

Table of Contents

Foreword	 3

Setting up your environment	 6

About the Python language	 14

The basics of Python	 18

Python Advanced	 31

First project: Control your camera	 50

Let’s Play:Interact with Minecraft	 58

Control your Lights at Home	 70

Communicate with the world	 85

A final project: The Sense HAT	 95

Python Libraries	 107

Conclusion	 115

Action steps solutions	 116

Bonus – The Discord Bot	 125

3

Foreword

FOREWORD

Congratulations,
you made the right choice

Programming in general is a great skill to have. In a company, those who can code are
known to be logical and creative people, good problem-solvers and project planners.
Even if you don’t work in IT, it might help you with your job and life in general.

Python is perfect to get started in programming, the language is not very complicated
compared to others out there. There are a few syntax rules, but it’s easy to read.

Python is also an important piece of the Raspberry Pi universe, and I’m glad you are
choosing to invest in yourself by learning more about this programming language.

What will you get from this book?
In this book, I’ll guide you through all of the steps from being a newbie to knowing
enough to experiment with any project you want.

If you already have a bit of experience with programming, you can probably skip a
few pages, but we’ll quickly get to the Python language and to projects we can do on
Raspberry Pi with basic knowledge.

I want to ensure that you understand the goal of this book. You won’t become the best
Python programmer in the world overnight, master the most complex concepts of
programming, or even follow the common best practices.

This book is the first step and will give you an idea of the basics to help you overcome
your fear of programming, and have fun with any project on Raspberry Pi that requires
a bit of Python code.

4

Foreword

The usual trap

I hope you have a specific goal in mind to spend a bit of time reading this book, doing
the exercises and experimenting on your Raspberry Pi.

But I must warn you, please don’t skip any steps and make sure you understand the
theory before jumping to the practice.

I know from experience that the syntax and the language as a whole is not the most
complicated part in learning how to code. If it’s your first language, please don’t skip
anything.

I worked as a web developer, and from time to time, I had to train employees to
read and debug PHP code. They were often from various departments (web design,
marketing, IT support, etc.), so most were absolute beginners, it was their first language
and first lesson.

Each time they had the same problems, and it wasn’t what I expected while preparing
the training.

Getting the syntax right requires a bit of practice to allow you to see the patterns and
identify errors. In general, after a few hours of practice, it gets better and better. But
understanding the base logic of the code is something entirely different. It took them
many hours to grab the concept of conditions, arrays and loops for example. These are
the basis of any script, and until you understand this, it’ll be very hard to do anything.

That’s why I will take the time to explain these concepts clearly, by using examples from
real life that anybody can understand. But please, don’t skim the first chapters too fast,
as it’s an essential part of this book. I tried to only include important concepts that
you’ll really use. In the second part, I’ll show you interesting projects, but you’ll be lost if
you skip the first part.

5

Foreword

Have fun

You now know that programming is important, whatever your career or goal is. I also
told you that the first part might be difficult, but no worries I’ll try to keep it interesting,
and we’ll quickly move to the practice.

Despite all of this, please have fun while reading this book. If you get bored or if you
don’t understand something, take a break, and come back to it the next day.

Also, try to go a little further in each exercise. The magic in programming happens
when you achieve something you wanted, without copy/pasting the solution. If I ask
you to light a bulb for example, do it and then try to make it blink or something else.
You’ll learn much faster by coding your own ideas.

I hope that you are motivated and ready to move on. I’m certain this book will help you,
so read it carefully and enjoy the process!

6

Setting up your environment

SETTING UP YOUR ENVIRONMENT

Introduction

In this first chapter, I’ll make sure you have everything you need to get started. That
might be a breeze for some of you, so I allow you to skim fast if you are comfortable
with this.

I’ll be using Raspberry Pi OS on my end to explain everything, so I recommend that
you use it as well. It’s a stable distribution with all the prerequisites needed to code in
Python, so we don’t need to look for any complications here.

Next, I’ll introduce some text editors that you can use to program in Python. You can
switch at any time while reading this book and experimenting with your projects, but
you need at least one properly configured text editor to get started.

Raspberry Pi OS Desktop installation

I assume most of you are experienced users, so I’ll give the short version here, and you
can always check the full tutorial on the website if needed.

Recommendations

Raspberry Pi OS is the official operating system for the Raspberry Pi (hence the name).

There are 3 versions available: Lite, Desktop and Desktop with recommended software.

You can use any of these versions to code in Python, but I recommend starting with the
Desktop version if you have a decent Raspberry Pi model (Pi 3 or more).

Raspberry Pi OS Desktop with recommended software will include everything you need
to code, including some text editors. Also, as I will explain for this specific version, it’s
better if you have the same.

7

Setting up your environment

I recommend using a dedicated SD card for this purpose. This way, you won’t need to
reinstall anything later, and will keep your old scripts safe for later use. A 16 GB Micro
SD-Card should be enough, you can find my current recommendations in my resources
pages: https://raspberrytips.com/resources/

System installation

Here are the steps to follow to install Raspberry Pi OS on your SD card:

•	 Go to the official website and download Raspberry Pi Imager if you don’t have it yet
The URL is https://www.raspberrypi.org/software/.

•	 Install it on your computer like any other software, and start it.

•	 Once done, click on the ″Choose OS″ button on the left.
In the menu, go to ″Raspberry Pi OS (Other)″ and click on ″Raspberry Pi OS Full″.

•	 Insert your SD card into your computer.
If you don’t have an SD card reader, you can use a USB adapter (link in my
resources pages too).

•	 Click on ″Choose Storage″ and pick your SD card in the list.

•	 Then click on ″Write″ to start the file’s copy.

It will erase your SD card, download the system image and copy the files on the SD
card.

It might take a while depending on your hardware and Internet connection.

https://raspberrytips.com/resources/
https://www.raspberrypi.org/software/

8

Setting up your environment

Configuration

Once done, insert the SD card into your Raspberry Pi and start it.

A mouse, keyboard and screen is highly recommended. You need to be comfortable to
code in Python.

At the end of the first start, follow the welcome wizard to configure your Raspberry Pi.

The goal is to:

•	 Set the correct locale and keyboard layout. I recommend keeping the system in
English, so that you can easily follow my instructions.

•	 Change the default password.

•	 Adjust your display settings if needed.

•	 Connect to your network if you use Wi-Fi.

•	 Update your system.

If you need a step-by-step guide for this, you can check this article:
https://raspberrytips.com/install-raspbian-raspberry-pi/.

It’ll explain everything, including the additional configuration you can do after that (if you
need to change the hostname or set a static IP for example).

Remote access

This is not mandatory, but for some of you it might be a good idea. If you have a
comfortable computer with the latest screen, mouse and keyboard, you might prefer
using it rather than working directly on the Raspberry Pi with old accessories stacked in
a corner of your desk.

If you are in this case, I recommend enabling SSH and maybe graphical access with a
tool like VNC or XRDP. You can find all the information here:
https://raspberrytips.com/remote-desktop-raspberry-pi/.

Obviously, if you only have a Raspberry Pi, or are better equipped than your computer,
you can skip this step :).

https://raspberrytips.com/install-raspbian-raspberry-pi/
https://raspberrytips.com/remote-desktop-raspberry-pi/

9

Setting up your environment

Code editor installation

Once the system part is done, the only thing you need for the moment is to select the
text editor you’ll use for your Python scripts. If you choose the Full version of Raspberry
Pi OS, some text editors are already installed.

I’ll introduce the three I recommend for beginners, and link to an additional resource
for those who want more advanced tools.

Thonny Python IDE

Thonny is perfect for beginners, if you have a few lines to write and don’t want to be lost
in too many menus and submenus, this is the perfect tool for you.

As you can see on the picture, there is a shortcut panel with big buttons to do the main
actions. Then the top of the screen is used to type your code, and you will be able to
see the result in the shell tab below.

10

Setting up your environment

If you are just starting with Python or programming, I recommend working with this
tool.

This tool will allow you to save time. If you need something else later, it isn’t a big deal to
switch to another editor.

Geany

Geany is a programming editor that I have used a lot in the past, when I was on Linux
for work. I had a big web project with thousands of files, and it worked very well on
Geany, even better than many paid solutions.

So Geany is a great lightweight editor, which is perfect for Raspberry Pi.

11

Setting up your environment

If Thonny is too basic for you, Geany might be a good alternative. It’s pretty easy to
navigate as the main features are quickly available in the top bar, but if needed it can do
a lot more than Thonny:

•	 Appearance customization

•	 Syntax highlighting

•	 Autocompletion

•	 Project management

•	 Smart navigation

•	 Etc.

Visual Studio Code

The third option is Visual Studio Code. Yes, it’s a tool from Microsoft, but it’s powerful,
and it’s free. You can now install it easily on Raspberry Pi OS, as it’s available in the
recommended software list. So, why not?

12

Setting up your environment

It’s a bit more advanced than the other tools. It’s Microsoft, so it’s not the most intuitive,
but it offers cool features. For example, you have access to a giant list of plugins you
can install in a few clicks to add even more features (Git, SVN, themes, languages
autocompletion, etc.).

Another interesting feature for those who want to work remotely, away from their
computer, is that there is a plugin for Python remote access. You can create your code
on your computer, and run it on the Raspberry Pi directly (no need to copy/paste it or
transfer the files with each modification).

To install it, go to the main menu > Preferences > Recommended software.

In the ″Programming″ category, find ″Visual Studio Code″ (last one) and check the box.

Click the ″Apply″ button to install it.

Other solutions

Basically, any text editor can work to code in Python, so there are many other solutions
available.

If you want nothing but text you can try with Nano or Vim, and if you prefer a high-end
IDE you can find some options too.

I think the three I previously introduced should be enough for most readers, but if you
want to discover a few other options, you can check out this article:
https://raspberrytips.com/top-text-editors-on-raspberry-pi/.

https://raspberrytips.com/top-text-editors-on-raspberry-pi/

13

Setting up your environment

Action steps

At the end of each chapter, I will summarize the steps you have to do on your
Raspberry Pi. It will offer a quick recap of the chapter and some exercises to allow you
to put the new concepts into practice.

To consider this chapter completed, you need to:

•	 Download and install Raspberry Pi OS on a new SD card.

•	 Configure the basic settings for a comfortable usage after that (network, display,
keyboard, etc.).

•	 Do the system updates,

•	 Choose an editor, install it if needed and start it.

If everything is working as expected, you can jump to the next chapter where we’ll start
discussing the Python language.

14

About the Python language

ABOUT THE PYTHON LANGUAGE

Introduction

Before jumping directly to the code, it’s a good idea to try and understand a bit more
about the programming language. In this chapter, I’ll explain what Python really is, why it
has been created and when you should use it.

I know it’s probably not what you were looking for, but it’s an important step in
discovering this language. Python is pushed on Raspberry Pi, but that isn’t a good
reason to use it all the time. Sometimes, Python isn’t always the smarter solution. Don’t
worry, I’ll quickly show you why.

Python is a high-level language to program all kinds of software (like C, C++ or other
languages). There is no compilation step, and like a bash script, it can be run directly.

The filename extension for Python scripts is ″.py″, for example: myscript.py.

Origins

Python is not a new language, it was created in the late 80s by a Dutch programmer,
Guido van Rossum (not Mr. Python). He led the project alone until 2018, bringing many
new features and two new main versions (Python 2 and 3). The project is now led by a
Steering Council of five members that supervise the language development.

Without going into too many details, Python supports many ″styles″ of programming,
including the object-oriented programming method that scares many people.

I chose to skip this, and only focus on the easiest concepts. We’ll see some basic
structures and create some functions, but we don’t need to use the most advanced
methods on Raspberry Pi.

15

About the Python language

If you are interested in a programming career, you’ll need to spend a bit of time
learning these concepts. However, when you’re only a developer, doing this as a hobby,
you don’t need it.

The main philosophy of Python is to keep everything simple and easy to read. Tim
Peters, one of the major contributors has even described this philosophy in a few
aphorisms, known as ″The Zen of Python″:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let’s do more of those!

16

About the Python language

So, one of the main goals is to keep your code simple, beautiful and readable. Yes, if
you are the only one to read it, nobody really cares, but it’s always better to have a bit of
context when starting a new programming language. Java and C++ don’t have the same
philosophy at all :).

Usage

Even if Python is an old language, it’s still widely used by programmers all over the
world. There is a giant community and most major companies use Python in their
products. Videos on YouTube and Netflix are played with Python, Facebook and Spotify
also use it, so Python won’t disappear tomorrow.

In fact, it’s one of the most used languages in the world, according to a study by Statista
in 2020:

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

17

About the Python language

Python and Raspberry Pi

The goal of the Raspberry Pi Foundation is to help young students learn how to code.

The Raspberry Pi foundation sends a lot of Raspberry Pi devices to UK schools, and
creates clubs to teach children how to code.

As we discussed in the previous chapter, Raspberry Pi OS comes with Python by
default and with a complete IDE already installed (in the Desktop version). So having a
Raspberry Pi and using it to learn to program with Python is a great idea - it’s made for
this.

By the way, it’s not mandatory to have a Raspberry Pi device to learn Python. It wouldn’t
be one of the most popular languages if it was limited to the Raspberry Pi.

You can use it on any operating system, as Python is a cross-platform language.

You only need to install it and find an editor to fit your needs on your current operating
system.

Conclusion

I told you it will be short, but I think it was important to provide a bit of context on
where this language comes from, what the main goals are and why it’s installed on
Raspberry Pi.

If you know the answer to these questions, you can move to the next chapter, where
we’ll focus on the code logic and the basic Python syntax.

18

The basics of Python

THE BASICS OF PYTHON

introduction

This is the chapter you’ve been waiting for! The one where you start writing weird
sentences that your computer understands (or not). But no worries, we’ll slow down a
bit here and tackle only the essentials in this chapter, before moving to more complex
notions in the next one.

Python uses basic English for the main keywords. There are a few syntax rules to
remember, but you’ll soon see that it’s not very complicated.

Hello world

Whatever language you learn, it always starts with the famous ″Hello World!″. The idea
is to learn how to display something on the screen first, so let’s do this like the tradition
wants.

Python console

We won’t use it a lot in this book (probably never again), and I don’t think you’ll use it in
your projects either, but I need to introduce the Python console to you. It’s a way to run
Python code line-by-line and see the result directly.

To open it, it’s straightforward. Open a terminal and type:

python

You’ll get something like this:

19

The basics of Python

Then you can type any Python code and get the result instantly. But first I have to tell
you what to write there :).

For each action you want your code to do, there will be a specific keyword, possibly with
a syntax to remember.

So, our first goal is to display a message on the screen, the keyword will be ″print″, and
the syntax is to put the text we want to display in parentheses. The text also has to be
delimited by double quotes.

Example: print(″Hello world!″)

Type this in the Python console to see the result:

If you experience an error at this step, make sure that you typed exactly what is written
above. Like most programming languages, Python is pretty strict with the syntax you
use. There is no room for creativity in programming syntax.

Use CTRL+D to exit the console, as we don’t need it anymore.

20

The basics of Python

Create a script

Most of the time, you won’t use the Python console. Instead, you will put all of your lines
in a file, and run them all in one command.

For now, we’ll do this with Thonny, one of the default Python editors
on Raspberry Pi OS:

•	 Open the main menu.

•	 Click on Programming > Thonny Python IDE.

•	 Put the same code line tin the source code part of the editor:
print(″Hello world!″)

•	 Click on ″Save″ in the top bar.

•	 Give your file a name.
Remember, Python scripts have a .py file extension, so for example:
helloworld.py

•	 Then click on the ″Run″ button.

•	 The result should appear in the Shell part of the editor:

helloworld.py

21

The basics of Python

In this case, we only have one line in our script, so there is no real advantage to creating
a file instead of typing the command in the console. However, we will add new lines in
the following sections, so creating a file for each goal is good practice.

Note: Just in case, you may have noticed that the Python version we use in both
cases isn’t the same. It doesn’t matter for now, but there are two Python versions
installed on Raspberry Pi (Python 2 and 3). When you use the ″python″ command,
it’s version 2. You need to use ″python3″ to start a console with Python 3. Thonny
runs Python version 3 by default. We’ll get back to this later.

Variables

We’ll now add a new concept: variables. A variable is used to store values or data of
any kind in your script. So, if you need to keep something in memory along your script,
creating variables will be really useful.

Create a variable

We’ll start with a dumb example, so that you can understand what I’m talking about:

•	 Create a new file in Thonny.

•	 Copy and paste these lines:

message=″Hello World!″
print(message)

•	 Save the file and run it.

•	 It should display the same thing as in the last part.

22

The basics of Python

As you can see, we create a new element named ″message″ in the script, and we set its
value to ″Hello World!″. Then we can use it in the second line. Python will replace the
″message″ word with its value.

Note: Double quotes are only used to delimit text values. We don’t put them in the
print function this time, or it will display ″message″ in text instead of the variable
value.

variables.py

23

The basics of Python

Concatenation

It’s the previous example, there is no point in using a variable. It’s just a way to use two
lines while we have been doing the same thing with one line previously. Yes, you are
right!

Here is an example of how you can use variables more wisely:

username=″Patrick″
print(″Hello ″+username)

The + symbol is a way to stick two strings together. It will be pretty handy in the future.

Obviously, the username has to come from somewhere else, or it’s, once again, a more
complicated way to do the same thing as in the first script. But you get the idea, I just
want to go step-by-step. In the next chapter, we’ll learn how to do this interactively.

concat.py

24

The basics of Python

Variable types

We have only seen text variables in the previous examples, but there are many other
types we can use, such as numbers (integer or float) and boolean (True or False). We’ll
also discover more complex types of variables in the next chapters, but for now, just
remember these.

variables_types.py

25

The basics of Python

Conditions

Conditions are something you’ll use in most scripts. It’s a tool you can use to execute a
different piece of code, depending on the condition.

Theory

To illustrate this, let’s say you are at the supermarket. If you have a loyalty card, you
can go to the fast checkout. Otherwise, you have to queue and wait a bit at the next
checkout.

In this case, the condition is ″do you have a loyalty card?″. The answer is ″yes″ or ″no″,
and depending on this condition, your path will be different.

In programming in general, we often have ways to do the same thing. You can do a
different action depending on the result of an expression. It will be useful in many
cases, for example:

•	 If the input string is empty, display an error.

•	 If the button is pressed, turn on the LED.

•	 If the password is correct: do the action, else: ask again.

26

The basics of Python

In practice

In Python, you have three keywords to remember:

•	 If: the first condition is true.

•	 Elif: the first condition is false, we test another scenario.
In my supermarket example, it could be something like a checkout for customers
with less than 10 items.

•	 Else: default case if none of the other conditions are true.

If and elif statement will be used with a condition and a piece of code to execute if the
condition is true. Else doesn’t need a condition, it’s the default case if all the others are
false.

Note: A condition which can be only true or false is named a boolean statement.

Example 1

A first basic example can look like this:

username=″Patrick″
if username == ″Patrick″:
 print(″Hi Patrick″)
else:
 print(″Hello″)

condition1.py

27

The basics of Python

Ok, I have a few things to explain here:

•	 For each condition, the syntax is to use the main word (if, elif or else).

•	 For if and elif you’ll find the boolean statement just after (value == ″Patrick″). It’s true
if the username contains ″Patrick″, false otherwise.

•	 The else doesn’t have any conditions, it will execute the code below if the username
is not ″Patrick″.

•	 The ″:″ at the end of the line is here to indicate the end of the condition and the
start of the related code.

•	 The spaces at the beginning of the line are essential. After the condition statement,
each line starting with the spaces is linked to the condition above. If you don’t put
the spaces in, Python will consider that it’s the following of the script, that should be
done in any case, whether the condition is true or not.

Example 2

Let’s take another example with more cases:

condition2.py

28

The basics of Python

So, with this random example, there are a few takeaways for you:

•	 You can have one or more elif statements

•	 Conditions can work with all variable types. In the first example we used a string,
here it’s a number, but everything can work.

•	 There are several conditional tests you can use:

Example 3

The last example I want to show you happens when you have more complex
 tests to do.

Equal == Not equal !=

Greater than > Greater or equal to >=

Less than < Less or equal to <=

condition3.py

29

The basics of Python

When you have more complex conditions and more variables, you can use the ″and″
and ″or″ keywords to check them in one line.

Note: The smartest of you will have noticed that the script ″conditon3.py″ doesn’t
work with any values. Don’t worry, we’ll fix this in the action steps.

You can also use nested conditions, and add another condition under a first one, for
example:

You might need to do this if you want the three in the correct order. But if you only
want the highest IQ, the previous example is better.

condition3_bis.py

30

The basics of Python

Action steps

We have seen many things in this chapter, and if you are new to all of this, you might
not be sure if you got it all right. That’s exactly why we have the action steps at the end
of each chapter. It’s time to try all of this on your own, and see what you remember.

In this chapter, we learned how to create our first script (″Hello world″), how to use
variables and concatenate them to another string. And just after that, how to use
conditions to execute a different piece of code depending on some variable values.

Here is an exercise to try all of this:

•	 Write a simple code that displays ″Good morning Patrick″ on your screen.

•	 Create a variable with the first name, and set it to use your name instead of mine.

•	 Create a second variable with the time of the day (hour only), and change the
message depending on the time of the day:

•	 Good morning before 12pm.

•	 Good afternoon between 12pm and 6pm.

•	 Good evening after 6pm.

Tip: I recommend using a 24H time format to make this easier.

Try to do this alone if possible, read the chapter again if needed. But in any case, you
can find the solution at the end of the book and in the code sample files.

For the most advanced, try to fix the issue we can have with the condition3.py script.
Indeed, if two IQ values are the same, the script doesn’t work. If you set JFK IQ to 160, it
will still tell that Steve has the highest IQ. How can you fix this?

I won’t give the solution for this one, you can come back to this later if you want.

Tip: What we have seen in condition3_bis.py might be useful for this.

31

Python Advanced

PYTHON ADVANCED

Introduction

In the previous chapter, we have discussed the basics of Python and most
programming languages: variables, conditions and text display. In a way, this chapter
will be similar, as we still have many bricks to discover before starting our first project.

These two chapters probably aren’t the most fun to read, but they provide the
foundational knowledge you need to go further and to enjoy your projects in the future.
I purposely removed concepts you won’t use, so you can move quicker to the project
chapters. However, there is still a lot to learn if you are a beginner, so hang in there as
you’ll need these concepts with any language in the future.

Lists

Theory

I almost skipped this notion because I’m not sure if you’ll use it very much. But it’s
something you might see in some tutorials, and using lists will make it easier to explain
the next notion.

Lists are a specific type of variable. In the last chapter, we discussed numbers, strings
and booleans. Lists allow us to store several values in the same variable.

The easiest way to illustrate this is to think of a shopping list. You can create a boolean
variable for each item (need_bread = true, need_milk = false, etc.), but a better way is to
have the items you need on one list.

Another way to imagine a list is to think about a column in a spreadsheet. Each line has
a different value and the column is our list variable.

32

Python Advanced

In practice

In practice, the syntax starts like any other variable, and we have a specific format to set
the different values.

Here is an example:

shopping_list = [″bread″, ″raspberry″, ″butter″]

Once set, we can access each item in the list like this:

print(shopping_list[1])

Note: The first item in a list has the index 0, that’s why this example displays
″raspberry″ and not ″bread″.

There are other types of lists in Python, and several methods you can use to interact
with them. We’ll discuss some of them later in the book, but for now, the most
important thing to understand is that you can create this kind of variable and access
each element individually by knowing its position in the list.

list1.py

33

Python Advanced

Loops

Theory

Loops are not very complicated, but most people have a hard time when first
introduced to the concept. Loops are essential in any programming language, so we’ll
take the time to properly introduce them.

Have you ever seen the factory scene in the movie Modern Times (Charlie Chaplin)?

Loops are a bit like this: do the same thing until I say something else.

In the movie, Charlie is a factory worker, who has to tighten bolts on each item on the
moving belt.

In your code, you can have many cases where a loop is needed, for example:

•	 As long as the password entered is incorrect, ask for it again and again.

•	 For each file in a folder, do something.

•	 Infinite loop: Do the same thing continuously, or every X minutes.

This concept allows us to have a dynamic code that is dependent on something else.

It also avoids having several identical pieces of code, or having to execute the script too
often. Let’s see a few examples in practice, I hope it will make this even clearer.

In practice

In Python there are two types of loops you can use:

•	 While: it’s a bit like a conditional statement (If), but the code inside is repeated while
the statement stays true.
Ex: while there are items on the moving belt, tighten the bolts.

•	 For: in this case, it’s for a predefined set of iterations, like the second examples
below (do something for each file in a folder).
Ex: for each item on the shopping list, find them at the grocery store.

34

Python Advanced

While

Let’s start with the ″while″ loop, as it’s similar to the conditions we discussed in the
previous chapter.

Here is an example:

iterations=0
while iterations<10:
 iterations=iterations+1
 print(iterations)

As you can see, the code part under the ″while″ statement has been repeated 10 times.

At each new iteration, the condition is evaluated. If it’s still true, the code below is
executed.

Each time we increment the ″iterations″ value. When the ″iterations″ variable is 10, the
condition becomes false and the loop is no longer executed.

We jump to line 5 (after the loop) and continue the script execution.

In this case, that’s the end of the script, as you can have other lines after that.

while.py

35

Python Advanced

Note: Instead of iterations=iterations+1, you will also see iterations+=1 in some
scripts. It’s the same thing.

For

″For″ is the second type of loop you can use in your Python scripts. It’s different from a
″whil″ loop because you have a predefined set of executions you want to do. It can be
dynamic (depending on the number of files in a folder), but it generally doesn’t depend
on the loop content, and there is no condition tested at each iteration.

Let’s use the shopping list example to illustrate this:

shopping_list=[″bread″,″raspberry″,″milk″]
for item in shopping_list:
 print(″Buy ″+item)

36

Python Advanced

The script displays each item individually and exits at the end of the list.

The ″for″ syntax uses two variables: for <value> in <list>.

At each iteration, the ″item″ variable is overwritten with the next value in your shopping
list.

It allows us to do a specific action for each item (in this case, just display it).

Note: Loops can also be used with other variables in entry, like strings or range. The
concept is similar, you don’t need them for now.

Functions

Theory

With functions, we’ll push the idea of code repetition a bit further.

A function is a way to define a few lines of code, in a way that we can execute it by using
its name anywhere in the script. A function can have parameters (as variable values set
when you call it) and can also return something as a result.

So far, we have only seen concepts you absolutely need to know. But, the three
remaining notions are more advanced. Read them, but you are allowed to put a
little less effort into them, and come back later, once the previous concepts are fully
understood and practiced.

Back to our function theory. In fact, you already used one function, maybe without
knowing it was one: the print() function.

In almost each example, we have used it to display something on the screen.

″Print″ is a function that takes a value in a parameter and displays it in the output log.

37

Python Advanced

We have no idea what it does exactly, and it’s the main benefit of a function. If you know
which parameters they need, and what they will do with it, you don’t need to know or
understand the exact code being used.

To illustrate this, let’s take another example: in your car you have accelerator and brake
pedals. You can see them as functions. You know what it does to your car if you press
them, but you don’t have to know exactly how it works.

The ″accelerator″ function takes the pressure on the pedal as a parameter, and uses
it to control the speed of your car. Engineers have worked once on the amount of gas
being fed into the engine depending on this pressure, we trust them and just use the
function. We don’t redefine it every time we get into our car.

In practice

In Python, you can define a function once in your script, and call it as often as you want
after that. I told you that this concept isn’t mandatory, as it’s especially useful in bigger
projects, not really in the small scripts you will create most of the time on Raspberry Pi.

But in some cases you’ll find them in samples you find online or in documentation, so
it’s better to have an understanding of them. For example, it’s often used in robotics
and GPIO interactions.

But let’s start with a basic example as usual:

def say_hello(firstname):
 print(″Hello ″+firstname)

say_hello(″Patrick″)

function.py

38

Python Advanced

I have a few things to explain here:

•	 def: It’s the keyword we use to tell Python we are defining a function.

•	 say_hello: it’s the name of the function, that we will use to call it later.

•	 firstname: it’s a parameter we will send to the function, to display the correct name.
Once set on the def line, we can use it inside the function as any standard variable.

•	 And on the last line we call this function, with a specific value to display ″Hello
Patrick″.

So basically, this is a much more complicated way to code the ″Hello World″ example
we learned in the previous chapter, but you get the idea. We’ll see better examples in
the next chapters.

It’s still useful if you use it many times in your script, and want to change the greetings
one day with ″Hi <firstname>″ for example. You will need to change it only once instead
of everywhere.

I told you that ″print()″ is a function you can use in any script to display something.
Python also provides other useful functions. For example, the ″input()″ function can be
useful to have a dynamic way to say hello:

def say_hello(firstname):
 print(″Hello ″+firstname)

say_hello(″Patrick″)

function2.py

39

Python Advanced

We no longer use a static name in this example, we ask the user directly with the
″input()″ function and display the greetings with the ″say_hello()″ function, using the
answer as a parameter.

Note: Note that I’m not using two variables in this example: ″name″ and
″firstname″, just to show you that the parameter doesn’t need to be the same in the
definition and when you call the function.

If you are interested in the built-in functions in Python, you can find the complete list in
the official documentation: https://docs.python.org/3/library/functions.html.

Modules

Theory

Modules takes the whole idea of reusing code in your scripts a step further:

•	 With loops, we can repeat the same code several times.

•	 With functions, we can reuse the same code in different places in our script.

•	 With modules, we can reuse code from other projects (generally made by
someone else).

Let’s say you want to bake a raspberry pie, you can either try different ingredients,
quantities and cooking times at random until you find the perfect recipe. Or you can
just go online and take the one with thousands of positive reviews.

Using modules in Python corresponds to the second solution. If someone spent hours
to create a module that does everything perfectly and shared it, we’ll simply reuse it in
your script instead of starting from scratch.

https://docs.python.org/3/library/functions.html

40

Python Advanced

In practice

Usage

Python includes some built-in modules that you can use directly on Raspberry Pi, for
example:

•	 Time: Provides many functions to manage date and time.
https://docs.python.org/3/library/time.html

•	 Math: Includes most of the mathematical functions you might need (rounding,
exponential, square root, etc.).
https://docs.python.org/3/library/math.html

•	 Tkinter: Most functions in this module can be used to create a basic GUI in your
program (message boxes, buttons, etc.).
https://docs.python.org/3/library/tkinter.html

Note: to find the entire list of modules available on your system you can start the
Python console and type: help(‘modules’).

To use one module in a Python script, we need to import it, generally at the beginning
of our program. Then we can use the functions listed on the help page.

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/tkinter.html

41

Python Advanced

Here are two examples that do the same thing:

Example 1

import time

print(″Let’s wait 10s″)
time.sleep(10)
print(″Done.″)

Two new things in this script:

•	 The import line, at the beginning, tells Python to use the ″time″ module.
When doing this, all the functions included in this module are now available and can
be used in this script.

•	 On line 4, we use ″time.sleep(10)″. We call the function sleep() from the ″time″
module.

modules1.py

42

Python Advanced

Example 2:

from time import sleep

print(″Let’s wait 10s″)
sleep(10)
print(″Done.″)

This second example does the same thing, but in this case, we only import the sleep
function. The ″time″ module includes a lot of functions, and we only need one.

As we specify that we import the sleep function from the time module on line 1, we
don’t have to use ″time.″ on line 4.

modules2.py

43

Python Advanced

Installing new modules

It’s possible to do many things with the included modules on Raspberry Pi, but you
can also install new ones. We’ll do this for almost all of our projects in the following
chapters, that’s why it’s important to understand this process.

There are two ways to install new modules for Python: apt and pip.

APT:

You probably already know about the ″apt″ command, it’s the one you can use to install
new applications on Raspberry Pi OS (and any Debian-based distribution). Some Python
packages can be installed with apt to add new modules available for your Python
scripts.

For example:

•	 python3-gpiozero is a simple API to interact with GPIO pins.

•	 python3-picamera provides an interface to control the Raspberry Pi camera
module.

•	 python3-sense-hat to import all functions related to the Sense HAT.

•	 Etc.

You can easily install any of these modules with apt, like this:

sudo apt update

sudo apt install python3-sense-hat

Note: Make sure to install the module for the version you are currently using. If
you are programming with Thonny, it’s Python version 3, so you need python3-
<module>, not python-<module>.

44

Python Advanced

PIP:

APT will work perfectly for modules related to Raspberry Pi and other very popular
libraries. But if you need other modules (or more recent versions), you can also use PIP
to install some of them.

PIP is the Package Installer for Python. You can visit this website to find any module you
are looking for: https://pypi.org/.

For example, we’ll use the ″hue″ module in the next chapter. Once on the module page,
you’ll see the command line you can use to install it:

Don’t forget to use sudo to get administrator privileges, so:

sudo pip install hue

You can then use this module directly in your next script. You’ll generally find
documentation or at least a code example on the same page.

We’ll install and use new modules in the next chapters, so don’t worry too much about
this for now, I just wanted to introduce them to you.

Note: same thing as with APT, use ″pip3″ instead of ″pip″ if you are programming
with Python 3.

https://pypi.org/

45

Python Advanced

Exceptions

Theory

Yes, it’s the last theoretical concept before our first project!

It’s not the most important thing. In fact, I hesitated to include it in this book.

I don’t think you’ll use it in your scripts, but you will probably find it used in projects you
copy/paste online, so we can take a few minutes to introduce it.

Exceptions are a best practice to handle errors in your programs.

At toll, if someone can’t pay, the lane will be closed. This avoids additional problems
with the lane (like car accidents or whatever).

Exceptions are similar, but they are automated. If something unexpected happens, your
script can include a way to handle the issue automatically.

Here are a few examples:

•	 You ask for a pin code and the user answers with a password. It may crash your
program because it’s not the correct value type. You can create an exception to
display an error explaining why it crashed (or ask again).

•	 You try to read or write a file, but the file doesn’t exist. An exception can display a
human-readable error instead of the default error code.

•	 You control lights with your script, but you stop the script on the Raspberry Pi with
CTRL+C. The script can be programmed to turn off the light on exit.

Exceptions are really useful for larger scale projects, as they provide a better
experience for the end user. But in most cases, you’ll be the only user on Raspberry Pi,
and if you understand the error code you don’t really need them.

So, I’ll just introduce them so that you can understand the code if they are used in a
project you get somewhere else, but you’ll probably create them yourself for now.

46

Python Advanced

In practice

An exception is defined in two parts:

•	 The code to execute, written under the ″try″ statement.

•	 The code to execute if there is an error, written under the ″except″ statement.

Here is a basic example:

try:
 my_function(10)
except:
 print(‘Error: function not executed’)

As the function ″my_function″ doesn’t exist, the script won’t work.

But with the try/except code, I can display an error message. On a bigger script, it might
be useful to find where the problem is, but it doesn’t help a lot.

exception1.py

47

Python Advanced

In some cases, a better way would be to have several ″except″ statement, to handle
each error scenario:

try:
 my_function(10)
except NameError as error:
 print(error)
except:
 print(‘An unexpected error happened’)

In this case, I have a first except block that is executed only if the ″NameError″
exception is raised. I can grab the error message with the keyword ″error″ and either
display it on the screen or add it in a log file.

I also added an except block at the end for any other error that might happen in my
script.

It’s good to know that this syntax exists in Python, it’s a good practice to use them for
public programs, but I’m not sure if you’ll use them for your projects on Raspberry Pi.
Don’t worry too much about this for now, it’s time to practice :).

exception2.py

48

Python Advanced

Action steps

It’s time to put all we have learned in this chapter into practice. As a reminder, we have
seen several advanced concepts:

•	 Lists

•	 Loops

•	 Functions

•	 Modules

•	 Exceptions

I hope you remember what each of these are and have a general idea on how to use
them. If not, it’s probably better to start by reading this chapter again and taking notes
to refer to them later.

Here is the base recipe of a raspberry pie:

	- 4 cups raspberries

	- 1 cup sugar

	- 3⁄4 cup flour

	- 1 egg

49

Python Advanced

I won’t ask you to bake it, but to create a Python script to display the recipe:

1.	 Create one variable to store all the ingredients.

2.	 Display all of them, one by one, each one on a new line.
Wait one second after each ingredient before displaying the next one.

3.	 Create a function to display each ingredient individually, starting the line with a ″- ″.
The goal is to have a similar display as in the list above.

You can find the solution at the end of the book and in the code samples files, but try
to do it yourself first. If you can, try to go a step further, maybe you can install and use
other modules or add exception management in your script.

50

First project: Control your camera

FIRST PROJECT:
CONTROL YOUR CAMERA

Introduction

We have spent enough time on theory for now, so let’s start putting what we’ve learned
into practice. I always learn much faster by practicing than by reading theory tutorials.
So let’s start with something not too complicated to warm up and use the first concepts
we discussed.

In this first project, we’ll use Python to control a camera. We’ll focus on the functions
that allow us to take pictures and videos, but you can also include this project in a
bigger one, where the camera is only one action in a whole program.

Prerequisites

As soon as we start working on projects, you’ll need a few components to replicate the
projects on your side. Don’t worry, these are basic projects, so we don’t need a lot of
stuff.

For this first project, make sure you have:

•	 A Raspberry Pi: any model will be fine.

•	 An SD card with Raspberry Pi OS installed. A desktop interface is ideal to check
the pictures directly, but you can continue with a Lite version if you prefer.

•	 A camera module: I’ll use the official one, but it doesn’t matter.

51

First project: Control your camera

That’s it.

You are welcome to check my resources page if you need any advice before buying
your hardware: https://raspberrytips.com/resources.

You can also check my tutorial on how to install and configure Raspberry Pi OS if
needed: https://raspberrytips.com/install-raspbian-raspberry-pi/.

Once done, install your camera on the Raspberry Pi, and enable it in raspi-config.

You can find all the information you need in this article:
https://raspberrytips.com/install-camera-raspberry-pi/.

Before doing anything in Python, start by testing the camera with this command:

raspistill -o img.jpg

It should create an image file in your current directory.

If it doesn’t work, it won’t work with a Python script.

Once the command is working without error and the image file is viewable, you can
move onto the next part.

https://raspberrytips.com/resources/
https://raspberrytips.com/install-raspbian-raspberry-pi/
https://raspberrytips.com/install-camera-raspberry-pi/

52

First project: Control your camera

Take a picture

Basics

For this first exercise, we’ll use a module named picamera to control your camera
module in Python. It should already be installed on Raspberry Pi OS, but if needed you
can always install it manually with:

sudo apt install python3-picamera

Create a new script in Thonny or your favorite editor, and paste the following lines:

import picamera

camera=picamera.PiCamera()

print("Smile!")

camera.start_preview()
camera.capture('/home/pi/first.jpg')
camera.stop_preview()

picamera-basics.py

53

First project: Control your camera

This script is a digest of many things we’ve learned in the previous chapters:

•	 We import the module name ″picamera″ to use it in our code without redoing
everything to handle the camera

•	 We create a new variable ″camera″, which is the result of the PiCamera() function
Don’t be disturbed by the ″picamera.″ prefix, it just tells us to use the function from
this module (in case of conflicts with other modules).

•	 Then on line 7 to 9, we use three functions that are needed to take a picture

Note: you can find all the documentation related to the PiCamera library on this
website: https://picamera.readthedocs.io/en/release-1.13/.

I know this script is really basic: we don’t handle exceptions, we don’t give the user time
to smile, etc. But, I promised to only give you the important information, and I don’t
want to overwhelm you with the first real script :).

Timelapse

Ok, so basically our first script is the same as the ″raspistill″ command, it’s not smart for
us to create a Python script with 10 lines to do the same thing. Let’s try to improve it a
bit, and create a timelapse.

A timelapse is a video created from images taken at regular intervals that gives the
impression to see what happens in an accelerated way.

So, we need:

•	 To add a loop in our script in order to create several pictures instead of one.

•	 To use a variable in the file name, as we want to avoid overwriting it at each shot.

•	 And to have a wait time between each photo.

https://picamera.readthedocs.io/en/release-1.13/

54

First project: Control your camera

Here is how you can do this with a few more lines:

from time import sleep
import picamera

nb_images = 10
waiting_time = 10
camera=picamera.PiCamera()

for image in range(nb_images):
 camera.start_preview()
 camera.capture('/home/pi/timelapse'+str(image)+'.jpg')
 camera.stop_preview()
 sleep(waiting_time)

•	 I’m adding variables at the beginning, so we can easily change the values later.
You can absolutely do it without them, as we only use them once in the script, there
is no real need for a variable.

•	 Then we can use the second loop type from the previous chapter: ″for″.
I voluntarily use a range in this loop to show you how it works.
″range(10)″ will create a sequence of number from 0 to 9, so 10 iterations.

•	 In the loop we can use the ″image″ variable created in the ″for″ statement to save
the picture to a different file each time.
We have seen how to concatenate strings in the third chapter of this book, and
we need to use the ″str()″ function to convert the number into a string. We can’t
concatenate strings and numbers directly.

•	 After that, we just need to add a line with the ″sleep()″ function to wait for a few
seconds before the next picture (next loop iteration).

picamera-timelapse.py

55

First project: Control your camera

Try to do it on your Raspberry Pi in front of a moving scene, it should be fun. You are
welcome to play with the variables value to get a better result.

Note: Once you have all the pictures in the same folder, you can use a tool like
ffmpeg to create a video with them. It should be something like:

sudo apt install ffmpeg

ffmpeg -r 24 -pattern_type glob -i '*.jpg' -s hd1080 -vcodec libx264 -crf 18
-preset slow timelapse.mp4

Options

There are many options you can add to improve the results you get in Python with your
camera.

I already gave you the documentation website, where you can find all the details, but
here are a few examples that might be interesting to play with:

•	 Resolution:
By default, the resolution is 1280x720 (with my camera at least). You can change it
with:
camera.resolution = (1920, 1080)

•	 Rotation
I don’t know about you, but I find my camera is always upside-down. If you also
experience this issue, you can change the rotation parameter to fix this:
camera.rotation = 180
By adding this line, the image will be the right way.

•	 Frame rate, iso and shutter speed:
This is probably for more advanced photographers, but you can also change other
options like the frame rate and shutter speed. It might yield interesting results.

56

First project: Control your camera

Just set the variable value with:

camera.framerate = 0.5
camera.shutter_speed = 300
camera.iso = 800

If you are looking for something else, please check the documentation at
https://picamera.readthedocs.io/en/release-1.13/.

Record a video

This example will be short as it’s very similar to taking a picture, but just so that you
know, you can also record a video with the picamera module.

Here is an example:

import picamera
camera = picamera.PiCamera()
camera.resolution = (1920, 1080)
camera.start_recording('/home/pi/video.h264')
camera.wait_recording(10)

camera.stop_recording()

Two quick things to explain in this script:

•	 The start_recording() and stop_recording() function replace the start_preview() and
stop_preview() we use for the image capture.

•	 The wait_recording() function is an improvement of the sleep() function. It also
checks for errors while recording (for example if you no longer have enough disk
space).

You can read the video.h264 file with VLC (preinstalled on Raspberry Pi OS).

picamera-video.py

https://picamera.readthedocs.io/en/release-1.13/

57

First project: Control your camera

Action steps

This chapter was an introduction to what you can do in Python, it should have been a
smooth way to practice the theory we discussed in the first chapters. I hope it went well
for you, as it wasn’t supposed to be too complicated.

We already practice a lot in this chapter, which is the goal of the second part of this
book. I hope you understand that you’ll only learn by doing it yourself on your own
Raspberry Pi. You’ll make mistakes, have errors, etc. That’s a good thing!

You won’t learn if you just copy/paste some random code that works every single time.

Anyway, let’s try a more difficult exercise:

•	 Create a Python script to create a timelapse: one shot every two seconds for 60
seconds.

•	 Create a function to take the picture. You’ll call this function each time you take a
shot. The function has at least the image prefix as a parameter.

•	 Knowing that the ″time″ module has a function named time() that returns
the timestamp (= number of seconds elapsed since 1970). Example:
1622525260.3697095.
And that Python has a built-in function named ″round()″ that you can use to remove
the decimals value of the timestamp. Example: 1622525260. Change the function
to use the integer part of the timestamp after the prefix in the image file name,
example: timelapse-1622525260.jpg

Each bullet point is one step, try to do them in order. It’s not a big deal if the last step is
too hard for you, but try to at least do the first two.

After that, you can consider that you know how to interact with a camera in Python, and
how to use functions, modules and loops effectively.

As always, you’ll find the solutions at the end of this book if you are stuck with one
question.

58

Let’s Play: Interact with Minecraft

LET’S PLAY:
INTERACT WITH MINECRAFT

Introduction

In this chapter, we’ll try to use your new Python skills to play a game a bit differently
than you might be used to.

On Raspberry Pi OS with Desktop, there is a special edition of Minecraft installed. It’s
possible to play with it, even if the features are limited, but that’s not our goal today.

This Minecraft version is installed on Raspberry Pi because it’s possible to interact with
the game from a Python script.

As you probably remember, the main goal of the Raspberry Pi creation was to promote
code in schools. What better way to do this than using one of the favorite games of
these kids?

In this chapter, you’ll try it for yourself, it should be fun. But first, I need to explain some
details about Minecraft for those who haven’t played this game for years (like me...).

59

Let’s Play: Interact with Minecraft

Minecraft Introduction

Presentation

Just in case you lived in a cave the last ten years, here’s a short introduction to
Minecraft.

Minecraft is a sandbox game where the entire world is generated with blocks of the
same size. The player spawns in this environment and tries to survive while doing
anything they want. The game includes a mix of explorating, building, crafting, and
combat. You can also fight with passive or hostile mobs (like zombies or cows).

Here is what it looks like when you start the game on a Raspberry Pi:

60

Let’s Play: Interact with Minecraft

About the game

Minecraft exists in several game modes:

•	 Survival: you need to gather blocks and resources, craft things, and survive during
the night.

•	 Creative: you get all the blocks you want for free and can’t die.

•	 Adventure: for map creators, you can’t break blocks, but you can use levers and
buttons.

•	 Spectator: no interaction, you are always flying and can go through blocks.

On Minecraft Pi, as it’s mostly an educational game, you are in the creative mode. You
get a sword and some blocks in the quick bar at the bottom of the screen. It’s possible
to get more blocks (see the next paragraph), it’s always sunny, and you can’t die.

In creative mode, it’s possible to break blocks in one shot. In survival mode, it depends
on the tools you use (wood tools are slower than diamond tools for example).

Start a game

The first thing to do is to start the game and create a new world:

•	 Start the game (Main menu > Games > Minecraft Pi).

•	 Try to put the game on a side of your screen, you’ll need space for the Python editor
later.

•	 To move the window, click on the console blue bar with the small cursor (yes you
have two …).

•	 Then click on ″Start Game″.

•	 You’re now in the ″Select world″ menu. Click on ″Create New″ to create your world.

•	 Wait a few seconds for the world to generate.

You can now control your player using the mouse to see the world around you.
I’ll give you all the control keys.

61

Let’s Play: Interact with Minecraft

Controls

•	 Camera: Move the mouse.

•	 Break block: Left-mouse.

•	 Place block: Right-mouse.

•	 Moving: W,S,A,D (Z,S,Q,D on an AZERTY keyboard).

•	 Jumping: Space.

•	 Auto-jump is enabled when moving.

•	 Double-space enables the fly mode and then uses flying to gain altitude.
Use Shift to decrease altitude.

•	 Access inventory: E.

•	 Pause/Quit: ESC.

Try to move around a little in your world to get used to the movements.

Coordinates

Minecraft uses coordinates to know each player’s position, and each block has a
different position.

The player’s position is visible in the top left of the Minecraft window.

Try to move and see how it changes.

Each time you move one block away, one of these values changes by 1.

For example, you can have something like this:

•	 X: 4.6 – The east/west position.

•	 Y: 0.0 – The altitude.

•	 Z: -0.7 – The north/south position.

62

Let’s Play: Interact with Minecraft

This picture should help you understand:

Try to move your player again in the game and see how the position changes in the
indicator.

At any time, we know the player's position, and we’ll use it later.

Blocks IDs

When you open the inventory (E) you can see that Minecraft has many blocks available:

63

Let’s Play: Interact with Minecraft

Basically, each block in the game has an ID.
Stone is 1, Grass is 2, Dirt is 3, etc.

So if we want to set a specific block near the player, we only need to know its ID.
There is a website you can use to get the list of IDs:
https://minecraft-ids.grahamedgecombe.com/.

Link Minecraft and Python

Now that you are up-to-date about the Minecraft game, we can try to interact with it in
Python.

Chat

Similar to the first script we made in Python in chapter 3, we’ll also try a ″Hello world″
with Minecraft first. This is tradition!

Keep Minecraft open on one side of your script, with a game started.

On the other side, create a new script with Thonny.

Then copy and paste these 3 lines in Thonny:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("Hello world")

Almost nothing new here in the code:

•	 On the first line, we import the Minecraft module.

•	 On the second line, we define the variable ″mc″ that we’ll use as a prefix with any
Minecraft function.
It’s really similar to what we have seen in the last chapter with the camera.

•	 After that, we can use the functions provided by the Minecraft module.
″postToChat″ is one of them, as the name says, it’s to write something in the chat
ingame.

hello-world.py

https://minecraft-ids.grahamedgecombe.com/

64

Let’s Play: Interact with Minecraft

If you run this script, you should receive the ″Hello world″ message in your game:

Block

We can now try something funnier. It’s possible to switch blocks in your close
environment in the game.

Change a block at a specific position

The first thing you can do is to use the function ″setBlock″ to create a block at a specific
position. This function has four parameters: the three coordinates and the block id:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.setBlock(0, 0, 0, 56)

Try this in your game, change the coordinates if you are far from the 0/0 point. The
order is x, y, z.

56 is the ID of the diamond ore, but you can use whatever you want.

When you run this script, you should see a diamond block appear at this position.

setblock.py

65

Let’s Play: Interact with Minecraft

Get the player position

Instead of changing the coordinates in setBlock to fit your player position, we can use
another function to get the player position: ″getPos()″.

Here is the corresponding script:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
x, y, z = mc.player.getPos()
mc.setBlock(x, y-1, z, 56)

I use ″y-1″ to change the block under the player’s feet.

We need to talk

There are two things I should explain at this stage, both on line 4 of this short script.

The first (simple) thing is that the getPos() function returns three values (for the
coordinates) and that we can get them all assigned to specific variables like in this
script.

Instead of writing:
x = 2
y = 7
You can do:
x, y = 2, 7

I’m not certain if it’s clearer to read the second option, so I don’t think it matches with
the Python philosophy, but it’s possible. And with a function returning several values it’s
really convenient.

setblock-position.py

66

Let’s Play: Interact with Minecraft

The second (less simple) thing is that I lied a bit in the previous chapters about the
functions we use from external modules (it was for your good!). These functions are
special, as they come from a class, something used in object-oriented programming.

Until now, I only explained procedural oriented programming, which is the natural way
of doing code for small projects.

I chose to skip this part in the theory chapter because it’s often overwhelming for new
students. It’s typically used for large projects and not for creating simple scripts.

The idea is to add an abstraction level to your program, and group related functions in
classes and objects.

Let’s say you have a big program that handles everything in a bank.

You can do a giant script with hundreds of functions to manage employees, customers,
bank accounts, payments, etc. Or you can use object-oriented programming and break
it down in small parts:

•	 The customer class will include variables (name, address, etc.) and functions (new(),
leave(), update(), etc.).

•	 The account class can include variables (type, amount, date_open, etc.) and
functions (deposit() and withdraw(), etc.).

•	 Etc.

Anyway, a class is like a module. It includes variables and functions that you can use
by creating an object using this class. An object is like a super variable, created from a
class, that we can use to call functions from the class, like the functions we use in this
chapter.

So as you read the scripts you have tested, just know that Minecraft is the main class
and player is another class. That’s why the syntax is a bit strange when we call the
getPos() function.

mc.player.getPos(): ″mc″ is the object we create from the Minecraft class on line 3,
″player″ is an object automatically defined in the Minecraft class that has the getPos()
function.

67

Let’s Play: Interact with Minecraft

The point is used to call a variable or function from a specific class.

When we use Minecraft.create(), we call the create() function from the Minecraft class.

And by the way, a function defined in a class is named a method.

Don’t worry if all of this seems really complicated, it isn’t. It’s just a different way to
organize what we’ve learned up until now. And if you completely skip the object/class
info and just remember the variable/function we discussed in the first chapters, you’ll
do OK.

You know that the getPos() function returns the information you need, and that there is
a strange syntax to use to call this function, it’s enough. Just copy/paste it.

I don’t think you’ll create classes and objects yourself if you create a program from
scratch. That’s why I choose to skip these notions. But when you use external modules,
they are often made using these same concepts. Ironically, they used them to make
your life easier :).

Teleportation

Anyway, let’s get back to practice.
Another fun thing you can do is to teleport the player to another position.
To do this, you can use the ″setPos()″ function that works almost the same way as
″setBlock()″.
It has three parameters: x, y, z.

Here is a basic script on how to use it:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.player.setPos(100,50,100)

teleport.py

68

Let’s Play: Interact with Minecraft

Your player might move to a bad location, inside blocks or whatever. Try other values if
it’s not good the first time.

Note: mc is the object created from the Minecraft class. Player is an object created
from the player class defined in the Minecraft class. We call the setPos method from
the player object.

Other functions

There are many other functions available, so feel free to play a bit with them and try
other things.

I didn’t find an official API reference. I don’t know if Mojang has this hidden somewhere,
but I didn’t find it.
The only page I found is the website linked to the ″Adventures in Minecraft″ book.

This website gives you all the functions, parameters, and explains what each does:
https://www.stuffaboutcode.com/p/minecraft-api-reference.html.

With the list of functions and examples, you should be able to use any of them now.
And in fact, we’ll see that in the action steps :).

https://www.stuffaboutcode.com/p/minecraft-api-reference.html

69

Let’s Play: Interact with Minecraft

Action Steps

Your goal is to master Python, or at least to be at ease when you need to use external
libraries. The Minecraft API is a great example. Even if you understand everything we
discussed regarding Python, the syntax, the concepts, etc., you’ll be quickly limited if you
don’t know how to use external modules and apply what it’s in the documentation.

So for these action steps, I’ll let you try exactly this.

You have the documentation website and we have seen how to use a few functions.
Now, I’ll let you work with them and others.

•	 Create a script that saves your player’s position.

•	 Build a basic house around your player’s position (less than 10 blocks away).

•	 If you’re comfortable, try to use different block IDs to build the house, create a door,
windows and a roof.

If it seems too hard for you, a 4x4x4 cube with only one block type will already be a
great success.

As always, you can find the solution at the end of this book. But try to do it yourself first!

70

Control your Lights at Home

CONTROL YOUR
LIGHTS AT HOME

Introduction

In this chapter, you’ll experiment with the same skills we’ve discussed in a different
environment. If you understood previously, this should be easy. If not, it’s a great way to
try again with another application.

More and more homes are equipped with smart lights. Depending on the brand and
models, you can at least switch them on and off from your smartphone, and generally
change the light intensity or even the color.

Most of these light bulbs have an API to control them in Python, which is what we’ll
learn in this chapter. I have the Philips Hue lights so I’ll show you how with them, but I
know other brands also have a similar API (Xiaomi and Govee for example).

71

Control your Lights at Home

Philips Hue Introduction

The Philips Hue collection includes all of the smart lights from Philips.
It's a concept including bulbs, a bridge, and an app to manage the lights.

•	 The bridge is the router between lights and your smartphone app.
It needs access to your network (RJ45), and if possible to an Internet connection.
The configuration is easy if you use a DHCP server on your network.

•	 Lights connect to the bridge automatically through wireless.
As soon as you switch the lights on, they are available on the app. No configuration
needed.

•	 And the Hue app is available on your smartphone to manage all of this.
You can switch lights on and off, change colors, and create routines.

If you don't have a Philips Hue package or colored lights at home yet, you must know
that there are several models and packs available in the market.

There are the basic on/off white lights, bulbs where you can change the color and an
LED strip that’s perfect for Christmas or for background ambiance.

To experiment with the code that I give you in this chapter, it would be best to get at
least a starter kit. You can find my current recommendation in my resources page:
https://raspberrytips.com/resources/expert/.

If you have lights from another brand, the API will be different, but you should be able
to adapt the code to get the same results. Most of these APIs have similar functions
available.

https://raspberrytips.com/resources/expert/

72

Control your Lights at Home

If you can’t afford smart lights for now, this chapter will be less fun, but you can
probably follow what I explain and apply it to something else. Or maybe use the code
and try to display something on your screen instead of changing the light status or
color.

Prerequisites

Before anything else, we need a few things:

•	 If you bought a new kit for this chapter, follow the instructions to install it. Configure
all of the lights with the app on your phone before you do anything else.

•	 Find the Hue bridge IP address. You can get it by using this command on your
Raspberry Pi:
sudo apt install nmap
nmap -sP 192.168.1.0/24
Replace the network with your own if you use something different.

•	 Install the Python library that we’ll use to control the lights:
sudo pip3 install phue
The package ″python3-pip″ should be installed first if you have any errors with this.

Note: Similar to the way I previously told you to install packages named python3-
<library>, you will need to install libraries with pip3 instead of pip when you use
Python 3 in your scripts.

73

Control your Lights at Home

Discover the API
On your Hue bridge, there is an API available.
The base URL is http://<IP>/api/v1.

I’ll show you basic calls you can make, how it works, and after that, we’ll create the first
scripts.
In this project, the Raspberry Pi will talk to the Hue bridge, with Python making HTTP
requests to get or change the Hue system configuration. So, the Hue API gives us HTTP
functions to change things for the lights (like switch a light off for example).

Unlink the one we used for Minecraft in the last chapter, this API is protected with
a username we need to create before making any calls (You may have seen the
″unauthorized user″ error if you tried the API base URL).

API Tester

To test the API without coding, Philips gives us a tool to create requests in a form.
This form is available at http://<IP>/debug/clip.html.

In this form you’ll find three parts:

•	 URL: The URL you want to call.
You’ll see later that each function has a different URL.

•	 Method: GET, PUT, POST or DELETE.
These are different actions you can make with your request.
For example, GET is to see the configuration while PUT is to change something.

•	 Message Body: For specific functions, you must add more details to explain what
you want to change in the Hue configuration.

•	 Command Response: When you send requests, you’ll see the bridge’s answer in
this field.
This will help you debug your requests.

Now that you understand what it is, let’s start by creating your username.

74

Control your Lights at Home

Create the user

In most requests, we need authentication to allow access to the Hue bridge
configuration.

To create your authentication token, fill the form like this:

•	 URL: /api

Message Body:

{"devicetype":"TestApp#RaspberryPi"}

Put what you want for the device type (app name or device as you want).

•	 Then press the bridge button.

•	 In the following 30s, hit the POST button to run the query.

This should look like this in the form:

In the ″Command response″ field, you can see the username generated by the Hue
bridge.
Note it, we’ll use it in all the next calls.

75

Control your Lights at Home

Get a list of the lights

Before changing the configuration in a specific room, we need to get the list of all lights
installed. Each light bulb has an ID that we’ll need later in our scripts.

To get a list with all lights available, fill the form with this:

•	 URL: /api/<username>/lights.
Replace <username> with the one you got in the previous step (long random string).

•	 Then press ″GET″ to get the answer.

The answer is in JSON format, which isn’t easy for a human to read.
You should see one paragraph by light.

Each paragraph starts with a number (1, 2, 3, etc.) and will contain information about
the corresponding light.
Try to find which number corresponds to which light.

For example: 1=>Bedroom, 2=> LED strip, etc.
Take notes of these IDs, as we’ll need them now.

First try in Python: Switch the light on and off

from phue import Bridge
b = Bridge('192.168.222.2')
#Uncomment this line to register the app (see below)
b.connect()
#Change the light state
b.set_light(1, 'on', False)

Try this code in your favorite editor, but don’t forget to change the bridge IP address
first.

You may need to change the light ID on the last line, if ″1″ is already off or if you can’t
see it from your computer.

switchoff.py

76

Control your Lights at Home

As you have done when using the API debugger, you also need to create a username to
use the API on your Raspberry Pi. To do this, you have to use the function ″connect()″
once.

So:

•	 Press the button on the bridge.

•	 Run this script.

•	 If it works, comment the line ″b.connect()″.

You’ll get an error if your Pi is not authorized or if you didn’t press the button:

Once everything is set up correctly, this first script should be easy to understand for
you:

•	 On the first line we import the Bridge class from the phue library.

•	 Then we create an object, ″b″ that can call all of the methods from the Bridge class.

•	 We use the ″connect()″ method the first time, but we don’t need it after that.
Once your Pi is authorized, the bridge will allow immediate access to the API.

•	 Finally, we use the ″set_light()″ method to change properties on a light bulb. In this
case, we turn it off. Yes, ″on=False″ is basically ″off=True″.

Change ″False″ to ″True″ on the last line to set your light back on.

77

Control your Lights at Home

Create a Christmas Tree

Now that we have set everything up, and have learned the basics on how to interact
with the lights, we can fast-forward to something fun. If you have the LED Strip from
Philips Hue, you can copy and paste my code as it is.
If you don’t have the LED Strip from Philips Hue or use another brand, you’ll need
to adapt the code, but that’s great too. You now have enough knowledge to start
experimenting on your own.

Don’t worry, I’ll explain everything so that it’ll be easy to do it on your side.
The goal here is to use several concepts we have previously discussed in order to code
a Christmas tree.

Change the light color

With lights from Philips, the color value is defined with two numbers: x and y.
X and y are numbers between 0 and 1, and changing their values will change the light
color.
There is a complicated formula to convert RGB colors to XY colors, but we don’t need it
in this project. We’ll set random colors.

In fact, the easiest way I have found to get a specific XY color, is to set it with the app on
your smartphone, and then use the API Debugger tool to get the exact value.
Another way is to use the ″rgbxy″ library, that can convert RGB and HTML colors to XY
equivalents directly in Python (more details here: https://libraries.io/pypi/rgbxy).

Anyway, to change the color, we can use the same method as before:
b.set_light(1, 'xy', [0.2,0.7])
You can try to change the previous script and try different values (between 0 and 1) to
see how it works.

Note: when we got all the lights in the API debugger, you may have seen other
variables like brightness and saturation. You can change their values the same way.

78

Control your Lights at Home

Merry Christmas

We’ll now put this in practice and gradually change the color of your LED strip to act like
a Christmas tree garland.

•	 To keep things simple, we won’t change the value of ″y″, it will always be 0.

•	 We’ll increase the value of ″x″ in increments of 0.03.
Ex: 0, 0.03, 0.06, etc.

•	 When x reaches 1, its maximum value, we’ll flip the direct and decrease the value of
″x″. Then we’ll repeat when it’s back to 0.

I would love it if you can try to do it on your own before reading my script. I think it’s
a great exercise to practice and experiment with the theory we discussedin the first
chapter.
Hint: you’ll need variables, conditions, an infinite loop and obviously the phue library.

Anyway, here is my script:

from phue import Bridge
from time import sleep

b = Bridge('192.168.222.2')
led_strip = 3

b.set_light(led_strip, 'on', True)
x=0
y=0
direction=1

while True:
 if x>1 or x<0:

79

Control your Lights at Home

 direction=1-direction
 if direction:
 x=x+0.03
 else:
 x=x-0.03
 print(str(x)+"/"+str(y))
 b.set_light(led_strip, 'xy', [x,y])
 sleep(0.5)

•	 We start by defining a bunch of variables. It’s always better to work with variables,
especially with explicit names.

•	 Then we create an infinite loop ″while True:″ because we want the light to change
color all the time while the script is running.

•	 If the x value has reached one of its limits (0 or 1) we need to revert the incremental
steps direction.

•	 If the direction is positive, we add 0.03 to the last value. If it’s negative, we remove
0.03 to the last value.

•	 We use the method to change the light color and wait a bit before changing the
color again. You can adjust the sleep time to make it change faster or slower, but try
to keep a minimum value here.

•	 I added one line to display the value for those who don’t have smart lights, but also
to see if the x value changes as expected.

And that’s it; a fun project with less than 20 lines of code. I think you should understand
all of the code now, and start to see the power of Python in a concrete project.

I think it’s a good idea to take time to experiment from there.

If you don’t have the Philips lights, you may have already worked enough. However, if
you just copied and pasted my script, try to do something different. Maybe you can try
to change the y value for example.

switchoff.py

80

Control your Lights at Home

Action steps

This action step is a big one, but it’s good for you to think more on your own now
that the code logic and the Python syntax is understood. I think half the work when
programming is to find a way to write the logic in a simple script, whatever the language
you use.

Goal

Anyway, the goal in this exercise is to automate the lights at home. We’ll define a
routine to light them at a specific time and shut them down at another time.

If you don’t have smart lights, please try it as well. Just replace the set_lights() function
with a print() function.

Here is what I have done at home:

•	 My lights come on at 4:30 a.m. (yes, I get up early).

•	 They turn off automatically at 8 p.m.

•	 Do they stay on all day? Nope, I have a smart configuration that I want you to try
here.

I connect to an API to get the sunrise and sunset times of the current day at my
location. In the morning, the lights turn off 2 hours after the sunrise. Then I put them
back on 2 hours before sunset.

At the time of writing (in the summer), the sunrise is at 3:50 in the morning, so my lights
are on from 4:30 to 5:50. Sunset is 10 p.m., so the lights don’t come back on in the
evening, as I don’t need them before 8 p.m. I have found that a 2-hour offset works well
to make sure I get enough lights when there is bad weather.

You’ll need to adjust this depending on your lifestyle and sun exposition, but basically
that’s the idea in this exercise.

81

Control your Lights at Home

Automate the static hours

The first part shouldn’t be very complicated.
Create two scripts: lights_on.py and lights_off.py.
These scripts correspond to the first two bullet points in the previous goal’s details.

For example, you’ll schedule lights_on.py to run at the time you wake up and use lights_
off.py at the time you want to turn the light off.

We have already discussed this in this chapter, but you might need some help to
schedule them.
Task scheduling on Linux is controlled by a service named ″cron″.

You’ll find everything you need in this article:
https://raspberrytips.com/schedule-task-raspberry-pi/.

Read this article and program your scripts.
Your smart lights will now turn on and off at the specified times, but they will stay on all
day. We need to work on the last point to turn them off and depending on the sunrise
and sunset times.

Connect to the API

When you have complex projects, it’s always a good idea to break them down into
smaller parts. The first easy step was to schedule the first two scripts at specific times.

Now, we’ll find and connect to an API to get the sunrise and sunset times. But we won’t
use them directly, this step is just to get them in a new script.

To do this, I’m using the API provided for free by this website:
https://sunrise-sunset.org/api.

It’s simple to use, as all the parameters go directly in the URL, for example:
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400.

https://raspberrytips.com/schedule-task-raspberry-pi/
https://sunrise-sunset.org/api
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400

82

Control your Lights at Home

The result is in JSON format and looks like this:

 {
 "results":
 {
 "sunrise":"7:27:02 AM",
 "sunset":"5:05:55 PM",
 "solar_noon":"12:16:28 PM",
 "day_length":"9:38:53",
 "civil_twilight_begin":"6:58:14 AM",
 "civil_twilight_end":"5:34:43 PM",
 "nautical_twilight_begin":"6:25:47 AM",
 "nautical_twilight_end":"6:07:10 PM",
 "astronomical_twilight_begin":"5:54:14 AM",
 "astronomical_twilight_end":"6:38:43 PM"
 },
 "status":"OK"
 }

Here are the steps you have to follow to use this API:

•	 Create a new script, something like lights_auto.py.

•	 Find a Python library that you can use to reach an URL and get its content.

•	 As the response will be in JSON, you also need a library to read JSON format.

•	 Finally, we’ll compare the sunrise and sunset times to the current times.
You can use the datetime library we have seen in chapter 5 to do this.

In most projects, Google will be your best friend to find the libraries you need and how
to use them. If it’s your first project and have no idea where to look, I will help you a bit.

83

Control your Lights at Home

Here are the three libraries we’ll use in this exercise:

•	 URLlib: https://docs.python.org/3/library/urllib.request.html

•	 JSON: https://docs.python.org/3/library/json.html

•	 Datetime: https://docs.python.org/3/library/datetime.html

Start creating your script. Don’t forget to do it step by step:

•	 First open the URL and make sure you can get the result.

•	 Then use the JSON library to convert it to simple variables.
To access a specific value in a JSON formatted response, you need to use the library
to convert it to a Python list.
Then you’ll use the corresponding entry in square brackets, like the lists we have
seen in chapter 4, but with the index name instead of a number.
For example: results[‘sunset’]

•	 Once you have the times in two variables you can use the datetime library to find
the difference between them and the current time.

•	 The goal here is just to have two variables: diff_sunset and diff_sunrise.
For example, diff_sunrise can be 2000 and diff_sunset 55000.

•	 We don’t need to do anything with the lights yet.

Don't be overwhelmed by the number of steps you see, just work on each one. Make
sure it works as expected and then move to the next one once you are ready.

You can find my version of this script at the end of the book, but I’m sure there are
several ways to do it, so if your script works it’s probably fine.

https://docs.python.org/3/library/urllib.request.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/datetime.html

84

Control your Lights at Home

Adjust the lights schedule with the API results

The hardest part is done, so now we just have to include the phue library and switch
the light on and off depending on the time of the day. We’ll use the same functions we
have previously discussed, and just add a few conditions to make this work as expected.

As a reminder, the goal is to turn on the lights 2 hours before sunset and turn them off
2 hours after sunrise.

Here are a few hints to guide you in this final step:

•	 If the sunset is in less than 2 hours, we’ll turn on the lights.

•	 If the sunrise is in less than 22 hours, we’ll turn the lights off.
Yes, that’s a shortcut, you can do this differently if you find a better way.

•	 There are 3600 seconds in one hour.
Don’t forget that diff_sunrise and diff_sunset are in seconds.

•	 There is nothing fto do between sunset and sunrise.
We have the scheduled tasks for this.

If it works (alone or thanks to the solution), feel free to adapt it then to your schedule.
Note that there is also a way to gradually decrease the light intensity. That could be a
great add-on before turning the lights off at night.

I hope you didn’t have too much difficulty with this exercise. It was complicated on
purpose, but when broken down into small steps it should be doable. If you think you
are a little behind, don’t worry. Just take some time to check the solution again, maybe
quickly review chapters 3 and 4 to see what you have missed.

But most of the time, the difficult part is the logic, not the syntax. You’ll understand the
solution, but not how to get there. Don’t worry, it will come automatically through more
and more projects.

85

Communicate with the world

COMMUNICATE
WITH THE WORLD

Introduction

This chapter is probably easier than the previous, but it’s also important.

Sometimes you create Python scripts that run on schedule (like the lights on/off in
chapter 7), and you don’t look at your script after that. If your lights don’t work anymore,
you’ll surely notice, but for less visible scripts this might not be the case.

The goal of this chapter is to use Python scripts to send messages. I suppose it will
mostly be notifications to yourself, either by email or push notifications on your
smartphone, but it can also be useful if you have other people to contact with.

For example, I have a script that connects to my NAS, where I store my backups, that
emails me if there are no recent files. This could be really useful for some Python
projects, which is why I included this in this book. And, with your new skills, it shouldn’t
be very complicated.

86

Communicate with the world

Emails

When you configure a mail client on your computer, it will ask you for an SMTP server
to send your messages to. Python works the same way. We’ll open a connection to your
mail server and send the message from there.

I’ll show you how to do this with Gmail, as it’s the most popular mail provider, but it
should work with any mail server that supports SSL.

Before anything else, you’ll need:

•	 The email server address.
Ex: smtp.gmail.com

•	 The SMTP port.
Ex: 465

•	 Your username and password.

Sending an email with Python

As usual, there are a few libraries that we’ll use to do this:

•	 smtplib: https://docs.python.org/3/library/smtplib.html

•	 ssl: https://docs.python.org/3/library/ssl.html

https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/ssl.html

87

Communicate with the world

As we’ll send the email to the SMTP server with SSL, we need both of them to do this.
Let’s not waste time here, that’s the script you can use to send an email in Python:

import smtplib, ssl

#Define your server parameters
server = "smtp.gmail.com"
port = 465
user = "you@gmail.com"
password = "yourpassword"

context = ssl.create_default_context()

#Create your email
dest = "contact@raspberrytips.com"
subject = "Your Python script works"
body = "And your book is great by the way :)"

#Assemble the message
message = f"""Subject: {subject}
To: {dest}
From: {user}
{body}"""

with smtplib.SMTP_SSL(server, port, context=context) as server:
 server.login(user, password)
 server.sendmail(user, dest, message)

basic-email.py

88

Communicate with the world

A few things to explain here:

•	 The SSL context includes all the default settings to establish the SSL connection
later, we don’t need to get into more details here, it’s just required to make this
work.

•	 The message part of this project is new. When you have multiline variables to
concatenate you can use the triple quotes to set the value.
By using the ″f″ before the triple quotes, and then putting variables in braces, they
will be replaced by their value. It’s a strange syntax, but very convenient in this case.
Don't hesitate to print the message value to see how it works.

•	 The ″with″ statement then is a different way to define a variable.
Basically, it’s the same thing as this:
server = smtplib.SMTP_SSL(server, port, context=context)
But it will close the connection once the paragraph below is executed. It’s often a
good practice to use this when working with unmanaged resources (like files and
connections). The file or connection will be closed even if there is an exception, for
example if the connection doesn’t work or your password is rejected.

Note: Your usual password might not work in this script. For example, with Gmail
you need to generate an app password first, that will work without the 2-steps
authentication process. You can do this here: https://myaccount.google.com/
apppasswords.

89

Communicate with the world

Attachments

Sending attachments can also be something interesting in your scripts. For example, if
you control a security camera with Python, you can send the picture in an attachment
when a movement is detected.

It’s the same base, but there is a new object to introduce: the MIME part.

MIME stands for ″Multipurpose Internet Mail Extensions″ and as the name says, it’s
used to extend an email message and add an attachment.

To define a MIME attachment, we’ll need a few methods, but all of them come from the
email library: https://docs.python.org/3/library/email.html.

As always, I’ll give you the code, and explain after - just in case there are any questions
left:

import smtplib, ssl

from email import encoders
from email.mime.base import MIMEBase
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

#Define your server parameters
server = "smtp.gmail.com"
port = 465
user = "you@gmail.com"
password = "yourpassword"

context = ssl.create_default_context()

https://docs.python.org/3/library/email.html

90

Communicate with the world

#Create your email
dest = "contact@raspberrytips.com"
subject = "Your Python script works"

#Assemble the text message
message = MIMEMultipart()
message["From"] = user
message["To"] = dest
message["Subject"] = subject

#Add the attachment
filename="attachment.txt"
with open(filename, "r") as attachment:
 part=MIMEBase("application", "text")
 part.set_payload(attachment.read())
 encoders.encode_base64(part)
 part.add_header("Content-Disposition", f"attachment; filename= {filename}")
 message.attach(part)

text = message.as_string()
with smtplib.SMTP_SSL(server, port, context=context) as server:
 server.login(user, password)
 server.sendmail(user, dest, text)

attachment.py

91

Communicate with the world

•	 We still need smtplib and ssl, but we also import the functions we need from the
email library. As it’s a big one, we only include the modules we’ll use.

•	 The message definition is different, but maybe easier to read than the syntax we
used in the previous script.

•	 Then we need a file that we’ll add into the attachment. In this case, it’s a text file,
creatively named ″attachment.txt″.
As you can see, we use the ″with″ statement to open a file, like for the SMTP
connection.

•	 The open function takes two parameters, the file name and the open mode.

•	 Then we use the MIME library to attach this file to the message.

•	 Once done, we can use the smtplib functions to send the email, like in the first
example.

Note: if you want to attach a picture instead of a text file, you need to make a few
changes in the paragraph where we open and crease the MIME payload. Use ″rb″
and ″image″ instead of ″r″ and ″text″ for example. Check the documentation for
more details.

You can use these two scripts as a base in your projects. Once you understand the
logic, it shouldn’t be very complicated to adapt them to your needs.

r Read x Create

a Append t Text (default)

w Write b Binary

92

Communicate with the world

Notifications

Emails are great, but for the most critical information I tend to use push notifications.
This way, there is no spam, no filter and no need to wait until I check my emails. It’s
guaranteed that I’ll get the information quickly.

Sending push notifications to Android and iOS phones is not an easy task, you’ll need to
create an app first. And, that’s not the goal of this book. We want to execute something
simple.

The easiest way I have found to do this is to use an app named ″Pushbullet. It has an
API and a Python library to help us with this task.

Install Pushbullet

Pushbullet is a free service. They have a Pro plan, but I don’t think you’ll need it anytime
soon. I've been using their free service for years and it’s perfect.

Start by creating your account on https://www.pushbullet.com/.

You can easily do this by using your Google or Facebook account.

Once done, install the Pushbullet apps:

•	 On Android, you can find it in the Play Store.

•	 There is an extension for Chrome and Firefox.

•	 And it’s also available as an app on Windows.

You’ll find everything there: https://www.pushbullet.com/apps.

Unfortunately, if you are an iPhone/Mac user, you’ll have to use the browser extension,
as there doesn’t seem to be anything else available for you.

Once your account is created and the app installed on at least one platform, we can
start to use it with Python.

https://www.pushbullet.com/
https://www.pushbullet.com/apps

93

Communicate with the world

Use the Pushbullet API

Back on your Raspberry Pi, the first thing is to install the libraries with PIP:
sudo pip3 install pushbullet.py

You’ll need your access token from Pushbullet for this first test. You can find it in your
account settings: Settings > Access Tokens > Create Token.
Keep it safe, you’ll need this each time you want to send notification in your Python
scripts.

Let’s create a first script to try this:

from pushbullet import PushBullet

token = ″YOUR_TOKEN″

pb = PushBullet(token)
pb.push_note(″Test″,″Hello you!″)

That’s it, you should receive a push notification:

This is the minimum code portion you’ll need in a script to send a notification to your
phone or computer.

Obviously, you can do a bit more than that, such as include links or pictures in your
notification, delete sent pushes or send a push to only one specific device.

attachment.py

94

Communicate with the world

You can find more details about this in the official documentation and library GitHub:

•	 Official documentation: https://docs.pushbullet.com/

•	 Library documentation: https://github.com/rbrcsk/pushbullet.py

Note: Never name your script the same as the library name, ″pushbullet.py″ won’t
work. You should always use a different name to avoid conflicts.

Action steps

In this chapter, we have learned that even if scripts are running alone on a Raspberry Pi,
we often need notification when something goes wrong (or a user action is required).
You now know how to send email and push notifications in these situations.

Overall this chapter wasn’t as complicated as the last one. The syntax to send an email
might be a bit strange, but nothing is impossible for you now!
That’s why in these action steps, we’ll again use the API from the last chapter for a quick
exercise.

The goal is to send a push notification each day at midnight with the sunrise and sunset
times for the next day:

•	 Create a new script with the required libraries.

•	 Define the location coordinates and the API token for Pushbullet.

•	 Send a well formatted push with the sunrise and sunset times.

Once done, you can consider that you should know how to work with APIs and JSON
formats, which is essential in many scripts you’ll write in the future.

https://docs.pushbullet.com/
https://github.com/rbrcsk/pushbullet.py

95

A final project: The Sense HAT

A FINAL PROJECT:
THE SENSE HAT

Introduction

I think I have already taught you everything you need to achieve any project where
Python scripts are required. This chapter is just the ultimate project to put everything
into practice together: variables, functions, loops and even some hardware.

The Sense Hat is the most popular HAT on Raspberry Pi. It’s an expansion card, created
by the Raspberry Pi Foundation, that provides many sensors, a LED matrix and a
joystick. Python code can be used to control all of this.

In this chapter, we’ll use it to do something fun, but it shouldn’t require new skills in
Python. You should already know everything, this is just a giant practice chapter.

96

A final project: The Sense HAT

About the Sense HAT
Presentation

Originally, the Sense HAT was created by the Raspberry Pi Foundation as ″Astro Pi″ (you
may have heard this name). The goal was to send a few Raspberry Pi with many sensors
onboard the International Space Station (ISS). After this successful flight, the Sense HAT
was created as a commercial product that was available for anyone on Earth :).

The sense HAT provides many new sensors to the Raspberry Pi:

•	 Accelerometer (get the movement speed of the PI)

•	 Gyroscope (capture the rotation movement of the Raspberry Pi)

•	 Magnetometer (magnetic field measurement)

•	 Air pressure sensor

•	 Temperature and humidity sensors

And there is also an LED display matrix and a joystick on the top of it.
Everything is controllable in Python scripts, which we’ll discuss in the next part of this
tutorial.

Do I Need One?

As you are interested in Raspberry Pi and Python, I highly recommend getting a
Raspberry Pi before reading this chapter. It has so many sensors and features that
you can use in different projects, it’s not expensive and is one of the most popular
extensions (so it’s easy to find help about it). Also, it’s made by the Raspberry Pi
Foundation, so it works on any Raspberry Pi model.

For more details and to check the price, visit my resources page here:
https://raspberrytips.com/resources/intermediate/

https://raspberrytips.com/resources/intermediate/

97

A final project: The Sense HAT

Whatever you choose, know that it’s possible to follow this chapter without it because
there is an emulator available on Raspberry Pi OS. You can start the application and
interact with it instead of the physical HAT.

If for any reason you can’t get the Sense HAT, just replace this line in all of the scripts I
give in this chapter:

from sense_hat import SenseHat

with:

from sense_emu import SenseHat

By doing this (and running the emulator), you should be able to experience the same
results.

The Sense HAT API
The Sense HAT has a Python API available with all the functions needed to interact with
the sensors and the LED matrix. I will explain the main functions you can use now, but if
in the future you need additional information, you can review the documentation here:
https://pythonhosted.org/sense-hat/api/.

As this is a product from the Raspberry Pi Foundation, which is intended to learn how
to code, there is nothing too complicated in it. With your current skills in Python, it
should be pretty straightforward.

Note: The sense-hat package is required. It should be installed by default on your
Raspberry Pi OS, but it’s available in apt and Add/Remove software tools if needed.

https://pythonhosted.org/sense-hat/api/

98

A final project: The Sense HAT

Display Text

Let’s start with something interesting, it’s possible to use the LED matrix to display text.

Hello world

Create a first script to test this, and past the following code:

from sense_hat import SenseHat

sense = SenseHat()
sense.show_message("Hello world")

As with have seen in the previous chapter:

•	 We need to import the SenseHat class from the sense_hat library.

•	 Then we create an object named ″sense″ that will be used to call any method from
this class.

•	 And the show_message function will display the text on the LED display.

helloworld.py

99

A final project: The Sense HAT

Advanced features

The show_message function has other optional parameters, the complete syntax is:
show_message(<text>, <speed>, <color>, <background>)

•	 Speed: default is 0.1, increase or decrease this value to change the scrolling speed.

•	 Color: represented as a list containing the RGB color of your text. Ex: (255,0,0) is
red.

•	 Background: same format for the background color.

Example:

sense.show_message("Hello world", 0.2, (0,0,255), (255,255,255))

This will display ″Hello world″ in blue over a white background, two times slower than
the first example.

Note: the background stay on at the end, you can use this function to reset the
LED display:
sense.clear().

100

A final project: The Sense HAT

Set Pixels

It’s also possible to light up some specific pixels to the desired color.

Change one pixel

The first function you can use is:

set_pixel(x, y, color)
set_pixel(x, y, r, r, g, b)

Yes, there are two ways to use it. You can either pass the color in one parameter, as a
list, or each RGB value separately.

Here is a complete example:

from sense_hat import SenseHat

sense = SenseHat()

red = (255,0,0)
sense.set_pixel(2,6,red)

setpixel.py

101

A final project: The Sense HAT

Change all pixels at once

Another method is to set the value of each pixel in one giant list of values. It might seem
more complicated, but it can be pretty useful in some cases.
The function is set_pixels, with an ″s″ and takes only one parameter: a list containing 64
lists of RGB values.

Here is an example to make this more clear:

from sense_hat import SenseHat

sense = SenseHat()

X = [255, 0, 0] # Red
O = [255, 255, 255] # White

question_mark = [
O, O, O, X, X, O, O, O,
O, O, X, O, O, X, O, O,
O, O, O, O, O, X, O, O,
O, O, O, O, X, O, O, O,
O, O, O, X, O, O, O, O,
O, O, O, X, O, O, O, O,
O, O, O, O, O, O, O, O,
O, O, O, X, O, O, O, O
]

sense.set_pixels(question_mark)

By the way, this is an example from the official documentation.
So, we define your two lists for the main colors (red and white in this case).
And then a list with 64 elements (8 lines of 8 pixels), defining which color to use for each
pixel.

You can use this to test your pixel art skills, but also to interact with the user. In some
cases, it will be way faster to do this instead of many set_pixel() lines.

setpixels.py

102

A final project: The Sense HAT

Get Data from the Sensors

Collecting data from the Sense Hat sensors is straightforward, but I have to give you the
functions you can use to do this:

from sense_hat import SenseHat

sense = SenseHat()

#temperature
temp = sense.get_temperature()
print("Temperature: "+ str(temp) +" °C")

#humidity
humidity = sense.get_humidity()
print("Humidity: "+ str(humidity) +" %")

#pressure
pressure = sense.get_pressure()
print("Pressure: "+ str(pressure) +" Millibars")

Names are self-explanatory and there are no parameters, so it’s straightforward.

They return a float value (with too many decimals places!), so you need to use the str
function to concatenate them in a print function. You can also use the round() function
to limit the decimal length.

Other functions are available, you can check the documentation to find them. Also, the
magnetometer needs calibration before being used, you can find some guidance on the
official website: https://www.raspberrypi.org/documentation/hardware/sense-hat/.

collectdata.py

https://www.raspberrypi.org/documentation/hardware/sense-hat/

103

A final project: The Sense HAT

Joystick Events

The last thing I want to show you before the exercise is the joystick.
We can use it to detect movement and for example do something depending on the
user interaction (and that will be the goal in the action steps!).

The joystick will throw an event when the user interacts with it. An event has several
parameters: a timestamp, action (pressed, released, held) and direction (up, down, left,
right, middle).

There are two functions you can use to get this event in Python:

•	 wait_for_event()
As the name suggests, the script is paused until something happens.
The function returned three values: timestamp, action and direction.

•	 get_events()
Rather than waiting for new events, you can check if something has recently
happened. This function gives you the history of all events that have happened
since the previous call.

Here is a basic script to show you how it works:

from sense_hat import SenseHat
from time import sleep

sense = SenseHat()

event = sense.stick.wait_for_event()
print("The joystick was {} {}".format(event.action, event.direction))

sleep(0.1)
event = sense.stick.wait_for_event()
print("The joystick was {} {}".format(event.action, event.direction))

joystick.py

104

A final project: The Sense HAT

When you run the script, it won’t do anything until you use the joystick.

The first message will show a ″pressed″ action with the direction, and the second will
correspond to the ″released″ event.

Obviously, the idea here is to do something depending on these events, that is what
we’ll try to do in the exercise below.

105

A final project: The Sense HAT

Action Steps

You now have a better idea about the Sense HAT features, and how you can use them
altogether for interesting projects. You can find many examples online (you can even
create games with it!), but we’ll do an exercise here to put this in practice.

The goal of these action steps is to interact with a LED pixel by using the joystick. Clear
the LED matrix and set one pixel in the middle of it. Now, we want to move the pixel
depending on the joystick events. If you press the joystick to the left, the pixel should
move to the left too.

If you have an idea on how to do this, let’s go! It’s always better if you manage to break
down any project into smaller parts yourself. There are many ways to do the same
thing, and I prefer you to do it as you want.

Precision: when you define variables outside a function and want to update their
values in a function, you need to use the ″global″ keyword to tell Python you want this.

Example:

def change_name():
	 global firstname
	 firstname = ″Robert″

firstname = ″Patrick″
print(firstname)
change_name()
print(firstname)

The first print will show ″Patrick″ and the second ″Robert″. If you remove the line
starting with ″global″, both print functions will display ″Patrick″.

106

A final project: The Sense HAT

A bit lost on how to complete this project without help? Don’t worry, here are my
suggestions to complete this exercise step by step:

•	 Import the libraries and create the sense object as in the previous examples.

•	 Define two variables representing the position of your pixel (x and y for example).

•	 Create an infinite loop that waits for new joystick events, and display the event
parameters (for debug purposes).

•	 Now create a function that you’ll call instead of the debug display. The goal of this
function will be to move the pixel depending on the action and direction.

•	 In this function, create conditions to change the x and y values depending on the
action and direction.
Ex: if the joystick is pressed to the left, then decrease the x value.

•	 Once x and y are updated correctly, you can set the pixel on the LED matrix with
the new values. Don’t forget to turn off the previous pixel before turning on the new
one, we don’t want to create a snake :).

And as always, you can find my solution in the samples folder and at the end of this
book. But if your method works it’s great, mine is not necessarily better, just take a few
minutes to compare them. If yours didn’t work, try to understand why by reading my
solution.

If it was easy for you, you can go further and create games with it. Remember pacman?
Why not set random pixels in another color that add points to the player when it
collects them? Or bad pixels that end the script if they are touched?

You can also find other fun examples on Trinket.io: https://trinket.io/sense-hat.

https://trinket.io/sense-hat

107

Python Libraries

PYTHON LIBRARIES

Introduction

After reading this book, you should have a good understanding of the principles
behind any Python project. When you find an idea for a project, you know to import
the required libraries and use your skills to achieve your goals. It's probably less
complicated than you initially thought.

Now that you’ve learned the fundamentals of Python and experimented with several
projects by following my advice in this book, it’s time for the next step: building on your
own code.

•	 Step 1: Understand the logic behind any programming language.

•	 Step 2: Learn how to code this logic in a specific language (ex: Python).

•	 Step 3: Ability to read and understand almost any source code written by someone
else.

•	 Step 4: Create your code to achieve a defined goal.

This annex will help you with step 4. Coding your scripts doesn’t mean to not look for
examples at all, but it’s your choice and your style that will be implemented. I will give
you 10 interesting libraries you can use in various projects. They work well on Raspberry
Pi and are easy to use because they are properly documented.

108

Python Libraries

1 - GPIO
Name GPIO

Goal Interact with the GPIO pins on Raspberry Pi

Package sudo apt install rpi.gpio

Documentation https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

Basic example

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

led = 4

#Turn on the LED

print "LED on"

GPIO.output(led,1)

#Wait 5s

time.sleep(5)

#Turn off the LED

print "LED off"

GPIO.output(led,0)

Links https://raspberrytips.com/raspberry-pi-gpio-pins/

Alternative
gpiozero
https://projects.raspberrypi.org/en/projects/physical-
computing

https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://raspberrytips.com/raspberry-pi-gpio-pins/
https://projects.raspberrypi.org/en/projects/physical-computing
https://projects.raspberrypi.org/en/projects/physical-computing

109

Python Libraries

Name Guizero

Goal Create simple GUI (User interfaces) with Python

Package sudo apt install python3-guizero

Documentation https://lawsie.github.io/guizero/

Basic example

from guizero import App

app = App(title="Hello world")

app.display()

Links https://projects.raspberrypi.org/en/projects/getting-started-
with-guis

2 - Guizero

https://lawsie.github.io/guizero/
https://projects.raspberrypi.org/en/projects/getting-started-with-guis
https://projects.raspberrypi.org/en/projects/getting-started-with-guis

110

Python Libraries

Name Twython

Goal Use the Twitter API in Python

Package sudo pip3 install twython

Documentation https://twython.readthedocs.io/en/latest/

Basic example

from twython import Twython

from auth import (

 consumer_key,

 consumer_secret,

 access_token,

 access_token_secret

)

twitter = Twython(

 consumer_key,

 consumer_secret,

 access_token,

 access_token_secret

)

message = "Hello World!"

twitter.update_status(status=message)

print("Tweeted: " + message)

Links https://projects.raspberrypi.org/en/projects/getting-started-
with-the-twitter-api

Alternative python-twitter, tweepy

3 - Twitter

https://twython.readthedocs.io/en/latest/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-twitter-api
https://projects.raspberrypi.org/en/projects/getting-started-with-the-twitter-api

111

Python Libraries

Name Pygame

Goal Games development

Package sudo apt install python3-pygame

Documentation https://www.pygame.org/docs/

4 - Pygame

5 - Flask

Name Flash

Goal Create a website with Python

Package sudo pip3 install flask

Documentation https://flask.palletsprojects.com/en/2.0.x/

Basic example

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

 return 'Hello world'

Links https://projects.raspberrypi.org/en/projects/python-web-
server-with-flask

https://www.pygame.org/docs/
https://flask.palletsprojects.com/en/2.0.x/
https://projects.raspberrypi.org/en/projects/python-web-server-with-flask
https://projects.raspberrypi.org/en/projects/python-web-server-with-flask

112

Python Libraries

Name MySQL Connector

Goal Store information in a database

Package sudo pip3 install mysql-connector-python

Documentation https://dev.mysql.com/doc/connector-python/en/

Basic example

import mysql.connector

cnx = mysql.connector.connect(user='scott',
password='password',

 host='127.0.0.1',

 database='employees')

cnx.close()

Alternatives MiniDB, SQLite3, etc.

6 - MySQL

Name OpenCV

Goal Computer vision library, image processing and machine
learning

Package sudo apt install python3-opencv

Documentation https://docs.opencv.org/4.5.2/d6/d00/tutorial_py_root.html

7 - OpenCV

https://dev.mysql.com/doc/connector-python/en/
https://docs.opencv.org/4.5.2/d6/d00/tutorial_py_root.html

113

Python Libraries

8 - Requests

9 - Matplotlib

Name Requests

Goal Make HTTP requests in Python

Package sudo apt install python3-requests

Documentation https://dev.mysql.com/doc/connector-python/en/

Basic example
import requests

response = requests.get('https://raspberrytips.com')

Name Matplotlib

Goal Create data visualizations

Package sudo apt install python3-matplotlib

Documentation https://matplotlib.org/

Basic example

import matplotlib.pyplot as plt

plt.plot([57,42,24,6])

plt.ylabel(‘random numbers')

plt.show()

https://dev.mysql.com/doc/connector-python/en/
https://matplotlib.org/

114

Python Libraries

Name Pillow

Goal Image manipulation

Package sudo pip3 install pillow

Documentation https://pillow.readthedocs.io/en/stable/

Basic example

from PIL import Image

img = Image.new('RGB', (100, 50), color = 'red')

img.save('red_square.png')

10 - Pillow

Conclusion

These libraries are a small example of what you can do with Python, just to give you a
few ideas. But there are libraries for everything, so feel free to use your friend Google to
look for alternatives or specific modules for your projects.

Once you have found a library and the documentation page, you should be able to use
any of them with your new Python skills!

https://pillow.readthedocs.io/en/stable/

115

Conclusion

CONCLUSION

So, how do you feel? Do you think you have improved your Python knowledge?
I promised to teach you only the essentials, in a step-by-step process to create,
understand and improve any Python script on Raspberry Pi.

You might still need a bit of practice to feel more comfortable with your new
programming skills, but I’m sure you have learned a lot by reading and working through
this book.

Also, I would love to have your feedback about this book. I like to know what you
expected at the beginning, how the learning curve was, and how you feel after
completing everything. If you have a few seconds for me, you can follow this link to
share your review:

https://raspberrytips.com/master-python-review.

I have many tutorials about Python on RaspberryTips.com that you can check for details
or ideas for projects. The advantage of the site is that it’s possible to exchange thoughts
in the comment section, if you have corrections to add or questions to ask.

You are welcome to contact me for any suggestions you have or any mistakes you have
found in this book. My role is to help you by giving you the answer if I can, or by pointing
you to people who can help you better than I.

See you soon on RaspberryTips,

Patrick

https://docs.google.com/forms/d/e/1FAIpQLSdzDBtOTMChGZB-vKK_Yj1qTdaK3pHf_4Bj-IC7ncxzjbAjUg/viewform

116

Action steps solutions

ACTION STEPS SOLUTIONS

Note: All the corresponding source codes are available in the ″solutions″ folder.

Chapter 3
Question 1

Question 2

Question 2

117

Action steps solutions

Chapter 4

from time import sleep

def display_ingredient(ingredient):
 print("- "+ingredient)

recipe=['4 cups raspberries','1 cup sugar','1/3 cup flour','1 egg']
for item in recipe:
 display_ingredient(item)
 sleep(1)

Chapter 5

import time
import picamera

def take_picture(camera, prefix):
 ts=str(round(time.time())) #you can call several functions on one line
 camera.start_preview()
 camera.capture('/home/pi/'+prefix+'-'+ts+'.jpg')
 camera.stop_preview()

camera = picamera.PiCamera()
for image in range(30):
 take_picture(camera, "timestamp")
 time.sleep(2)

118

Action steps solutions

Chapter 6

from mcpi.minecraft import Minecraft

mc = Minecraft.create()
x,y,z = mc.player.getPos()

mc.setBlocks(x-2,y-1,z-2,x+2,y-1,z+2,5) #floor
mc.setBlocks(x-2,y,z-2,x-2,y+2,z+2,5) #wall1
mc.setBlocks(x-2,y,z-2,x+2,y+2,z-2,5) #wall2
mc.setBlocks(x+2,y,z-2,x+2,y+2,z+2,5) #wall3
mc.setBlocks(x-2,y,z+2,x+2,y+2,z+2,5) #wall4

mc.setBlocks(x-2,y+3,z-2,x+2,y+3,z+2,17) #roof

mc.setBlock(x-2,y+1,z,20) #window 1
mc.setBlock(x,y+1,z-2,20) #window 2
mc.setBlock(x+2,y+1,z,20) #window 3

mc.setBlock(x,y+1,z+2,0) #door 1
mc.setBlock(x,y,z+2,0) #door 2

119

Action steps solutions

Chapter 7
Step 1 - API, sunrise and sunset

import urllib.request, json, time
from datetime import datetime

#Location
lat=36.7201600
lon=-4.4203400

#API URL
url="https://api.sunrise-sunset.org/json?lat="+str(lat)+"&lng="+str(lon)
response = urllib.request.urlopen(url)
data = json.loads(response.read())
sunset=data['results']['sunset']
sunrise=data['results']['sunrise']

#Debug
print("Sunrise: "+sunrise)
print("Sunset: "+sunset)

#Current time in the same format
FMT = '%I:%M:%S %p'
current = time.strftime(FMT)
print("Current time: "+current)

#Differences with sunset and sunrise
diff_sunset = datetime.strptime(sunset, FMT)-datetime.strptime(current, FMT)
diff_sunset = diff_sunset.seconds

120

Action steps solutions

diff_sunrise = datetime.strptime(sunrise, FMT)-datetime.strptime(current, FMT)
diff_sunrise = diff_sunrise.seconds

#Debug
print(diff_sunset)
print(diff_sunrise)

Step 2 - Adding the lights management

import urllib.request, json, time
from datetime import datetime
from phue import Bridge

#Connect to bridge
b = Bridge('192.168.222.2')

#Define the lights to manage
living_room = 1

#Location
lat=36.7201600
lon=-4.4203400

#URL API
url="https://api.sunrise-sunset.org/json?lat="+str(lat)+"&lng="+str(lon)
response = urllib.request.urlopen(url)
data = json.loads(response.read())
sunset=data['results']['sunset']
sunrise=data['results']['sunrise']

121

Action steps solutions

#Current time in the same format
FMT = '%I:%M:%S %p'
current = time.strftime(FMT)

#Differences with the sunset and sunrise
diff_sunset = datetime.strptime(sunset, FMT)-datetime.strptime(current, FMT)
diff_sunset = diff_sunset.seconds

diff_sunrise = datetime.strptime(sunrise, FMT)-datetime.strptime(current, FMT)
diff_sunrise = diff_sunrise.seconds

#The light turn on following the scheduled cron in the morning (4:30 a.m.)
#Nothing to do when sunrise is closer than sunset
if diff_sunset < diff_sunrise:
 #Turn on 2 hours before sunset
 if diff_sunset < 3600*2:
 print("Sunset is coming, lights on")
 b.set_light(living_room, 'on', True)
 #Turn off about 2 hours after sunrise
 elif diff_sunrise < 3600*22:
 print("Sun is here, no need for lights")
 b.set_light(living_room, 'on', False)
else:
 print("Nothing to do")

122

Action steps solutions

Chapter 8

from pushbullet import PushBullet
import urllib.request, json, time
from datetime import datetime

lat=36.7201600
lon=-4.4203400
token="YOUR_TOKEN"

#GET SUNSET AND SUNRISE
url="https://api.sunrise-sunset.org/json?lat="+str(lat)+"&lng="+str(lon)
response = urllib.request.urlopen(url)
data = json.loads(response.read())
sunset=data['results']['sunset']
sunrise=data['results']['sunrise']

message=f"""Hello,
Today sunrise is expected at {sunrise}
and sunset at {sunset}.
Have a nice day!"""

#SEND IT IN A PUSH NOTIFICATION
pb = PushBullet(token)
pb.push_note("Sun is coming soon",message)

123

Action steps solutions

To send the message each day, add a new line in your crontab. For example:

0 0 * * * /usr/bin/python3 /home/pi/sunpush.py

Chapter 9

from sense_hat import SenseHat
from time import sleep

def move_pixel(action, direction):
 global x, y
 if action=="pressed":
 print("Direction: "+direction)
 print("X: "+str(x))
 print("Y: "+str(y))

 if direction=="up" and y>0:
 y=y-1
 elif direction=="down" and y<8:

124

Action steps solutions

 y=y+1
 elif direction=="left" and x>0:
 x=x-1
 elif direction=="right" and x<8:
 x=x+1
 else:
 print("Error: Can't go in this direction")

 sense.clear()
 sense.set_pixel(x, y, 255, 0, 0)

sense = SenseHat()
x = 4
y = 4

sense.clear()
sense.set_pixel(x, y, 255, 0, 0)

while True:
 event = sense.stick.wait_for_event()
 move_pixel(event.action, event.direction)
 sleep(0.5)

125

Bonus – The Discord Bot

BONUS – THE DISCORD BOT

Introduction

Discord is a free text, voice and video messaging app. It’s similar to Slack if you want,
but is mainly oriented for gamers. As we can find gamers at school or in business, there
are now more and more companies and students that move to discord to use it as a
Slack alternative, as almost all features are available for free.

Anyway, the goal here is not to sell you discord, but to show you interesting features.

It’s possible to create bot users on Discord, in order to add more features in your
discussion channels. For example, bot users can be used for management commands,
music playing and connecting to external devices (like a Raspberry Pi).

You can check out this website to see a few examples of Discord bots created by the
community: https://top.gg/.

In this chapter, we’ll learn how to create a bot on Discord, and how to program it with a
Python script running on your Raspberry Pi.

https://top.gg/

126

Bonus – The Discord Bot

Create your bot on Discord

Ok, let’s jump on Discord now for all the prerequisites required to create a bot. If you
already know Discord or even have your server, you can probably skip a few sections
here.

Register an account

If you don’t have a Discord account yet, start by doing this:

•	 Go to Discord.com and click on Login, then Register.

•	 Fill the following form on the website

https://discord.com/

127

Bonus – The Discord Bot

•	 Once logged, directly create a new server:

The first one is perfect for this test.

128

Bonus – The Discord Bot

•	 Then, choose a name and an icon:

That’s it, you have your account and server ready and you can move to the next step.

Don’t forget to confirm your email address, as it’s mandatory to create a bot.

129

Bonus – The Discord Bot

Create an application

We need to declare a new application before creating a bot:

•	 Start by opening the Discord developer console by clicking here.
It looks like this:

•	 Create a new application by clicking on the top right button.

•	 Choose

As I noticed later, your bot will receive the application name. So, ″test″ or ″myfirstapp″ is
probably not a good idea.

•	 To create the app, you absolutely need to have your email confirmed

130

Bonus – The Discord Bot

That’s it, the application is created, we can now create a new bot:

Create a bot

•	 Click on ″Bot″ in the left menu.

•	 Then click on ″Add bot″ and accept the confirmation message.

•	 A bot that is created is automatically linked with your application.

Invite the bot on your server

The last step is to invite the bot to join your server:

•	 The first thing is to go to this URL:
https://discord.com/api/oauth2/authorize?client_id=<CLIENTID>&scope=bot&permi
ssions=1
Replace <CLIENTID> with your client ID, you can find it on the application page
(check my previous image for an example).

https://discord.com/api/oauth2/authorize?client_id=%3CCLIENTID%3E&scope=bot&permissions=1
https://discord.com/api/oauth2/authorize?client_id=%3CCLIENTID%3E&scope=bot&permissions=1

131

Bonus – The Discord Bot

•	 On the page that opens, choose the server to join:

•	 Click on Continue.

•	 Then click on Authorize on the next screen.

•	 The bot is now connected on the server. You can check on your server to be sure,
you should have something like:

The part on Discord is now completed, we have everything we need to start to work on
the Raspberry Pi.

132

Bonus – The Discord Bot

Code your bot with Python

Prerequisites

With new projects, we usually need to install a library to interact with Discord in your
Python scripts.

Use the following command to install it on your Raspberry Pi:

sudo pip3 install discord.py

It will probably install a bunch of other libraries that are required for it to work correctly.
Once done, you are ready to create your first script.

You can find the library page here: https://pypi.org/project/discord.py/.

And they have a pretty good documentation available here too:
https://discordpy.readthedocs.io/.

First script

Goal

If you have never used a Bot before, I need to explain a few things first.
In general, bots don’t react to any message typed on Discord. There will be a discussion
among users, and they will be triggered only for specific messages. Often these
messages start with a special character like an exclamation point for example.

The idea, in this first example, is to answer ″pong″ when someone sends the command
″ping″.

We’ll use the ″>″ as a prefix for our bot commands.

https://pypi.org/project/discord.py/
https://discordpy.readthedocs.io/

133

Bonus – The Discord Bot

Script code

Here is the code to do this, and I’ll explain after you test it:

import discord
from discord.ext import commands

bot = commands.Bot(command_prefix=″>″)

@bot.command()
async def ping(ctx):
 await ctx.send(″pong″)

bot.run(″YOUR_TOKEN″)

So, a few explanations here:

•	 As usual, we import the libraries before using them.
It’s composed of several modules, so we need to import discord but also the
commands class.

•	 Then we create an object named ″bot″ created from the bot class.
The only parameter we set is the command prefix we’ll use on discord (″>″ for this
example″).

•	 I’ll quickly pass over the next line (starting with an at sign), it’s what we call a
decorator in Python. Just remember to put all your bot commands under this line.
If you want to understand this concept, you can read this page in the Python wiki:
https://wiki.python.org/moin/PythonDecorators.

•	 Then we define the function that will answer the bot command. It has to be named
the same as the command you will use (so ping in this case, as we’ll use ″>ping″ on
Discord).

discord-bot.py

https://wiki.python.org/moin/PythonDecorators

134

Bonus – The Discord Bot

•	 This is an asynchronous function, meaning that the bot won’t wait for the answer. In
this case, it’s not essential. But if your function takes time, the bot needs to handle
the other commands first. It will get the answer once available, it doesn’t matter
when.

•	 The ″send″ command is used to send the message to discord.

Going further

Try it and see how it works, try to play with it a bit and add your own ideas here.

I invite you to read the examples from the GitHub repository to get a better idea on
what is built-in in the library. Commands and basic answers are not the only thing you
can do with it.

Here is the link with the examples:
https://github.com/Rapptz/discord.py/tree/master/examples.

https://github.com/Rapptz/discord.py/tree/master/examples

	Foreword
	Setting up your environment
	About the Python language
	The basics of Python
	Python Advanced
	First project: Control your camera
	Let’s Play:Interact with Minecraft
	Control your Lights at Home
	Communicate with the world
	A final project: The Sense HAT
	Python Libraries
	Conclusion
	Action steps solutions
	Bonus – The Discord Bot

