter the code to add the NS_ENDHANDLER
block for code you want executed after
the NS_HANDLER block (Listing 11.6).

#import <Foundation/Foundation.h>

#import <stdio.h>

4, Save main.m. int main()
{
NS_DURING

{

NS_HANDLER
{

NS_ENDHANDLER
{

}

return 0;

¥

Listing 11.6 The main.m program.

208

From the Library of Bill Wiecking

Exception Handling

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{
NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NS_DURING
{
NSException *myException =
[[NSException
alloc] initWithName: @"MyException"

reason: @"Meltdown!" userInfo: nil];

[myException raise];

[pool release];

NS_HANDLER
{

NS_ENDHANDLER
{

}

return 0;

}

Listing 11.7 Starting main.m.

Creating an Exception

Now you'll cause an exception to occur so
you can handle it and confirm that your code
works as expected.

In this task, you'll create an exception object;
then you'll raise that exception, which causes
the exception to actually occur. After that,
you can catch and handle the exception.

To create an exception:
1. Create anew program named main.m.

2. In main.m, enter the code shown in
Listing 11.7.
This code creates an exception object and
raises the exception.

continues on next page

209

From the Library of Bill Wiecking

NOILd3IDX3J NV ONILVIY)

CREATING AN EXCEPTION

Chapter 11

3. Add the code to display a message from

)) #import <Foundation/Foundation.h>
the exception handler and the exception

end handler (Listing 11.8).

#import <stdio.h>

4, Save main.m. int main()
{
5. Run the main.m program. NsAutoreleasePool *pool =
You should see the fOHOWIHg: [[NSAutoreleasePool alloc] init];
In error handler.
In end handler. NS_DURING
{
NSException *myException =
[[NSException

alloc] initWithName: @"MyException”

reason: @"Meltdown!" userInfo: nil];

[myException raise];

[pool release];

NS_HANDLER
{

printf("In error handler.\n");

¥

NS_ENDHANDLER
{
printf("In end handler.");
3
return 0;

}

Listing 11.8 The main.m program.

210

From the Library of Bill Wiecking

Exception Handling

#import <Foundation/Foundation.h>

#import <stdio.h>

int main()

{

NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

NS_DURING
{
NSException *myException =
[[NSException
alloc] initWithName: @"MyException"

reason: @"Meltdown!" userInfo: nil];

[myException raise];

[pool release];

NS_HANDLER

{
printf("In error handler.\n");

NS_ENDHANDLER

{
printf("In end handler.");

}

return 0;

}

Listing 11.9 Starting main.m.

Checking What
Exception Occurred

In exception-handling blocks, you can
refer to the exception that occurred as
localException, an object built into
Objective-C. Then you can find its name
by sending it the name message—and so
determine what exception occurred.

In this task, you'll determine what exception
occurred and display a message to match.

To determine what exception
occurred:

1. Create anew program named main.m.

2. In main.m, enter the code shown in
Listing 11.9.
This entry creates the exception and the
exception-handling code.

continues on next page

211

From the Library of Bill Wiecking

d3YANIIQ NOILdIDXT LVHM SNDIDIH)

CHECKING WHAT EXCEPTION OCCURRED

Chapter 11

3. Enter the code to check the name of the
exception and display it (Listing 11.10).

#import <Foundation/Foundation.h>

#import <stdio.h>

4, Save main.m.

. int main()
5. Run the main.m program. {
You should see the following: NSAutoreleasePool *pool =
In error handler. [[NSAutoreleasePool alloc] init];
Meltdown error.
In end handler. NS_DURING
{
NSException *myException =
[[NSException

alloc] initWithName: @"MyException”

reason: @"Meltdown!" userInfo: nil];

[myException raise];

[pool release];

NS_HANDLER

{
printf("In error handler.\n");

if ([[localException name]
isEqualToString: @"MyException"])
{
printf("Meltdown error.\n");
}

NS_ENDHANDLER

{
printf("In end handler.");

}

return 0;

}

Listing 11.10 The main.m program.

212

From the Library of Bill Wiecking

Exception Handling

NS_DURING
{

}
NS_HANDLER

{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{

}

else if ([[localException name]
isEqualToString: @"Exception2"])

{

}

}
NS_ENDHANDLER

}

Listing 11.11 Starting main.m.

Handling Multiple
Exceptions

You can also check for multiple exceptions.
To check for multiple exceptions, you use
if/else if/elsein the NS_HANDLER block.

To handle multiple exceptions:
1. Create a file named main.m.

2. In main.m, enter the code shown in
Listing 11.11.

This code checks for multiple exceptions.

continues on next page

SNOILd3DX3 31dILTNN ONITANVH

213

From the Library of Bill Wiecking

HANDLING MULTIPLE EXCEPTIONS

Chapter 11

3. Enter the code to add an else block
(Listing 11.12).
You'll use this block in a later task to
pass any uncaught exceptions back up
the call stack.

4. Save main.m.

NS_DURING
{

}
NS_HANDLER

{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{

3

else if ([[localException name]
isEqualToString: @"Exception2"])

{

else

}
¥
NS_ENDHANDLER

¥

Listing 11.12 The main.m program.

214

From the Library of Bill Wiecking

Exception Handling

NS_DURING Passing Exceptions
b Up the Call Stack

Sometimes when youre handling excep-
. tions, you'll want to pass the exceptions back
} up the call stack to the exception-handling

NS_HANDLER code in a calling function. You can do that
{ simply by raising the exception again in the
if ([[localException name] NS_HANDLER block, as you’ll do in this task.

isEqualToString: @"Exceptionl"])

To pass exceptions up the call stack:

{
-
1. Create a new file named main.m. R
w0
2. In main.m, enter the code shown in —
3 Listing 11.13. 2
. m
else if ([[localException name] This code sets up a framework to handle ﬁ
isEqualToString: @"Exception2"]) multiple exceptions. %
{ continues on next page g
=
(7}
c
v
—|
’ =X
else m
0
{ >
=
=
e
>
(2]
3 A

}
NS_ENDHANDLER

}

Listing 11.13 Starting main.m.

215

From the Library of Bill Wiecking

PASSING EXCEPTIONS UP THE CALL STACK

Chapter 11

3. Add the code to pass an uncaught excep-
tion back up the call stack by raising it
again (Listing 11.14).

4, Save main.m.

NS_DURING
{

}
NS_HANDLER

{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{

3

else if ([[localException name]
isEqualToString: @"Exception2"])

{

¥

else
{

[localException raise];
}

}
NS_ENDHANDLER

}

Listing 11.14 The main.m program.

216

From the Library of Bill Wiecking

Exception Handling

NS_DURING
{

}
NS_HANDLER

{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{

}

else if ([[localException name]
isEqualToString: @"Exception2"])

{

}

else

{

[localException raise];
}

}
NS_ENDHANDLER

}

Listing 11.15 Starting main.m.

Returning Values from
Exception Handlers

If your exception handler is in a function,
you may want to return a value from that
function—that is, even if an exception occurs
in a function, you may still want to return a
value from that function to the calling code.
However, you can't just use the return state-
ment in an exception handler—you have to
use NS_RETURNVALUE, as you'll see in this task.

To return values from an exception
handler:

1. Create a file named main.m.

2. In main.m, enter the code shown in
Listing 11.15.
This entry sets up exception-handling
code for multiple exceptions.

continues on next page

217

From the Library of Bill Wiecking

SYITTANVH NOILdIIXF WOU4 SANTVA ONININLIY

RETURNING VALUES FROM EXCEPTION HANDLERS

Chapter 11

3. Add the code to return values from the
exception-handling code (Listing 11.16).

4, Save main.m.

NS_DURING
{

}
NS_HANDLER
{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{
NS_VALUERETURN(®);
}
else if ([[localException name]
isEqualToString: @"Exception2"])
{
NS_VALUERETURN(C1);
}
else
{
[localException raise];
}
}
NS_ENDHANDLER

}

Listing 11.16 The main.m program.

218

From the Library of Bill Wiecking

Exception Handling

NS_DURING
{

}
NS_HANDLER

{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{

}

else if ([[localException name]
isEqualToString: @"Exception2"])

{

}

else

{

[localException raise];
}

}
NS_ENDHANDLER

}

Listing 11.17 Starting main.m.

Returning void from an
Exception Handler

Exception-handling code in a function can
also return a value of void from the func-
tion (if you want your function to return a
value of void), but you need a special macro,
NS_VALUERETURNVOID, to make it do so.

To return a value of void from an
exception handler:

1. Create a file named main.m.

2. In main.m, enter the code shown in
Listing 11.17.
This entry sets up exception-handling
code for multiple exceptions.

continues on next page

219

From the Library of Bill Wiecking

YITANVH NOILdIDX3 NV WOU4 AIOA SNININLIY

RETURNING VOID FROM AN EXCEPTION HANDLER

Chapter 11

3. Add the code to return void from the
exception-handling code (Listing 11.18).

4, Save main.m.

NS_DURING
{

}
NS_HANDLER
{
if ([[localException name]
isEqualToString: @"Exceptionl"])
{
NS_VALUERETURNVOID;
}
else if ([[localException name]
isEqualToString: @"Exception2"])
{
NS_VALUERETURNVOID;
}
else
{
[localException raise];
}
}
NS_ENDHANDLER

¥

Listing 11.18 The main.m program.

220

From the Library of Bill Wiecking

Exception Handling

int main()

{
NSSetUncaughtExceptionHandler(
NSUncaughtExceptionHandler);

void NSUncaughtExceptionHandler(NSExceptio
n *exception)

{

Listing 11.19 Starting main.m.

Catching Uncaught
Exceptions

You can set up a special function to catch all
unhandled exceptions by calling NSSetUncaug
htExceptionHandler(fn_ptr), where fn_ptr
is a pointer to a function (just like a standard
pointer, except that it points to a function) of
the form void NSUncaughtExceptionHandler
(NSException *exception).Soifyou don't
handle an exception anywhere else, it will be
handled in the NSUncaughtExceptionHandler
function.

To catch uncaught exceptions:
1. Create a file named main.m.

2. In main.m, enter the code shown in
Listing 11.19.
This code sets up the exception-handling
function.

continues on next page

221

From the Library of Bill Wiecking

SNOILdIDXT LHONVINMN ONIHIL1VY)

CATCHING UNCAUGHT EXCEPTIONS

Chapter 11

3. Add your exception-handling code
(Listing 11.20).
4. Save main.m.

Now your code can catch previously
uncaught exceptions.

int main()

{
NSSetUncaughtExceptionHandler(
NSUncaughtExceptionHandler);

void NSUncaughtExceptionHandler(NSException
*exception)
{
if ([[exception name]
isEqualToString: @"Exceptionl"])
{

1

else if ([[exception name]
isEqualToString: @"Exception2"])

{

else

}
}

Listing 11.20 The main.m program.

222

From the Library of Bill Wiecking

INDEX

Symbols

!=inequality operator, 31

! not operator, 32

$ command prompt, 7

%= (modulus assignment operator), 17
% (modulus operator), 15

%f code, 9

%1 code, 8,9

&& (and operator), 32

& operator, 43, 51

* (asterisk), 51

* = (multiplication assignment operator), 17
* (multiplication operator), 15

+= (addition assignment operator), 17
+ (addition operator), 15

++ (increment operator), 19-20

+ (plus sign), 84

- - (decrement operator), 19

-= (subtraction assignment operator), 17
- (subtraction operator), 15

/= (division assignment operator), 17
/ (division operator), 15

// (comment marker), 13

/* */ (comment marker), 13

< (less-than operator), 31

<= (less-than-or-equal-to operator), 31
= (assignment operator), 17

== (equality operator), 24, 26, 31

> (greater-than operator), 31

>= (greater-than-or-equal-to operator), 31
@implementation keyword, 82,92, 94

@interface keyword, 82,92
@private access specifier
and base-class data members, 122
and base-class methods, 124
and inheritance, 122, 124, 132
purpose of, 99, 100
using, 103-104
@protected access specifier, 99, 100,
105-106, 134
@public access specifier, 99, 100, 102
@sign, 54, 165
{} (curly braces), 3, 26, 47, 60
I'l (or operator), 32
2-dimensional arrays, 49-50

X3aN|

A

accesselements.m program, 166
access.m program, 102-105, 121
access specifiers, 99-106, 132-135. See also
specific access specifiers
addelements.m program, 171-172
adder () function, 64-67, 72-75
addition assignment operator, 17
addition operator, 15
addkeys.m program, 181-182
addObject message, 171
ampersand, 32, 43, 51
and operator, 32
app.exe application, 45
arguments, 64-65, 90-91
arithmetic operators, 15-16

223

From the Library of Bill Wiecking

INDEX

Index

array2.m program, 50
arrayloop.m program, 48
array.m program, 46
arrays, 46-53, 165-175
accessing elements in, 166
adding elements to, 171-172
creating, 46, 49-50, 163, 165, 169-170
defined, 43
initializing, 47
inserting objects in, 166
interchanging pointers and, 53
looping over, 48, 167-168
mutable, 169-172
passing, to functions, 72-73
pointing to items in, 52
releasing memory used for, 175
sorting, 173-174
static, 165
two-dimensional, 46-50
vs. dictionaries, 164
arrow notation, 101
assignment.m program, 17-18
assignment operators, 17-18
asterisk (*)
in comment markers, 13
declaring pointer with, 51
in multiplication assignment operator, 17
in multiplication operator, 15
autorelease pool, 194
averages, calculating, 48, 50

base classes
accessing, 136
alternate name for, 136
creating, 145, 151
defined, 119
inheriting from, 122-123
using, with categories, 147-148
base-class methods
inheriting, 124-125
overloading, 128-129
overriding, 126-127
break.m program, 42
break statement, 41-42

C

C++, 120
call stack, passing exceptions up,
215-216
caselnsensitiveCompare selector, 173
case statement, 29, 30
cast.m program, 22
cast operators, 21-22
categories, 143-148
creating, 146
how they work, 143-144
purpose of, 141, 142
using base class with, 147-148
character variables, 9
char data type, 11, 54
Clanguage, 1
classlextender.h file, 146
classlextender.m program, 146
classl.h file, 145, 151
classl.m program, 145, 151
class2.h file, 152
class2.m program, 152
classes
adding categories to, 146
adding methods to, 141
base (See base classes)
creating, 82-83
defining, 80-81
derived (See derived classes)
deriving one from another, 119
extending, 141, 144, 145
inheriting from, 121
making one pose as another, 141, 149,
151-154
purpose of, 79
storing implementation for, 94
storing interface for, 92-93
syntax for, 80
verifying method support for objects
created by, 118
verifying that objects belong to,
113-116
ClassFirst.h file, 158
ClassFirst.m program, 159
classmethod.m program, 85

224

From the Library of Bill Wiecking

Index

class methods
creating, 84-85
defined, 84
defining, 84
executing, 85
ClassSecond.h file, 158
ClassSecond.m program, 160
class variables, 99, 107-108. See also variables
classvariables.m program, 109-110
code files, 3. See also programs
command prompt, 7
comments, 13-14
compare.m program, 31
comparison operators, 31
compile-time errors, 203
compiling programs, 6-7
conditional.m program, 34
conditional operator, 33-34
conditions, testing, 23-24, 26, 29
constant data, 74-75
const keyword, 74
constructor.m program, 97-98, 136-137
constructors
calling base class’s, 136-137
and inheritance, 136-137
purpose of, 97
returning pointer to current object from,
109-110
using, 97-98
container.h file, 95
container.m program, 96
count message, 168
createarray.m program, 165
createdictionary.m program, 176-177
createmutablearray.m program, 169-170
createmutabledictionary.m program, 180
createobject.m program, 185
curly braces, 3, 26, 47, 60

D

data
in arrays (See arrays)
declaring pointers for, 51 (See also pointers)
initializing, 97
marking as constant, 74

passing, to functions, 64-65, 74-75
returning, from functions, 66-67
storing
in objects, 88-89
in variables, 8
types of, 11-12, 54
ways of working with, 43-44
datatype.m program, 11-12
data types, 11-12, 54
dealloc method, 184, 192
dealloc.m program, 192-193
decimal integers, 9
declarations, function, 63
decrementcount.m program, 190-191
decrement operator, 19
definitions, function, 60
derived classes
creating, 152
defined, 119
and inheritance of base-class data members,
122-123
and inheritance of base-class methods,
124-125
and multiple inheritance, 142
overriding methods in, 126-127
dictionaries, 176-182
adding objects to, 181-182
creating, 176-177, 180
enumerating, 178-179
mutable, 180-182
purpose of, 176
vs. arrays, 164
division operator, 15
do.m program, 40
double float data type, 11
do...whileloop, 39-40

X3aN|

E

elements, array, 43, 166, 171-172. See also arrays
else.m program, 28

else statement, 24, 27-28,213-214

end handler, 207-208

enumeration.m program, 57-58

enumerations, 57-58

enumeratordictionary.m program, 178-179

225

From the Library of Bill Wiecking

INDEX

Index

enumerator.m program, 167-168
equality operator, 24, 26, 31
errors, 203. See also exceptions
exception handlers
returning values from, 217-218
returning void value from, 219-220
exceptions, 203-222
catching, 205
catching uncaught, 221-222
checking/displaying name of, 211-212
checking for multiple, 213-214
creating, 209-210
handling, 206-208, 213-214
passing up call stack, 215-216

F

factorials, 76
files

header (See header files)

linking multiple, 95-96

program (See program files)

source code, 144
float data type, 11, 54
floating-point values, 9, 11
for loop, 25, 35-36, 48, 168
form program, 36
Foundation classes, 54, 81, 163, 164
Foundation header file, 44, 45. See also

header files

friends.m program, 197-202
functionargs.m program, 65
function arguments, 64-65
function declarations, 63
function.m program, 61
functionpassconstantarrays.m program, 74-75
functionpasspointers.m program, 70-71
functionpointers.m program, 77-78
functionprototype.m program, 63
function prototypes, 62-63, 64
functionrecursion.m program, 76
functionreturn.m program, 67
functions, 59-78

calling, 60, 76

creating, 59-61

declaring, 62-63

defined, 3, 59
defining, 60, 61

passing arguments to, 64-65

passing arrays to, 72-73

passing constant data to, 74-75
passing pointers to, 70-71

purpose of, 59

returning values from, 66-67

using pointers to, 77-78
function scope, 68-69
functionscope.m program,

G

68-69

GNUmakefile, 45, 55, 56, 81, 95-96

GNUstep
command prompt, 81
downloading/installing,

6

environment variables, 45

exception handling, 203,

shell, 81
greater-than operator, 31

205

greater-than-or-equal-to operator, 31

H

header2.h file, 94
header2.m program, 94
header files
adding implementation
file extension for, 4

to, 94

for NS-class objects, 44, 45
putting function prototypes in, 63

specific
classlextender.h, 146
classl.h, 145, 151
class2.h, 152
ClassFirst.h, 158
ClassSecond.h, 158
container.h, 95
header2.h, 94
printing.h, 158
stdio.h, 4, 63

storing interface in, 92-93

header.m program, 92-93
.h file extension, 4

226

From the Library of Bill Wiecking

Index

id.m program, 111-112
id type, 111-112
if.m program, 26
if statement, 23-24, 26, 27, 213-214
@implementation keyword, 82,92, 94
increment.m program, 20
increment operator, 19-20
inequality operator, 31
inheritance, 119-139
from base-class data members, 122-123
of base-class methods, 124-125
from classes, 121
defined, 119
how it works, 119-120
multi-level, 120, 130-131
multiple, 142, 156
overloading base-class methods, 128-129
overriding base-class methods, 126-127
and polymorphism, 138-139
purpose of, 120
restricting, 134-135
stopping, 132-133
using constructors with, 136-137
inheritdata.m program, 122-123
inheritmethods.m program, 124-125
initializearray.m program, 47
init method, 97
insertObjectAtIndex message, 166
instances.m program, 118
instancesRespondToSelector method, 118
int data type, 11
integer variables, 8,9, 11, 68
@interface keyword, 82, 92
interfaces, defining, 157-158
internal objects, 198-199
intValue function, 56
I/0 functions, 4
isKindOfClass.m program, 115-116
isMemberOfClass.m program, 113-114, 115
iterations, loop, 35

L

less-than operator, 31
less-than-or-equal-to operator, 31
linking files, 95-96

Linux
compiling/running programs in, 7
creating GNUmakefile in, 81
creating NS-class objects in, 45
creating programs in, 5
localException object, 211
logical.m program, 32
logical operators, 32
long data type, 11
long long data type, 11
loop_index variable, 25, 35
loop iterations, 35
loops, 35-42
and arrays, 48, 167-168
breaking out of, 35, 41-42
for enumerating dictionaries, 178-179
keeping track of, 35
purpose of, 25, 35
using specific
do...whileloop, 39-40
for loop, 25, 35-36, 48, 168
while loop, 37-38

M

Mac
compiling/running programs on, 6
creating NS-class objects on, 45
creating programs on, 5
main method, 200
main.m program
for catching exceptions, 205, 221-222
for creating exceptions, 209-210
for handling exceptions, 206
for handling multiple exceptions, 213-214
for identifying exceptions, 211-212
for linking multiple files, 95
for making one class pose as another,
153-154
for passing exceptions up call stack,
215-216
for returning values from exception handler,
217-220
for using base class with categories,
147-148
for using end handler, 207-208
for using protocols, 161-162

X3aN|

227

From the Library of Bill Wiecking

INDEX

Index

makefile, 45, 54, 55, 81
memory
deallocating, 192-193, 197-202
how Objective-C manages, 183-184
releasing array, 175
self-managed, 195-196
methods
adding to classes, 141
base-class (See base-class methods)
class (See class methods)
creating, 85, 87
defined, 56, 59
defining implementation of, 159-160
defining protocols for, 155-158
for initializing data, 97
object, 81, 83, 87, 88
overloading, 128-129
passing arguments to, 90-91
verifying object support for, 117-118
.m file extension, 3
modulus operator, 15, 21-22
multi-level inheritance, 120, 130-131
multilevel.m program, 130-131
multipleargs.m program, 90-91
multiple exceptions, 213-214
multiple inheritance, 142, 156
multiplication operator, 15
mutable arrays, 169-172
mutable dictionaries, 180-182

name message, 211

nextObject message, 167, 168
NeXtStep, 44

nil object, 165

not operator, 32

NSArray class, 165

NS-class objects, 45

NS_DURING macro, 205
NS_ENDHANDLER block, 207-208
NSEnumerator object, 167
NS_HANDLER macro, 205, 206, 215-216
NSMutableArray class, 169
NSObject class, 81

NS_RETURNVALUE function, 218-219

NSString objects, 44, 54, 56
NSUncaughtExceptionHandler function, 221
NS_VALUERETURNVOID macro, 219-220

0

objectAtIndex message, 166
objectdata.m program, 88-89
Objective-C
adding comments in, 13-14
arrays (See arrays)
categories, 141, 143-148
and C language, 1
classes, 79-81 (See also classes)
compiling/running programs in, 6-7
creating functions in, 59-61 (See also
functions)
creating programs in, 3-5
as cross-platform language, 1
data types, 11-12, 54
dictionaries (See dictionaries)
directing program flow in, 23-42
exception handling, 203-222
handling data in (See data)
and inheritance, 119-120 (See also
inheritance)
memory management, 183-184, 194 (See also
memory)
object-oriented programming in, 79-80, 99
(See also object-oriented programming)
objects (See objects)
operators (See operators)
platform considerations, 1, viii
protocols, 142, 155-162
purpose of, viii
using posing in, 141-142, 149-154
using variables in, 8-10 (See also variables)
objectmethod.m program, 87
object methods, 81, 83, 87, 88
object.m program, 86, 108
object-oriented inheritance, 119-139
of base-class data members, 122-123
of base-class methods, 124-125
from classes, 121
multi-level, 130-131
overloading base-class methods, 128-129

228

From the Library of Bill Wiecking

Index

overriding base-class methods, 126-127
and polymorphism, 138-139
restricting, 134-135
stopping, 132-133
using constructors with, 136-137
object-oriented programming, 99-118
how it works, 1-2, 79-81
purpose of, 1-2, 79
objects
accessing current, 109-110
communicating with, 81
creating, 82-83, 86, 185
deallocating from memory, 192-193
decrementing retain count for, 190-191
defined, 1
determining class for, 113-116
displaying retain count for, 186-187
incrementing retain count for, 188-189
initializing data in, 97
sending messages to, 81
storing data in, 88-89
storing internal, 198-199
syntax for, 80-81
using self-managed memory for, 195-196
verifying that method is supported by,
117-118
OOP, 79, 97. See also object-oriented
programming
operators
arithmetic, 15-16
assignment, 17-18
cast, 21-22
comparison, 31
conditional, 33-34
decrement, 19
increment, 19-20
logical, 32
operators.m program, 15-16
or operator, 32
overload.m program, 128-129
override.m program, 126-127

P

plus sign, 84
pointer math, 52
pointermath.m program, 52

pointers
to current object, 109-110
declaring, 51
to functions, 77-78
incrementing, 52
passing, to functions, 70-71
purpose of, 43-44
using arrays as, 53
pointersarray.m program, 53
pointers.m program, 51
polymorphism, 99, 138-139, 142, 150
pool.m program, 194-195, 196
pool object, 194
poseAsClass keyword, 153
posing, 149-154
creating base class, 151
creating derived class, 152
how it works, 141-142, 149-150
putting it together, 153-154
vs. polymorphism, 142, 150
primitive data types, 11
printf() function, 3-4, 8,9, 44, 54
printing h file, 158
@private access specifier
and base-class data members, 122
and base-class methods, 124
and inheritance, 122, 124, 132
purpose of, 99, 100
using, 103-104
private.m program, 132-133
program flow, controlling, 23-42
with break statement, 41-42
with comparison operators, 31
with conditional operator, 33-34
with do. . .while loop, 39-40
with else statement, 24, 27-28
with 1if statement, 23, 26
with logical operators, 32
with for loop, 25, 35-36, 168
with switch statement, 29-30
with while loop, 37-38
programs
adding comments to, 13-14
compiling/running, 6-7
creating, 3-5
directing flow of, 23-25 (See also
program flow)

X3aN|

229

From the Library of Bill Wiecking

INDEX

Index

programs (continued)
specific

accesselements.m, 166
access.m, 102-105, 121
addelements.m, 171-172
addkeys.m, 181-182

array2.m, 50

arrayloop.m, 48

array.m, 46

assignment.m, 17-18

break.m, 42

cast.m, 22

classlextender.m, 146
classl.m, 145, 151

class2.m, 152

ClassFirst.m, 159
classmethod.m, 85
ClassSecond.m, 160
classvariables.m, 109-110
compare.m, 31

conditional.m, 34
constructor.m, 97-98, 136-137
container.m, 96

createarray.m, 165
createdictionary.m, 176-177
createmutablearray.m, 169-170
createmutabledictionary.m, 180
createobject.m, 185
datatype.m, 11-12

dealloc.m, 192-193
decrementcount.m, 190-191
do.m, 40

else.m, 28

enumeration.m, 57-58
enumeratordictionary.m, 178-179
enumerator.m, 167-168

for.m, 36

friends.m, 197-202
functionargs.m, 65
function.m, 61

functionpassconstantarrays.m, 74-75

functionpasspointers.m, 70-71
functionpointers.m, 77-78
functionprototype.m, 63
functionrecursion.m, 76
functionreturn.m, 67

functionscope.m, 68-69
header2.m, 94

header.m, 92-93

id.m, 111-112

ifm, 26

increment.m, 20
inheritdata.m, 122-123
inheritmethods.m, 124-125
initializearray.m, 47
instances.m, 118
isKindOfClass.m, 115-116
isMemberOfClass.m, 113-114, 115
logical.m, 32

main.m, 95, 147, 153, 161, 205-222
multilevel.m, 130-131
multipleargs.m, 90-91
objectdata.m, 88-89
object.m, 86, 108
objectmethod.m, 87
operators.m, 15-16
overload.m, 128-129
override.m, 126-127
pointermath.m, 52
pointersarray.m, 53
pointers.m, 51

pool.m, 194-195, 196
private.m, 132-133
protected.m, 134-135
releasememory.m, 175
responds.m, 117
retaincount.m, 186-187
sortarray.m, 173-174
source.m, 45

string.m, 54
stringtoint.m, 56
switch.m, 30
temperature.m, 10
while.m, 38

@protected access specifier, 99, 100,

105-106, 134

protected.m program, 134-135
protocols, 155-162
creating class implementations for, 159-160
defined, 142
defining, 157-158
how they work, 155-156

230

From the Library of Bill Wiecking

Index

purpose of, 155

using, 161-162

using multiple, 156
prototypes, function, 62-63, 64
@public access specifier, 99, 100, 102

R

recursion, 60, 76
releasememory.m program, 175
release message, 184, 190
responds.m program, 117
respondsToSelector() function, 117
retain count, 183-191
decrementing, 184, 190-191
displaying, 186-187
incrementing, 183-184, 188-189
purpose of, 183
retainCount message, 186
retaincount.m program, 186-187
retain message, 184, 188
run-time errors, 203. See also exceptions

S

scientific notation, 9

scope, function, 68-69

self keyword, 109-110
self-managed memory, 195-196
short data type, 11

signed decimal integers, 9
sortarray.m program, 173-174
sortUsingSelector message, 173
source code files, 144

source.m program, 45

static arrays, 165

stdio.h file, 4, 63

string.m program, 54

strings, 9, 29, 44, 54-56, 165
stringtoint.m program, 56
subtraction operator, 15

super classes, 97

super keyword, 136

switch.m program, 30

switch statement, 29-30

T

temperature.m program, 10
text strings, 29, 44. See also strings
two-dimensional arrays, 49-50

U

UNIX
compiling/running programs in, 7
creating GNUmakefile in, 81
creating NS-class objects in, 45
creating programs in, 5

unsigned decimal integers, 9

\'}

values
assigning to variables, 17-18
displaying in variables, 9-10
returning from functions, 66-67
variables
assigning values to, 17-18
class, 99, 107-108
creating, 8, 111-112
displaying values in, 9-10
for multiple object types, 111-112
public vs. private, 100-104
purpose of, 8
void value, 219-220

w

while loop, 37-38

while.m program, 38

Windows
compiling/running programs in, 7
creating GNUmakefile in, 81
creating NS-class objects in, 45
creating programs in, 5

X

Xcode, 5, 6,45

From the Library of Bill Wiecking

231

X3aN|

Safari

Books Online

N

==
S

\

=

]

.designing With web standards

THE BRAND GAP MARTY NEU
e
@ designing the moment web (ntoface design concept:

‘epts in action n
[

[

uuuuuuuuuuuu

5D yoLvalsnTil 3g90avY

3
ADOBE DREAMWEAVER Cs4 e

~ Pctassroom
— = IN'A BOOK

w

OF THE Wgp BROWSER i:-g \I r

SRR 175) FENVEL U EL
vinass100 SQI-MOH SO -SHIOM3AI 3goav

009 VNI
WOOYSSYT2.

=

=
=

CLICKS

Mc NALLY
ADOBE INDESIGN CS4

CLASSROOM
IN A BOOK

by PHOTOSHOP cs4

VISUAL Quicks:

TART GUIDE
oo -
< &

ADOBE FLASH CS4 PROFESSIONAL CLASSROOM
IN A BOOK

Get free online access
to this book for 45 days!

And get access to thousands more by signing
up for a free trial to Safari Books Online!

With the purchase of this book you have instant online,
searchable access to it for 45 days on Safari Books Online!
And while you're there, be sure to check out Safari Books
Online’s on-demand digital library and their free trial offer

(a separate sign-up process). Safari Books Online subscribers
have access to thousands of technical, creative and business

books, instructional videos, and articles from the world’s
leading publishers.

Simply visit www.peachpit.com/safarienabled and
enter code PIXTOXA to try it today.

From the Library of Bill Wiecking

www.peachpit.com/safarienabled

	Table of Contents
	Introduction
	Chapter 1: Getting Started: Essential Objective-C
	Creating Your First Program
	Compiling and Running Your First Program
	Using Variables
	Displaying Values in Variables
	Working with Data Types
	Adding Comments
	Using Arithmetic Operators
	Using Assignment Operators
	Using the Increment and Decrement Operators
	Changing Type with Cast Operators

	Chapter 2: Directing Program Flow
	Using the if Statement
	Using the else Statement
	Using the switch Statement
	Using Comparison Operators
	Using Logical Operators
	Using the Conditional Operator
	Using the for Loop
	Using the while Loop
	Using the do...while Loop
	Using the break Statement

	Chapter 3: Handling Data
	About Creating NS-Class Objects
	Creating Arrays
	Initializing Arrays
	Looping over Arrays
	Creating Two-Dimensional Arrays
	Using Pointers
	Using Pointer Math
	Interchanging Pointers and Arrays
	Using Strings
	Passing Messages to String Objects
	Using Enumerations

	Chapter 4: Creating Functions
	Defining a Function
	Declaring Functions Using Prototypes
	Passing Arguments to Functions
	Returning Values from Functions
	Using Function Scope
	Passing Pointers to Functions
	Passing Arrays to Functions
	Passing Constant Data to Functions
	Using Recursion
	Using Pointers to Functions

	Chapter 5: Classes and Objects
	Creating Objective-C Classes and Objects
	Using Class Methods
	Creating an Object
	Creating Object Methods
	Storing Data in Objects
	Passing Multiple Arguments to Methods
	Storing the Interface in a Header File
	Adding the Implementation to the Header File
	Linking Multiple Files
	Using Constructors

	Chapter 6: Object-Oriented Programming
	About Access Specifiers
	Using Public Access
	Using Private Access
	Using Protected Access
	Using Class Variables
	Accessing the Current Object
	Creating a Variable for Multiple Object Types
	Verifying That an Object Belongs to a Class
	Checking an Object's Class with isKindOfClass
	Verifying That an Object Supports a Method
	Checking Whether Objects Support a Method

	Chapter 7: Working with Object-Oriented Inheritance
	Inheriting from a Class
	Inheriting Base-Class Data Members
	Inheriting Base-Class Methods
	Overriding Base-Class Methods
	Overloading Base-Class Methods
	Using Multi-level Inheritance
	Limiting Access
	Restricting Access
	Using Constructors with Inheritance
	Using Polymorphism

	Chapter 8: Categories, Posing, and Protocols
	About Categories
	Categories: Creating the Base Class
	Categories: Creating Categories
	Categories: Putting It All Together
	About Posing
	Posing: Creating the Base Class
	Posing: Creating the Derived Class
	Posing: Putting It All Together
	About Protocols
	Protocols: Defining the Protocol and Interfaces
	Protocols: Creating the Class Implementations
	Protocols: Putting It All Together

	Chapter 9: Using Arrays and Dictionaries
	Creating an Array
	Accessing Array Elements
	Using Enumeration to Loop over an Array
	Creating a Mutable Array
	Adding Elements to a Mutable Array
	Sorting an Array
	Releasing Array Memory
	Creating a Dictionary
	Enumerating a Dictionary
	Creating a Mutable Dictionary
	Adding Objects to a Mutable Dictionary

	Chapter 10: Managing Memory in Objective-C
	Creating Test Objects
	Displaying the Retain Count
	Incrementing an Object’s Retain Count
	Decrementing an Object’s Retain Count
	Deallocating Objects from Memory
	Using an Autorelease Pool
	Using Self-Managed Memory
	Deallocating Memory Yourself: Creating the Class
	Deallocating Memory Yourself: Storing Internal Objects
	Deallocating Memory Yourself: Creating the main Method
	Deallocating Memory Yourself: Performing Deallocation

	Chapter 11: Exception Handling
	Catching Exceptions
	Handling Exceptions
	Using the End Handler
	Creating an Exception
	Checking What Exception Occurred
	Handling Multiple Exceptions
	Passing Exceptions Up the Call Stack
	Returning Values from Exception Handlers
	Returning void from an Exception Handler
	Catching Uncaught Exceptions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

