
$10

 Check for Updates
 Make sure you have the latest information!

 Help Catalog Feedback Blog

Command
Line
Terminal

Joe Kissell

with

The Mac

TidBITS Publishing Inc.

Take Control of v1.

Table of Contents
Read Me First

Updates and More ...5
Basics ...6
What’s New in Version 1.1..9
What Was New in Version 1.0.2...9

Introduction

Mac OS X Command Line Quick Start

Understand Basic Command-Line Concepts
What’s Unix? ..14
What’s a Command Line? ...15
What’s a Shell? ...16
What’s Terminal? ...17
What Are Commands, Arguments, and Flags?..............................18

Get to Know (and Customize) Terminal
Learn the Basics of Terminal..22
Modify the Window ..24
Open Multiple Sessions ..24
Change the Window’s Attributes ..25
Set a Default Shell...28

Look Around
Discover Where You Are ...31
See What’s Here ...31
Repeat a Command ...33
Cancel a Command..35
Move into Another Directory..35
Jump Home ..37
Understand How Paths Work ...38
Understand Mac OS X’s File System ...40
Use Tab Completion ...42

2

Find a File ..43
View a Text File ...46
Get Help ..47
Clear the Screen ...48
End a Shell Session ...49

Work with Files and Directories
Create a File ...50
Create a Directory ...51
Copy a File or Directory..51
Move or Rename a File or Directory..53
Delete a File ...55
Delete a Directory ...56

Work with Programs
Learn Command-Line Program Basics...57
Run a Program or Script ...59
Run a Program in the Background..62
See What Programs Are Running ...63
Stop a Program ...67
Edit a Text File ..68
Create Your Own Shell Script ..71

Customize Your Profile
How Profiles Work..73
Edit .bash_profile ..74
Create Aliases ...74
Modify Your PATH ..75
Change Your Prompt ..76

Bring the Command Line into the Real World
Get the Path of a File or Folder ..78
Open the Current Directory in the Finder79
Open a Hidden Directory Without Using Terminal80
Open the Current Folder in Terminal...80
Open a Mac OS X Application ..82
Open a File in Mac OS X ...82

3

Log In to Another Computer
Start an SSH Session ...83
Run Commands on Another Computer ..85
End an SSH Session...86

Venture a Little Deeper
Understand Permission Basics ...87
Change an Item’s Permissions ...91
Change an Item’s Owner or Group ...92
Perform Actions as the Root User...92

Command-Line Recipes
Change Defaults..96
Perform Administrative Actions..99
Modify Files ..100
Work with Information on the Web...102
Manage Network Activities ..103
Work with Remote Macs ...105
Troubleshoot and Repair Problems ...106
Get Help in Style ...108
Do Other Random Tricks ...109

About This Book
Ebook Extras...112
About the Author ...113
Author’s Acknowledgments ...113
Shameless Plug ...114
About the Publisher..114

Copyright and Fine Print

Featured Titles

4

Read Me First
Welcome to Take Control of the Mac Command Line with
Terminal, version 1.1, published in September 2012 by TidBITS
Publishing Inc. This book was written by Joe Kissell and edited
by Geoff Duncan.

This book introduces you to Mac OS X’s command line
environment, teaching you how to use the Terminal utility to
accomplish useful, interesting tasks that are either difficult or
impossible to perform in the graphical interface.

If you want to share this ebook with a friend, we ask that you do
so as you would with a physical book: “lend” it for a quick look,
but ask your friend to buy a copy for careful reading or reference.
Discounted classroom and Mac user group copies are available.

Copyright © 2012, Joe Kissell. All rights reserved.

Updates and More

You can access extras related to this book on the Web (use the link
in Ebook Extras, near the end; it’s available only to purchasers). On
the ebook’s Take Control Extras page, you can:

• Download any available new version of the ebook for free, or buy
any subsequent edition at a discount.

• Download various formats, including PDF, EPUB, and—usually—
Mobipocket. (Learn about reading this ebook on handheld devices
at http://www.takecontrolbooks.com/device-advice.)

• Read postings to the ebook’s blog. These may include new tips or
information, as well as links to author interviews. At the top of the
blog, you can also see any update plans for the ebook.

If you bought this ebook from the Take Control Web site, it has been
added to your account, where you can download it in other formats
and access any future updates. However, if you bought this ebook
elsewhere, you can add it to your account manually; see Ebook Extras.

5

  

Basics

Here are a few rules of the road that will help you read this ebook:

• Links: All blue text in this ebook is hot, meaning you can click
(or tap) it, just like a link on the Web. If you click a link to switch
to a different part of the ebook, you can return quickly to where
you were if your ebook reader offers a “back” feature. For example,
if you use iBooks in iOS to read the EPUB version of this ebook,
you can tap the “Back to” link at the lower left of the screen. Or, if
you use Preview on the Mac to read the PDF version of this ebook,
you can choose Go > Back or press Command-[.

• Menus: Where I describe choosing a command from a menu in
the menu bar, I use an abbreviated description that puts the name
of the menu ahead of the command. For example, at the end of the
previous paragraph, “Go > Back” means “choose the Back command
from the Go menu.”

• System Preferences: I sometimes discuss settings in System
Preferences that you may want to adjust. To open System
Preferences, click its icon in the Dock or choose System Preferences
from the Apple menu. When the System Preferences window
opens, click the icon of the pane whose settings you want to adjust.
I refer to these panes using a shortcut such as “the Sharing system
preference pane.”

• Path syntax: This book occasionally uses a path to show the
location of a file or folder in your file system. For example, Mac
OS X stores most utilities, such as Terminal, in the Utilities folder.
The path to Terminal is: /Applications/Utilities/Terminal.

The slash at the beginning of the path tells you to start from the
root level of the disk. You will also see paths that begin with ~
(tilde), which is a shortcut for the user’s home directory. For
example, if a person with the user name joe wants to install fonts
that only he can access, he would install the fonts in his ~/Library/
Fonts folder, which is just another way of writing /Users/joe/
Library/Fonts.

6

 

• User Library: The library folder mentioned in the previous
paragraph, ~/Library, is normally invisible in Lion and later. To see
it, hold down the Option key and choose Go > Library in the Finder.

• Folders and directories: In the Finder, you organize files into
folders, but the term directory is more common in the command-
line world. They have more or less equivalent meanings, except that
folders are visible in the Finder and have icons that look like folders,
while directories may not appear in the Finder at all. In this book,
I say “folder” when talking about the Finder, and “directory” when
talking about the command line. When we’re in a Terminal window,
I may refer to your “home directory,” but in the context of the
Finder I would call the same location your “home folder.”

• Contextual menus: In Mac OS X, when you hold down the
Control key and click, a pop-up contextual menu appears, with
commands appropriate to whatever is under the mouse pointer.
For example, if you Control-click a file in the Finder, you’ll see
commands such as Get Info, Duplicate, and Make Alias. Control-
clicking nearly always works to open a contextual menu, but your
mouse or trackpad might support a better method. The default
behavior, the alternative methods, and the ways to set them vary
depending on the type of input device; the typical alternative (for
right-handed users) is to right-click with a mouse—click the right-
hand mouse button—so that’s the term this book uses by default
for the action that opens a contextual menu.

• Big cats: I frequently mention features specific to a particular
version of Mac OS X, which Apple usually refers to by their “big cat”
code names:

‣ Mountain Lion: 10.8

‣ Lion: 10.7

‣ Snow Leopard: 10.6

‣ Leopard: 10.5

‣ Tiger: 10.4

‣ Panther: 10.3

To find out which version of Mac OS X your Mac is running, choose
Apple > About This Mac.

7

• Line breaks: This book contains many examples of text that you
must type into a Terminal window; these appear in a special font. If
you’re viewing this book on an iPhone or other device with a narrow
screen, this text may wrap oddly. Common sense is the best policy:
if something looks like it should all be on one line, it probably
should. Don’t add extra line breaks to match the book’s display.

• Entering commands: I frequently tell you to “enter” commands
in a Terminal window. This means you should type the command
and then press Return or Enter. Typing a command without
pressing Return or Enter has no effect.

• Getting commands into Terminal: When you see commands
that are to be entered into a Terminal window, you can type
them manually. If you’re reading this on a Mac, you can copy the
command from the ebook and paste it into Terminal (which is
handy, especially for longer and more complex commands).
Whichever method you use, keep these tips in mind:

‣ When typing: Every character counts, so watch carefully.
The font that represents text you should type is monospaced,
meaning every character has the same width. So, if it looks like
there’s a space between two characters, there is—and you should
be sure to type it. Similarly, be sure to type all punctuation—such
as hyphens and quotation marks—exactly as it appears in the
book, even if it seems odd. If you type the wrong thing, the
command probably won’t work. (If you are reading the EPUB or
Mobipocket version of this ebook, the exact font shown on your
device might not be monospaced.)

‣ When copying and pasting: If you select a line of text to copy
and paste into Terminal, be sure that your selection begins with
the first character and ends with the last. If you accidentally
leave out characters, the command probably won’t work, and if
you select too much (for example, extending your selection to the
next line), you may see unexpected results, such as the command
executing before you’re ready.

8

What’s New in Version 1.1

Version 1.1 is a minor update intended primarily for compatibility
with versions of Mac OS X released since the book was first published
(10.6 Snow Leopard, 10.7 Lion, and 10.8 Mountain Lion), as well as
to correct a few small errors and broken URLs, and to adopt the latest
Take Control formatting. I also made the following small adjustments:

• Added a clarification about how to find the size of a directory’s
contents in See What’s Here

• Revised the discussion of Case Sensitivity to remove the example of
a MobileMe iDisk

• In Edit .bash_profile, mentioned a technique to load a modified
profile without starting a new shell session

• Explained how to include multiple paths in a single export
statement in Modify Your PATH

• Updated the instructions to Open the Current Folder in Terminal to
use a program called cdto

• Added a brief sidebar called What’s with the + and @ Characters? to
explain what a + or @ at the end of a permissions string means

• In the Command-Line Recipes chapter, removed obsolete recipes
for changing scrollbar arrows and changing the tabs in the beta
version of Safari 4

What Was New in Version 1.0.2

Version 1.0.2 fixed two typos—the keystrokes to move backward by a
screen in less (More or Less) and uncut a line in nano (“Uncut” tip).
It also included the changes in version 1.0.1—correcting problems with
copying and pasting from the ebook into Terminal, printing on some
printers, and a few other minor errors.

9

Introduction
Back when I began using computers, in the early 1980s, user interfaces
were pretty primitive. A computer usually came with only a keyboard
for input—mice were a novelty that hadn’t caught on yet. To get your
computer to do something, you typed a command, waited for some
result, and then typed another command. There simply was no concept
of pointing and clicking to make things happen.

When I finally switched from DOS to the Mac (without ever going
through a Windows phase, I should mention!), I was thrilled that
I could do my work without having to memorize lists of commands,
consult manuals constantly, or guess at how to accomplish something.
Everything was right there on the screen, just a click away. It was
simpler—not in the sense of being less powerful, but in the sense of
requiring less effort to access the same amount of power. Like most
everyone else, I fell instantly in love with graphical interfaces.

Fast forward a couple of decades, and I find myself faced with some
mundane task, such as renaming all 500 files in a folder to use a
different extension, deleting a file that refuses to disappear from the
Trash, or changing an obscure system preference. After wasting some
time puzzling over how to accomplish my task—and perhaps doing
some Web searches—I finally discover that Mac OS X’s graphical
interface does not, in fact, offer any built-in way to do what I want. So
I have to hunt on the Internet for an application that seems to do what
I want, download it, install it, and run it (and perhaps pay for it, too),
all so that I can accomplish a task with my mouse that would have
taken me 5 seconds in DOS 25 years ago.

That’s not simple.

I’m a Mac user because I don’t have time to waste. I don’t want my
computer to put barriers between me and my work. I want easier ways
to do things instead of harder ways. Ironically, Mac OS X’s beautiful
Aqua graphical interface, with all its menus, icons, and buttons,
doesn’t always provide the easiest way to do something, and in some
cases it doesn’t even provide a hard way. The cost of elegance and
simplicity is sometimes a lack of flexibility.

10

Luckily, Mac OS X isn’t restricted to the graphical realm of windows
and icons. It has another whole interface that lets you accomplish
many tasks that would otherwise be difficult, or even impossible. This
other way of using Mac OS X looks strikingly like those DOS screens
from the 1980s: it’s a command-line interface, in which input is done
with the keyboard, and the output is sent to the screen in plain text.

The usual way of getting to this alternative interface (though there
are others) is to use a program called Terminal, located in the Utilities
folder inside your Applications folder. It’s a simple program that
doesn’t appear to do much at first glance—it displays a window with a
little bit of text in it. But Terminal is in fact the gateway to vast power.

If you read TidBITS, Take Control books, Macworld, or any of the
numerous other publications about the Mac, you’ve undoubtedly seen
tips and tricks from time to time that begin, “Open Terminal and type
in the following…”. Many Mac users—especially those without prior
experience in DOS or Unix—find that sort of thing intimidating. What
do I click on? How do I find my way around? How do I stop something
I’ve started? Without the visual cues of a graphical interface, lots of
people get stuck staring at that blank window, frustrated that they
can’t accomplish whatever task they’re trying to perform.

If you’re one of those people, this book is for you. It’s also for people
who know a little bit about the command line—perhaps just enough
to be dangerous—but don’t fully understand what they can do, how to
get around, and how to stay out of trouble. By the time you’re finished
reading this book and trying out the examples I give, you should be
comfortable interacting with your Mac by way of the command line,
ready to confidently use Terminal whenever the need arises.

It’s not scary. It’s not hard. It’s just different. And don’t worry—I’ll be
with you every step of the way!

Much of this book is concerned with teaching you the skills and basic
commands you must know in order to accomplish genuinely useful
things later on. If you feel that it’s a bit boring or irrelevant to learn
how to list files or change directories, remember: it’s all about the end
result. You learn the fundamentals of baking not because measuring
flour or preheating an oven is intrinsically interesting, but because you
need to know how to do those things in order to end up with cookies.
And let me tell you, the cookies make it all worthwhile!

11

Speaking of food—my all-purpose metaphor—this book doesn’t only
provide information on individual ingredients and techniques. The
last chapter is full of terrific, simple command-line recipes that put
all this power to good use while giving you a taste of some advanced
capabilities I don’t explore in detail. Among other things, you’ll learn:

• How to figure out what’s preventing a disk from disconnecting
(unmounting or ejecting)

• How to tell which applications are currently accessing the Internet

• How to rename lots of files at once

• How to change a number of hidden preferences

• How to understand and change file permissions

• How to automate command-line activities with scripts

Astute readers may note that some of these tasks can be accomplished
with third-party utilities (most of which simply carry out command-
line tasks in response to a mouse click). That’s true, but the command
line is infinitely more flexible—and Terminal is free! It’s like the
difference between buying supermarket cookies and being able to bake
your own—in any variety, and in any quantity. Sure, there’s a place for
prepackaged solutions, but it’s often quicker, easier, and more effective
just to type a command into Terminal.

I should be clear, however, that this book won’t turn you into a
command-line expert. I would need thousands of pages to describe
everything you can accomplish with the command line. Instead,
my goal is to cover the basics and get you up to a moderate level
of familiarity and competence. I may not answer every question you
have, but you should get a solid foundation and be able to figure out
how to learn more. I’ll take your feedback into account, too: if there’s
sufficient interest, I may expand on this information in a future version
of this book (or another Take Control title).

Most of the examples in this book work with any version of Mac OS X,
but a few of them require Mac OS X 10.5 Leopard or newer. If you’re
following along in Mac OS X 10.4 Tiger or earlier, you’ll notice that
the Terminal application isn’t identical—it omits tabs and some other
customization options—but mostly works the same.

12

Mac OS X Command Line
Quick Start
This book is almost entirely linear—later sections build on earlier
sections. I strongly recommend starting from the beginning and
working through the book in order (perhaps skimming lightly over
any sections that explain already-familiar concepts). You can use
the items in the final chapter, Command-Line Recipes, at any time,
but they’ll make more sense if you understand all the basics
presented earlier in the book.

Find your bearings:
• Learn about the command line and its terminology; see Understand

Basic Command-Line Concepts.

• Become familiar with the most common tool for accessing the
command line; see Get to Know (and Customize) Terminal.

• Navigate using the command line; see Look Around.

Learn basic skills:
• Create, delete, and modify files and directories; see Work with Files

and Directories.

• Run or stop programs and scripts; see Work with Programs.

• Make your command-line environment work more efficiently; see
Customize Your Profile.

Go beyond the fundamentals:
• Integrate the command line and Mac OS X’s graphical interface; see

Bring the Command Line into the Real World.

• Use the command line to control another Mac; see Log In to
Another Computer.

• Learn some slightly advanced techniques; see Venture a Little
Deeper.

• Do cool stuff; see Command-Line Recipes.

13

Understand Basic
Command-Line Concepts
In order to make sense of what you read about the command
line, you should know a bit of background material. This chapter
explains the ideas and terminology I use throughout the book,
providing context for everything I discuss later in the book.

What’s Unix?

Unix is a computer operating system with roots going back to 1969.
Back then, Unix referred to one specific operating system running on
certain expensive minicomputers (which weren’t “mini” at all: they
were enormous!). Over time, quite a few companies, educational
institutions, and other groups have developed their own variants
of Unix—some were offshoots from the original version and others
were built from scratch.

After many branches, splits, mergers, and parallel projects, there
are now more than a dozen distinct families of Unix and Unix-like
operating systems. Within each family, such as Linux (a Unix-like
system), there may be many individual variants, or distributions.

Note: A Unix-like system is one that looks and acts like Unix,
but doesn’t adhere completely to a list of standards known as
the Single UNIX Specification, or SUS. Mac OS X 10.5 Leopard
and newer (including the Server versions) are true Unix operating
systems when running on Intel-based Macs. Earlier versions of Mac
OS X, and current versions running on PowerPC-based Macs, are
technically Unix-like.

Mac OS X is a version of Unix that nicely illustrates this process
of branching and merging. On the one hand, you had the classic
Macintosh OS, which developed on its own path between 1984 and
2002. On the other hand, you had NeXTSTEP, an operating system
based on a variety of Unix called BSD (Berkeley Software Distribution).

14

NeXT was the company that Steve Jobs founded after leaving Apple
in 1985.

When Apple bought NeXT in 1996, it began building a new operating
system that extended and enhanced NeXTSTEP while layering on
capabilities (and some of the user interface) of the classic Mac OS.
The result was Mac OS X: it’s Unix underneath, but with a
considerable amount of extra stuff that’s not in other versions of Unix.
If you took Mac OS X and stripped off the graphical interface, the
programming interfaces (Cocoa, Carbon, and Java), and all the built-in
applications such as Mail and Safari, you’d get the Unix core of Mac
OS X. This core has its own name: Darwin. When you work in the
command-line environment, you’ll encounter this term from time to
time.

Darwin is itself a complete operating system, and although Apple
doesn’t sell computers that run only Darwin, it is available as open
source so anyone with sufficient technical skill can download, compile,
and run Darwin as an operating system on their own computer—for
free.

What’s a Command Line?

A command-line interface is a way of giving instructions to a computer
and getting results back. You type a command (a word or other
sequence of characters) and press Return or Enter. The computer
then processes that command and displays the result (often in a list or
other chunk of text). In most cases, all your input and output remains
on the screen, scrolling up as more appears. But only one line—usually
the last line of text in the window, and usually designated by a blinking
cursor—is the actual command line, the one where commands appear
when you type them.

Note: Although Darwin (which has only a command-line interface) is
part of Mac OS X, it isn’t quite correct to say that you’re working in
Darwin when you’re using the Mac OS X command line. In fact, the
command line gives you a way of interacting with all of Mac OS X,
only part of which is Darwin.

15

What’s a Shell?

A shell is a program that creates a user interface of one kind or
another, enabling you to interact with a computer. In Mac OS X, the
Finder is a type of shell—a graphical shell—and there are still other
varieties with other interfaces. But for the purposes of this book, I use
the term “shell” to refer only to programs that create a command-line
interface.

Mac OS X includes six different shells, which means that your Mac has
not just one command-line interface, but six! These shells share many
attributes—in fact, they’re more alike than different. Most commands
work the same way in all the shells, and produce similar results. The
shells in Mac OS X are all standard Unix shells, and at least one of
them is on pretty much any computer running any Unix or Unix-like
operating system.

The original Unix shell was called the Bourne shell (after its creator,
Stephen Bourne). The actual program that runs the Bourne shell has
a much shorter name: sh. The other Unix shells included with Mac
OS X are:

• csh: the C shell, named for similarities to the C programming
language (Unix folks love names with puns, too, as you’ll see)

• tcsh: the Tenex C shell, which adds features to csh

• ksh: the Korn shell, a variant of sh (with some csh features)
developed by David Korn

• bash: the Bourne-again shell (yet another superset of sh)

• zsh: the Z shell, an advanced shell named after Yale professor
Zhong Shao that incorporates features from tcsh, ksh, and bash,
plus other capabilities

In Mac OS X 10.2 Jaguar and earlier versions, tcsh was the default
shell. Starting with 10.3 Panther, bash became the new default. Even
if you’re running a later version of Mac OS X, though, your account
may still be configured to use tcsh if you upgraded (or migrated) from
Jaguar or older.

16

In this book, I discuss only the bash shell. Some may argue that zsh
has a superior feature set or tcsh is more universal—and I can’t
particularly disagree—but because bash is the current default and can
easily handle everything I want to show you about the command line,
that’s what we’ll be sticking with here.

A bit later in the book, in Set a Default Shell, I show you how to
confirm that you’re using the bash shell and how to change your
default, if you like.

What’s Terminal?

So, how do you run a shell in order to use a command-line interface
on your Mac? You use an application called a terminal emulator.
As the name suggests, a terminal emulator simulates a terminal—
the devices people used to interact with computers back in the days
of monolithic mainframes. A terminal consisted of little more than
a display (or, even earlier, a printer), a keyboard, and a network
connection. Terminals may have looked like computers, but all they
did was receive input from users, send it along to the actual computer
(which was likely in a different room or even a different building),
and display any results that came back. A modern terminal emulator
program provides a terminal-like connection to a shell running either
on the same computer or on a different computer over a network.

Quite a few terminal emulators run on Mac OS X, but the one you’re
most likely to use is called—you guessed it—Terminal, and it’s included
as part of Mac OS X. Although you’re welcome to find and use a
different terminal emulator if that’s your preference, in this book I
discuss only Terminal.

Note: At the risk of redundancy, I want to emphasize where Terminal
fits in the scheme of things. A common misconception is that
Terminal is the Mac OS X command-line interface. You’ll hear people
talk about entering “Terminal commands” and things of that sort.
(Even I have said things like that from time to time.) But that’s
incorrect. Terminal is just a program—one of numerous similar
programs—that gives you access to Mac OS X’s command-line
interface. When you run a command-line program, you’re running it
in a shell, which in turn runs in Terminal.

17

So, to summarize: you use Terminal to run a shell, which provides a
command-line interface to Mac OS X—a variety of Unix (of which the
non-graphical portion is known as Darwin). You can use the Mac OS X
command line successfully without having all those facts entirely clear
in your mind, but a rough grasp of the hierarchy makes the process a
bit more comprehensible.

What Are Commands, Arguments,
and Flags?

The last piece of background information I want to provide has to
do with the kinds of things you type into a Terminal window. I provide
extensive examples of all these items ahead, but I want to give you an
introduction to three important terms: commands, arguments, and
flags. If you don’t fully understand this stuff right now, don’t worry:
it will become clearer after some examples.

Commands
Commands are straightforward; they’re the verbs of the command
line (even though they may look nothing like English verbs). When
you enter a command, you tell the computer to do something, such
as run a program. Very often, entering a command—a single word
or abbreviation—is sufficient to get something done.

You may enter: As a reminder, in a command-line interface,
merely typing a command does nothing; the command doesn’t
execute until you press Return or Enter. So, throughout this book,
when I say to “enter” a command, what I mean is: Type this, and
then press Return or Enter.

For example—not to get ahead of myself but just to illustrate—if you
enter the command date, your Terminal window shows the current
date and time.

Note: Many commands are abbreviations or shortened forms
of longer terms—for example, the command pwd stands for Print
Working Directory.

18

Arguments
Along with commands (verbs), we have arguments, which you can
think of as nouns—or, in grammatical terms, direct objects. For
example, I could say to you, “Eat!,” and you could follow that
command by consuming any food at hand. However, if I want you
to eat something in particular, I might say, “Eat cereal!” Here, cereal
is the direct object, or what we’d call an argument in a command-line
interface.

On the command line, you must frequently specify the file, directory,
or other item to which you want a command applied. In general,
you simply type the command, a space, and then the argument. For
example, the command nano, by itself, opens a text editor called nano.
(In other words, entering nano means “run nano”—you tell the shell
to execute a command simply by entering its name.) But enter nano
file1 and the command instead opens the file file1 using the nano
text editor. Here, file1 is the argument to the command nano.

Space ranger: Always be sure to type a space after the command
and before any arguments.

Some commands accept no arguments. Some take optional arguments.
And some commands require one or even several arguments. For
example, to change the modification date of three files—file1,
file2, and file3—I can enter touch file1 file2 file3. But other
commands require multiple arguments that have different meanings
(as in “Process file1 with the information found in file2 and store
the output in file3”). In these cases, the order in which the arguments
appear is critical. I detail which commands in this book take
arguments, the order of those arguments, and the circumstances when
you need to use those arguments.

Flags
Besides verbs and nouns, we also have adverbs! In English, I could
say, “Eat cereal quickly!” or “Watch TV quietly.” The adverbs quickly
and quietly don’t tell you what to do, but rather how to do it. By
analogy, an expression in a command-line statement that specifies how
a command should be accomplished is called a flag, though you may
also hear it referred to as an option or switch. (Some people consider a
flag to be a type of argument, but I’m going to ignore that technicality.)

19

Suppose I want to list the files in a directory. I could enter the ls (list)
command, which would do just that. But if I want to list the files in a
particular way—say, in a way that included their sizes and modification
dates—I could add a flag to the ls command. The flag that ls uses to
indicate a “long” listing (including sizes and dates) is -l. So if I enter
ls -l (note the space before the flag), I get the kind of listing I want.

Flagging Enthusiasm
I should mention a couple of irritations with flags:

✦ First, you’ll notice in this example that the flag was preceded
by a hyphen: -l. That’s common, and it enables the command to
distinguish a flag (which has a hyphen) from an argument (which
doesn’t).

Unfortunately, Unix commands aren’t entirely consistent. You’ll
sometimes see commands that require flags with no hyphen,
commands that require flags with two hyphens, and commands
with flags that can appear in either a “short” form (one hyphen,
usually followed by a single letter) or a “long” form (two hyphens,
usually followed by a complete word).

✦ Second, a command may take more than one flag. (“Eat quickly
and quietly!”) For example, you might want to tell the ls
command not only to use the long format (-l) but also to show
all files, including any hidden ones (-a). Here you get two choices.
You can either combine the flags (ls -la or ls -al) or keep them
separate (ls -l -a or ls -a -l). In this example, both ways
work just fine, and the flags work in any order. But that isn’t
always the case; some commands are picky and require you to list
flags one way or the other.

Don’t worry about these differences; just be aware that they may
come up from time to time. For now, assume that most flags will start
with a single hyphen, and that the safest way to express most flags is
to keep them separate.

Some commands require both arguments and flags. In general, the
order is command flag(s) argument(s), which is unlike usual English
word order—it would be comparable to saying, “Eat quickly cereal!”
For example, if you want to use the ls (list) command to show you only
the names of files beginning with the letter r (r*), in long (-l) format,
you’d put it like this: ls -l r*.

20

Sin Tax?
As you read about the command line, you’ll sometimes see the word
syntax, which is a compact way of saying, “which arguments and
flags are required for a given command, which are optional, and
what order they should all go in.” When I say that the usual order
is command flag(s) argument(s), I’m making a general statement
about syntax, though there are plenty of exceptions.

One place you see a command’s syntax spelled out is in the man
(manual) pages for Unix programs (see Get Help), at the top under
the heading “Synopsis.” For example, the man page for the mkdir
(make directory) command (see Create a Directory) gives the
following:

mkdir [-pv] [-m mode] directory_name ...

Here’s how to read this command’s syntax, one item at a time (don’t
worry about exactly what each item does; this is just for illustration):

✦ mkdir: First is the command itself.

✦ [-pv]: Anything in brackets is optional, and flags are run
together in the syntax if they can be run together when using
the command. So we know that the -p flag and the -v flag are
both optional, and if you want to use them both they can
optionally be written as -pv.

✦ [-m mode]: Another optional flag is -m, and it’s listed separately
because if you do use it, it requires its own argument (another
string of characters, described in the man page). The underline
beneath mode means it’s a variable; you have to fill in the mode
you want.

✦ directory_name: This argument is not optional (because it’s not
in brackets), and it’s also a variable, meaning you supply your own
value.

✦ ...: Finally, we have an underlined ellipsis, which simply means
you can add on more arguments like the last one. In this case,
it would mean you could list additional directories to be created.

So the final command could look like, for example:

mkdir teas (all optional items omitted), or

mkdir -pv -m 777 a/b/teas a/b/nuts (all optional items included).

21

Get to Know (and
Customize) Terminal
As I mentioned in What’s Terminal?, the application you’re
most likely to use for accessing the command line in Mac OS X
is Terminal. Since you’ll be spending so much time in this
application, a brief tour is in order. In addition, you may want
to adjust a few settings, such as window size, color, and font, to
whatever you find most comfortable and easy to read.

Learn the Basics of Terminal

The moment has arrived. Find the Terminal application (inside the
folder /Applications/Utilities), double-click it, and take a Zen
moment to contemplate the emptiness (Figure 1).

Figure 1: The Terminal window harks back to pre-graphical days.

22

 

 

To state the obvious, it’s a (mostly) empty window. A Terminal
window simply shows a command-line interface generated by a shell
(in this case, the bash shell). As long as you’re in this window, you can
forget about your mouse: with a couple of notable exceptions that I
cover later, everything you do here uses the keyboard only.

Of course, the window isn’t completely empty. The first line lists,
by default, the date and time of your last login. In this example, it’s:

Last login: Thu Aug 2 21:03:07 on ttys002

That last part, on ttys002, is a bit of esoteric information that signifies
the terminal interface with which you logged in the last time. It might
say something different (such as on console) or nothing at all—for all
practical purposes, you can safely ignore this line.

The second line is the actual command line (the line on which you
type commands):

MacBook-Pro-13:~ jk$ █

The rectangular box at the end (which may instead appear as a
vertical line or an underscore, any of which may or may not blink) is
the cursor (not to be confused with your pointer, which reflects mouse
movement). Everything before the cursor is known as the prompt,
which is to say it’s prompting you to type something.

The first part of the prompt, MacBook-Pro-13, is the name of my Mac
(spaces are replaced with hyphens, and punctuation, if any, usually
disappears). The colon (:) is simply a visual separator. Next is the tilde
(~), which signifies that I’m currently in my home directory (which, for
me, is /Users/jk). The jk is the short user name of the account under
which I’m logged in. And finally, the $ signifies that I’m logged in as an
ordinary (non-root) user. (I say more about the $ in the sidebar The $,
#, and Other Strange Things on My Command Line, ahead.) If your
short user name is cindy and your computer’s name (as shown in the
Sharing pane of System Preferences) is Cindy’s Groovy iMac, your
command line may look something like this:

Cindys-Groovy-iMac:~ cindy$ █

All these things are customizable; see Customize Your Profile.

23

Modify the Window

The window you’re looking at is just like any other Mac OS X window.
You can move it, minimize it, resize it, zoom it, scroll through its
contents, and hide it using the usual controls. So please do adjust it
to your liking. However, I want to make two important points about
window modification:

• First, resizing isn’t only a good idea, it’s practically mandatory.
Some commands you run in this window will generate a lot of text,
including some large tables, and you’ll find it much easier to work in
the command line if your Terminal window is a bit bigger. Go ahead
and make the window as large as you want—but do leave at least a
bit of space so that you can see some parts of other windows on your
screen.

• Second, any changes you make to the window ordinarily last only
until you close it. If you open a new window—or quit Terminal and
launch it again later—you’re returned to the defaults. So, once you
get your Terminal window to a size, shape, and position you like,
choose Shell > Use Settings as Default. Thereafter, all new Terminal
windows you open use your preferred characteristics. (I say more
about customizing windows ahead, in Change the Window’s
Attributes.)

Open Multiple Sessions

Most applications can have multiple windows open at once—think
of your word processor, your Web browser, or your email program,
for example. The same is true of Terminal—you can have as many
windows open as you need, each with its own command line. To open
a new window, press Command-N.

When you open a new window in Terminal, you begin a new session.
That means another copy of the shell runs, separate from the first
copy. You can run a program or navigate to a location in the first
session, and run a completely different program or navigate to another
location in the second. The two sessions don’t normally interact at all;
it’s as though you’re using two different computers at once that happen
to share the same set of files.

24

Why would you want to do this? Perhaps you want to refer to a
program’s man (manual) page in one window, while trying out the
command in a second. Perhaps one shell is busy performing some
lengthy task and you want to do something else at the same time.
Or perhaps you want to compare the contents of two directories side
by side. Whatever the case, remember: you’re not limited to using
one window—or one session—at a time.

But wait, there’s more! Every window in Terminal also supports
multiple tabs—just like most Web browsers (Figure 2). So if you
want to have multiple sessions open without the screen clutter of
multiple windows, you can do so easily. Create a new tab by pressing
Command-T. Exactly as in a browser, you can drag tabs to rearrange
them, close them individually, and even drag a tab from one window
to another.

Figure 2: Terminal windows can have multiple tabs, which can be
moved and closed individually just like those in most Web browsers.

Change the Window’s Attributes

Moving and resizing windows is one thing, but Terminal lets you
go further. You can change the background color (and transparency),
font (typeface and size), text color, cursor type, and numerous other
settings. In fact, you can change far more attributes than I care
to describe here, so I want to explain just a few of the basics.

For starters—just to get a feel for what’s possible—choose Shell >
New Window (or New Tab) and try some of the prebuilt themes.
For example, choose Shell > New Window > Homebrew for a display
with bright green text in 12-point Andale Mono against a slightly
transparent black background. Or choose Shell > New Window > Grass

25

for pale yellow text, in bold 12-point Courier, on an opaque green
background, with a red cursor. Figure 3 shows several examples.

Figure 3: Terminal windows can take on many themes; this image
shows several of the stock themes. (The exact appearance depends
on which version of Mac OS X you’re running.)

If you prefer to use one of these other themes as your default, open
a new window with that theme and choose Shell > Use Settings as
Default. But you can also modify these themes or create your own.

To modify your window’s appearance, follow these steps:

1. Choose Terminal > Preferences and click Settings on the toolbar.

2. Select a theme in the list to modify it. Or, to create your own
new theme based on an existing one, select a theme and choose
Duplicate Settings from the pop-up action menu at the bottom
of the list—or click the plus button to add your own theme from
scratch.

26

3. To modify the text that appears in the window of the currently
selected theme, click Text. A few of the more useful options in this
view are the following:

‣ Font: To change the typeface or size, click the Change button,
select a new font, size, and style from the Fonts palette, and close
the palette. For best results, I strongly recommend choosing a
fixed-width (monospaced) font, such as Courier, Monaco, or
Lucida Console.

‣ Text color: To change the color of the font, click the color
button to the left of the word Text and chose a color using the
Colors palette. You can pick a separate color for boldface text
and for text you’ve selected with the mouse by clicking the color
buttons next to Bold Text and Selection, respectively.

‣ Cursor attributes: To change the shape of the cursor, select
the Block, Underline, or Vertical Bar radio button. Check Blink
Cursor if you want it to blink, and if you want to change the
cursor’s color, click the color button next to the word Cursor.

4. To modify the window itself, click Window. Some options you can
change here include:

‣ Title bar elements: To change the name of the window
(“Terminal” by default), type new text into the Title field. You
can also select any or all of the checkboxes beneath to display
other information in the title bar, such as the name of the active
process or the dimensions of the window. Terminal windows
express their size in terms of rows and columns of text rather
than in pixels. By default, Terminal windows are 24 rows by 80
columns, a size that harks back to old-style text-only terminals.

‣ Background color: Click the color button under Background
to open the Colors palette, in which you can choose a background
color for the window. You can also adjust the opacity of the
window’s background color. Why would you want a window
that’s partially transparent? I like transparency because I can
put a Terminal window directly above, say, a Web page and read
instructions through the window as I type in Terminal! To adjust
the opacity, move the Opacity slider at the bottom of the Colors
palette.

27

‣ Window size: You can change the default window size for the
current theme by typing numbers into the Columns and Rows
fields, or you can simply resize the window to your liking later
by dragging the resize control at the window’s lower right corner.

Ocean blue: My personal preference for window appearance is
based on the Ocean theme (white text on a blue background) but
with a larger window (160 columns by 50 rows) and background
transparency set to 80%.

5. To make a particular theme the default (which means it’s used
automatically when you launch Terminal, and when you press
Command-N), select it and click the Default button beneath the
list of themes. When you’re finished adjusting window settings,
close the Settings window.

All the settings you change here take effect immediately for existing
windows using the selected theme, and for the next new window or
tab opened using that theme.

Set a Default Shell

As I explained in the introduction, this book covers only the bash shell,
which has been the default since Mac OS X 10.3 Panther, though your
account may have a different default if you upgraded your Mac from an
earlier version of Mac OS X or migrated your account forward from an
older system (even if you’ve gone through several upgrades since then).
So you may want to confirm that you’re running bash, or switch to
bash if not.

Find Out Which Shell You’re Using
To find out which shell is currently running, enter this:

echo $0

The shell replies with its own name, sometimes preceded by a hyphen:

-bash

28

Change Your Default Shell
If you want to change the default shell only for yourself, leaving other
users’ defaults intact, follow these steps:

1. Open the Users & Groups pane of System Preferences. (If you’re
using Lion or earlier, open the Accounts pane of System
Preferences.)

2. If the lock icon in the lower left corner of the window is closed, click
it and enter your administrator’s credentials to authenticate.

3. Right-click (or Control-click) on your name in the list on the left and
choose Advanced Options from the contextual menu.

4. In the dialog that appears, choose a different shell from the Login
Shell pop-up menu.

5. Click OK, and then close System Preferences.

Although the Advanced Options pane warns that you need to restart
your computer to apply changes, changing the default shell takes effect
with the next Terminal session you open.

Change the Default Terminal Shell
To change the default shell Terminal opens regardless of which user is
logged in or what that user’s individual preference is, do the following:

1. Choose Terminal > Preferences and click Startup on the toolbar.

2. Next to Shells Open With, select Command (Complete Path) and
make sure the path to bash (/bin/bash) is filled in. (To use a
different shell, such as zsh, substitute that shell’s name for bash.)

The setting applies starting with the next session you open.

29

The $, #, and Other Strange Things on My
Command Line

By default, when you open a Terminal window, you see a prompt that
ends in a $ (followed by the cursor), like this:

MacBook-Pro:~ jk$ █

If you log in as the root user (see Perform Actions as the Root User),
the prompt ends instead in a # character:

bash-3.2# █

Other shells have different default characters. For example,
in the zsh shell, the prompt normally ends with a %. As a result,
when you’re reading articles and Web sites listing commands
you might enter in Terminal, you might run across examples like
these:

$ open -e file1

chown www file1

% top

The $, #, or % at the beginning merely signifies that what follows is
a command to be typed and, in the case of #, that it’s supposed to be
typed by the root user. You wouldn’t actually type $, #, or %.

I don’t use that convention in this book; whatever you need to type
on the command line simply appears in a special font, usually on a
line by itself. I find those extra characters distracting.

In any case, you can easily change the prompt so that it shows
something else entirely. If you want your prompt to look like this…

Joe rocks +> █

…you can make that happen. See Change Your Prompt for details.

30

Look Around
In this chapter, I help you find your way around your Mac’s disk
from the command line and, at the same time, teach you some of
the most common navigational commands and conventions. For
right now, you’re going to look, but not touch—that is, nothing you
do here can change any files or cause any damage, as long as you
follow my instructions.

Discover Where You Are

Ready to start learning some commands? Here we go. Open a Terminal
window and enter this:

pwd

Reminder: To enter something on the command line, type it and
press Return or Enter afterwards.

The pwd command stands for “print working directory,” and it gives
you the complete path to the directory you’re currently using. If you
haven’t done anything else since opening a Terminal window, that’s
your home directory, so you’ll see something like this:

/Users/jk

That’s not exciting, but it’s extremely important. As you navigate
through the file system, it’s easy to get lost, and ordinarily your prompt
only tells you the name of your current directory, not where it’s located
on your disk. When you’re deep in the file system, being able to tell
exactly where you are can be a huge help.

See What’s Here

If you were in the Finder, you’d know exactly what’s in the current
folder just by looking. Not so on the command line; you must ask
explicitly. To get a list, you use the “list” command:

ls

31

	 	 		 	 	
		 	 	 	 	

What you get by default is a list along the lines of the following:

Desktop Downloads Movies Pictures
Documents Library Music Public

Items are listed alphabetically, top to bottom and then left to right.
But as you can see, this doesn’t tell you whether these items are files or
directories, how large they are, or anything else about them. So most
people prefer to use the more-helpful long format by adding the -l flag:

ls -l

This produces a result something like:

drwxr-xr-x 18 jk admin 612 Feb 12 09:42 Desktop
drwxr--r--@ 108 jk admin 3672 Feb 9 14:35 Documents
drwx------ 15 jk admin 510 Feb 12 11:17 Downloads
drwx------ 94 jk admin 3196 Feb 11 22:40 Library
drwx------ 13 jk admin 442 Dec 30 15:34 Movies
drwxr--r-- 15 jk admin 510 Aug 27 15:02 Music
drwxr--r-- 14 jk admin 476 Jan 26 19:40 Pictures
drwxr-xr-x 7 jk admin 238 Jan 22 23:13 Public

Reading from right to left, notice that each line ends with the item’s
name. To the left of the name is a date and time showing when that
item was most recently modified. To the left of the date is another
number showing the item’s size in bytes. See the sidebar on the next
page, Making Output (More) Human-Readable, to find out how to
turn that number into a nicer format. (In the case of directories, the
number shown by ls -l doesn’t tell you the total size of the directory’s
contents, only the size of the information stored about the directory.
To get a directory’s size, enter du -sh directory-name.)

Later in this book, in Understand Permission Basics, I go into more
detail about all those characters that occupy the first half of each line,
such as drwxr-xr-x 7 jk admin; those characters describe
the item’s permissions, owner, and group. For the moment, just notice
the very first letter—it’s d in every item of this list. The d stands for
“directory,” meaning these are all directories. If the item were a file,
the d would be replaced with a hyphen (-), for example: -rwxr-xr-x.

Finally, look at one other number, between the permissions and owner
(in drwxr--r-- 14 jk the number is 14). That’s the number of links
to the item, and although links are too advanced to explain in detail

32

here, the number serves one practical purpose: it gives you an
approximation of the number of items in a directory. In fact, it
will always be at least two higher than the number of visible files
or directories in the directory (for complicated reasons). For now,
just know that the number can tell you, at a glance, if a directory
has only a few items or many.

Making Output (More) Human-Readable

I’ve shown the -l (long format) flag, which provides much more
detail than the ls command alone. But it shows the file size in
bytes, which isn’t a convenient way to tell the size of large files.
For example, an ls -l listing might include the following:

-rw-r--r--@ 1 jk admin 169552353 Jan 13 17:07 image.dmg

Really—169552353 bytes? Wait a minute, let me do some math…how
large is that exactly?

Luckily, you can improve on this by adding the -h flag, which stands
for “human-readable.” (In fact, -h works with many commands, not
just ls.) You can enter either ls -lh or ls -l -h. Either way, you get
something like this:

-rw-r--r--@ 1 jk admin 162M Jan 13 17:07 image.dmg

Aha! The file is 162 megabytes (M) in size. That I understand!

I don’t want to belabor the ls command, but it will without question
be one of the top two or three things you type on the command line—
you’ll use it constantly. So it pays to start getting ls (along with a flag
or two) into your muscle memory. For a way to display even more
information with ls, see the recipe List More Directory Information.

Note: You can also list the contents of a directory other than your
current one like this: ls /some/other/path.

Repeat a Command

If you’ve just entered a two-character command, it’s no big deal to
enter it again. But sometimes commands are quite complex, wrapping
over several lines, and retyping all that is a pain. So I want to tell you
about two ways of repeating commands you’ve previously entered.

33

Arrow Keys
First, you can use the Up and Down arrow keys to move backward
and forward through the list of commands you’ve recently typed. For
example, if the last command you typed was ls -lh, simply pressing
the Up arrow once puts that on the command line. (Then, to execute
it, you would press Return or Enter.) Keep pressing the Up arrow, and
you’ll step backward through even more commands. You can even
scroll through commands you entered in previous sessions. The Down
arrow works the same way—it progresses forward in time from your
current location in the list of previous commands.

The !! Command
Another handy way of repeating a command is to enter !! (that’s right:
just two exclamation points). This repeats your previous command.
Try it now. Enter, say, pwd, and get the path of your current directory.
Then enter !! and you’ll get the same output.

Again, this isn’t terribly interesting when you’re talking about short
commands, but it can save time and effort with long commands.

!! Plus

The !! need not stand alone on the command line—you can add stuff
before or after in order to expand the previous command.

For example, if you previously entered ls -l and you now want
to enter ls -l -h, you could repeat the previous command and add
an extra flag like so:

!! -h

Or, if you enter a command like rm file1 (remove the file file1)
and get an error message telling you that you don’t have permission,
you can repeat it preceded by the sudo command (described in
Perform Actions as the Root User):

sudo !!

In this example, the result would be exactly the same as entering:

sudo rm file1

34

Cancel a Command

What if you type some stuff on the command line and realize you
don’t want to enter the command after all? Well, you could backspace
over it, but that could take a while if there’s a lot of text on the line.
An easier way to back out of a command without executing it is to
press either Control-C or Command-. (period). The shell creates a
new, blank command line, leaving your partially typed line visible but
unused. (Your command history won’t include canceled commands.)

Move into Another Directory

This has been a lovely visit in your home directory, but now it’s time to
explore. To change directories, you use the cd command. As you saw a
moment ago, one of the directories inside your home directory is called
Library. Let’s move there now, like so:

cd Library

Just in case: Notice in this example that Library is capitalized.
Sometimes case isn’t important on the command line (as I explain
ahead in Case Sensitivity), but you can’t go wrong if you always use
the correct case.

When you put a directory name after the cd command, it assumes
you want to move into that directory in your current location. If
there doesn’t happen to be a directory called Library in your current
directory, you see an error message like this:

-bash: cd: Library: No such file or directory

As a reminder, the command line environment doesn’t list the
contents of a directory unless you ask it to (using ls), so using cd
doesn’t automatically show what’s in your new location. You know
the command succeeded if you don’t see an error message, and by
default your prompt will include the name of your current directory.

35

Move Up or Down
Now that you’re in the Library directory inside your home directory
(~/Library), you can use ls to look around; you’ll see that one of
the directories inside the current one is Preferences. To move down
a level into preferences, you’d enter cd Preferences. And so on.

To go up a level, you use the .. convention, which means “the
directory that encloses this one.” For example, if you’re in /Users/jk/
Library/Preferences then the directory that encloses Preferences
is /Users/jk/Library, so in this particular location two periods (..)
means /Users/jk/Library.

To get there, you enter:

cd ..

That translates as “change directories to the one that encloses this
one.” You can keep going up and down with cd .. and cd directory
(fill in the name of any directory) as much as you like.

Spaced out: Moving into directories with spaces in their names
requires extra effort; read Understand How Paths Work, ahead.

Move More Than One Level
Nothing says you have to move up or down just one level at a time.
If you’re currently in /Users/jk and you know that there’s a Library
directory inside it, and inside that there’s a Preferences directory, you
can jump directly to Preferences like so:

cd Library/Preferences

The slash (/) simply denotes that the term to its right is a directory
inside the term on its left: Preferences is a directory inside Library.
You can add on as many of these as you need:

cd Library/Logs/Adobe/Installers

This also works in the other direction. If you’re currently in /Users/
jk/Library/Preferences, you could enter cd .. to move into Library.
Or, you could enter cd ../.. to move directly into jk, or cd ../../..
to move into Users.

36

Move to an Exact Location
So far, we’ve been moving using relative locations—a directory inside
the current one, or a directory that encloses the current one. But if you
know exactly where you’re going, you can jump directly to any location
on your disk. Just specify the full path, beginning with a slash (/),
which represents the root level of your disk. For example, enter this:

cd /private/var/tmp

That takes you directly to /private/var/tmp (a rather boring directory
full of caches and temporary files, and one that’s normally invisible in
the Finder) without having to navigate all the way up to the root level
of your drive and then back down.

Speaking of the root level: If you want to go to the very top of your
hard disk hierarchy, just enter this:

cd /

Move Between Two Directories
Another handy shortcut, which lets you go back to the last directory
you were in, is this:

cd -

For example, suppose I start in my home directory and then I enter
cd /Users/Shared. I do some things in that directory, and I next enter
cd ~/Library/Preferences to look at some files there. If I then enter
cd - I jump back to /Users/Shared (the last directory I was in),
without having to type or even remember its path.

Jump Home

Once you’ve changed directories a few times, you may want to get
back to your home directory. Of course, you could keep navigating
up or down, one directory at a time, until you got there, or you could
enter the complete path to your home directory (cd /Users/jk, for
example). But as you may have read (in Basics at the beginning of
the book), Mac OS X has another shortcut (along the lines of ..) that
means “the current user’s home directory”: the tilde (~).

37

So one way to jump home, from any location on your disk, is to enter:

cd ~

But in fact, it can be even easier. If you enter cd alone, with nothing
after it, the command assumes you want to go home, so cd by itself
does the same thing as cd ~.

Just as you can enter the full path after cd to jump to any spot on your
disk, you can substitute ~ whenever you’d otherwise use the full path
to your home directory. So, even if you’re in /private/var/tmp, you
can go directly to the Library directory inside your home directory with
this command:

cd ~/Library

Not my type: This might be a good time to remind you that the
command line can be unforgiving. If you type an extra period, leave
out a space, or make some other similarly tiny error, your command
might not work at all—or it might do something entirely unexpected.
That need not frighten you, but just be aware that you should be
deliberate and careful when typing on the command line.

Understand How Paths Work

You’ve already seen both relative paths (such as Library/Preferences,
which means the Preferences directory inside the Library directory
inside my current directory) and absolute paths, which begin with
a slash (such as /Library/Preferences, which means the Preferences
directory inside the Library directory at the top level of your disk).
But there are a few other things you should understand about paths.

Spaces in Paths
Mac OS X lets you put almost any character in a file or folder name,
including spaces. But space characters can get you in trouble in the
command-line environment, because normally a space separates
commands, flags, and arguments.

Suppose you were to enter this:

cd My Folder

38

Even if there were a folder named My Folder in the current directory,
the command would produce an error message, because the cd
command would assume that both My and Folder were intended to be
separate arguments.

You can deal with spaces in either of two ways:

• Quotation marks: One way is to put the entire path in quotation
marks. For example, entering cd "My Folder" would work fine.

• Escape the space: The other way is to put a backslash (\) before
the space—this escapes the space character, making the shell treat
it literally rather than as a separator between arguments. So this
would also work: cd My\ Folder.

Back to basics: To be crystal clear, the backslash (\) is normally
located on a key just to the right of the] key. It has a completely
different meaning from the ordinary (forward) slash (/), located
on the same key as the question mark. Don’t mix them up!

Wildcards
You can use wildcards when working on the command line; these
can save you a lot of typing and make certain operations considerably
easier. The two wildcards you’re most likely to use are these:

• * (asterisk): This means “zero or more characters.” For example,
if you want to switch to a directory called Applications, you could
enter cd App* and, as long as there was no other directory there
that started with those three letters, you’d go directly to the
Applications folder. (I talk about another way of doing something
similar ahead a few pages in Use Tab Completion.)

You can use this wildcard with almost any command. For instance,
if you’re in your home directory, you could type ls D* to list all and
only the items that begin with “D” (Desktop, Documents, Downloads).

• ? (question mark): This means “any single character.” That
means ?at could match bat, cat, fat, rat, sat, and so on. If you
have many files with similar names—say, sequentially numbered
photos—you could limit the ones listed with something like ls
01??.jpeg.

39

Case Sensitivity
Here’s a trick question: is the Mac OS X command line case-sensitive?
The answer is yes—and no! Suppose you’re in ~. There’s a directory in
there called Pictures, and you could move into it in any of these ways
(among others):

cd Pictures
cd pictures
cd Pic*
cd pic*

That certainly seems to suggest that the command line is not case-
sensitive, because using either p or P has the same effect. But it’s
possible to format a Mac volume to use a case-sensitive version of the
Mac OS Extended (HFS+) file system. If you do that—or if you connect
to an external disk or network volume that uses a case-sensitive file
system—then you could see both a pictures directory and a Pictures
directory in the same place, in which case using the wrong case with
the cd command will take you to the wrong directory.

You won’t see any visual cue to let you know whether a particular
volume uses a case-sensitive format. So the safest assumption is
to always use the correct case: that always works.

Understand Mac OS X’s File System

You surely know from day-to-day use that your Mac has a bunch
of standard folders at the top level of your hard disk—Applications,
Library, System, and Users, at minimum. You may have also noticed
that each user’s home folder has its own Library folder (not to
mention a Desktop folder, a Documents folder, and several others).
In addition to these and the numerous other folders you can see in
the Finder, Mac OS X has a long list of directories that are normally
invisible (because most users never need to interact with them
directly), but you can see them from the command line.

I could explain what every single (visible) folder and (hidden) directory
is for, and how to make sense of the elaborate hierarchy in which Mac
OS X stores all its files. But that would take many pages and, honestly,
it would be mighty boring. So I’m going to let you in on a little secret:
you don’t need to know.

40

I mean it: you don’t need to know why one program is stored in /bin
while others are in /usr/bin, /usr/local/bin, or any of numerous
other places. You don’t need to know why you have a /dev directory or
what goes in /private/var. Seriously. Knowing all those things might
be useful if you’re a programmer or a system administrator, but it’s
absolutely irrelevant for ordinary folks who want to do the kinds of
things discussed in this book. True, I may direct you to use a program
in /usr/sbin or modify a file in /private/etc (or whatever), but as
long as you can follow the instructions to do these things, you truly
don’t need to know all the details about these directories.

So, instead, I want to provide a very short list of the key things you
should understand about Mac OS X’s file system:

• The invisible world of Unix: If you enter ls -l / (go ahead
and do that), you get a list of all the files and directories at the root
level of your disk. You’ll see familiar names such as Applications
and Users, and some less-familiar ones, such as bin and usr. Here
at the root level of your disk, directories that begin with a lowercase
letter and aren’t shown in the Finder (such as bin, private, usr,
and var), plus a few items that are also normally invisible (such as
mach_kernel), make up Darwin, the Unix core of Mac OS X. Similar
directories appear in other Unix and Unix-like operating systems.

• Recursion, repetition, and recursion: If you were to work
your way from the root of your disk down through all its directories
and subdirectories, you’d notice a lot of names that appear over
and over again. For example, there’s a top-level /Library directory,
another inside /System, and yet another inside each user’s home
directory (~/Library). Similarly, there are top-level /bin and /sbin
directories, but also /usr/bin and /usr/sbin. The reasons for all
these copies of similar-looking directories are sometimes practical,
sometimes purely historical. But everything has its place.

You don’t need to grasp all the logic behind what goes where, but
you do need to be sure you’re in the right place when you work on
the command line. For instance, if an example in this book tells you
to do something in ~/Library, be absolutely sure that’s where you
are, as opposed to, say, /Library. The smallest characters—in
particular, the period (.), tilde (~), slash (/), backslash (\), and
space (), have the utmost significance on the command line, so
always pay strict attention to them!

41

• The bandbox rule: My grandfather had a curious and oft-
repeated expression: “Don’t monkey with the bandbox.” He
(and, subsequently, my mother) used this to mean, approximately,
“Don’t mess with something if you could break it and not be able
to put it back together.” (As a child, I had quite a propensity for
disassembling things and then getting stuck!)

On the command line, this means don’t go deleting, moving,
or changing files if you don’t know what they are or what the
consequences could be. Something that seems insignificant or
useless to you could be crucial to the functioning of your Macintosh.
(As a corollary, it should go without saying that you back up your
Mac thoroughly and regularly; read my book Take Control of
Backing Up Your Mac if you need help or advice with backups).

Use Tab Completion

Because everything you do on the command line involves typing, it can
get kind of tedious spelling out file and directory names over and over
again—especially since even the slightest typo will make a command
fail! So the bash shell includes a number of handy features to reduce
the amount of typing you have to do. Earlier I explained how to use the
arrow keys and the !! command to repeat previous commands (Repeat
a Command). Now I want to tell you about a different keystroke-saving
technique: tab completion.

Here’s the basic idea. You start typing a file or directory name, and
then you press the Tab key. If only one item in the current directory
starts with the letter(s) you typed, the bash shell fills in the rest of that
item’s name. If there’s more than one match, you’ll hear a beep; press
Tab again to see a list of all the matches.

For example, try this:

cd

Now that you’re in your home directory, type cd De (without pressing
Return) and press Tab. Your command line should look like this:

cd Desktop/

42

If you do want to change to your Desktop directory, you can simply
press Return. Or, you can type more on the line if need be. For now,
let’s stay where we are—press Control-C to cancel the command.

Next, try typing cd D (again, without pressing Return) and press Tab.
You should hear a beep—signifying that there was more than one
match—but nothing else should happen. Press Tab again. Now you’ll
see something like this:

Desktop/ Documents/ Downloads/

And, on the next line, your command-in-progress appears again
exactly as you left it off:

cd D

In this way, tab completion lets you know what your options are; you
can type more letters (say, oc) and press Tab again to have it fill in
Documents for you.

Tab completion isn’t limited to just the current directory. For example,
enter cd ~/Lib and press Tab. The bash shell fills in the following:

cd ~/Library/

Now type Favorites and press Tab. You should see Favorites filled in,
like this:

cd ~/Library/Favorites/

In this way, you can keep going as many levels deep as you need to.

Case by case: Tab completion in bash is always case-sensitive, even
on a volume that doesn’t use case-sensitive formatting. If a directory
is named Widgets, typing wi and pressing Tab produces no matches.

Find a File

In the command-line environment, as in the Finder, you may not know
where to find a particular file or directory. Two commands can supply
that information readily: find and locate. Each has its pros and cons.

43

Find
To use the find command, you give it a name (or partial name) to
look for and tell it where to start looking; the command then traverses
every directory in the area you specify, looking at every single file until
it finds a match. That makes it slow but thorough.

For example, suppose I want to find all the files anywhere in my home
directory with names that contain the string “keychain.” I can do this:

find ~ -name "*keychain*"

After the command find, the ~ tells the command to begin looking
in my home directory (and work its way through all its subdirectories).
The -name flag says to look for patterns in the pathname (which may
include the names of directories, not necessarily file names). I put the
search string inside quotation marks, with an asterisk (*) wildcard at
the beginning and end to signify that there may be other letters before
or after “keychain.”

Even a simple search such as this one can take several minutes,
because it must look at every single file, starting at the path I specified.
To make it go quicker, I could specify a narrower search range. For
example, to have it look only in my ~/Library directory, I’d enter:

find ~/Library -name "*keychain*"

Let me offer a few other tips for using find:

• To search in the current directory (and all subdirectories), use a
period (.) as the location: find . -name "*keychain*".

• To search your entire disk, use a slash (/) as the location:

find / -name "*keychain*".

• Normally, find is case-sensitive, so a search for "*keychain*"
would not match a file named Keychain. To make a search case-
insensitive, replace -name with -iname, as in find ~ -iname "*user
data*".

• During a search, if find encounters any directories you don’t have
permission to search, it displays the path of the directory with the
message “Permission denied.” To search these paths, use sudo
before find, as described in Perform Actions as the Root User.

44

Tip: You can also use the find command to search the contents
of files, though that process takes even longer. See the recipe in Find
a File by Content.

Locate
The other way to find files is to use the locate command. Unlike
find, locate doesn’t traverse every file to find what you’re looking
for. Instead, it relies on a database (index) of file and path names. The
benefit of using the index is that locate is lightning fast. The downside
is, the database is normally updated only once a week, so locate
usually can’t find files you’ve added or renamed recently.

To use locate, just type that command followed by any portion of the
filename you want to look for (no wildcards required). For example:

locate keychain

Like find, locate performs case-sensitive searches by default. To
make a search case-insensitive, add the -i flag:

locate -i keychain

If you enter locate and get an error stating that no database exists—or
if it exists but is outdated—you can create or update it by entering this:

/usr/libexec/locate.updatedb

The command may take some time to complete, because it does have
to look at every file on your disk—or nearly so.

I’ve skipped over one important detail: by default, locate only indexes
(and finds) files you own (mostly the contents of your home directory).
However, if you run the database updating script using sudo (see
Perform Actions as the Root User), it indexes every file on your disk,
and locate can therefore find every file. The benefit of this is being
able to find more files with locate, but if you attempt to do this, a
security warning appears informing you that once you’ve indexed all
your files, any user of your Mac can discover the name and location
(though not the contents) of any file on your disk. Moreover, the next
time the locate database updates on its weekly schedule, your system-
wide index of files will be replaced with a version that contains only
those you have permission to read.

45

View a Text File

You may not read a lot of plain text files in the Finder, but the need to
do so comes up more frequently in the command-line environment—
reading documentation, examining programs’ configurations, viewing
shell scripts, inspecting logs, and numerous other situations. You can
use many tools to read a file, of which I cover just a few here. (If you
want to modify a text file, see Edit a Text File, later.)

You can use these commands with any text file on your Mac, but in
these examples I use a file every Mac user should have: the license for
the postfix email server, located at /private/etc/postfix/LICENSE.

More or Less
An early Unix program for reading text files was called more. It was
pretty primitive and wouldn’t let you move backward to see earlier
text. So a new program came along that was supposed to be the
opposite of more: less. In Mac OS X, both names still exist, but they
point to the same program; whether you enter more or less, you’re
actually running less. (There are some subtle differences depending
on which command you use, but they’re not worth mentioning.)

You can use less to read a text file like this:

less /private/etc/postfix/LICENSE

You see the top portion of the file initially. You can scroll down a
line at a time using the Down arrow key (and back up using the Up
arrow key), scroll ahead a screen at a time by pressing the Space bar,
or backward a screen at a time by pressing the B key (all by itself). To
quit less, simply press the Q key (all by itself).

Cat
The Unix cat command (short for “concatenate”) combines files,
but you can also use it to display a text file on your screen. Unlike
less, it doesn’t give you a paged view, it simply pours the entire
contents of the file, regardless of length, onto your screen. You can
then scroll the Terminal window up and down, as necessary, to view
the contents. To use cat, follow this pattern:

cat /private/etc/postfix/LICENSE

46

Tail
If you open a long text file with less, it can take quite a bit of tapping
on the Space bar to reach the end, which is awkward if the information
you want happens to be at the end—as is the case with most logs.
And if you use cat, it can clutter your Terminal window with lots of
information you don’t need. To jump to the end of a text file, use a
different program: tail, which displays the tail end of a file.

If you enter tail followed by the filename, it displays the last ten lines
of the file:

tail /private/etc/postfix/LICENSE

The tail command has flags that enable you to control how much of
the file is shown and in what way, but for the sake of brevity I want to
mention just one: -n (number of lines). Type tail followed by the -n
flag, a space, and a number to set the output to that number of lines
from the end of the file:

tail -n 50 /private/etc/postfix/LICENSE

Get Help

Almost every program and command you use on the command line has
documentation that explains its syntax and options, and in many cases
includes examples of how to use the command. This documentation
isn’t always clear or helpful, but it’s worth consulting when you have a
question. You can get at these manual pages in several ways.

In a Terminal Window
When you’re on the command line, the quickest way to get information
about a command is to use the man (manual) command. Simply enter
man followed by the command you want to learn about. For example:

man ls
man cp
man locate

The results appear in a viewer that works like less. For best results,
I suggest opening a new Terminal window to display man pages, so
you can see the documentation and your active window side-by-side.

47

Note: You can, of course, get instructions for using the man
application itself by entering—you guessed it—man man.

In a Mac OS X Application
If you want to learn about a command-line program when Terminal
isn’t running—or you prefer to read about it in a more user-friendly
environment—you can download any of numerous free (donations
accepted) applications that give you access to the same information.
Some examples include:

• ManOpen: http://www.clindberg.org/projects/ManOpen.html

• Man Viewer: http://www.kendallp.net/at_PAK/ManViewer/

Tip: If you want to read man pages as nicely formatted PDF files, try
the recipe Read man Pages in Preview. Or, if you prefer to view them
in BBEdit, try Read man Pages in BBEdit or TextWrangler.

On the Web
Another way to view man pages for command-line programs is to
consult a Web site where they’re available in convenient HTML form.
Apple’s official repository of manual pages for Darwin is located at
https://developer.apple.com/library/mac/documentation/Darwin/
Reference/ManPages/.

Tip: You can also read your Mac’s man pages in your Web browser
using the free Bwana application (http://www.bruji.com/bwana/). It
hasn’t been updated for Lion or later, or Safari 6, but it still appears
to be mostly functional.

Clear the Screen

As you work in Terminal, your window may fill up with commands
and their output. The command line itself will always be the last line,
but the rest of the window can become cluttered with the residue of
earlier commands. If you find all that text distracting and want to clear
the window (so that it looks much like it did when you started the
session), enter clear or press Control-L. Note that this moves your

48

  

command line up to the top of the window with empty space below it;
you can still scroll up to see what was on the screen earlier.

End a Shell Session

When you’re finished working on the command line for a while, you
could simply close the Terminal window, or even quit Terminal, but
you shouldn’t. That would be a bit like turning off your Mac by flipping
the switch on the power strip instead of choosing Apple > Shut
Down. The proper way to end a shell session in Terminal is to enter
exit, which gracefully stops any programs you are running in the shell,
and then quits the shell program itself.

By default, your Terminal window remains open after you’ve done this.
If you want it to close when you exit, choose Terminal > Preferences,
click the Settings button on the toolbar, and then click Shell. From the
When the Shell Exits pop-up menu, choose Close the Window.

49

Work with Files and
Directories
Much of what you’ll need to do on the command line involves
working with files in some way—creating, deleting, copying,
renaming, and moving them. This chapter covers the essentials
of interacting with files and directories.

Create a File

I want to mention a curious command called touch that serves two
interesting functions:

• When applied to a nonexistent file, touch creates an empty file.

• When applied to an existing file or folder, touch updates its
modification date to the current date and time, marking it as
modified.

So, try entering the following command:

touch file1

Now use ls -l to list the contents of your current directory. You’ll see
file1 in the list. This file that you’ve just created is completely empty.
It doesn’t have an extension, or a type, or any contents. It’s just a
marker, though you could use a text editor, for example, to add to it.
Why would you do this? There are occasionally situations in which a
program behaves differently based solely on the existence of a file with
a certain name in a certain place. What’s in the file doesn’t matter—
just that it’s there. Using touch is the quickest way to create such a file.
But for the purposes of this book, the reason to know about touch is so
you can create files for your own experiments. Since you’re creating the
files, you can rename, move, copy, and delete them without worrying
about causing damage. So try creating a few files right now with touch.

Don’t space out: Remember, if you want to create a file with a
space in the name, put it in quotation marks (touch "my file") or
escape the space character (touch my\ file).

50

As for the other use of touch—marking a file as modified—you might
do this if, for example, the program that saved it failed to update its
modification date for some reason and you want to make sure your
backup software notices the new version. You use exactly the same
syntax, supplying the name of the existing file:

touch file1

When applied to an existing file, touch doesn’t affect its contents at
all, only its modification date.

Create a Directory

To create a directory (which, of course, appears in the Finder as a
folder), use the mkdir (make directory) command. To make a directory
called apples, you’d enter the following:

mkdir apples

That’s it! Other than the fact that you can create a new directory
in some other location than your current one (for example, you
could enter mkdir ~/Documents/apples), and the fact that spaces,
apostrophes, or quotation marks in directory names must be escaped
(see Spaces in Paths), there’s nothing else you need to know about
mkdir at this point.

Copy a File or Directory

To duplicate a file (in the same location or another location), use the cp
(copy) command. It takes two arguments: the first is the file you want
to copy, and the second is the destination for the copy. For example,
if you’re in your home directory (~) and you want to make a copy of the
file file1 and put it in the Documents directory, you can do it like this:

cp file1 Documents

The location of the file you’re copying, and the location you’re copying
it to, can be expressed as relative or absolute paths. For instance:

cp file1 /Users/Shared
cp /Users/jk/Documents/file1 /Users/Shared

51

cp file1 ..
cp ../../file1 /Users/Shared

If you want to duplicate a file and keep the duplicate in the same
directory, enter the name you want the duplicate to have:

cp file1 file2

Likewise, if you want to copy the file to another location and give the
copy a new name, specify the new name in addition to the destination:

cp file1 Documents/file2

Avoid Overwriting Files
Look back at the first example:

cp file1 Documents

Anything strike you as suspicious about that? We know that there’s
a file called file1 and a directory called Documents in the current
directory, so will this command copy file1 into Documents or
make a copy in the current directory and name the copy Documents
(potentially overwriting the existing directory)? The answer is: cp is
smart. The command assumes that if the second argument is the name
of an existing directory, you want to copy the file to that directory;
otherwise, it copies the file in the current directory, giving it the name
of the second argument. It won’t overwrite a directory with a file.

But, in fact, cp is not quite as smart as you might like. Say there’s
already a file in Documents called file1. When you enter cp file1
Documents, the command happily overwrites the file already in
Documents without any warning! The same goes for duplicating files
in the same directory. If the current directory contains files file1
and file2, entering cp file1 file2 overwrites the old file2 file
with a copy of file1!

Fortunately, you can turn on an optional warning that appears
whenever you’re about to overwrite an existing file, using the -i flag.
So if you enter cp -i file1 Documents and there’s already a file1
in Documents, you’ll see this:

overwrite Documents/file1? (y/n [n])

Then enter y or n to allow or disallow the move. “No” is the default.

52

Because the -i flag can keep you out of trouble, I suggest you always
use it with the cp command. Or, for an easier approach, set up an alias
that does this for you automatically; see Create Aliases.

Copy Multiple Files
You can copy more than one file at a time, simply by listing all the
files you want to copy, followed by the (single) destination where all
the copies will go. For example, to copy files named file1, file2, and
file3 into /Users/Shared, enter this:

cp file1 file2 file3 /Users/Shared

Copy a Directory
You can use the cp command to copy a directory, but you must add the
-r (recursive) flag. For instance, given a directory named apples, this
command would produce an error message:

cp apples ~/Documents

The correct way to enter the command is as follows:

cp -r apples ~/Documents

Slashes away: Avoid putting a slash at the end of the source
directory when using cp -r. That slash causes the command to copy
every item within the directory (but not the directory itself) to the
destination. For example, cp -r apples/ ~/Documents wouldn’t copy
the apples directory to your ~/Documents directory, but rather copies
the contents of the apples directory to your ~/Documents directory—
probably not what you want.

If you use tab completion with the cp command, be extra careful,
because tab completion adds trailing slashes automatically.

Move or Rename a File or Directory

If you want to move a file from one location to another, you use the
mv (move) command. This command takes two arguments: the first
is what you want to move, and the second is where you want to move
it.

53

For example, if you’re in ~ and you want to move file1 from the
current directory to the Documents directory, you can do it like this:

mv file1 Documents

As with cp, the location of the file you’re moving, and the location
you’re moving it to, can be relative or absolute paths. Some examples:

mv file1 /Users/Shared
mv /Users/jk/Documents/file1 /Users/Shared
mv file1 ..
mv ../../file1 /Users/Shared

If you want to rename a file, you also use the mv (move) command.
Weird as it may sound, mv does double duty. When you’re renaming
a file, the second argument is the new name. For example, to rename
the file file1 to file2, leaving it in the same location, enter this:

mv file1 file2

Tip: Want to move a file from somewhere else to your current
directory, without having to figure out and type a long path? You
can represent your current location with a period (.), preceded
by a space. So, to move file1 from ~/Documents to your current
directory, enter mv ~/Documents/file1 . on the command line.

Avoid Overwriting Files
The mv command works the same way as cp when it comes to
overwriting files: it won’t overwrite a directory with a file of the same
name, but it will happily overwrite files unless you tell it not to do so.

Fortunately, mv supports the same optional -i flag as cp to warn
you when you’re about to overwrite a file. So if you enter mv -i file1
Documents and there’s already a file1 in Documents, you’ll see this:

overwrite Documents/file1? (y/n [n])

You can then enter y or n to allow or disallow the move. Again, “no” is
the default.

As with cp, the -i flag is such a good idea that I suggest you get in the
habit of using it every single time you enter mv. Alternatively, you can
set up an alias that does this for you automatically; see Create Aliases.

54

Move and Rename in One Go
Since mv can move and rename files, you may be wondering if you
can do both operations at the same time. Indeed you can. All it takes
is entering the new name after the new location. For instance, if you
have a file named file1 and you want to move it into the Documents
directory where it will then be called file2, you can do it like this:

mv file1 Documents/file2

Move Multiple Files
You can move several files at once, simply by listing all the files you
want to move, followed by the (single) destination to which they’ll
all go. For example, to move files named file1, file2, and file3
into /Users/Shared, enter this:

mv file1 file2 file3 /Users/Shared

Too wild to handle: You can use wildcards like * with mv—for
example, entering mv *.jpg Pictures moves all the files from the
current directory ending in .jpg into the Pictures directory. But
when using mv to rename files, wildcards may not work the way you
expect. For example, you cannot enter mv *.JPG *.jpeg to rename all
files with a .JPG extension to instead end in .jpeg; for that, you must
use a shell script (see Command-Line Recipes for an example).

Delete a File

To delete a file, use rm (remove), followed by the filename:

rm file1

Tip: To try this out safely, use touch to create a few files, enter ls to
confirm that they’re there, then use rm to remove them. Then enter
ls again to see that they’ve disappeared.

You can delete multiple files at once by listing them each separately:

rm file1 file2 file3 file4

And, of course, you can use wildcards:

rm file*

55

Needless to say, you should be extra careful when using the * wildcard
with the rm command!

Warning! If you put something in the Mac OS X Trash, you can
later drag it back out, up until the moment you choose Finder >
Empty Trash. But the rm command (and the rmdir command,
described next) has no such safety net. When you delete files with
these commands, they’re gone—instantly and completely! If you want
to be especially cautious, you can follow rm with the -i flag, which
requires you to confirm (or disallow) each item you’re deleting before
it disappears forever—for example, rm -i cup* prompts you to
confirm the deletion of each file that has a name beginning with cup.

Delete a Directory

Just as you can delete a folder in the Finder by dragging it to the
Trash, you can delete a directory on the command line with the rmdir
(remove directory) command. To delete a directory named apples,
you can enter this:

rmdir apples

As with rm, you can delete multiple directories at the same time:

rmdir pomegranates pomelos
rmdir pome*

This command only works on empty directories. (A directory can
have invisible files created by Mac OS X; don’t assume it’s empty just
because you didn’t put anything there.) If you run rmdir on a non-
empty directory, you get this error message:

rmdir: apples: Directory not empty

This is a safety feature designed to prevent accidental deletions. If
you’re sure you want to delete a directory and its contents (including
subdirectories), use the rm command with the -r (recursive) flag:

rm -r apples

56

Work with Programs
Every command you use on the command line, including merely
listing files, involves running a program. (So, in fact, you’ve been
using programs throughout this book!) However, some aspects
of using programs on the command line aren’t entirely obvious
or straightforward. In this chapter, I explain some of the different
types of programs you may encounter and how to run them (and
stop them). I show you how to edit files on the command line, and
I talk about shell scripts, a special kind of program you can create
yourself to automate a sequence of tasks.

Learn Command-Line Program Basics

If you’ve been reading this book in order, you already know many
basics of running programs on the command line. Each time you enter
a command such as ls or cp or pwd, you’re running a program—and we
saw how to change program options and supply additional parameters
with arguments and flags earlier (in What Are Commands, Arguments,
and Flags?). However, I think you should know a few other important
facts about running programs.

Command-line programs come in a few varieties, which for the sake of
convenience I’ll lump together in three broad categories. (These are my
own terms, by the way; other people may categorize them differently.)
You’ll have an easier time using the command line if you’re aware of
the differences.

Basic Programs
Most of the command-line programs you use simply do their thing
and then quit automatically. Enter ls, for instance, and you instantly
get a list of files, after which point ls is no longer running. Some of
these single-shot programs produce visible output (date, ls, pwd, etc.);
some normally provide no feedback at all unless they encounter an
error (cp, mv, rm, etc.). But the point is: they run only as long as is
needed to complete their task, without requiring any interaction with
you other than the original command, with any flags and arguments.

57

Interactive Programs
A second type of program asks you for an ongoing series of new
commands, and in some cases doesn’t quit until you tell it to. For
example, the command-line program used to change your password
is passwd. If you enter passwd, you see something like the following:

Changing password for jk.
Old password:█

You type your old password and press Return, and then the program
gives you another prompt:

New password:█

Type in a new password and you get yet another prompt:

Retype new password:█

Reenter your new password, as long as it matches the first one, the
program changes your password and exits without any further output.

Real change: Note that this procedure really does change the
password for your user account, which applies everywhere on your
Mac (not just on the command line).

Programs of this sort include ssh, which lets you Log In to Another
Computer and ftp, which lets you transfer files between computers,
among many others. If you’re running an interactive program, want to
quit it, and can’t find an obvious way to do so, try pressing Control-C
(see Stop a Program for more possibilities).

Full-Window Programs
The third broad category of programs is full-window programs—those
that are interactive but, instead of handling input and output on a line-
by-line basis, take over the entire Terminal window (or tab). You’ve
already tried a few of these—less and man are examples. Some full-
window programs helpfully display hints at the top or bottom of the
window showing what commands you can use; others require that
you’ve memorized them (or can look them up in a man page, perhaps
in another window). As with other interactive programs, pressing
Control-C usually lets you exit a full-window program if you can’t
find another way to do so.

58

Change Your Terminal Type
A curious feature of full-window programs such as less, top, and
man is that once you quit them, everything they previously displayed
on screen disappears; for example, you can’t scroll back to see
something from a man page once you quit man.

This behavior (among others) is determined not by your shell but by
the specific kind of terminal that Terminal happens to be emulating
at any given time. By default, that terminal type is something called
xterm-color. Without getting into any tedious details, let’s just
say that xterm-color has many virtues, but some people dislike the
way it handles full-window programs. If you’re one of those people,
you can easily switch to a different terminal type.

Follow these steps:

1. Choose Terminal > Preferences and click the Settings button on
the toolbar.

2. Click Advanced, and then choose vt102 from the Declare Terminal
As pop-up menu.

3. Close the Preferences window.

The change takes effect beginning with the next shell session you
open in Terminal.

Run a Program or Script

Often, running a program requires nothing more than typing its
name and pressing Return. However, the process can be a bit trickier
in certain cases. Read on to discover how to run programs located in
unusual places, as well as scripts (programs packaged in a somewhat
different form).

How Your PATH Works
As you know already (see Understand How Paths Work), every file
on your Mac has a path—a location within the hierarchy of directories.
So a path of /Users/jk/Documents/file1 means that file1 is inside
the Documents directory, which is in turn inside the jk directory, which
is inside Users, which is at the top, or root, level of the disk (signified
by the initial /).

59

But there’s another, specialized use of the term PATH: when
capitalized like this, it refers to a special variable your shell uses that
contains a list of all the default locations in which a shell can look
for programs.

To run a program, your shell has to be able to find it. But so far, all the
commands you’ve entered have been “bare” program names without
specific paths given. For example, to run less, you simply enter less,
but in reality the program you’re running is stored in /usr/bin.
Looking everywhere on your disk for a program would be extremely
time-consuming, so how can your shell find it in order to run it? The
answer is that when you enter a command without an explicit path, the
shell automatically looks in several predetermined locations. That list
of locations, which happens to include /usr/bin, is your PATH.

By default, your PATH in OS X Mountain Lion includes all of the
following directories:

/bin
/sbin
/usr/bin
/usr/local/bin
/usr/sbin

A program in any of these locations is said to be “in your PATH.”
So you can run a program in your PATH, regardless of your current
location in the file system, simply by entering its name. I encourage
you to look through these directories (try ls -l /bin, ls -l /sbin,
and so on) to get an idea of the hundreds of built-in programs and
where they’re located.

Most of the programs you’ll need to run are already in your PATH,
and if you download or create new programs, you can put them in
one of these locations to make sure you can run them just by entering
their names. But what about programs that aren’t in your PATH? You
can either enter the program’s full or relative path (for example, /usr/
local/bin/stuff or ../software/myprogram), or you can expand your
PATH to include other directories (I explain how in Modify Your
PATH).

60

Run a Program
To summarize, you can run a program in any of three ways, depending
on where the program is located, your current position in the file
system, and what’s in your PATH:

• By relative or absolute path: You can always run a program
by entering its complete path, such as /usr/bin/less, or its relative
path from your current location, for example apples/oranges/
program.

• In the current directory: If you’re in the same directory as the
program you want to run, you might think you could just enter the
program’s name, but that doesn’t work. Instead, you must precede
the name with ./ (and no space). For example, to run a program
named counter in the current directory, enter ./counter.

• In your PATH: To run a program anywhere in your PATH, simply
enter the program’s name—for example, less, mkdir, or man.

Run a Script
In Mac OS X, as in other varieties of Unix, the programs you run are
usually compiled binary files. If you were to open them in a text editor,
they’d look like nothing but garbage characters, because they’ve been
put into an optimized, self-contained, machine-friendly format for
maximum performance. However, there’s another whole category of
programs consisting of human-readable text that’s interpreted by the
computer as it runs instead of being compiled in advance. Programs
in this broad category are often referred to as scripts, and they’re often
used to automate or simplify repetitive activities. Just as AppleScript
provides a way of writing human-readable programs that run in Mac
OS X’s graphical environment, scripts of various kinds can run from
the command line.

A shell script is a series of instructions interpreted, or run, by the
shell itself. So, a shell script could consist of little more than a list
of commands, just as you would type them manually in a Terminal
window. Run the script, and the shell executes all those commands
one after the other. (In fact, shell scripts can use variables, conditional
tests, loops, math, and much more—but I don’t explore those things
in this book.) I explain the basics of creating a simple script ahead
in Create Your Own Shell Script. By convention, shell scripts usually
have an extension of .sh.

61

Other kinds of scripts are written in scripting languages such as Perl,
Python, and Ruby, and run by the corresponding interpreter. Perl
scripts, by convention, end in the .pl extension, Python scripts in .py,
and Ruby scripts in .rb.

Regardless of a script’s extension, it’s considered good programming
practice to include the name and location of the interpreter that should
process it on the first line of the script. For example, if a shell script is
intended to be interpreted by the sh shell, the first line should be:

#!/bin/sh

The #! at the beginning of this line, called a “shebang,” is a marker
indicating that what follows it is the path to the interpreter. (You can
examine a script using, say, less or cat to see if it has such a line.)

Because the interpreter is spelled out right in the script, you can run
the script just as you would any other program, just by entering its
name (if it’s in your PATH) or its path.

However, if a script doesn’t include that line, you must tell it explicitly
which shell or other interpreter to run it with. You do that by entering
the interpreter’s name with the path to the script as an argument. For
example:

sh ~/Documents/my-shell-script.sh
perl ~/Documents/my-perl-script.pl
python ~/Documents/my-python-script.py
ruby ~/Documents/my-ruby-script.rb

Run a Program in the Background

Most of the time when you run a program, it does its thing, and then
you quit it (or it quits by itself). While a program is running—whether
that takes a second or an hour—it takes over your shell and thus the
Terminal window or tab in which the shell is running. If you expect
a program to take some time to complete its task, or if you want a
program to keep running even after you exit the shell, you can run it
in the background. Background programs let you do other tasks in the
same Terminal window or tab, and, if necessary, they keep going even
after you quit Terminal.

62

To run a program in the background, you simply put a space and an
ampersand (&) after the program name (and any flags or arguments).
For example, suppose you want to compress a folder containing
hundreds of large files. Ordinarily, you might use a command like zip
-r archive.zip apples. To run that command in the background
instead, enter this:

zip -r archive.zip apples &

While a program is running in the background, you’ll see no feedback
or output. If it’s a program that simply accomplishes a task (such as
copying or compressing files) and then quits automatically, then you’ll
see a message stating that it’s finished—not immediately afterward,
but the next time you execute a command or even just press Return to
create a new command line. The message saying a process is finished
looks something like this:

[1]+ Done zip -r archive.zip apples

Note: Programs designed to run in the background are called
daemons (pronounced “demons”). Examples include database and
Web servers, firewalls, and some backup programs. You wouldn’t use
the term “daemon,” however, for an ordinary program you opt to run
in the background temporarily.

See What Programs Are Running

Here’s a thought question: How many programs are running on your
Mac right this minute? If you glance at the active icons in your Dock
and conclude that the number is, say, a dozen, you haven’t even
scratched the surface. For example, as I type these words, my Dock
tells me I have 16 programs running, but in reality the total number
is 135! Besides the visible programs like Mail and Safari, that figure
includes many background programs that are part of Mac OS X—the
Spotlight indexer, Time Machine, iTunes Helper, and lots of others
that perform important but little-noticed functions behind the scenes.
It also includes my bash shell running in Terminal, and every program
currently running in that shell.

63

Processing: Roughly speaking, the term process is used to describe
programs (of any sort) that are actively running, as opposed to those
that are merely occupying space on your disk. The commands and
procedures I describe in this section are concerned only with active
programs, and therefore I use the term “process” to describe them.

You may be aware of Activity Monitor (in /Applications/Utilities),
which lists all this information and more. In the command-line
environment, too, you can list all your Mac’s processes (visible
and invisible) and get a variety of useful facts about them. The two
most commonly used command-line programs for discovering what’s
running on your Mac are top and ps.

Top
The top command is the nearest command-line equivalent to Activity
Monitor. Enter top and you get a full-window list of all your running
processes, updated dynamically. Figure 4 shows an example.

Figure 4: In the top window, you get a list of all the processes
currently running on your Mac.

64

By default, the top command lists several pieces of information for
each process, including the following particularly interesting ones:
PID (process ID), COMMAND (the process name), %CPU (how much
CPU power the process is using), TIME (how long the process has been
running), RSIZE (how much physical RAM the process is using) and
VSIZE (how much virtual memory the process is using).

I won’t go into great detail about everything you see here (try man top
to learn more), but I do want to call your attention to a few salient
points and offer some top tips:

• Pruning the list: You almost certainly have many more processes
than can fit in your window at one time, even if you make your
window very large. So you can restrict the number of items top
shows at a time using the -n (number) flag, followed by the number
of items to show (top -n).

• Sorting the list: By default, top lists processes in reverse order
of PID, which basically means the processes at the top of the list are
the ones launched most recently. You can adjust the sort order with
the -o (order) flag—for example, enter top -o cpu to list processes
in order of how much CPU power they’re using, or enter top -o
rsize to list processes in order of how much physical RAM they’re
using.

• Top at the top: Depending on what else is running on your Mac
at the moment, top itself may be at or near the top of the list, even
when sorted by CPU usage. Don’t be alarmed: the effect is caused
by the way top gathers its data.

• Customizing the list: You can combine flags to customize your
display. For example, enter top -n 20 -o cpu to list only the top
20 processes by CPU usage.

• Quitting: To quit top, just type the Q key (by itself).

Ps
Whereas top is dynamic, you may want simply to get a static snapshot
of the processes running at any moment. For that, the best command
is ps (process status). If you enter ps by itself, you get a list of your
processes running in terminals—which usually means the Terminal
application. In all likelihood, this is just bash itself.

65

The list includes the PID, the TTY (or terminal name), time since
launch, and command name for each process:

 PID TTY TIME CMD
22635 ttys001 0:00.06 -bash

You can expand the amount of information that ps provides using
flags. For example, to include not only processes in the current shell
session but also those from other sessions (yours or those belonging
to other users), enter ps -a. To show processes that aren’t running in
a shell at all (including regular Mac OS X applications and background
processes), enter ps -x. Combine the two (ps -ax) to show all the
processes running on your Mac.

Of course, although ps -ax provides lots of information, it might be
too much to be useful. You can filter the output from the ps command
by using a couple of spiffy Unix tricks. First, you add the pipe (|)
character (which you get by typing Shift-\) to channel the output from
ps into another program. The other program, in this example, is grep,
a powerful pattern-matching tool. So, enter ps -ax | grep followed
by a space and some text, and what you get is a list of all and only the
running processes whose listing includes that text. For example, to list
all the processes that are running from inside your /Applications
directory, enter this:

ps -ax | grep /Applications

Get a grep: A curiosity of this command is that the grep process
itself will appear in the list, because grep includes /Applications as
an argument! If that bothers you and you want to exclude grep itself,
add the following after /Applications and a space: | grep -v grep.
The same applies for the next example.

Or, to show only the processes whose names include the characters sys
(in any combination of upper- and lowercase), try this:

ps -ax | grep -i sys

Just a taste: I can’t even begin to do justice to the incredible power
that the pipe operator and the grep command offer, because they’re
both far too complex to cover in detail in this book. But you can see
additional examples of how to use them in Command-Line Recipes.

66

Stop a Program

As we’ve seen, most command-line programs quit automatically when
they finish performing their functions, and full-window programs
usually have a fairly obvious way of quitting them (for example,
pressing Q in the case of less or man. However, if a program doesn’t
quit on its own, or if you need to unstick one that’s stuck (even if it’s a
graphical Mac OS X application!), you can use one of several
techniques.

Ask Politely
If a command-line program won’t quit on its own, the first thing to try
is pressing Control-C. In this context, it’s approximately like pressing
Command-Q in a regular Mac OS X application—it tells the process to
quit, but to do so in a controlled way (saving open files and performing
any other necessary cleanup operations).

Kill (Humanely)
What if you want to stop a program that’s not running in the
current shell? If it’s a graphical Mac OS X application, or an invisible
background process, or a program running in another shell, you can
send it a “Quit” signal remotely. The command you use to do this is
kill. That sounds extreme, but, in fact, when kill is used on its own,
it sends a program the same sort of polite request to terminate that
Control-C does.

You’re killing me: You can only kill processes you own (that is,
ones started under your user account). To kill another user’s
processes, you must use sudo (see Perform Actions as the Root User).

The catch is that you have to know how to refer to the program you
want to kill. Here there are two options:

• By PID: If you can find the process’s PID (process ID)—using top,
ps, or even Activity Monitor—you can simply enter kill followed by
that number. For example: kill 1342

• By name: If you don’t know the process’s PID, or can’t be bothered
to find out—but do know its name—you can quit it by name using
a variant of kill called killall. Simply follow killall with the
program’s name. For example: killall iTunes

67

You must enter the name exactly as it appears in top, ps, or Activity
Monitor. For example, if you want to quit Excel, you must enter
killall "Microsoft Excel" (quotation marks added because
there’s a space in the name).

Kill (with Extreme Prejudice)
If a program fails to respond to Control-C or to the standard kill or
killall command, it’s time to pull out the big guns. By adding the -9
flag to the kill command, you turn a polite request into a brutal
clobbering that can terminate almost any process. When you use the
kill -9 command, you must give it the process’s PID; the -9 flag
doesn’t work with killall to force-quit a process by name. For
example:

kill -9 1342

If even kill -9 doesn’t stop a process—and I’ve seen that happen
more than once—it is likely stuck beyond the power of any software
command, and your only choice is to restart the computer.

Edit a Text File

Earlier I showed you how to view the contents of text files, but you
may also need to modify them. For that, you can use any of several
command-line text editors. Using a command-line text editor is often
quicker and easier than opening a text file in a program like TextEdit—
especially for files that don’t appear in the Finder—and is less likely
to cause problems with file formats or permissions.

If you ask a hardcore Unix geek what text editor he uses, he (there
are far too few female Unix geeks) will probably answer vi. (That’s
“vee-eye,” not “vie,” by the way.) It’s a very powerful text editor that’s
been around forever, and because a lot of programmers cut their teeth
on vi and then proselytized future generations, it’s become a sort of
badge of honor to be skilled in using vi.

Mac OS X includes vi, but I’m not going to tell you how to use it. As
command-line programs go, vi has the most opaque user interface I’ve
seen. Until you get used to vi’s oddities and memorize its commands,
you can’t even change a letter in a text document without referring to
a manual. Powerful or not, from a usability standpoint, vi is hideous.

68

I just want you to know about vi so that when someone asks you why
you don’t use it, you can give the correct response: “Life is too short.”

Happily, you can use several other fine text editors. There’s the
venerable emacs, which is less obnoxious than vi while still being
fabulously flexible. But I’m going to recommend what you might
think of as the TextEdit of command-line text editors: a simple,
straightforward, and adequately powerful program called nano.

Note: The nano editor is an “enhanced clone” of an earlier editor
called pico; they have almost identical interfaces and feature sets. In
much the same way as more and less, Mac OS X includes a program
called pico and a program called nano, but they’re the same, and if
you try to run pico, nano is what actually runs.

To edit a text file in nano, use a command like the following:

nano file1

If file1 is already present, nano opens it; otherwise, it opens a blank
file that will be called file1. Figure 5 shows a text file open in nano.

Figure 5: A text file open in the nano text editor. The menu of
keyboard controls is at the bottom of the window.

69

Natural selection: You can select text in a nano screen using your
mouse, and you can even copy it using Edit > Copy or Command-C.
But that’s pretty much the only reason to use your mouse in nano.

One of the reasons nano is easy to use is that editing is straightforward.
To insert text at the cursor location, simply type—or paste the contents
of your Clipboard by choosing Edit > Paste or pressing Command-V.
To delete the character to the left of the cursor, press the Delete key; to
delete the character at the cursor, press the Forward Delete key (if your
keyboard has one). To delete the entire current line, press Control-K.

Uncut: The nano editor doesn’t have an Undo command as such, but
if you cut a line of text with Control-K and want to restore it, you can
press Control-U to “uncut” it.

Other than those basics, here are the most important things you should
know how to do in nano:

• Save: To save the current file, press Control-O (WriteOut).

• Quit: To quit nano, press Control-X (Exit). If you’ve made any
changes to the document that you haven’t yet saved, nano prompts
you to save the file before exiting. Press N to discard changes and
quit immediately, C to cancel and stay in nano, or Y to save changes
and exit. If you do save changes, nano verifies that you want to keep
the existing file name (if you don’t, you can type a new one). Press
Return after verifying the file name.

• Find: To find text within the file, press Control-W (Where Is). Type
the text you’re searching for (case doesn’t matter) and press Return.
The cursor jumps to the next spot in the document where that string
appears. Repeat this procedure to do additional searches.

Those commands alone should enable you to do almost everything
you need to do in nano. To learn about additional nano features and
shortcuts, press Control-G to view its online help.

70

Create Your Own Shell Script

Before I wrap up this discussion of running programs, I want to give
you a tiny taste of creating your own shell scripts. Scripting is a bit like
learning chess: you can pick up the basics in a few minutes, but it may
take years to master all the subtleties. So I’m not going to teach you
anything about programming as such, just the mechanics of creating
and using a simple script. I want you to have enough familiarity with
the process that you can successfully reproduce and run shell scripts
you may run across in magazines, on Web sites, or even in this book
(see Command-Line Recipes, which includes a couple of shell scripts).

You can create and run a shell script in six easy steps; in fact, you can
arguably combine the first four into a single process. But one way or
another, you must make sure you’ve done everything in the list ahead.

Step 1: Start with an Empty Text File
Scripts are plain text files, so you should begin by creating one in a text
editor. You can make a shell script in TextEdit, BBEdit, or even Word,
but that requires extra steps. So I suggest using nano, as described in
Edit a Text File. For the purpose of demonstration, name your script
test.sh. (Remember from Run a Script that the .sh extension isn’t
mandatory, but it can help you keep track of which files are scripts.)

Before you create this file, I suggest using cd (all by itself!) to ensure
that you’re in your home directory. (You can put scripts anywhere you
want, but for now, this is a convenient location.) That done, enter nano
test.sh. The nano text editor opens with a blank file.

Step 2: Insert the Shebang
The first line of your script should include the “shebang” (#!) special
pointer (see Run a Script) to the shell it will use. Since this book is all
about the bash shell, we’ll use that one. Type the following line:

#!/bin/bash

Step 3: Add One or More Commands
Below the shebang line, you enter the commands your script will run,
in the order you want them executed. Your script can be anything from
a single one-word command to thousands of lines of complex logic.

71

For now, let’s keep things simple. Starting on the next line, type this:

echo "Hello! The current date and time is:"
date
echo "And the current directory is:"
pwd

The echo command simply puts text on the screen—and you’ve seen
the date and pwd commands. So, this script displays four lines of text,
two of which are static (the echo lines) and two of which are variable.

Step 4: Close and Save the File
To save the file, press Control-O and press Return to confirm the file
name. Then press Control-X to exit nano.

Step 5: Enable Execute Permission
The only slightly tricky thing about running scripts—and the step
people forget most often—is adding execute (run) permission to the
file. (I say more about this later, in Understand Permission Basics.)
To do this, enter chmod u+x test.sh.

Step 6: Run the Script
That’s it! To run the script, enter ./test.sh. It should display
something like this:

Hello! The current date and time is:
Wed Aug 1 19:58:21 CET 2012
And the current directory is:
/Users/jk

For fun, try switching to a different directory (say, /Library/
Preferences) and then run the script again by entering ~/test.sh.
You’ll see that it shows your new location.

Any time you need to put a new script on your system, follow these
same steps. You may want to store the scripts you create somewhere
in your PATH (see How Your PATH Works), or add to your PATH
(see Modify Your PATH), to make them easier to run.

Tip: For more on shell scripting, read Apple’s Shell Scripting Primer
at https://developer.apple.com/library/mac/#documentation/
OpenSource/Conceptual/ShellScripting/Introduction/
Introduction.html.

72

Customize Your Profile
Now that you know the basics of the command line and Terminal,
you may find some activities are a bit more complicated than they
should be, or feel that you’d like to personalize the way your shell
works to suit your needs. One way to exercise more control over the
command-line environment is to customize your profile, a special
file the bash shell reads every time it runs. In this chapter, I explain
how the profile works and how you can use it to save typing,
customize your prompt, and more.

How Profiles Work

A profile is a file your shell reads every time you start a new session
that can contain a variety of preferences for how you want the shell
to look and behave. Among other things, your profile can customize
your PATH variable (see How Your PATH Works), add shortcuts to
commands you want to run in a special way, and include instructions
for personalizing your prompt. I cover just a few basics here.

What you should understand, though, is that for complicated historical
reasons, you may have more than one profile (perhaps as many as four
or five!), and certain rules govern which one is used when.

When you start a new shell session, bash first reads in the system-wide
default profile settings, located at /etc/profile. Next, it checks if you
have a personal profile. It first looks for a file called ~/.bash_profile,
and if it finds one, it uses that. Otherwise, it moves on to look for
~/.bash_login and, finally, ~/.profile. Of these last three files, it
loads only the first one it finds, so if you have a .bash_profile file,
the others, if present, are ignored.

Note: You may also read about a file called .bashrc, which bash
reads in only under certain unusual conditions that you’re unlikely to
encounter when using Terminal on Mac OS X.

Because .bash_profile is the first user-specific profile to be checked,
that’s the one I suggest you use.

73

Note: Customizations you make in .bash_profile (or any of the
other profile files mentioned here) apply only in a shell session; they
aren’t used by shell scripts (see Create Your Own Shell Script). As a
result, when writing a script, you should always spell out complete
paths and assume default values for all variables.

Edit .bash_profile

To edit .bash_profile in nano, simply enter the following:

nano ~/.bash_profile

If the file already exists, nano opens it for editing; if not, it prompts
you to create the file when you save or quit the program.

This file is a simple text file, and unlike shell scripts, it doesn’t use
a shebang. Just add one or more lines to specify the changes that you
want (as described on the following pages). When you are finished
editing .bash_profile, save it (Control-O) and close it (Control-X).
Ordinarily, changes take effect with the next shell session (window
or tab) you open. To load the modified profile immediately, enter
source .bash_profile.

Create Aliases

In the Finder, an alias is a small file that serves as a pointer to another
file. In the command-line environment, however, the word alias means
a shortcut in which one command substitutes for another.

For example, suppose you’re used to command-line conventions from
DOS and Windows, in which you enter dir (directory) to list your files.
If you want to use that same command in Mac OS X, you can make
an alias, so that entering dir runs the ls command. Or, maybe there’s
a lengthy command you use frequently, and you want to run it with
fewer keystrokes. No problem: you can use (for instance) pp to mean
cp *.jpg ~/Pictures/MyPhotos.

74

To create an alias, put a new line in your .bash_profile consisting of
the word alias, a space, the shortcut you want to use, and ="" with the
command you want to run inside the quotation marks. For example,
to use the command dt as a shortcut for the date command, enter this:

alias dt="date"

Aliases can include flags and arguments, and if you enter a shortcut
that’s identical to an existing command, your alias takes precedence.
For example, if you always want to show file listings in the long format,
instead of typing ls -l every time, you can create an alias so typing ls
gives you the same result:

alias ls="ls -l"

Or, suppose you’ve taken my advice to heart to always use the -i flag
with cp (copy) and mv (move), to display a warning if the command is
about to overwrite an existing file. You could add aliases to new, easy-
to-remember commands like copy and move, respectively, with those
options pre-configured:

alias copy="cp -i"
alias move="mv -i"

Safety net: You could set up aliases so entering cp or mv would
include the -i flag, but I recommend against it because you might get
into a habit of using cp and mv carelessly, assuming you’ll be warned
of any impending overwrite. That could lead to data loss if you find
yourself using the command line on a computer that doesn’t have the
same aliases configured.

Modify Your PATH

As I explained in How Your PATH Works, when you run a program by
entering just its name, your shell looks for it in several predetermined
directories. You may want to specify additional places where programs
or scripts are located, to make it easier to run them. For example, if
you’re experimenting with your own scripts and you store them all in
~/Documents/scripting, you should add that directory to your PATH.

75

 

To add a directory to your PATH, put this in your .bash_profile:

export PATH=$PATH:/your/path/here

For example, to add the directory ~/Documents/scripting, enter this:

export PATH=$PATH:~/Documents/scripting

You can add as many of these export statements as you need. You can
also add multiple directories to your PATH in a single export
statement by separating them with a colon, like so:

export PATH=$PATH:~/Documents/scripting:/Library/Scripts

Change Your Prompt

Your command prompt—the string of characters at the beginning of
every command line—normally looks something like this:

Joes-MacBook-Pro:~ jk$ █

You can modify this by adding a line to your .bash_profile that
begins with PS1= and ends with whatever you want your prompt to be.
For example, if you enter this:

PS1="I love cheese! "

then the next time you open a shell, your prompt looks like:

I love cheese! █

Tip: Always enclose your prompt in quotation marks, and include
a space before the closing quotation mark, to make sure you can
easily see where the prompt ends and commands begin.

Prompts can include variables. Some common ones are these:

• \u: Your short user name

• \h: Your computer’s name

• \s: The name of the current shell

• \w: The current directory

• \d: The current date, in the format “Mon Feb 16”

• \@: The current time, in 12-hour format with AM/PM

76

So, to make the following prompt:

jk 09:08 PM ~ * █

Enter this:

PS1="\u \@ \w * "

Tip: For another example of a profile customization, see the recipe
Read man Pages in BBEdit or TextWrangler.

77

Bring the Command Line
into the Real World
So far in this book I’ve largely ignored Mac OS X’s graphical
interface, treating the command-line environment as a separate
world. In fact, because the command-line interface and the
graphical interface share the same set of files and many of the
same programs, they can interact in numerous ways.

In this chapter, I discuss how your shell and the Finder can share
information and complement each others’ strengths—giving you
the best of both worlds.

Get the Path of a File or Folder

Suppose you want to perform some command from the command line
on a file or folder you can see in the Finder, but you don’t know the
exact path of that folder—or even if you do, you don’t want to type the
whole thing. You’re in luck: there’s a quick and easy way to get the path
of an item from the Finder into a Terminal window.

To get the path of an item in the Finder, do the following:

1. In a Terminal window, type the command you want to use, followed
by a space. The space is essential!

2. Drag the file or folder from the Finder into the Terminal window.

As soon as you release the mouse button, Terminal copies the path of
the file or folder you dragged onto the command line. It even escapes
spaces and single quotation marks with backslashes for you
automatically! You can then press Return to run the command.

For example, suppose you want to use the ls -l@ command to list the
contents of a folder with their extended attributes (a type of metadata,
or extra information about files and folders in addition to their actual
contents), which you can’t see in the Finder. You could type this:

ls -l@

78

(Don’t forget the space after the @!) Then drag a folder into the
Terminal window, as shown in Figure 6.

Figure 6: Drag a file or folder into the Terminal window (top); when
you release the mouse button, you get that item’s full path (bottom).

Open the Current Directory in the Finder

On occasion you may be using the command line deep in Mac OS X’s
directory hierarchy (whether or not it’s a location that’s normally
visible in the Finder) and want to open the current directory as a folder
in the Finder.

79

You can do so with one of the simplest commands ever:

open .

That’s open followed by a space and a period. And that’s all it takes!

Open a Hidden Directory Without
Using Terminal

If all you want to do is open a directory that’s normally hidden, you
need not even open Terminal to do so, as long as you know its location.
Just choose Go > Go to Folder in the Finder. In the dialog that appears,
type the whole path of the directory you want to view (Figure 7) and
click Go. That directory opens as a folder in the current Finder
window.

Figure 7: Open almost any directory, even hidden ones, in the
Finder using the Go to Folder dialog.

Tip: When you’re typing a path in the Go to the Folder dialog,
you can use tab completion just as in the bash shell (see Use Tab
Completion); that can save you considerable typing and guessing.

Open the Current Folder in Terminal

Suppose you’re looking at some folder in the Finder and you realize
you want to run a command-line program on the items in it, such
as one that renames a bunch of files. You could open Terminal and
type in the path to the folder, but that can be cumbersome. Wouldn’t
it be great if, instead, you could just click a button, choose a menu
command, or press a keyboard shortcut and have a new shell session

80

open in Terminal, with the current directory already set to the folder
you were just looking at in the Finder?

In fact, you can do exactly that, with the help of a free utility written by
Jay Tuley. To install it, follow these steps:

1. Download cdto from http://code.google.com/p/cdto/ and unzip it
if necessary.

2. Look through the included folders to find the flavor of cdto designed
for your version of Mac OS X. Then drag the appropriate application
to /Applications/Utilities (or wherever you want to keep it).

3. Drag the application from its new home onto the toolbar of any
Finder window. In some cases, you can choose a special toolbar
icon style. (You may have to hold the mouse button down for a few
seconds as you drag until a plus (+) icon appears, signifying that the
Finder is ready to add a button to your toolbar.) Move your pointer
to where you want your new button to appear, and release the
button.

From now on, the button (shown in Figure 8 in Mountain Lion, with
Lion-style toolbar icon) appears in the toolbar of every Finder window.
You can click that button at any time to open Terminal and start a
new shell session with the directory preset to your current location.

Figure 8: Click the new cdto button in the toolbar of any Finder
window to open it in a new shell session.

81

Note: At publication time, cdto hadn’t yet been updated to support
Mountain Lion’s Gatekeeper security feature. Therefore, with default
security settings, the first time you open it, you must right-click (or
Control-click) the application icon, choose Open from the contextual
menu, and then, when the warning message appears, click Open.

Open a Mac OS X Application

If you ever need to open a standard Mac OS X application while on
the command line, you can do it by entering the open command with
the -a (application) flag. For example, to open Safari, just enter this:

open -a Safari

The open -a command is amazingly smart. You don’t have to tell
it where the application is located; it can be located in /Applications,
or /Applications/Utilities, or anywhere else on your disk—it
doesn’t matter. And you need not spell out “Safari.app” or go through
any other complicated steps to get to the application.

Open a File in Mac OS X

Similarly, you can open a particular file that you see on the command
line in the default Mac OS X application for that file type—or another
application. For example, if the current directory contains a graphic
named flowers.jpg, you can open it in its default application (probably
Preview) like so:

open flowers.jpg

But if you prefer to open it in Photoshop Elements, just enter this:

open -a Adobe\ Photoshop\ Elements flowers.jpeg

(Note the backslash before each space in the application name; you
could also put the application name inside quotation marks.) Don’t
forget you can use tab completion to help spell out the names of files
and directories, too.

82

Log In to Another
Computer
Every time you connect to another Mac to share files or other
system resources, you are, in a way, logging in to that other Mac.
However, in this chapter I describe a particular way of logging in
to a remote computer—doing so using SSH (secure shell), which
gives you access to the other computer’s command-line interface
from within your own Mac’s command-line interface. Logging in
via SSH lets you interact with another computer in the same way
you interact with your current Mac from inside a Terminal window.

You can connect to almost any Mac, Unix, or Unix-like computer
(and some Windows computers) using SSH, provided the other
computer has SSH enabled. (To enable incoming SSH access on
a Mac, check the Remote Login box in the Sharing pane of System
Preferences.) If you log in to another Mac, everything should
look quite familiar, whereas other operating systems may follow
different conventions. For the purposes of this chapter, I assume
that the remote computer is at least running a Unix-like system so
that most of the things you’ve learned in this book still apply.

Start an SSH Session

The easiest way to start an SSH session from Terminal is to begin in
an existing shell session. Then follow these steps:

1. Enter the following, substituting your user name on the remote
computer for user-name, and the remote computer’s IP address
or domain name for remote-address:

ssh user-name@remote-address

2. If this is the first time you’re connecting to this particular remote
computer, you will see a message something like the following:

The authenticity of host 'macbook-pro.local (fe80::20c:
74ee:edb2:61ae%en0)' can't be established.

83

RSA key fingerprint is d0:15:73:75:04:9a:c3:2d:
5b:b1:f8:c0:7d:83:52:ef.

Are you sure you want to continue connecting (yes/no)?

After reading the sidebar “SSH Security Considerations,” below,
assuming you’re still comfortable connecting, type yes and press
Return.

3. Text similar to the following appears on screen:

Warning: Permanently added ‘macbook-pro.local.,
fe80::20c:74ee:edb2:61ae%en0’ (RSA) to the list of known
hosts.

And following that is a password prompt. Type your password for
the remote computer and press Return.

Blind typing: As you type your password, no text appears—not
even bullet or asterisk characters. That’s normal.

Assuming the remote computer accepts your password, it presents you
with a new command prompt, often (but not always) accompanied by a
brief welcome message.

84

SSH Security Considerations
SSH is a highly secure protocol, so what’s with these fingerprints and
warnings?

The simplified explanation here for using SSH relies on your
trusting that the computer you’re connecting to is the one you think
it is—that no one has hijacked your connection. The fingerprint is a
unique identifier tied to each computer, and by agreeing (in Step 2)
that the fingerprint is correct, you’re saying you trust this fingerprint
for that computer. How would you know you can? If you’re connecting
to another Mac on your home network, you can safely take it for
granted. If you’re connecting to a computer at the office, a Web
server, or some other commercial computer, ask the system
administrator who’s in charge of it to confirm its fingerprint, and
make sure it matches what you see.

Once you accept a fingerprint, your Mac remembers it and checks
to see that the fingerprint matches that remote computer every time
you connect to it. If it doesn’t, it may be a sign that a hacker is trying
to trick you into connecting to the wrong computer.

Tip: To learn much more about the security implications of SSH
connections and how to avoid potential problems, read Take Control
of Your Wi-Fi Security.

Run Commands on Another Computer

Once you’re logged in to another computer, you run commands
on it exactly the same way you do on your own Mac—just enter the
command and any necessary flags and arguments.

However, you should be aware of a few potential “gotchas” when
connecting to other computers:

• Your default shell on the other computer might not be bash, so
some commands may not work the way you expect. Usually—
though not always—you can switch to the bash shell, if it’s not
already running, simply by entering bash.

• Your .bash_profile (see Customize Your Profile) applies only
to the bash shell running on your own Mac—not the shell that’s

85

running on the remote Mac! So your existing aliases, PATH
variable, and other settings may not work. If you have sufficient
permission, you can of course create a .bash_profile on the remote
computer as well.

• If the other computer is a Mac, and especially if it’s running the
same version of Mac OS X that you are, you can assume that most
programs will be in the same locations. But be aware that a program
you want to use could be missing, located somewhere else, or
configured in a way that denies you access.

• If you use a command that opens an application outside Terminal—
for example, if you enter open flowers.jpeg to open a graphic in
the default application (which on a Mac is Preview), that application
opens on the remote computer, not the one where you physically
typed the command!

End an SSH Session

To close your remote connection, simply enter exit. You return to your
existing shell session on your own Mac. As is the case when exiting
your own shell session, it’s always best to use exit to end a remote
session gracefully, shutting down any processes that may be running
and doing associated clean-up tasks.

86

Venture a Little Deeper
As I said in the Introduction, this book isn’t designed to turn anyone
into a propellerhead; it’s all about basic command-line proficiency.
Even so, some activities you may have to perform involve some
slightly geekier concepts.

In this chapter, I introduce you to the notions of file permissions,
owners, and groups, which are essential items to understand for
many command-line tasks. I also explain how to temporarily
assume the power of the root user using the sudo command.

Understand Permission Basics

As you may recall from See What’s Here, when you list files in the long
format (ls -l), you can see the permissions, owner, and group of each
file and directory. Every file in Mac OS X has all these attributes, and
you should understand how they work because they influence what you
can and can’t do with each item.

Note: This section barely begins to scratch the surface of
permissions. To learn the full details, I heartily recommend reading
Brian Tanaka’s Take Control of Permissions in Snow Leopard (which
also applies to newer versions of Mac OS X).

Before I get into how you read or change permissions, I want to
describe the basic options. Put simply, permissions consist of three
possible activities (reading, writing, and executing), performed by any
of three types of user (the file’s owner, the file’s group, and everyone
else). Three types of permission multiplied by three types of user
equals nine items, each of which can be specified individually for every
file and folder.

Read, Write, and Execute
Someone with permission to read a file can open it and see what’s
in it. Someone with write permission can modify an item or delete
it. Execute permission, for a file, means it can be run (that is, it can
behave as a program or script); for a directory, execute permission
means someone can list its contents.

87

On the command line, read permission is abbreviated with an r,
write permission is abbreviated with a w, and execute permission is
abbreviated with an x.

User, Group, and Everyone Else
Every file and folder specifies read, write, and execute permissions for
the following types of user:

• User: In terms of file permissions, the term user means the owner
of a file or directory. (The user may be a person, like you, or it may
be a system process, such as _www—Mac OS X’s built-in Web server.)

• Group: Each file and directory also has an associated group—one
or more users for whom a set of permissions can be specified. That
group could have just one member (you, for example), or many.
Mac OS X includes several built-in groups, such as admin (all
users with administrator access), staff (all standard users without
administrative access), and wheel (which normally contains only
the root user—see Perform Actions As the Root User); you can also
create your own groups.

• Others: Every user who is neither the owner nor in the file’s group
is lumped into the “others” category.

Reading Permissions, Owner, and Group
To illustrate how this all works, suppose you find the following two
items in a certain directory by entering ls -l (list in long format):

drwxr--r-- 15 jk admin 510 Aug 27 15:02 fruits
-rw-r--r-- 2 root wheel 1024 Sep 02 11:34 lemon

For the purposes of this section, we care about just three of the items
on each line (apart from the item’s name, at the end). The initial group
of characters (like drwxr--r--) constitutes the permissions, and the
two names in the middle (like jk admin) are the user and group,
respectively. For now, you can ignore all the other information.

Directory or Not?
The first character of the permissions string tells you whether the
item in question is a directory or a regular file. So in the first example
(drwxr--r--), the item fruits is a directory because its permissions
string starts with a d. The second item, lemon, has a hyphen (-) in the
first slot, which means it’s not a directory (in other words, it’s a file).

88

Three Permissions, Three Sets
The remaining nine positions in the mode specify the three possible
permissions for user (the first three characters), the group (the middle
three), and others (the final three).

In each set of three characters, the order is always the same: r (read),
w (write), and x (execute). So picture a template with ten slots, of which
the first is the d character for directories:

directory user group others ← Access for whom
d rwx rwx rwx ← A directory with all attributes on
- --- --- --- ← A file with all attributes off

For each kind of user, each permission can be either on or off. If it’s on,
the corresponding letter (r, w, or x) appears; if it’s off, you see a hyphen
(-). So, for example, if the owner’s permissions are rwx, it means she
can read, write, and execute the item; if they’re r--, she can read only.

If everybody—user, group, and others—had read, write, and execute
permissions for a file, its permissions would look like this:

-rwxrwxrwx

Here are a few other combinations to make the system clear:

• Owner can read, write, and execute; group and others have no
permission:

-rwx------

• Owner can read and write; group and others can read:

-rw-r--r--

• Everyone can read and execute, but only the owner can write:

-rwxr-xr-x

• Owner can read and write; group can read only; others have no
permission:

-rw-r-----

Owner and Group
After the file’s permissions and a number (the number of links to the
item—a concept that’s beyond the scope of this book) are two names.
The first of these is the file’s owner (user) and the second is its group.

89

For example in this item:

drwxr--r-- 15 jk admin 510 Aug 27 15:02 fruits

the owner is jk and the group is admin. (In some cases, owner, group,
or both may be shown as numbers, such as 501, rather than names.)

What’s with the + and @ Characters?
Sometimes a file has an extra character at the end of the permissions
string—either a + or an @. For example:

drwx------@ 90 jk staff 3060 Aug 1 09:29 Library
drwx------+ 8 jk staff 272 Jul 11 11:24 Movies

The + means the item includes an ACL (access control list), which
is a more elaborate and finer-grained way of specifying permissions
than simply read, write, and execute for user, group, and others. To
see the ACL settings for a file or directory, use ls -le.

The @ means the item includes extended attributes (extra metadata
beyond the file’s contents). To see which types of extended attributes
a file or directory contains, use ls -l@; to view the contents of those
extended attributes, use xattr -l file.

Understanding, using, and modifying ACLs and extended attributes is,
alas, beyond the scope of this book.

Permissions and You
When you create a file (whether by saving, copying, moving,
downloading, or whatever), you become that file’s owner (user).

In addition, by default, all users on a Mac have read and write
permission (and, for directories, execute permission) for everything
in their home folders, and can read and execute shared items (such as
things in the /Applications folder). However, users can’t read or write
files, or view the contents of directories, owned by other users.

Your default group (and thus, the default group of files in your home
folder and new items you create anywhere) depends on a few factors,
the most significant of which is what sort of user account you have
(as specified in the Users & Groups or Accounts pane of System
Preferences). If you’re an administrator, your default group is normally
admin; otherwise, it’s normally staff.

90

Change an Item’s Permissions

If you want to change an item’s permissions, you use the chmod
command (for “change mode,” mode being a Unix way of describing
an item’s permissions). You can use chmod in a number of different
ways, but what I describe here is the easiest one to understand—it’s
what you may sometimes hear described as chmod’s symbolic mode.

To change permissions with chmod, you simply indicate one or
more of user, group, and others (using the abbreviations u, g, and o
respectively), then + or - (to add or remove permissions), and one or
more of r, w, and x (for read, write, and execute), followed by the file
or directory. For example, to grant group write access to the file file1,
you might enter this:

chmod g+w file1

To remove others’ execute permission, enter this:

chmod o-x file1

You can affect multiple users at once—for example, add read access for
user, group, and other in one stroke with this:

chmod ugo+r file1

You can also affect multiple permissions at once—for example,
subtract read, write, and execute permission for the group and others
with the following:

chmod go-rwx file1

Note: Ordinarily, you can change an item’s permissions only if you
are the owner or are in the item’s group, and if you already have (in
either capacity) write permission. In all other cases, you must use
sudo (described ahead) before the chmod command.

In order to make more complex changes in one go (say, adding write
permission for the user while removing execute permission for others),
you must use chmod’s absolute mode, which I don’t cover here—you
can read all about it in Take Control of Permissions in Snow Leopard
(which also applies to newer versions of Mac OS X).

91

Change an Item’s Owner or Group

To change an item’s owner, group, or both, use the chown (change
owner) command. It takes one or two arguments—the new owner and/
or the new group, separated by a colon (:)—followed by the item you
want to change. For example, to change the owner of the file file1 to
bob (without changing the group), enter:

chown bob file1

To change the owner of file1 to bob and the group to accounting,
enter:

chown bob:accounting file1

To change only the group, but not the owner, simply leave out the
owner but include the colon before the group:

chown :accounting file1

However… What I just said is hypothetical, because as an ordinary
user you can’t change an item’s owner—that would mean changing it
either to or from an account to which you don’t have access! Similarly,
you can change an item’s group only if you’re a member of both the
old group and the new group. So for all practical purposes, the chown
command must always be performed using sudo, described next.

Perform Actions as the Root User

As a security measure, Mac OS X (like all Unix and Unix-like operating
systems) prevents users from viewing or altering files that don’t belong
to them, including those that make up the operating system itself.
However, in certain situations you may have a legitimate need to alter
a file or folder of which you’re not the owner—or run a command for
which your user and group don’t have execute permission.

Every Mac has a special, hidden account called root, which is a user
with virtually unlimited power to change anything on the computer.
The root account is disabled by default, and that’s for the best.
However, any administrator can temporarily assume the capabilities
and authority of the root user, even without the root account as such
having been activated.

92

The way you do this is to use the sudo (“superuser do”) command.

Sue Due: Because the “do” in sudo is the actual verb do, the preferred
pronunciation of the term rhymes with “voodoo.” But lots of people
pronounce it to rhyme with “judo,” which is also logical—and
acceptable to everyone except the nitpickiest geeks.

For Administrators Only
Before I go any further, I must make this crystal clear: only users
with administrator privileges can use sudo. If your Mac has just one
user account, it’s automatically an administrator account. However, as
you create additional accounts, they only gain administrator privileges
if you check the Allow User to Administer This Computer box in the
Users & Groups (or Accounts) pane of System Preferences.

Most Mac experts recommend using a non-administrator account for
ordinary, day-to-day computing, logging in as an administrator only
when necessary. That’s good advice, but if you follow it, you’ll have to
do one of two things before you can make use of the sudo command:

• Log in as an administrator first, and then run Terminal, or

• In your shell session in Terminal, switch to an administrator’s
account using the su (switch user) command, like so:

su user-name

(Replace user-name with the short user name of an administrator,
and enter that account’s password when prompted.)

Blind typing: As you type the administrator account’s password, no
text appears—not even bullet or asterisk characters. That’s normal.

Using sudo
Once you’re logged in as an administrator, to perform any command as
the root user, preface it with sudo:

sudo command

The sudo command prompts you to enter the administrator account
password; do so now.

93

Blind typing: As you type your password, no text appears—not
even bullet or asterisk characters. That’s normal.

The shell then performs whatever command you just entered as
though you’d entered it as the root user, which ordinarily means
it’s guaranteed to work as long as you entered it correctly.

If you perform a command and get a “permission denied” error, try
it again with sudo in front of it, and in all probability it will work the
second time. For example, if you try to change a file’s owner like so:

chown bob file1

and you get this message:

chown: file1: Operation not permitted

try this instead:

sudo chown bob file1

Tip: Now that you understand how sudo works, you may enjoy this
highly geeky comic: http://xkcd.com/149/.

Notes and Precautions
Before you start using sudo, you should be aware of a few things:

• The 5-minute rule: Once you use sudo and enter your password,
you can enter additional sudo commands, without being prompted
for a password, for 5 minutes. The timer resets every time you use
sudo.

• Great power = great responsibility: You can do almost
anything with sudo, and that includes damaging Mac OS X beyond
repair. So use sudo only when necessary, and only when you know
what you’re doing.

• Stay for a while: If you know you must enter a large number
of commands with root privileges, you can avoid having to enter
sudo every time by switching to the root user’s shell account. (Again,
surprisingly, this does not require that the root account actually be
enabled on your Mac!)

94

To switch to the root user’s shell, enter sudo -s and supply your
password if requested. Your prompt changes from a $ to a # to
signify that all commands you enter are now performed as the root
user.

Be extra careful! If sudo alone is dangerous, sudo -s is asking
for trouble. It’s a convenience feature I personally use on rare
occasions, and it can be handy in a few situations in which sudo
alone won’t do the trick. But use this with the utmost caution, and
be sure to enter exit to log out of the root user’s shell as soon as
possible.

95

Command-Line Recipes
You’ve learned about the raw ingredients and the tools you need
to put them together. Now it’s time for some tasty recipes that put
your knowledge to good use! In this chapter, I present a selection of
short, easy-to-use commands and customizations you can perform
in the bash shell. Many use features, functions, and programs I
haven’t mentioned elsewhere in this book, and although I describe
essentially how they work, I don’t go into detail about every new
item included in the recipes. Just add these herbs and spices as
directed, and enjoy the results!

Change Defaults

Most Mac OS X applications, from the Finder to Mail to iTunes,
store their settings in specially formatted property list, or .plist, files.
Surprisingly, applications often have hidden preferences that don’t
show up in their user interfaces—but if you put just the right thing
in the preference file, you can change an application’s behavior in
interesting ways, or even turn on entirely new features.

One way to edit preference files is to open them in a text editor, or
in Apple’s Xcode development environment (which is available as a
free download from the Mac App Store). But another, often easier way,
is to use a command called defaults which can directly add, modify,
or remove a preference from a .plist file. The recipes in this first set all
use the defaults command.

Before using these commands to alter an application’s defaults, quit
the application if possible (obviously that’s not an option with the
Finder or the Dock).

96

Force Incoming Mail Messages to Appear in
Plain Text
As I wrote in Take Control of Apple Mail in Mountain Lion, I prefer
to read incoming messages in Mail in plain text format if possible.
Not all messages include a plain text version, but for those that do,
the following command ensures that this version appears by default:

defaults write com.apple.mail PreferPlainText -bool TRUE

If you’re reading a message in plain text format and you want to switch
it to a different (HTML or Rich Text) format, choose View > Message >
Best Alternative, or press either Command-Option-[or Command-
Option-[(you may need to use both to cycle to the format you want).

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Bring Dashboard Widgets onto the Desktop
This is an oldie but a goodie. If you dislike having to switch into
Dashboard to see one or two commonly used widgets and would like
to display them directly on your Desktop, enter this:

defaults write com.apple.dashboard devmode YES; killall Dock

Having done this, press F12 to display Dashboard. Then click on a
widget and, while holding down the mouse button, press F12 again
to return to the Desktop. Your widget will still be visible.

(To reverse this setting, repeat the command, changing YES to NO.)

Deactivate Dashboard
Or perhaps you don’t like Dashboard at all. If you never use it, and
would just as soon it never runs (even if you click its icon in the Dock),
disable it entirely by entering this:

defaults write com.apple.dashboard mcx-disabled -boolean
YES; killall Dock

(To reverse this setting, repeat the command, changing YES to NO.)

Expand Save Dialogs by Default
Ordinarily when you use an application’s Save or Export command,
the Save dialog that appears gives you only a simple pop-up menu
from which to select a location for a file; you have to click the triangle

97

button to expand it so it shows your entire computer. To make all
Save dialogs appear in their expanded state by default, enter this:

defaults write -g NSNavPanelExpandedStateForSaveMode -bool TRUE

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Show Hidden Files in the Finder
By default, the Finder keeps some files and folders hidden—those
whose names begin with a period and many of the Unix files and
directories at the root level of your disk. That’s usually good, because
it prevents you from changing things that could cause your computer
to break, but if you want to see all your files and folders, enter this:

defaults write com.apple.finder AppleShowAllFiles TRUE; killall Finder

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Prevent Dock Icons from Bouncing
When an application wants to get your attention, its Dock icon usually
bounces. If you find this distracting and want to turn off the bouncing,
enter the following:

defaults write com.apple.dock no-bouncing -bool TRUE; killall Dock

(To reverse this setting, repeat the command, changing TRUE to FALSE.)

Change the Screenshot Format
When you take a screenshot in Mac OS X (using either the Grab utility
or the Command-Shift-3 or Command-Shift-4 keyboard shortcuts),
the resulting pictures are normally saved, on your Desktop, in PNG
(Portable Network Graphics) format. If you prefer another format,
such as JPEG, enter this:

defaults write com.apple.screencapture type JPEG; killall SystemUIServer

Use the same command, but substitute TIFF, PNG, or PICT for JPEG to
use one of those formats.

98

Perform Administrative Actions

This group of recipes involves administrative tools—things you might
need to do on a multi-user Mac, a server, or a remote Mac.

Use Software Update from the Command Line
If you want to run Software Update on your Mac without having to
deal with intrusive windows, or if you want to run it on a remote Mac
via SSH, enter the following command:

sudo softwareupdate -i -a

The -i and -a flags together mean “go ahead and install everything
Software Update finds.” Note that even though Apple rolled the
features of Software Update into the Mac App Store starting with
Mountain Lion, this command applies only to Apple software, not to
third-party software downloaded from the App Store.

List Users Who Logged In Recently
Is your Mac used by a number of different people? Do users sometimes
log in remotely? If you’d like to know who’s been logging in recently,
you can get a lengthy list with this command:

last

This command lists the users who have logged into this machine,
the IP address or terminal from which they logged in, and important
system events such as shutdowns and restarts.

Find Interesting Stuff in Log Files
Many Unix and Mac OS X applications and background processes
constantly spit out log files detailing what they’ve been up to and,
perhaps most important, any errors they’ve encountered. Most system
processes store their log files in /var/log, and although you can open
them in any text editor, they tend to be so long and inscrutable as to
make the exercise more bother than it’s worth. Luckily, you can use
the grep command to sift through log files looking for specific strings.

For example, to look through the main system log for every instance of
the word error (a sure sign of an interesting entry), enter this:

grep error /var/log/system.log

99

Or, to look for all entries involving Time Machine (whose background
process is called backupd), enter this:

grep backupd /var/log/system.log

If you’d rather have a paged display instead of dumping the output
directly onto the command line, you can pipe it through less, like so:

grep backupd /var/log/system.log | less

Modify Files

A number of common recipes involve modifying files in some way.
Here’s a selection.

Change the Extension on All Files in a Folder
The mv command, as I discussed in Move or Rename a File or
Directory, has an unfortunate shortcoming in that it can’t rename
a batch of files all at once using wildcards. But never fear, you can still
get the job done. Begin by creating the following shell script, using the
instructions in Create Your Own Shell Script:

#!/bin/bash
for f in $3/*.$1; do

 base=`basename $f .$1`
 mv $f $3/$base.$2

done

Note: This script makes use of the backtick (`) character, which
is called a grave accent when placed over a vowel. It’s on the same
key as the tilde (~), and should not be confused with the apostrophe
(') or the backslash (\).

Make sure it’s located somewhere in your PATH, and that it’s
executable (see Understand Permission Basics, earlier). I call this
script br.sh, for “batch rename.”

To run this script, enter the script name followed by the old extension,
the new extension, and the directory in which to make the change—in
that order.

100

For example, to change all the files in ~/Documents with the
extension .JPG to end in .jpeg, enter this:

br.sh JPG jpeg ~/Documents

Decompress Files
If you decide to download Unix software (or source code to
compile yourself), it may be packaged in any of several unfamiliar
archive formats. A file ending in .tar is a “tape archive” (a way of
bundling files together without necessarily compressing them); the
extensions .gz and .bz2 refer to different compression mechanisms,
and you may see a combination of these (such as archive.tar.gz).

To decompress and/or unpack these, use one of the following
commands, based on the extension(s) the file has:

tar -xf archive.tar
tar -xzf archive.tar.gz
tar -xjf archive.tar.bz2

As you can see, each compression format requires a different flag—use
-z for .gz (or .tgz) and -j for .bz2 (or .bz).

Convert Documents to Other Formats
Mac OS X includes a marvelous command-line tool called textutil,
which can convert text documents between any of numerous common
formats. This can be particularly useful in cases where you don’t have
Microsoft Word, or aren’t satisfied with the way it saves files in other
formats. Here are a couple of examples.

Convert a File from RTF to Word (.doc)
To convert the file file1.rtf (RTF format) to Word format (.doc) and
save it as file2.doc, enter this:

textutil -convert doc file1.rtf -output file2.doc

Convert a File from Word (.doc) to HTML
To convert the file file1.doc (Word format) into HTML format and
save it as file1.html, enter the following:

textutil -convert html file1.doc

(When no filename is specified, textutil uses the same filename with
an extension corresponding to the format you requested.)

101

Note: The textutil program supports other formats too; just
substitute the format of your choice for doc or html in the examples
above. Among the most useful options are txt (plain text), html
(HTML), rtfd (RTF with attachments), docx (Open Office XML), and
webarchive (Web archives, like Safari uses).

Work with Information on the Web

The command-line environment includes a handy program called
curl that can connect to Web, FTP, and other servers and upload
or download information. Here are a few examples of how to use it.

Download a File
If you know the exact URL of a remote file on a Web, FTP, SFTP, or
FTPS server, you can fetch it with this simple command (fill in the
URL as appropriate):

curl -s -S -O URL

The file is downloaded to your current directory.

Save a Local Copy of a Web Page
When you browse the Web in Safari, you can save the source of any
Web page. You can do the same right on the command line, without
ever opening a browser, using this command:

curl URL > filename.html

For example, to save the source of the TidBITS home page to a file
named tidbits.html, you can enter this:

curl http://tidbits.com/ > tidbits.html

Note that this command doesn’t download graphics, style sheets, or
other files linked from the Web page, so the page may not look entirely
correct if you open it in a browser.

Note: This script uses the redirect (>) operator to send the output of
a program to a file rather than displaying it on screen. That makes it
a close relative of the pipe (|), which redirects a program’s output to
another program.

102

Put the Source of a Web Page on the Clipboard
What if you don’t want to save a Web page to a file, but instead want
to put it on your Clipboard so that you can paste it into another
application? Enter the following:

curl URL | pbcopy

For example:

curl http://tidbits.com/ | pbcopy

Manage Network Activities

The following several recipes involve ways of getting information about
local and remote networks, and the computers running on them.

Get Your Mac’s Public IP Address
If your Mac is connected to the Internet using a gateway, modem, or
router, its private IP address (the one you can see in the Network pane
of System Preferences) probably isn’t the same as the public address
that other computers see.

To find out your Mac’s current public IP address, enter this:

curl -s http://www.showmyip.com/simple/; echo

The echo command is there only to make sure there’s a blank line after
your IP address when it’s reported, to improve readability.

Get a List of Nearby Wi-Fi Networks
The Wi-Fi menu in your menu bar lists nearby Wi-Fi networks. But if
you’ve turned off that menu, or simply want to get at that information
from the command line, enter this:

/System/Library/PrivateFrameworks/Apple80211.framework/
Versions/A/Resources/airport -s

It displays nearby networks’ names (SSIDs), MAC addresses,
encryption types, and other useful information. To learn what else
this tool can do, substitute the -h (help) flag for -s. Yes, the full path
is needed for executing this command: if you think you’ll use it often,
you can set up an alias for it (see Customize Your Profile, earlier).

103

Find Out Which Applications Have Open TCP/IP
Network Connections
You take it for granted that your Web browser and email program are
connected to the Internet. But what other applications or background
processes have network connections? Is anything covertly “phoning
home?” To see a list of processes you own that are accessing the
Internet, enter this:

lsof -i

To see a list of all processes accessing the Internet, enter:

sudo lsof -i

Either way, you get a list of the processes on your Mac that currently
have Internet connections, along with the domain names or IP
addresses to which they’re connected, the ports they’re using, and
other useful tidbits.

Determine If Another Computer Is Running
Did your server crash? Is another Mac on your network turned on
and awake? The easy way to find out if another computer is on, awake,
and connected to the network is to use the ping command.

Enter this (substituting the remote computer’s domain name or IP
address):

ping address

If you see a sequence of lines that look something like this, the
computer is responding:

64 bytes from 216.168.61.41: icmp_seq=0 ttl=49 time=799.227 ms

Press Control-C to stop pinging. If more than 30 seconds go by without
any such line appearing, either the computer is offline, it is configured
not to respond to pings, or there’s a network problem.

Get Information about an Internet Server
What’s the IP address of that Web server you’re connecting to? An easy
way to find out is to use the host command:

host domain-name

104

This command returns the IP address(es) for that domain name.
It also indicates if the domain name is an alias to another computer,
and lists any mail exchange servers associated with that domain. For
example, enter host www.tidbits.com to learn the IP address of the
TidBITS Web server, the fact that www.tidbits.com is actually an alias
(pointer) to a computer called sparky.tidbits.com, along with the
domain names and IP addresses of the tidbits.com mail exchange
servers.

Get Information about a Domain Name
If you need to find out what person or organization owns a domain
name, enter the following:

whois domain-name

For example, if you enter whois tidbits.com, you’ll likely learn which
registrar handles the domain, the addresses of its name servers, and
contact information for the domain’s owner.

Work with Remote Macs

These two recipes help you work with Macs you’re accessing remotely.

Use Secure Screen Sharing via SSH
Mac OS X’s built-in Screen Sharing feature gives you an incredibly
easy way to see, and control, another Mac’s screen. If you’re sharing
the screen of another Mac running Leopard or newer, the network
connection can be encrypted—choose Screen Sharing > Preferences
and select Encrypt All Network Data (More Secure) to encrypt the all
data flowing between the two computers. But if you’re using Screen
Sharing with a Mac running an older version of Mac OS X, or with
any computer using VNC, someone could in theory eavesdrop on your
screen-sharing session. To prevent this, you can create an SSH tunnel
to encrypt the connection.

First, put the following in your .bash_profile file (see Customize Your
Profile) and then start a new shell session:

alias stss="(sleep 15; open vnc://127.0.0.1:5901) & ssh -C
-4 -L 5901:127.0.0.1:5900"

105

  

Then, to start a session, enter the following, substituting your own user
name and the domain name or IP address of the remote computer:

stss user-name@domain.com

As soon as you see the prompt to enter your password for the
remote computer on the command line, do so. Then, a moment
later, another authentication dialog should appear. Once again, enter
your credentials (your short user name and password) for the remote
computer. Once you’ve done this, a secure screen sharing session
begins.

If the remote computer takes a while to respond, you may not have
time to enter your password on the command line before Screen
Sharing launches; if this happens, you’ll get an error message. The
easy way to fix this problem is to enter the alias command again,
changing the number 15 after the command sleep to a higher number.

Restart a Remote Mac
If you need to reboot the Mac you’re sitting in front of, you can simply
choose Apple > Restart. But what if you’re logged in to another Mac
via SSH? To restart it, just enter this:

reboot

Needless to say, you should use this with caution—anyone else who
happens to be using the computer at the time might be unhappy!

Troubleshoot and Repair Problems

These next few recipes can help you solve problems that keep your
Mac from working correctly.

Delete Stubborn Items from the Trash
Occasionally, you may find that no matter what you do, you can’t
empty your Trash. Maybe you get an inscrutable error message, or
maybe it just doesn’t work. If this happens, try the following (taking
all the necessary precautions associated with sudo, of course):

sudo rm -ri ~/.Trash/*

The rm command prompts you for confirmation to remove each item.

106

Warning! Do be certain to type these commands exactly right; using
sudo rm can do some serious damage if you’re not careful!

If that doesn’t work, try each of these until the Trash is empty:

sudo rm -ri /.Trashes/*
sudo rm -ri /Volumes/*/.Trashes/*

Figure Out Why You Can’t Unmount a Volume
Have you ever tried to eject a CD, disk image, or network volume,
only to see an error message saying the volume is in use? If so,
the maddening part can be figuring out which process is using it
so you can quit that process. So enter the following, substituting for
VolumeName the name of the volume you can’t unmount:

lsof | grep /Volumes/VolumeName

This command shows you any processes you own that are currently
using this volume; armed with this information, you can quit the
program (using the kill command if necessary, as described in Stop
a Program). One frequent offender: the bash shell itself! If that’s the
case, you’ll see something like this:

bash 14384 jk cwd DIR 45,8 330 2 /Volumes/Data

If you’ve navigated to a directory on this volume in your shell, Mac
OS X considers it “in use.” The solution in this case is to exit the shell,
or simply cd to another directory.

If this command doesn’t tell you what you need to know, repeat it,
preceded by sudo.

Reset the Launch Services Database
Mac OS X’s Launch Services database keeps track of which programs
are used to open which files, among other things. If you find that the
wrong application opens when you double-click files, or that icons
don’t match up with the correct items, you may need to reset your
Launch Services database. Do it like this (enter the command as a
single, long line—no space between LaunchServices. and framework):

/System/Library/Frameworks/CoreServices.framework/Frameworks/
LaunchServices.framework/Support/lsregister -kill -r -domain local
-domain system -domain user

107

Because this resets a lot of default mappings, your Mac may think
you’re launching applications for the first time and ask if it’s okay.
Agree to the alerts and you should be in good shape.

Fix Disk Problems without a Startup DVD
If your startup disk has problems, the usual remedy is to use Recovery
mode (which starts from a hidden Recovery HD volume), or start up
from a Mac OS X Install DVD (or another startup volume), and then
run Disk Utility. If your Mac doesn’t have a Recovery HD volume
(installed automatically as part of Lion or later) you don’t have another
startup volume handy, try this recipe.

First, power on (or restart) your Mac while holding down Command-S
to enter single-user mode. You’ll see a text display much like the inside
of a Terminal window. Enter the following two commands, pressing
Return in between:

mount -o remount,rw /
fsck -y /

The fsck utility (“file system check,” which is like a command-line
version of Disk Utility) checks most of your disk for errors, and repairs
those it can. To restart your Mac normally afterward, enter reboot.

Get Help in Style

These two recipes let you read man pages in a friendlier environment
than Terminal, without installing any extra software.

Read man Pages in Preview
The man command can save manual pages as beautifully formatted
PostScript files, which Preview can then read. Because it’s a multi-step
process, you need a shell function (like a shell script, but contained
directly in your .bash_profile file) to help you do this. So, following
the instructions in Customize Your Profile, put the following lines in
your .bash_profile:

psman()
{
man -t "${1}" | open -f -a /Applications/Preview.app/
}

108

Having done that, to view a man page in Preview, enter the following,
substituting the name of whatever command you want to read about:

psman command

Et voilà! After a few seconds, a spiffy manual page opens in Preview.

Read man Pages in BBEdit or TextWrangler
Perhaps you’re more of a plain text, monospaced font kind of person.
If you always have BBEdit (or its free “little brother” TextWrangler)
open anyway, you can use it to open all your man pages instead of the
built-in man program.

To make this happen, install the command-line tools available for
either editor, add the following line to your .bash_profile (see
Customize Your Profile), and then start a new shell session:

export MANPAGER="col -b | bbedit --clean --view-top"

If you’re using TextWrangler, just substitute edit for bbedit in the
command. Thereafter, entering man (followed by the command of your
choice, such as man ls) displays the manual page in your text editor.

Do Other Random Tricks

Finally, we have a bunch of interesting recipes that didn’t fit neatly in
any of the other categories. Enjoy!

Take a Screenshot
You can take a screenshot by pressing Command-Shift-3; the image
is named Picture X by default and stored on your Desktop. But what
if you want to take a screenshot and give it a different name, or store it
somewhere else? Or—this is pretty cool—take a screenshot of a remote
Mac you’re logged in to via SSH? You can do it with this command
(substituting the name and location of the saved screenshot to taste):

screencapture ~/myscreen.png

Compact a Disk Image
Of the numerous disk image formats Disk Utility can create, two
of them—sparse disk images and sparse bundle disk images—have
the interesting characteristic that they can expand as needed (up to

109

a preset limit) to accommodate more files. (See my TidBITS article
“Discovering Sparse Bundle Disk Images,” at http://tidbits.com/
article/9673.) The only problem is, they don’t automatically shrink
again when you delete files! To compact a sparse or sparse bundle
image so that it takes up only the space it needs, enter the following,
substituting the image’s name and location as appropriate:

hdiutil compact image.dmg

Use Text-to-Speech from the Command Line
This is mostly just for fun. To have your Mac speak text using the text-
to-speech voice currently selected in the Text to Speech view of the
Speech pane of System Preferences, enter the following:

say "Hello there"

Note that this even works remotely, assuming you’re logged in to a Mac
on the other end. Use your power responsibly!

As a more practical example, you can make a quick-and-dirty
countdown timer using a command like this, substituting for 60 the
number of seconds to wait before the Mac speaks the text you enter:

sleep 60; say "One minute has elapsed"

Prevent a Laptop from Waking up When Jostled
During Travel
Mac laptops are designed to go to sleep automatically when you close
the lid and wake up automatically when you open the lid. But if your
computer happens to be bumped just the right way while it’s in its
case, the lid can open just enough to wake up the computer, potentially
causing it to overheat, or causing your battery to run down, while it
should be asleep. To prevent the computer from waking up
automatically when the lid opens, enter this:

sudo pmset -a lidwake 0

Thereafter, wake your Mac by pressing a key after you open the lid.

(To reverse this setting, repeat the command, replacing the 0 with a 1.)

Use the Power Button to Put Your Mac to Sleep
When you press and release the power button on your computer, what
normally happens is that a dialog appears with Restart, Sleep, Cancel,

110

and Shut Down buttons. If you prefer to put your computer directly to
sleep with a single (short) press of the power button, enter this:

sudo pmset powerbutton 1

(To reverse this setting, repeat the command, replacing the 1 with a 0.)

Find a File by Content
Earlier, in Find a File, I showed how to use the find command to find
a file by name. You can also use the command to find a file based on its
content, but an even easier way is to use the grep command. Enter the
following, replacing your text with what you want to find:

grep -R "your text" .

A couple of notes about this command:

• As written, it searches from the current directory downward. To
search your entire disk (enormously time-consuming), replace the
period (.) with a slash (/). Or, replace the period with whatever
directory you want to use as the starting point for the search.

• This search finds partial matches without using wildcards; the
string bar matches “baroque” and “lumbar”.

List More Directory Information
You should be thoroughly familiar with the ls (“list”) command,
introduced in See What’s Here. Among the flags that modify its
behavior, I’ve described elsewhere in this book -l (long format) and -h
(human-readable). But if you want ls to truly show you everything,
you need to add a few more flags.

To make the command easier to use, add an alias to
your .bash_profile (see Create Aliases) like this:

alias lll="ls -lah@e"

The flag -a lists all files, including hidden ones (those that begin with
a period). The -@ flag lists extended attributes (indicated by an @ at the
end of a permissions string), and the -e flag lists all access control lists,
or ACLs (indicated by a + at the end of a permissions string). (And yes,
I agree that the meanings of -@ and -e seem backwards at first glance!)

111

About This Book
Thank you for purchasing this Take Control book. We hope you find
it both useful and enjoyable to read. We welcome your comments at
tc-comments@tidbits.com.

Ebook Extras

You can access extras related to this ebook on the Web. Once you’re on
the ebook’s Take Control Extras page, you can:

• Download any available new version of the ebook for free, or buy a
subsequent edition at a discount.

• Download various formats, including PDF, EPUB, and—usually—
Mobipocket. (Learn about reading this ebook on handheld devices
at http://www.takecontrolbooks.com/device-advice.)

• Read postings to the ebook’s blog. These may include new
information and tips, as well as links to author interviews. At the
top of the blog, you can also see any update plans for the ebook.

If you bought this ebook from the Take Control Web site, it has been
automatically added to your account, where you can download it in
other formats and access any future updates. However, if you bought
this ebook elsewhere, you can add it to your account manually:

• If you already have a Take Control account, log in to your account,
and then click the “access extras…” link above.

• If you don’t have a Take Control account, first make one by
following the directions that appear when you click the “access
extras…” link above. Then, once you are logged in to your new
account, add your ebook by clicking the “access extras…” link a
second time.

Note: If you try the directions above and find that the device you’re
reading on is incompatible with the Take Control Web site, contact us
at tc-comments@tidbits.com.

112

About the Author

Joe Kissell is Senior Editor of TidBITS, a Web site
and email newsletter about Apple and the Internet,
and the author of numerous books about Macintosh
software, including Take Control of Maintaining Your
Mac and Take Control of Backing Up Your Mac. He
is also a Senior Contributor to Macworld, was the

winner of a 2009 Neal award for Best How-to Article, and has appeared
on the MacTech 25 list (the 25 people voted most influential in the
Macintosh community) since 2007.

Joe has worked in the Mac software industry since the early 1990s,
including positions managing software development for Nisus
Software and Kensington Technology Group.

When not writing or speaking, Joe likes to travel, walk, cook, eat, and
dream (in both senses of the word). He currently lives in Paris with his
wife, Morgen Jahnke, their son, Soren, and their cat, Zora. To contact
Joe about this book, send him email at jwk@me.com and include Take
Control of the Mac Command Line with Terminal in the subject of
your message so his spam filters won’t intercept it.

Author’s Acknowledgments

Thanks to Geoff Duncan for an outstanding editing job, to the other
Take Control authors and editors, and to all the members of the
TidBITS Irregulars list who offered input and suggestions. Special
thanks to the following people for suggesting command-line recipes:
Marshall Clow, Keith Dawson, Geoff Duncan, Chuck Goolsbee, John
Gotow, Kevin van Haaren, Andrew Laurence, Peter N Lewis, Chris
Pepper, Larry Rosenstein, and Nigel Stanger.

113

Shameless Plug

Although I write and speak about technology as my day job, I have a
great many other interests. To learn more about me, read other things
I’ve written, and find out what I’m up to beyond the realm of Apple
products, visit my home page at JoeKissell.com. You can also follow
me on Twitter (@joekissell).

About the Publisher

Publishers Adam and Tonya Engst have been
creating Apple-related content since they
started the online newsletter TidBITS, in 1990.
In TidBITS, you can find the latest Apple
news, plus read reviews, opinions, and more
(http://tidbits.com/).

Adam and Tonya are known in the Apple
world as writers, editors, and speakers.
They are also parents to Tristan, who thinks
ebooks about clipper ships and castles would
be cool.

Production credits:

• Take Control logo: Jeff Tolbert

• Cover design: Jon Hersh

• Editor: Geoff Duncan

• Production Assistants: Michael E. Cohen and Oliver Habicht

• Editor in Chief: Tonya Engst

• Publisher: Adam Engst

114

Copyright and Fine Print
Take Control of the Mac Command Line with Terminal

ISBN: 978-1-933671-55-0
Copyright © 2012, Joe Kissell. All rights reserved.

TidBITS Publishing Inc.
50 Hickory Road

Ithaca, NY 14850 USA
http://www.takecontrolbooks.com/

Take Control electronic books help readers regain a measure of control in an oftentimes
out-of-control universe. Take Control ebooks also streamline the publication process so
that information about quickly changing technical topics can be published while it’s still
relevant and accurate.

This electronic book doesn’t use copy protection because copy protection makes life
harder for everyone. So we ask a favor of our readers. If you want to share your copy of
this ebook with a friend, please do so as you would a physical book, meaning that if your
friend uses it regularly, he or she should buy a copy. Your support makes it possible for
future Take Control ebooks to hit the Internet long before you’d find the same information
in a printed book. Plus, if you buy the ebook, you’re entitled to any free updates that
become available.

You have our permission to make a single print copy of this ebook for personal use. Please
reference this page if a print service refuses to print the ebook for copyright reasons.

Although the author and TidBITS Publishing Inc. have made a reasonable effort to ensure
the accuracy of the information herein, they assume no responsibility for errors or
omissions. The information in this ebook is distributed “As Is,” without warranty of any
kind. Neither TidBITS Publishing Inc. nor the author shall be liable to any person or entity
for any special, indirect, incidental, or consequential damages, including without
limitation lost revenues or lost profits, that may result (or that are alleged to result) from
the use of these materials. In other words, use this information at your own risk.

Many of the designations used to distinguish products and services are claimed
as trademarks or service marks. Any trademarks, service marks, product names, or named
features that appear in this title are assumed to be the property of their respective owners.
All product names and services are used in an editorial fashion only, with no intention of
infringement of the trademark. No such use, or the use of any trade name, is meant to
convey endorsement or other affiliation with this title.

This title is an independent publication and has not been authorized, sponsored,
or otherwise approved by Apple Inc. Because of the nature of this title, it uses terms that
are the trademarks or that are the registered trademarks of Apple Inc.; to view a complete
list of the trademarks and of the registered trademarks of Apple Inc., you can visit
http://www.apple.com/legal/trademark/appletmlist.html.

115

Featured Titles
Click any book title below or visit our Web catalog to add more
ebooks to your Take Control collection!

Take Control of Apple Mail in Mountain Lion (Joe Kissell) Learn the
basics and go under the hood with Apple’s Mail application in OS X
10.8.

Take Control of BBEdit (Glenn Fleishman): Learn how to take full
advantage of BBEdit's text-processing power!

Take Control of CrashPlan Backups (Joe Kissell): Join backup expert
Joe Kissell as he shares real-world advice about protecting your data
with CrashPlan’s onsite, offsite, and cloud backups.

Take Control of Getting Started with DEVONthink 2 (Joe Kissell):
Store, organize, and locate your PDFs, paper documents, email
messages, and scribbled notes with DEVONthink 2.

Take Control of iCloud (Joe Kissell): Understand the many features,
get set up properly, and enjoy iCloud!

Take Control of Speeding Up Your Mac (Joe Kissell): Put the zip back
into your Mac with advice based on Joe’s extensive research and
experimentation in the area of Mac performance.

Take Control of Spotlight for Finding Anything on Your Mac (Sharon
Zardetto): Whether by mouse or menu, or by typing a complex query,
you’ll learn how to find your files, contacts, images, and much more.

Take Control of TextExpander (Michael E. Cohen): Whether you want
to type faster or you already use TextExpander but want to harness its
power more fully, let Michael lead you to typing nirvana.

Take Control of Using Mountain Lion (Matt Neuburg): Chockablock
with core concepts and insider tips on customizing and navigating in
10.8 Mountain Lion.

Take Control of Your 802.11n AirPort Network (Glenn Fleishman):
Make your AirPort network fly—get help with buying the best gear, set
up, security, and more.

116

