
 - 1 -

FreeRange
Computer Design: The

RISC-V Otter MCU
Version: v10.10

Copyright: 2020 James Mealy

FreeRange Computer Design Table of Contents

 - 2 -

Table of Contents

TABLE OF CONTENTS ... ‐ 2 ‐

PRETENTIONS ... ‐ 11 ‐

LEGAL CRAP ... ‐ 11 ‐
ACKNOWLEDGEMENTS ... ‐ 12 ‐
RAMBLING COMMENTARY .. ‐ 13 ‐
OVERVIEW OF CHAPTER OVERVIEWS ... ‐ 15 ‐

PART ONE: INTRODUCTION AND REVIEW .. ‐ 19 ‐

1 FREERANGE COMPUTER DESIGN OVERVIEW .. ‐ 20 ‐

1.1 INTRODUCTION ... ‐ 20 ‐
1.2 CHAPTER STRUCTURE ... ‐ 20 ‐
1.3 FREERANGE COMPUTER DESIGN BEGINNINGS ... ‐ 20 ‐
1.4 ISSUES WITH “MODERN COMPUTER DESIGN” ... ‐ 21 ‐
1.5 THE RAT MICROCONTROLLER/MICROCOMPUTER .. ‐ 22 ‐
1.6 THE RISC‐V OTTER MCU ... ‐ 23 ‐
1.7 ISSUES WITH THE CPE 233 COURSE .. ‐ 24 ‐

1.7.1 The CPE 233 Approach ..‐ 24 ‐
1.8 CHAPTER SUMMARY .. ‐ 25 ‐
1.9 CHAPTER EXERCISES ... ‐ 26 ‐

2 DIGITAL DESIGN REVIEW .. ‐ 27 ‐

2.1 INTRODUCTION ... ‐ 27 ‐
2.2 THE DESIGN PROCESS ... ‐ 27 ‐
2.3 THE NEW DIGITAL PARADIGM: DIGITAL DESIGN FOUNDATION MODELING ... ‐ 28 ‐

2.3.1 DDFM Overview ..‐ 28 ‐
2.3.2 The Three Approaches to Digital Design ...‐ 30 ‐
2.3.3 Notes on Modular Design Techniques ...‐ 31 ‐

2.4 IMPORTANT DIGITAL VOCABULARY ... ‐ 32 ‐
2.5 BASIC GATES .. ‐ 34 ‐
2.6 COMBINATORIAL CIRCUITS .. ‐ 36 ‐

2.6.1 Half Adder ...‐ 36 ‐
2.6.2 Full Adder ..‐ 37 ‐
2.6.3 Ripple Carry Adder ..‐ 37 ‐
2.6.4 Decoders ..‐ 38 ‐

2.6.4.1 Generic Decoder ... ‐ 39 ‐
2.6.4.2 Standard Decoder ... ‐ 40 ‐

2.6.5 Multiplexor ..‐ 41 ‐
2.6.6 Comparator ...‐ 43 ‐

2.7 SEQUENTIAL CIRCUITS .. ‐ 44 ‐
2.7.1 Simple Registers ..‐ 44 ‐

2.7.1.1 Special Register Circuits: The Accumulator... ‐ 46 ‐
2.7.2 Counters: Registers with Features ...‐ 46 ‐
2.7.3 Shift Registers ..‐ 49 ‐
2.7.4 Registers: The Final Comments ...‐ 52 ‐

2.8 FINITE STATE MACHINES (FSMS) ... ‐ 53 ‐
2.8.1 High‐Level Modeling of Finite State Machines ..‐ 53 ‐
2.8.2 The FSM: Symbology Overview ...‐ 54 ‐

2.8.2.1 The State Bubble .. ‐ 54 ‐

FreeRange Computer Design Table of Contents

 - 3 -

2.8.2.2 The State Diagram .. ‐ 55 ‐
2.8.2.3 State Transitions Controlling Conditions .. ‐ 56 ‐
2.8.2.4 FSM External Outputs ... ‐ 57 ‐
2.8.2.5 Non‐Important FSM Outputs .. ‐ 58 ‐
2.8.2.6 Non‐Important FSM Inputs ... ‐ 58 ‐
2.8.2.7 The Final State Diagram Summary .. ‐ 59 ‐

2.9 CHAPTER SUMMARY .. ‐ 60 ‐
2.10 CHAPTER EXERCISES .. ‐ 61 ‐
2.11 CHAPTER DESIGN PROBLEMS .. ‐ 62 ‐

3 ADVANCED REGISTERS ... ‐ 63 ‐

3.1 INTRODUCTION ... ‐ 63 ‐
3.2 REGISTERS: THE MOST COMMON DIGITAL CIRCUIT EVER? .. ‐ 63 ‐
3.3 TRI‐STATE REGISTERS ... ‐ 64 ‐
3.4 BI‐DIRECTIONAL REGISTERS ... ‐ 68 ‐
3.5 SHIFT REGISTERS ... ‐ 69 ‐

3.5.1 Basic Shift Registers ..‐ 69 ‐
3.5.2 Universal Shift Registers ..‐ 70 ‐
3.5.3 Barrel Shifters ..‐ 72 ‐
3.5.4 Other Shift Register‐Type Features ...‐ 73 ‐

3.6 CHAPTER SUMMARY .. ‐ 75 ‐
3.7 CHAPTER EXERCISES ... ‐ 76 ‐

PART TWO: ADVANCED DIGITAL DESIGN ... ‐ 84 ‐

4 CHAPTER: REGISTER TRANSFER NOTATION .. ‐ 85 ‐

4.1 INTRODUCTION ... ‐ 85 ‐
4.2 REGISTER TRANSFER NOTATION SPECIFICS .. ‐ 85 ‐
4.3 MICROOPERATIONS AND DATA TRANSFERS ... ‐ 89 ‐

4.3.1 Transfer Microoperations ..‐ 89 ‐
4.3.2 Arithmetic Microoperations ..‐ 90 ‐
4.3.3 Logic Microoperations ...‐ 90 ‐
4.3.4 Shift Microoperations ..‐ 91 ‐

4.4 DATA TRANSFER CIRCUITS ... ‐ 93 ‐
4.4.1 MUX‐Based Data Transfers ...‐ 93 ‐
4.4.2 Bus‐Based Data Transfers ...‐ 94 ‐
4.4.3 Tri‐State Bus‐Based Transfers ...‐ 95 ‐

4.5 CHAPTER SUMMARY .. ‐ 99 ‐
4.6 XXXXCHAPTER EXERCISES .. ‐ 100 ‐

5 STRUCTURED MEMORY: RAM AND ROM .. ‐ 112 ‐

5.1 INTRODUCTION ... ‐ 112 ‐
5.2 MEMORY INTRODUCTION AND OVERVIEW .. ‐ 112 ‐

5.2.1 Basic Memory Operations: READ and WRITE ... ‐ 113 ‐
5.2.2 Basic Memory Types: ROM and RAM ... ‐ 113 ‐

5.3 SOFTWARE ARRAYS VS. HARDWARE STRUCTURED MEMORIES .. ‐ 114 ‐
5.4 MEMORY OPERATION DETAILS: READING AND WRITING ... ‐ 114 ‐
5.5 MEMORY SPECIFICATION AND CAPACITY .. ‐ 115 ‐
5.6 MEMORY INTERFACE DETAILS .. ‐ 116 ‐
5.7 MEMORY PERFORMANCE PARAMETERS ... ‐ 117 ‐
5.8 MEMORY MAPPING ... ‐ 125 ‐
5.9 MEMORY ORGANIZATION ... ‐ 128 ‐

5.9.1 Extending Memory Word Length ... ‐ 129 ‐
5.9.2 Extending Memory Address Space ... ‐ 130 ‐

FreeRange Computer Design Table of Contents

 - 4 -

5.10 DIGITAL DESIGN FOUNDATION NOTATION: RAM ... ‐ 143 ‐
5.11 CHAPTER SUMMARY .. ‐ 145 ‐
5.12 CHAPTER EXERCISES .. ‐ 146 ‐
5.13 CHAPTER DESIGN PROBLEMS .. ‐ 154 ‐

PART THREE: INTRODUCTION TO COMPUTERS .. ‐ 156 ‐

6 THE BASIC COMPUTER IN HIGH‐LEVEL TERMS .. ‐ 157 ‐

6.1 INTRODUCTION ... ‐ 157 ‐
6.2 HIGH‐LEVEL VIEW OF LEARNING “DIGITAL STUFF” ... ‐ 157 ‐

6.2.1 Solving Problems with Digital Circuits .. ‐ 157 ‐
6.2.2 Solving Problems with Computers .. ‐ 158 ‐
6.2.3 Final Problem Solving Overview ... ‐ 158 ‐

6.3 WHAT IS A COMPUTER? .. ‐ 158 ‐
6.4 YOU AND THE COMPUTER ... ‐ 159 ‐
6.5 COMPUTER ARCHITECTURE: FOR THE HARDWARE PEOPLE ... ‐ 160 ‐
6.6 COMPUTER ARCHITECTURE: FOR THE PROGRAMMER PEOPLE ... ‐ 161 ‐

6.6.1 Programmer’s Model ... ‐ 162 ‐
6.6.2 Instruction Set .. ‐ 162 ‐
6.6.3 Computer Instructions .. ‐ 162 ‐

6.7 PROGRAMMING LANGUAGE LEVELS .. ‐ 162 ‐
6.7.1 Machine Code... ‐ 162 ‐
6.7.2 Assembly Language .. ‐ 163 ‐
6.7.3 Higher Level Languages ... ‐ 163 ‐

6.8 THE DIGITAL DESIGN HIERARCHY .. ‐ 164 ‐
6.9 CHAPTER SUMMARY .. ‐ 166 ‐
6.10 CHAPTER EXERCISES .. ‐ 167 ‐

PART FOUR: RISC‐V ASSEMBLY LANGUAGE PROGRAMMING ... ‐ 168 ‐

7 ASSEMBLY LANGUAGE INTRODUCTION .. ‐ 169 ‐

7.1 INTRODUCTION ... ‐ 169 ‐
7.2 BITS TO MNEMONICS AND BACK AGAIN ... ‐ 169 ‐
7.3 PROGRAMMING LANGUAGE LEVELS .. ‐ 170 ‐

7.3.1 Machine Code... ‐ 170 ‐
7.3.2 Assembly Language .. ‐ 171 ‐
7.3.3 Higher Level Languages ... ‐ 171 ‐

7.4 ASSEMBLY LANGUAGES: THE GOODNESS OF “LOW‐LEVEL” .. ‐ 171 ‐
7.5 PROBLEM SOLVING WITH PROGRAMMING .. ‐ 173 ‐
7.6 STRUCTURED PROGRAMMING .. ‐ 175 ‐
7.7 MOTIVATIONAL DISCUSSION OF FLOWCHARTING ... ‐ 176 ‐

7.7.1 The Basics of Flowcharting ... ‐ 177 ‐
7.8 STRUCTURED PROGRAMMING REVISITED.. ‐ 178 ‐

7.8.1 The sequence Structure .. ‐ 178 ‐
7.8.2 The if‐then‐else Structure ... ‐ 179 ‐
7.8.3 The iterative Structure .. ‐ 179 ‐

7.9 THE TRUTH ABOUT SOFTWARE ... ‐ 180 ‐
7.9.1 Software Quality .. ‐ 180 ‐

7.10 WRITING GOOD PROGRAMS ... ‐ 180 ‐
7.11 CHAPTER SUMMARY .. ‐ 183 ‐
7.12 CHAPTER EXERCISES .. ‐ 184 ‐

8 INTRODUCTION TO RISC‐V ASSEMBLY LANGUAGE PROGRAMMING ... ‐ 186 ‐

8.1 INTRODUCTION ... ‐ 186 ‐

FreeRange Computer Design Table of Contents

 - 5 -

8.2 INSTRUCTION SET ARCHITECTURE DESIGN ISSUES ... ‐ 187 ‐
8.2.1 Instruction Set Design .. ‐ 187 ‐

8.3 ISA DRIVEN COMPUTER HARDWARE DESIGNS .. ‐ 187 ‐
8.4 RISC‐V MCU ASSEMBLY LANGUAGE PROGRAM STRUCTURE ... ‐ 188 ‐

8.4.1 The Assembly Language Program .. ‐ 188 ‐
8.4.1.1 Comments .. ‐ 188 ‐
8.4.1.2 Assembler Directives .. ‐ 189 ‐
8.4.1.3 Assembly Code ... ‐ 189 ‐
8.4.1.4 Labels .. ‐ 189 ‐

8.4.2 Important Assembly Language Program Formatting .. ‐ 189 ‐
8.4.3 The Actual Program ... ‐ 190 ‐
8.4.4 Visual Description of Program .. ‐ 190 ‐

8.5 WHAT THE ISA REALLY DOES ... ‐ 191 ‐
8.6 RISC‐V MCU ASSEMBLY LANGUAGE BASICS .. ‐ 192 ‐

8.6.1 The Big Picture ... ‐ 192 ‐
8.6.1.1 Program Control ... ‐ 193 ‐
8.6.1.2 Load & Store ... ‐ 194 ‐
8.6.1.3 Operations .. ‐ 194 ‐
8.6.1.4 Auxillary .. ‐ 194 ‐

8.7 INSTRUCTION TYPES ... ‐ 194 ‐
8.7.1 Instruction Formats: High Level ... ‐ 194 ‐
8.7.2 Instruction Operand Addressing ... ‐ 195 ‐

8.8 INSTRUCTION‐RELATED TERMINOLOGY .. ‐ 195 ‐
8.8.1 Changing Stored Values ... ‐ 195 ‐
8.8.2 Alternate Register Names .. ‐ 196 ‐
8.8.3 Source and Destination Designations ... ‐ 196 ‐

8.9 EMBEDDED SYSTEMS PROGRAMMING ... ‐ 197 ‐
8.9.1 Software vs. Firmware ... ‐ 197 ‐

8.10 CHAPTER SUMMARY .. ‐ 199 ‐
8.11 CHAPTER EXERCISES .. ‐ 200 ‐

9 ASSEMBLY LANGUAGE PROGRAMMING OPERATIONS .. ‐ 201 ‐

9.1 INTRODUCTION ... ‐ 201 ‐
9.2 BASIC INSTRUCTIONS AND USAGE ... ‐ 201 ‐

9.2.1 The First Data Transfer Instruction .. ‐ 201 ‐
9.2.1.1 The mv Pseudoinstruction .. ‐ 202 ‐

9.2.2 The Second Data Transfer Instruction .. ‐ 204 ‐
9.2.3 The First Data Crunching Instruction .. ‐ 205 ‐
9.2.4 Memory Related Data Transfer Instructions .. ‐ 209 ‐

9.2.4.1 RISC‐V Main Memory.. ‐ 209 ‐
9.2.4.2 Accessing Main Memory Data .. ‐ 210 ‐

9.3 INPUT/OUTPUT (I/O) .. ‐ 212 ‐
9.3.1 RISC‐V Memory Mapped I/O .. ‐ 214 ‐
9.3.2 RISC‐V Input & Output Instructions .. ‐ 215 ‐
9.3.3 Load and Store: The Complete Story .. ‐ 218 ‐

9.3.3.1 Load & Store Instructions Relation to I/O Data Widths .. ‐ 220 ‐
9.4 THE FIRST PROGRAM FLOW CONTROL INSTRUCTION .. ‐ 220 ‐

9.4.1 Introduction to Program Flow Control ... ‐ 221 ‐
9.5 CHAPTER SUMMARY .. ‐ 226 ‐
9.6 CHAPTER EXERCISES ... ‐ 227 ‐
9.7 CHAPTER PROGRAMMING PROBLEMS .. ‐ 228 ‐

10 INSTRUCTIONS, CONSTRUCTS, AND BIT‐LEVEL MANIPULATIONS .. ‐ 229 ‐

10.1 INTRODUCTION ... ‐ 229 ‐

FreeRange Computer Design Table of Contents

 - 6 -

10.2 BIT CRUNCHING INSTRUCTIONS ... ‐ 229 ‐
10.2.1 Logic Instructions: AND, OR, & XOR .. ‐ 230 ‐
10.2.2 Arithmetic Instructions: Addition & Subtraction ... ‐ 233 ‐
10.2.3 Shift Instructions .. ‐ 234 ‐

10.3 AUXILIARY INSTRUCTIONS ... ‐ 236 ‐
10.3.1 Various Simple Pseudoinstructions Operation: the nop Instruction ‐ 236 ‐

10.3.1.1 Pseudoinstruction: nop .. ‐ 236 ‐
10.3.1.2 Pseudoinstruction: not .. ‐ 237 ‐
10.3.1.3 Pseudoinstruction: neg .. ‐ 238 ‐

10.3.2 xxxxSet If Less Than: slt, slti, sltu, sltiu ... ‐ 239 ‐
10.3.3 The Load Address Instruction: la .. ‐ 240 ‐
10.3.4 Other Loading‐Type Instructions: auipc & lui .. ‐ 242 ‐

10.3.4.1 Add Upper Immediate to PC Instruction: auipc ... ‐ 242 ‐
10.3.4.2 Load Upper Immediate Instruction: lui ... ‐ 242 ‐

10.3.5 Loading Immediate Values: li ... ‐ 243 ‐
10.4 PROGRAM FLOW CONTROL ... ‐ 243 ‐

10.4.1 Labels Revisited ... ‐ 243 ‐
10.4.2 Branch Instructions .. ‐ 245 ‐

10.4.2.1 Unconditional Branch Instructions ... ‐ 245 ‐
10.4.2.2 Conditional Branch Instructions ... ‐ 248 ‐

10.5 STANDARD ASSEMBLY LANGUAGE CONSTRUCTS ... ‐ 249 ‐
10.5.1 If‐Then‐else Construct .. ‐ 249 ‐

10.5.1.1 Special if/else Coding Considerations ... ‐ 250 ‐
10.5.2 Iterative Constructs ... ‐ 253 ‐

10.5.2.1 while Loops ... ‐ 254 ‐
10.5.2.2 Do‐While Loops .. ‐ 256 ‐

10.5.3 Iterative Construct Off‐By‐One Issues .. ‐ 257 ‐
10.6 BIT MANIPULATIONS FOR MCUS ... ‐ 265 ‐

10.6.1 Tweaking Bits .. ‐ 265 ‐
10.6.2 Bit Masking .. ‐ 265 ‐

10.7 CHAPTER SUMMARY .. ‐ 274 ‐
10.8 CHAPTER EXERCISES .. ‐ 275 ‐
10.9 CHAPTER PROGRAMMING EXERCISES .. ‐ 277 ‐

11 WORKING WITH MEMORY ... ‐ 279 ‐

11.1 INTRODUCTION ... ‐ 279 ‐
11.2 OVERVIEW... ‐ 279 ‐
11.3 FLEXIBILITY IN INSTRUCTIONS ... ‐ 279 ‐

11.3.1 Register Addressing vs. Memory Addressing ... ‐ 280 ‐
11.3.1.1 Register Addressing .. ‐ 280 ‐
11.3.1.2 Main Memory Addressing .. ‐ 280 ‐

11.3.2 Assembly Language and Addressing Mode ... ‐ 281 ‐
11.4 MEMORY ACCESS: SOLVED PROBLEMS .. ‐ 281 ‐
11.5 CHAPTER SUMMARY .. ‐ 289 ‐
11.6 CHAPTER EXERCISES .. ‐ 290 ‐
11.7 CHAPTER PROGRAMMING PROBLEMS ... ‐ 291 ‐

12 SUBROUTINES AND SUPPORTING STRUCTURES .. ‐ 292 ‐

12.1 INTRODUCTION ... ‐ 292 ‐
12.2 SUBROUTINE SUPPORTING STRUCTURES: THE STACK ... ‐ 292 ‐

12.2.1 Pushing and Popping on the RISC‐V MCU ... ‐ 294 ‐
12.3 SUBROUTINES OVERVIEW ... ‐ 296 ‐
12.4 SUBROUTINES ON THE RISC‐V MCU .. ‐ 298 ‐

12.4.1 Calling Subroutines and Returning from Subroutines ... ‐ 300 ‐

FreeRange Computer Design Table of Contents

 - 7 -

12.4.2 Passing Values to Subroutines ... ‐ 302 ‐
12.4.3 Saving Context in Subroutines ... ‐ 304 ‐
12.4.4 RISC‐V and Nested Subroutines ... ‐ 306 ‐

12.5 SPECIAL SUBROUTINE ISSUES ... ‐ 311 ‐
12.5.1 Recursive Subroutines.. ‐ 311 ‐
12.5.2 Stack Overflow ... ‐ 312 ‐

12.5.2.1 Subroutines and Stack Overflow... ‐ 312 ‐
12.5.2.2 Context Saving and Stack Overflow .. ‐ 313 ‐

12.5.3 Subroutine Overhead ... ‐ 313 ‐
12.5.4 Stack Initialization ... ‐ 313 ‐

12.6 INTELLIGENT SUBROUTINE USAGE .. ‐ 314 ‐
12.7 CHAPTER SUMMARY .. ‐ 321 ‐
12.8 CHAPTER EXERCISES .. ‐ 322 ‐
12.9 CHAPTER PROGRAMMING PROBLEMS ... ‐ 324 ‐

13 RISC‐V MCU INTERRUPT ARCHITECTURE (FIRMWARE) .. ‐ 326 ‐

13.1 INTRODUCTION ... ‐ 326 ‐
13.2 INTERRUPT OVERVIEW ... ‐ 326 ‐
13.3 THE THEORY OF INTERRUPTS ... ‐ 327 ‐

13.3.1 Using Polling for Inputting Data .. ‐ 328 ‐
13.3.2 Moving Towards Real‐Time Programming .. ‐ 329 ‐

13.3.2.1 The Advantage of Real‐Time Programming .. ‐ 330 ‐
13.4 RISC‐V INTERRUPT ARCHITECTURE FOR PROGRAMMERS .. ‐ 330 ‐

13.4.1 Real‐Time Programmer Responsibilities .. ‐ 331 ‐
13.4.1.1 Real‐Time Program Structure ... ‐ 331 ‐
13.4.1.2 Interrupt Initialization ... ‐ 332 ‐
13.4.1.3 The Interrupt Service Routine... ‐ 334 ‐
13.4.1.4 Saving the Context .. ‐ 334 ‐
13.4.1.5 Returning From ISRs ... ‐ 335 ‐

13.4.2 Basic Interrupt Example Program .. ‐ 335 ‐
13.4.3 Real‐Time Programming Considerations ... ‐ 337 ‐

13.5 REAL‐TIME PROGRAMMING EXAMPLE PROBLEMS ... ‐ 338 ‐
13.6 CHAPTER SUMMARY .. ‐ 345 ‐
13.7 CHAPTER EXERCISES .. ‐ 346 ‐
13.8 CHAPTER PROGRAMMING PROBLEMS ... ‐ 347 ‐

14 IMPORTANT SUPPORTING TOPICS ... ‐ 348 ‐

14.1 INTRODUCTION ... ‐ 348 ‐
14.2 MEMORY SEGMENTATION .. ‐ 348 ‐

14.2.1 Memory Address Space ... ‐ 349 ‐
14.2.2 Code Segment .. ‐ 349 ‐
14.2.3 Data Segment .. ‐ 350 ‐
14.2.4 Stack .. ‐ 350 ‐
14.2.5 Memory Mapped I/O Segment .. ‐ 350 ‐

14.3 THE RISC‐V ASSEMBLERS .. ‐ 351 ‐
14.3.1 Assembler Directives ... ‐ 351 ‐

14.3.1.1 Instruction‐Related Directives .. ‐ 352 ‐
14.3.1.2 Data‐Type Directives... ‐ 353 ‐

14.4 PROGRAMMING EFFICIENCY ISSUES .. ‐ 358 ‐
14.4.1 Iterative Construct Overhead .. ‐ 359 ‐
14.4.2 Subroutine Overhead Issues .. ‐ 361 ‐
14.4.3 Program Space vs. Bullet‐Proof Code Issues .. ‐ 363 ‐

14.5 LOOK‐UP TABLES (LUTS) ... ‐ 366 ‐
14.5.1 LUTs Revisited .. ‐ 369 ‐

FreeRange Computer Design Table of Contents

 - 8 -

14.6 CHAPTER SUMMARY .. ‐ 370 ‐
14.7 CHAPTER EXERCISES .. ‐ 371 ‐
14.8 CHAPTER PROGRAMMING EXERCISES .. ‐ 375 ‐

15 RISC‐V SOLVED PROGRAMMING PROBLEMS .. ‐ 376 ‐

15.1 INTRODUCTION ... ‐ 376 ‐
15.2 INTRODUCTORY RISC‐V PROGRAMMING PROBLEMS ... ‐ 376 ‐
15.3 MORE ADVANCED RISC‐V PROGRAMMING PROBLEMS ... ‐ 382 ‐
15.4 C CODE‐BASED RISC‐V PROGRAMMING PROBLEMS ... ‐ 427 ‐
15.5 CHAPTER SUMMARY .. ‐ 439 ‐
15.6 CHAPTER EXERCISES .. ‐ 440 ‐
15.7 CHAPTER PROGRAMMING PROBLELMS .. ‐ 441 ‐

PART FIVE: RISC‐V OTTER MCU HARDWARE MATTERS ... ‐ 443 ‐

16 RISC‐V ARCHITECTURE DETAILS .. ‐ 444 ‐

16.1 INTRODUCTION ... ‐ 444 ‐
16.2 THE BIG RISC‐V MCU OVERVIEW ... ‐ 444 ‐
16.3 THE CONTROL UNITS ... ‐ 445 ‐

16.3.1 The Control Unit FSM (CU_FSM) .. ‐ 445 ‐
16.3.1.1 Individual FSM States ... ‐ 448 ‐

16.3.2 The Control Unit Decoder .. ‐ 450 ‐
16.4 THE PROGRAM COUNTER (PC) (NO INTERRUPT SUPPORT) .. ‐ 452 ‐

16.4.1 PC Inputs and Outputs ... ‐ 453 ‐
16.4.2 PC Functionality ... ‐ 453 ‐
16.4.3 jal & jalr Instruction Details ... ‐ 454 ‐
16.4.4 Conditional Branch Instruction Details .. ‐ 457 ‐

16.5 MAIN MEMORY .. ‐ 458 ‐
16.5.1 Physical Memory ... ‐ 460 ‐

16.5.1.1 Program Memory ... ‐ 460 ‐
16.5.1.2 Data Memory .. ‐ 461 ‐

16.5.2 Input/Output Memory Space .. ‐ 463 ‐
16.5.3 Memory Timing Issues ... ‐ 464 ‐

16.5.3.1 Branch Instruction Timing... ‐ 466 ‐
16.5.3.2 Memory Access: Load‐Type Instruction.. ‐ 467 ‐
16.5.3.3 Inputting Data: Load‐Type Instruction .. ‐ 468 ‐
16.5.3.4 Memory Access: Store‐Type Instructions ... ‐ 469 ‐
16.5.3.5 Outputting Data: Store‐Type Instruction .. ‐ 471 ‐

16.6 THE IMMEDIATE VALUE GENERATOR (IMMED_GEN) .. ‐ 472 ‐
16.7 THE BRANCH ADDRESS GENERATOR (BRANCH_ADDR_GEN) .. ‐ 473 ‐
16.8 THE REGISTER FILE (REG_FILE) .. ‐ 474 ‐
16.9 THE ARITHMETIC LOGIC UNIT (ALU) .. ‐ 475 ‐

16.9.1 Addition and Subtraction ... ‐ 477 ‐
16.9.2 Shifting Instructions ... ‐ 478 ‐
16.9.3 Logic Instructions ... ‐ 479 ‐
16.9.4 Set‐If‐Less‐Than Instructions ... ‐ 480 ‐

16.10 THE BRANCH CONDITION GENERATOR (BRANCH_COND_GEN) .. ‐ 481 ‐
16.11 THEN CONTROL AND STATUS REGISTERS (CSR) .. ‐ 483 ‐
16.12 THE RISC‐V MCU WRAPPER ... ‐ 483 ‐

16.12.1 Wrapper External Device Addressing .. ‐ 484 ‐
16.12.2 Wrapper Input Circuitry ... ‐ 484 ‐
16.12.3 Wrapper Output Circuitry .. ‐ 485 ‐

16.13 CHAPTER SUMMARY .. ‐ 489 ‐
16.14 CHAPTER EXERCISES .. ‐ 491 ‐

FreeRange Computer Design Table of Contents

 - 9 -

16.15 CHAPTER HDL (VERILOG) EXERCISES .. ‐ 495 ‐

17 RISC‐V INSTRUCTION DETAILS .. ‐ 496 ‐

17.1 INTRODUCTION ... ‐ 496 ‐
17.2 HARDWARE‐BASED STACK IMPLEMENTATIONS ... ‐ 496 ‐
17.3 INSTRUCTION TYPES AND FORMATS .. ‐ 497 ‐

17.3.1 Field Codes and Opcodes ... ‐ 497 ‐
17.4 NOTABLE HANDLING OF SPECIFIC INSTRUCTIONS ... ‐ 498 ‐

17.4.1 Add Upper Immediate to PC Instruction: auipc .. ‐ 498 ‐
17.4.2 Load Upper Immediate Instruction: lui ... ‐ 499 ‐
17.4.3 Calling Subroutines: The call Pseudoinstruction .. ‐ 500 ‐

17.4.3.1 Subroutine Call Timing .. ‐ 501 ‐
17.4.4 Returning from Subroutines: The ret Pseudoinstruction ... ‐ 503 ‐

17.4.4.1 Subroutine Return Timing .. ‐ 503 ‐
17.4.5 Loading Immediate Value: li ... ‐ 504 ‐
17.4.6 Load Address Pseudoinstruction: la ... ‐ 505 ‐

17.4.6.1 Assembler Handling of Labels ... ‐ 506 ‐
17.4.7 Special Operations: the slt‐Type Instructions .. ‐ 507 ‐

17.5 CHAPTER SUMMARY .. ‐ 509 ‐
17.6 CHAPTER EXERCISES .. ‐ 510 ‐

18 RISC‐V MCU INTERRUPT ARCHITECTURE (HARDWARE) ... ‐ 512 ‐

18.1 INTRODUCTION ... ‐ 512 ‐
18.2 RISC‐V MCU INTERRUPT OVERVIEW ... ‐ 512 ‐

18.2.1 The RISC‐V Interrupt Input ... ‐ 513 ‐
18.2.2 The Interrupt Cycle .. ‐ 513 ‐

18.3 INTERRUPT SUPPORT HARDWARE... ‐ 514 ‐
18.3.1 The Interrupt Masking Circuitry ... ‐ 514 ‐
18.3.2 The Control and Status Registers (CSRs) .. ‐ 515 ‐

18.3.2.1 The mie Register ... ‐ 516 ‐
18.3.2.2 The mtvec Register ... ‐ 517 ‐
18.3.2.3 The mepc Register .. ‐ 517 ‐

18.4 INTERRUPTS AND PROGRAM FLOW CONTROL ... ‐ 517 ‐
18.4.1 Interrupt Initialization ... ‐ 517 ‐
18.4.2 Acting on Interrupts ... ‐ 518 ‐

18.4.2.1 Interrupt Cycle Timing .. ‐ 518 ‐
18.4.3 Returning from Interrupt Processing ... ‐ 519 ‐

18.4.3.1 Return From Interrupt Timing .. ‐ 520 ‐
18.5 OTHER RISC‐V INTERRUPT‐RELATED HARDWARE MODIFICATIONS .. ‐ 524 ‐

18.5.1 Program Counter (PC) Support .. ‐ 524 ‐
18.5.2 Control Unit Support: FSM & DCDR ... ‐ 525 ‐

18.6 INTERRUPT SIGNAL‐RELATED TIMING ISSUES .. ‐ 526 ‐
18.6.1 Interrupt Signal Noise .. ‐ 527 ‐
18.6.2 Interrupt Signal Duration ... ‐ 527 ‐

18.7 INTERRUPT ARCHITECTURE SUMMARY .. ‐ 528 ‐
18.8 CHAPTER SUMMARY .. ‐ 529 ‐
18.9 CHAPTER EXERCISES .. ‐ 530 ‐

19 MISCELLANEOUS RISC‐V MCU AND OTHER ARCHITECTURE DETAILS ... ‐ 531 ‐

19.1 INTRODUCTION ... ‐ 531 ‐
19.2 RISC VS. CISC ARCHITECTURE TYPES .. ‐ 531 ‐
19.3 STANDARD COMPUTER ARCHITECTURES .. ‐ 532 ‐
19.4 LEVELS OF MEMORY .. ‐ 533 ‐

FreeRange Computer Design Table of Contents

 - 10 -

19.5 SWITCH BOUNCE .. ‐ 534 ‐
19.6 MONOSTABLE MULTIVIBRATORS (ONE‐SHOTS) .. ‐ 536 ‐
19.7 SEVEN‐SEGMENT DISPLAY MULTIPLEXING ... ‐ 537 ‐

19.7.1 Undesirable 7‐Segment Display Effects ... ‐ 539 ‐
19.7.2 Lead‐Zero Blanking .. ‐ 539 ‐

19.8 CHAPTER SUMMARY .. ‐ 541 ‐
19.9 CHAPTER EXERCISES .. ‐ 542 ‐

20 RISC‐V MCU TIMING ISSUES ... ‐ 544 ‐

20.1 INTRODUCTION ... ‐ 544 ‐
20.2 RISC‐V OTTER MCU TIMING PROBLEMS .. ‐ 544 ‐

20.2.1 Modeling Instructions Using Timing Diagrams ... ‐ 545 ‐
20.3 CHAPTER SUMMARY .. ‐ 557 ‐
20.4 CHAPTER EXERCISES .. ‐ 558 ‐

21 RISC‐V ARCHITECTURAL MODIFICATIONS ... ‐ 559 ‐

21.1 INTRODUCTION ... ‐ 559 ‐
21.2 RISC‐V ARCHITECTURAL MODIFICATIONS AND EXTENSIONS .. ‐ 559 ‐
21.3 CHAPTER SUMMARY .. ‐ 575 ‐
21.4 CHAPTER EXERCISES .. ‐ 576 ‐
21.5 XXXXCHAPTER DESIGN PROBLEMS .. ‐ 577 ‐

APPENDIX ... ‐ 578 ‐

FOUNDATION MODELING CHEATSHEET ... ‐ 579 ‐
RISC‐V OTTER MCU ARCHITECTURE DIAGRAM (NO INTERRUPTS) .. ‐ 580 ‐
RISC‐V OTTER MCU ARCHITECTURE DIAGRAM (WITH INTERRUPTS) ... ‐ 581 ‐
FINITE STATE MACHINE MODELING USING VERILOG BEHAVIORAL MODELS .. ‐ 582 ‐
RISC‐V MCU WRAPPER SOURCE CODE .. ‐ 583 ‐
VERILOG STYLE FILE ... ‐ 585 ‐
RISC‐V MCU ASSEMBLY LANGUAGE STYLE FILE ... ‐ 588 ‐

GLOSSARY OF COMPUTER DESIGN TERMS ... ‐ 590 ‐

INDEX ... ‐ 607 ‐

 - 11 -

Pretentions

(Bryan Mealy 2016 ©)

Legal Crap

FreeRange Computer Design: The RISC-V MCU

Copyright © 2020 Bryan Mealy, aka James Mealy

Date: Jan 1, 2016

You can download a free electronic version of this book from:

my calpoly teacher website

The author has taken great care in the preparation of this book, but makes no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or models contained in
this book.

This book is licensed under the Creative Commons Attribution-ShareAlike Un-ported License, which permits
unrestricted use, distribution, adaptation, and re-production in any medium, provided the original work is
properly cited. If you build upon this work, you may distribute the resulting work only under the same, similar
or a compatible license. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/

We are more than happy to consider your contribution in improving, extending, or correcting any part of this
book. For any communication or feedback that you might have regarding the content of this book, feel free to
contact the author at the following address:

bmealy@calpoly.edu

FreeRange Computer Design Pretentions

 - 12 -

Acknowledgements

First, I’d want to thank Adobe for making their software available at no cost to academic types. I created easily
over 99% of the images in this text using various versions of Adobe Illustrator. I find almost all software I use
crashes more often than I like; Adobe software crashes about once every five years. Thanks Adobe; I don’t
know where I’d be without you. The entire Adobe suite of software is amazing beyond description; if you need
to do something on the computer, be sure to check out Adobe products.

Second, I’d want to thank Lucidchart (www.lucidchart.com) for their amazing software. I created some of the
flowcharts in this text using Adobe Illustrator, but that was like driving a Ferrari to the grocery store. The
Lucidchart software made flowchart creation fast, easy, and with great results. The Lucidchart software does
many amazing things, so be sure to take a look if you need some type of visual modeling of your task. A
special thanks to Lucidcharts for providing extra storage to academic types at no cost.

Thanks to Larry Schwartz, who showed me that some people have the cards
stacked against them from the get go.

Thanks to my good friends John and Mike; the view from your sets of eyes is
both insightful and inspirational, and is something I always look forward to.

Thanks to Bruce for giving a stranger like me a chance, and for calling me
everyday when my light was at its dimmest.

Thanks to Gary for demonstrating to me how to be brave, creative, honest,
loyal, and humble.

Thanks to Richard, for your honesty, insight, and inspiration. Things really do
come out in the WASH.

Thanks to Gilbert, who believed in me when though I could never believe in
myself, and for not giving up on me.

Thanks to James for always being there for me when I’m down with no hope
of getting back up.

Thanks to Duncan Applegarth for pointing out the many errors in this text;
there are many less now.

Hey Dickson… Someday we’ll work together on all the things we’ve
yet completed. I’m looking forward to that day.

FreeRange Computer Design Pretentions

 - 13 -

Rambling Commentary

My inspiration for writing free textbooks came from my own personal notion that knowledge, particularly
technical knowledge, should not be held ransom by publishing companies, bookstores, book authors, and
academic administrators. Students seeking knowledge are sitting ducks when it comes to the notion of
structured learning situations such as colleges and universities. Being that students are the lowest hanging fruit,
they always are the first to have their wallets lightened by various well-connected entities. I hope this book
serves as an alternative to shelling out money for overpriced textbooks.

This book is going to have errors. Please accept my sincerest apologies for the errors you will come across. I
did my best to remove errors, but there are a few reasons why some errors remain.

1. Writing and proofreading is very timing consuming.

2. Unlike several of my colleagues, I do not bribe students into proofreading my writing. There has been
more than one instance of an instructor at the institution where I teach giving “extra credit” to anyone
who reported errors in their writing. I do happily accept suggestions and corrections from students,
but it is out of the student’s own desire to help on the project.

3. I generated every digital design problem in this book. Once again, unlike many of my colleagues, I
did not “assign” students to generate problems for me. I believe instructors who force students to
create problems as graded assignments are unethical and are taking advantage of their positions are
instructors. It’s called an abuse of power; I simply won’t do that.

I could spend the remainder of my life tweaking this text, but I need to move onto other things. Feel free to
contact me with corrections and comments.

There were two primary negative comments I received when I mentioned I was writing a textbook and was
planning to give it away at no cost.

 “If you don’t charge something, people will not value it”. I don’t understand this statement. The
things I value most in my life were given to me. Maybe I’m missing something here.

 “You need to have experts in your field review your text”. As a college teacher, I constantly receive
requests from book companies to “review” one of their texts. They always sweeten the deal with an
offer of cash. I know of no one who is going to dedicate any significant amount of their time to
reading a text they care nothing about, but I know of people who pretend to review books, write
down some drivel, and receive their cash. Wow! Great review! A book is a mechanism to transfer
knowledge; it’s not a popularity contest, as are most things in academia.

As you read this book, you may get the impression that I don’t like academic administrators. The truth is that
I do not like academic administrators. In addition to cleaning out the wallets of students, they seem to want
to rip the hearts out of students and teachers alike. They lack ethics and morals (an understatement). They
reward those who support their agendas and crap on everyone else. They make sure they are first at the
feeding trough and leave little for anyone else. They run the school as a business and not as institutions of
learning. They base all their decisions on economics; quality of education and the basic needs of students are
never one of their considerations. Academic administrators seem to believe that students and teachers should
be serving them; I believe we should all be serving students. Schools exist to help students learn; we should
base all decision making on supporting student learning. Academic administrators have clearly lost sight of
the basic tenets of education.

Finally, this text is what it is. The quality and coverage is the best I can do given the various constraints I
face. I made the decision to embark on this project knowing that it was more than likely a career killer in the
context of Cal Poly SLO. Well, no need to wonder anymore; it’s definitely a career killer. I don’t regret
ensuring that I was a person who supported student learning rather than simply supporting my own personal

FreeRange Computer Design Pretentions

 - 14 -

career aspirations. The academic environment in general encourages faculty to adopt characteristics of NPD
(narcissistic personality disorder) in order for the admin to bestow the “successful” label. I continue to
choose to not compromise my ethics and to never lose sight of my mission as an instructor.

“If you judge safety to be the paramount consideration in life you should never, under any
circumstances, go on long hikes alone. Don’t take short hikes alone, either – or, for that matter, go
anywhere alone. And avoid at all costs such foolhardy activities as driving, falling in love, or inhaling
air that is almost certainly riddled with deadly germs………And never, of course, explore the guts of
an idea that seems as if it might threaten one of your more cherished beliefs. In your wisdom, you
will probably live to be a ripe old age. But you may discover, just before you die, that you have been
dead for a long, long time.” (Collin Fletcher, Complete Walker 3).

FreeRange Computer Design Pretentions

 - 15 -

Overview of Chapter Overviews

This text presents introductory computer design and assembly language programming concepts. This book
focuses on a single generic computer design: The RISC-V OTTER Microcontroller. There are definitely topics
in computer architecture and assembly language programming that this book does not cover. The general idea
behind this textbook is to support a college course that attempts to teach computer design and assembly
language programming in a ten-week course. While teaching this amount of information in single 10-week
course barely seems possible, this textbook and various supporting materials do their best to make it possible.

PART ONE: Introduction and Review

Part One of FreeRange Computer Design introduces the various aspects of computer design. This introduction
includes a high-level overview of computers using terms and concepts that you would find in a typical digital
design course. In addition, if you can’t remember those terms and concepts, this part also provides a fast
overview of the important digital concepts.

Chapter 1: This chapter includes an overview of the course, a brief history of the course, and history of the
MCUs used in the course. This chapter is important because it provides a context for this text by describing
some the issues regarding computer design courses as well as other pertinent information.

Chapter 2: This chapter provides a review of the basic building blocks (modules) of digital design. These
building blocks include combinatorial and sequential circuits, as well as Finite State Machines (FSMs). This
chapter is important because it describes most of the important concepts from a typical beginning digital
design course. In particular, this chapter provides a fast overview of the topics presented in FreeRange Digital
Design Foundation Modeling.

Chapter 3: This chapter introduces and a relatively complete coverage of two of the most common and useful
type of registers: shift registers and counter. This chapter covers the many types of shift registers including
barrel shifters, universal shift registers, etc. This chapter is important because registers and their simple
variations are extremely useful and thus often found in just about all meaningful digital designs.

PART TWO: Advanced Digital Design

Part Two of FreeRange Computer Design introduces the various hardware aspects of computer design that
typical digital design courses often do not present. We present these topics because they are critical to
understanding the low-level aspects of subsystems typically found in computers.

Chapter 4: This chapter introduces Register Transfer Notation, which is highly useful in both designing and
describing circuits. This chapter uses RTN to describe and design various classifications of data transfer
circuitry commonly used in digital design. This chapter is important because shift registers and counters are
extremely useful in many areas of digital design, particularly in applications requiring fast arithmetic
operations. These devices are simple registers with extended features.

Chapter 5: This chapter provides an introduction many of the more common and important aspects of
structured memory. This chapter primarily involves the high-level characteristics of structured memory and
describes them primarily in general terms. This memory introduction includes items such as standard memory
vernacular and basic performance characteristics. This chapter is important because it provides a basic
overview of digital memory and the operation of memory in a digital system.

PART THREE: Introduction to Computers

Part Three of FreeRange Computer Design represents our first description of computers, which we do from a
relatively high level. Even though computers are nothing more than complex digital circuits, they come with
their own “processes” and vernacular. The intent of this section is to show the connection between digital
circuits and the particular digital circuit we call a computer.

FreeRange Computer Design Pretentions

 - 16 -

Chapter 6: This chapter introduces the notion computers in general and how humans use computers. This
chapter places the notion of computer design in a digital design context, leveraging what you already know
about digital design. This chapter also places the notion of digital design into the context of computer design
using terms associated with a beginning digital design course. This chapter is important because it provides a
high-level overview of the computer design by placing computer design into a familiar context.

PART FOUR: RISC-V Assembly Language Programming

Part Four of FreeRange Computer Design provides the knowledge you’ll need to become a RISC-V assembly
language programmer. We wrote this section of the book in such a way as to not include hardware details in
the various programming topics in the chapter in an attempt to make this section of the text as useful as
possible to people only interested in programming (and not hardware). The underlying hardware details appear
in Part Five of the text. While separating the programming and hardware concepts of the RISC-V results in
some repetition to those interested in both programming and hardware, we make all efforts to keep the
repetition to a minimum.

Chapter 7: This chapter introduces programming using assembly language and writing assembly language
programs. This chapter also provides an overview of structured programming concepts and an overview of
basic flowcharting techniques as they apply to structured programming. This chapter is important because it
introduces assembly languages and associated concepts as well as basic program structure concepts.

Chapter 8: This chapter provides a high-level introduction to assemble language programming including
instruction set design and assembly language program structure, appearance, design and documentation. This
chapter introduces important RISC-V assembly language program vernacular as well as a basic classification
of instructions in the RISC-V instruction set. This chapter also provides a description of embedded systems as
they relate to assembly language programming. This chapter is important because it describes the basic
structure of assembly language programs and provides several well-commented assembly language example
programs.

Chapter 9: This chapter introduces a basic set of RISC-V instructions with detailed explanations to enable the
reader to write basic RISC-V programs. This chapter describes three types of instructions including I/O, data
transfer, and number crunching instructions. A later chapter introduces a more complete set of RISC-V
instructions. This chapter is important because it represents an introduction to the RISC-V instruction set in
such a way as to be able to write basic RISC-V programs.

Chapter 10: This chapter introduces most of the remaining instructions in the RISC-V instruction set
including logic-type, arithmetic-type, shift-type instructions, and a set of “auxiliary” instructions that have
various purposes. This chapter also introduces the complete set of program flow control instructions, which we
initially introduced in a previous chapter. This chapter also introduces bit manipulation techniques that support
the notion of bit masking. This chapter is important because it describes some of the basic programming
concepts and approaches beyond simple description of individual instructions.

Chapter 11: This chapter provides highlights into accessing various RISC-V memory modules in the context
of the RISC-V instruction set. The instruction set provides efficient and generic access to main memory, which
allows great flexibility for programmers using the RISC-V to solve problems. This chapter is important
because it shows the full flexibility and functionality of RISC-V memory-type instructions.

Chapter 12: This chapter describes everything there is to know about writing and using subroutines in
assembly language programs. Proper subroutine usage in assembly language programs is the foundation of
good programming forms such as modular programs. This chapter is important because it describes the details
involved in the design and implementation of subroutines in assembly languages.

Chapter 13: This chapter describes all the information that programmers should be aware regarding interrupts
on the RISC-V MCU. We complete the hardware description of this interrupt architecture in a later chapter.
This chapter is important because it describes the RISC-V interrupt architecture from the standpoint of an
assembly language programmer.

FreeRange Computer Design Pretentions

 - 17 -

Chapter 14: This chapter introduces supporting topics such as memory segmentation, the various RISC-V
assemblers, and programming efficiency issues. This chapter is important because it describes many important
support topics associated with programming the RISC-V MCU.

Chapter 15: This chapter provides many solved problems ranging in scope from introductory to quite
challenging. These problems and their detailed explanation show every trick in the assembly language coding
book. This chapter is important because it shows how to solve a wide set of problems by writing RISC-V
assembly language programs.

PART FIVE: RISC-V MCU Architectural Details

Chapter 16: This chapter describes the various submodules of the RISC-V OTTER MCU and their relation to
instruction execution. This chapter also describes interfacing the RISC-V OTTER MCU to external world
items such as development boards. This chapter is important because it describes the low-level architecture
details of the RISC-V MCU and its interfacing to the outside world with particular attention to instruction
execution.

Chapter 17: This chapter is the first hardware-based chapter, which introduces the hardware details associated
with instruction implementation that are beyond the skillset of pure programmers. This chapter is important
because it describes some of the low-level details regarding RISC-V instructions and instruction execution.

Chapter 18: This chapter describes the hardware details associated the RISC-V OTTER MCU interrupt
architecture. This description includes modifications to existing modules and low-level details of instruction
implementation. This chapter is important because it describes the low-level architecture details of the RISC-V
MCU interrupt architecture.

Chapter 19: This chapter describes several topics typically included with computer architecture topics but not
really part of the RISC-V MCU description. These topics include RISC vs. CISC, standard computer
architectures, levels of memory, and seven-segment display multiplexing. This chapter is important because it
describes some the non-architectural but still important details involving the RISC-V MCU.

Chapter 20: This chapter introduces the timing characteristics associated with RISC-V MCU instruction
execution. This chapter is important because it provides important insights into RISC-V MCU instruction
execution by the use of timing diagrams.

Chapter 21: This chapter presents problems that involve modifying the existing RISC-V MCU and support
tools such that they support new and/or extended operations and/or instructions. This chapter is important
because it advances your knowledge of the RISC-V MCU by outlining possible hardware architecture changes
in response to stated design goals.

The Appendix

The Appendix provides some useful and handy RISC-V MCU information as well as fast overviews of
Verilog. These items include:

 Digital Design Foundation Modeling Cheatsheet

 RISC-V OTTER MCU Architectural Diagrams

 Finite State Machine Modeling using Verilog Behavioral Models

 Wrapper Model for Basys3 Development Board Interfacing

 Verilog Style File

 RISC-V MCU Assembly Language Style File

Glossary of Computer Design and Assembly Language Programming Terms

This item provides a list of important computer design terminology and their relatively brief definitions.

FreeRange Computer Design Pretentions

 - 18 -

Index

This item provides fast locator for the more important terms and acronyms used throughout the text.

 - 19 -

PART ONE: Introduction and Review

FreeRange Computer Design Chapter 1

 - 20 -

1 FreeRange Computer Design Overview

1.1 Introduction

The main purpose of this chapter is to put FreeRange Computer Design into a meaningful context. I’m hoping
to give you this context in several ways: 1) by describing the outline of the various chapters in this text, 2) by
describing some of the issues involved with “computer design” textbooks, 3) by providing you with a general
overview of the course, and finally, 4) by providing a quick history of the course. While all of this is not killer
useful information, having the proper context for your endeavors facilitates learning, which is never a bad
thing.

Main Chapter Topics

 DESCRIPTION OF CHAPTER FORMATS: Each chapter has a similar format; this
chapter describes the chapter format for FreeRange Computer Design.

 OVERVIEW OF TEACHING COMPUTER DESIGN: Computer Design means different
things to different people; this chapter describes the relatively unique approach for
FreeRange Computer Design.

 TEXT AND COURSE HISTORY: This text and course have had a relatively long history.
This chapter mentions some of the finer points and acknowledges the people who did
the work to make this course text happen and continually improve.

Why This Chapter is Important

This chapter is important because it provides a context for this text by describing some
the issues regarding computer design courses as well as other pertinent information.

1.2 Chapter Structure

Each chapter has useful features in order to help the reader organize and digest the material in the chapter.
Each chapter generally has the following features, though some chapters have special formats of their own.

 Introduction: Quick motivating prose overview including a list of the main topics and the chapter
and why that chapter is important in digital design

 The Body of the Chapter: In case you want the whole story (with example problems)

 Chapter Summary: The quick overview of chapter

 Practice Problems: Including both exercises and/or design problems for the reader’s entertainment

1.3 FreeRange Computer Design Beginnings

This text presents a course in Computer Design and Assembly Language Programming. The original label for
this course was CPE 229 (the lecture portion of the course) and CPE 269 (the laboratory portion of this
course). We later changed the course delivery to a studio format, which also entailed a label switch to CPE
233. Cal Poly first taught the original CPE 229/269 course-set Fall 2003 quarter. The previous version of CPE
233 has developed considerably in the years it was taught (the RAT MCU), but it had several issues that made
it rife for replacement. The new version of CPE 233 uses the OTTER MCU, or the OTR MCU, which is a

FreeRange Computer Design Chapter 1

 - 21 -

modern and better supported version of the course. Like all good courses, CPE 233 is under constant
development and is well on its way to becoming a great course.

In the late 1990’s, a bunch of old guys1 sitting around a table dreamed up a change in the CSC, CPE, and EE
curriculum that was perceived to improve the quality of education in the respective departments. The idea was
to do-away with EE 319 (hardware-based finite state machines and advanced digital design) and CSC 215
(software-based 68000 assembly language programming) and compress those topics into a single course. In
reality, both of these courses went relatively deep into their respective topics. As if this was not enough, they
also decided to add an element of computer architecture to the course. The initial result was a highly
specialized course that covered finite state machine design, basic computer architecture, and assembly
language programming. We later removed the notion of finite state machine design and placed it into the
beginning digital design course (CPE 133).

This change in curriculum created several problems, some of which we are still dealing with today. Here are
the gory details and status of these problems:

1. The first problem is there is no existing book that is appropriate for the entire course. Unfortunately,
this has resulted in a compromised learning experience for the students taking the class. The
instructor that spearheaded the development of CPE 229/269 originally promised to provide
teaching materials for the instructors teaching the course, but the materials provided were not only
worthless, but an on-going joke2 amongst the students taking the course. In truth, this instructor’s
primary focus was to use CPE 229/269 as a vehicle to write another useless textbook and
subsequently force CPE 229/269 students to purchase the text. This instructor finally retired. He did
finish the book, however; no surprise that no Cal Poly instructor ever used his book after his
retirement, which stands as a testament to the overall quality of this instructor’s product and
professionality.

2. The second problem that this curriculum changed caused was an overlap in topics and concepts
taught in this course for CPE and CSC majors. This is an ongoing problem, but the form of the
problem has mutated. The issue is that CPE students are required to take CPE 315, an architecture
course offered by the CSC department. Many professors in the CPE program have complained that
the overlap is bad for CPE students. The truth is that CSC department chose to no longer require
their students to take CPE 133 and CPE 233. As a result, CSC students have little or no experience
with actual digital hardware or hardware design in general. That being the case, it’s a mystery to me
how you can teach a junior-level computer architecture course (CPE 315) without having a clue
about basic digital hardware. The reality is that CPE 233 exists in large part to support EE students
and we’ve been able to fight off the notion of changing CPE 233 in order to support the
shortcomings of another department’s curriculum. Additionally, the different skill levels in CPE
and EE students resulted in the creation of CPE 333, which represents a continuation of the CPE
133 and CPE 233 courses.

3. CPE students taking CPE 233 most likely have more programming experience than EE students
based on the notion that CPE students take CPE 123-101-202-203, while EE students only take
CPE 101. Although this is an issue, programming only comprises about 40% of this course.
Moreover, the programming is low-level (assembly language) and is the first time in either the CPE
or EE curriculum that students see the material.

1.4 Issues with “Modern Computer Design”

If you ask a hundred people to define the notion of a computer, you will surely receive a hundred different
replies. As you know (or as you’ll soon find out), if you search for a common and usable definition of a
computer, you may only find a description at such a high level, that the definition is almost worthless.

1 I got in a lot of trouble for writing this. It’s true; the truth only hurts liars; there are a lot of hurt people in academia.
2 As reported to me by countless students in this instructor’s class. The joke continues due to 1) the politics in the EE
Department and CPE program, and 2) the strong resistance to any type of change exhibited by a vocal minority of EE and
CPE faculty. The only thing that allowed change to occur in this area was the creation of CPE 233; the studio-version of
this course allows instructors to operate independently of each other, thus somewhat protecting individuals from the
politics.

FreeRange Computer Design Chapter 1

 - 22 -

Moreover, if you pick up a book on computer design (and there are hundreds of them out there), each book
typically takes a different approach to describing what a computer is and what a computer does (and this of
course does not include the different programming languages these computer books describe). There was a
time (maybe in the 1950’s) where there was a definition of a computer that described actual computers more
completely, but the ever-expanding field of computer science and computer technology quickly muddied that
definition.

I’ve spent a significant amount of time trying to figure out how to arrange a book on computer design such that
it makes the topic both relatively easy to grasp and somewhat interesting to work with along the way. The main
problem is that it is hard to describe something until you know what it does, and you generally won’t get a
good feel for what it does until you do it, but you can’t do it until you know what you’re doing, but you don’t
really learn things until you do them… I’m thinking you get the picture. The result of this dilemma is what you
are reading now. My basic solution to this dilemma is to divide FRCD into five sections.

In a perfect world, where authors write perfect books, each chapter in the book would lead nicely into the next
chapter and no chapter would assume knowledge contained on a page after the current page you’re reading.
I’ve divided FRCD into five parts: 1) an introduction and basic digital design review, 2) advanced digital
design topics, 3) introduction to computer design, 4) The RISC-V from a programmers’s perspective, and, 5)
the RISC-V from a hardware perspective. The intention of dividing the text in this manner was to ensure the
text was useful to people who were only interested in programming the RISC-V using assembly language,
which is why the programmer’s portion of the book bypasses all hardware notions.

1.5 The RAT Microcontroller/Microcomputer

The first meaningful version of CPE 233 involved developing and programming the RAT MCU.
Microcontroller (MCU) or RAT Microcomputer. There are many ways to introduce the concept of computer
design; the RAT MCU version of this textbook took the approach of having you design the RAT MCU using
VHDL models and synthesizing those modules onto a FPGA-based development board. There is nothing
overly special about the RAT MCU, but there is some worthwhile history associated with it:

 The RAT MCU started out as a concept for a computer design course. The Cal Poly Electrical
Engineering department was suddenly required to teach a computer design/assembly language
course in a ten-week period, but there were no materials out there to support such a knowledge-
impacted course. The first attempt at such a processor was the ESX MCU, which I designed in
the summer of 2004. The ESX MCU was a great learning experience, but it never went
anywhere due to some oversights with the design. The main problem with the ESX MCU was
that I designed it to be a subset of the Atmel AVR line of MCUs, something that felt like a good
idea at the time but turned out to be rather pointless and stupid.

 A really cool student (Kianoosh Salami) and I “designed” the RAT MCU in the summer of
2009. The design simply comprised of a minimal set of instructions (we’ll discuss exactly what
that means later) that the RAT MCU would support. Our main goal was to make the instruction
set as small as possible but result in a meaningful, synthesizable, and useful computer. Note that
we never designed any actual hardware: the design started out as simply an instruction set. Our
inspiration for the RAT MCU design was partially driven by our experience using the
PicoBlaze2 and PicoBlaze3 MCUs in an older version of the course. The PicoBlaze designs
represent a working MCU defined with VHDL models. The PicoBlaze3 was an improvement
over the PicoBlaze2 design; naturally, the RAT MCU is an improvement over the PicoBlaze3
design3

 In the Fall of 2010, I pitched the RAT MCU concept for a course to Jeff Gerfen. He apparently
liked the concept enough because he agreed to use it for his CPE 233 course he would teach in
the Winter 2011 quarter. At that point, I agreed to support his efforts by generating an assembler
for the course. I wrote the assembler for the course in the Fall 2009 quarter based on the
instruction set Kianoosh and I had previously designed. I worked with Jeff to refine the

3 The notion of improvement needs defining here. The PicoBlaze designs were highly optimized to create a fast MCU that
synthesized into a small footprint. The PicoBlaze design did not use much VHDL behavioral modeling. The resulting
model was great, but the models did not support actually understanding how a computer works.

FreeRange Computer Design Chapter 1

 - 23 -

assembler and add some features during the Fall 2010 and Winter 2011 quarters. Included with
this was the “RAT Assembler Manual”, which describes the instruction set and the various
features contained in the assembler. In reality, Jeff made the course happen. He started from on
the course based on an instruction set and the promise of an assembler and assembler manual.
He thus did all the major initial development work for the course, which is a significant feat that
you cannot overstate4. When the course was first taught in Winter 2011, two students created the
RATSim, which serves as a simulator and debugger for the RAT MCU.

 Other instructors including Bridget Benson, Kari Haworth, Jeff Gerfen, and myself further
developed the CPE 233 course. These changes underscore the good things that can be done
when instructors work together and share their work, something that was unheard of in the days
when old-fart wankers ruled the digital area of the EE and CPE departments with an iron-fist;
dark days indeed.5

1.6 The RISC-V OTTER MCU

The RAT MCU started out as a great idea, but became tired over time. The main issue as I see it is that it was
great at first, but then students became more smart and savvy. So as students progressed with their knowledge
and ability to learn, the limitations in the RAT MCU became painfully obvious. The result is that students
taking CPE 233 were no longer getting an optimal experience.

Joseph Callenes-Sloan was a recent addition to the Computer Engineering part of the Electrical Engineering
department. It was with his wisdom, knowledge and basic hard work that he developed the RISC-V OTTER
MCU. The OTTER MCU solved some of known issues of the RAT MCU; we list a few of those issues below.

 The RAT MCU and associated tools was a homegrown product, which meant any modifications
required a significant amount of time and effort. We had to delay many meaningful
modifications, sometime indefinitely, based on time constraints.

 The RAT MCU programs were limited to 1024 instructions. This was initially not an issue, but
later became a big issue when student skills increased and many students found this program
size limiting.

 The RAT MCU had no associated C compiler. As most of us know and are willing to admit, C
is the programming language of hardware. The best approach to becoming a great hardware
programmer is to be able to create programs at both the assembly language and higher-level
language levels.

The OTTER MCU is not without issues. The main issue is the lack of documentation aimed at the students
who know nothing or very little about computer architecture. Here’s the best analogy I can think of… The
RAT is like an old Volkswagen bug: simple and dependable, but severely limited. It gets you where you need
to go, but you won’t be travelling in style. The OTTER is like a Porche: it also gets you where you need to go,
but it gets you there much faster and in a more comfortable manner. If you know how to drive, you can drive
either; but with the OTTER MCU, you’ll be able to effortlessly transition to other modern processors.

One of the really good things about the RISC-V is that it is a modern and known computer. When you list the
RISC-V on your resume, people will know what it is and have some idea of your skills and abilities. When
students listed the RAT MCU on their resume, prospective employers probably thought you had a rodent
problem.

4 For those people who don’t know what is involved in developing a course, here are some of the issues. In a perfect world,
the administration would provide instructors with as much time as the required in order to present a “good” course. In
reality, the administration provides no time at all for instructors to develop courses. Instructors are not required to develop
courses, but good instructors don’t feel comfortable presenting bad courses. A bad course in this instance is one that does
not present the course materials in an coherent and modern manner, which is an ongoing problem in fast-moving
technologies such as digital electronics.
5 And the worst part of it all was that all of the buttheads who were trying to control the course had never taught the course
and had no intention of ever teaching the course. Why is it that people become corrupt when they find themselves in a
position of power?

FreeRange Computer Design Chapter 1

 - 24 -

1.7 Issues with the CPE 233 Course

The CPE 233 course has one main issue: it’s nearly impossible (if not impossible) to present a meaningful
amount of material in a manner that support mastery of the topics in the time provided. The title of the CPE
233 course is “Computer Design and Assembly Language Programming”. The main problem is that either of
two subjects could easily be a course on their own. The problem is that we try to stuff all this material into one
ten-week course, which turns out to be a questionable approach. It’s a mystery why this problem has never
been adequately addresses.

1.7.1 The CPE 233 Approach

The approach we take in CPE 233 is somewhat unique and a little bit questionable. Because of the time
constraints, we provide students with the architectire, meaning they don’t actually design a computer. We thus
replace designing a computer with “here’s a computer; you must understand all aspects of this computer” with
the hopes that if you understand the provided design, you’ll later be able to design your own computer from
scratch. This is not an optimal approach, but it’s much better than nothing.

Someday, someone will fix this course. I envision this course as being true computer design in that you must
design a computer to solve a specific problem. Instead of “here’s a computer”, the course will be: “Here’s a
problem; design a computer to solve this problem”. I’m confident this will happen; it’s only a matter of time.

FreeRange Computer Design Chapter 1

 - 25 -

1.8 Chapter Summary

 Course History: This textbook was originally designed to support a new course in the Electrical
Engineering Department. This new course started out as CPE 229/CPE 269, but later morphed into CPE
233. This course replaced a course in advanced digital design and assembly language programming. This
course and textbook is under constant development.

 Original Course Conception: This course and subsequent support materials was originally conceived of
by Kianoosh Salami and Bryan Mealy. The aim of the design was to have a computer with a small
instruction set have it be large enough to be both useful, versatile and facilitate the understanding of low-
level computer design and basic assembly language programming concepts.

 The RISC-V OTTER MCU: The MCU initially developed/implemented by Joseph Callenes-Sloan that
replaced the RAT MCU for CPE 233 courses.

 Course Progress: This course is a result of several instructors working together and sharing their work.
This sort of collaboration is not typically found in academic environments due to the administration’s
underlying approach of judging instructor’s performance on something other than an absolute standard,
which results in instructor’s having being reluctant to share their work. In this scenario, students always
lose.

FreeRange Computer Design Chapter 1

 - 26 -

1.9 Chapter Exercises

1) Briefly explain why is there no great definition of a computer that satisfies everyone who may be asking
such a question.

2) Briefly describe why it is hard to define the notion of a computer.

3) Briefly explain why there is no good off-the-shelf textbook for this course material.

4) Briefly describe the five parts of this textbook.

5) Briefly explain why this text divided into five parts.

6) Briefly comment on where the name RAT came from.

7) Briefly describe the main problem with the ESX MCU.

8) Briefly describe how the RAT MCU started out.

9) Briefly describe how the RISC-V OTTER MCU was created.

10) Briefly describe some of the less than good issues associated with the CPE 233 course.

11) Briefly describe some of the less than good issues associated with the RISC-V OTTER.

FreeRange Computer Design Chapter 2

 - 27 -

2 Digital Design Review

2.1 Introduction

The first course in digital design typically entails learning a standard set of combinatorial and sequential circuits,
which we refer to as Foundation Modules. Despite the fact that this set of circuits is relatively small, you can
design any possible digital circuit using them. We keep referring to these basic circuits as being in our “digital
bag of tricks”, which means we know what these do, how they do it, and easily use them as the building blocks
in any digital circuit. Moreover, we generally understand these basic digital building blocks at a high-level; we
know how they operate at a low-level so we avoid designing at that low level and opt to abstract upwards and
design at the modular level.

This chapter provides a quick overview of digital design including combinatorial circuits, sequential circuits, and
Finite State Machine design. For a complete overview of these topics, please consult an appropriate digital
design text such as FreeRange Digital Design Foundation Modeling; this text is available at:
www.unconditionallearning.com. .

Main Chapter Topics

 OVERVIEW OF IMPORTANT DIGITAL VERNACULAR: This chapter lists and defines
some of the more important terms and concepts related to introductory digital design.

 COMBINATORIAL CIRCUIT REVIEW: This chapter describes the basic combinatorial
circuits that everyone should be familiar with including basic gates, half adders, full
adders, ripple carry adders, multiplexors, decoders, comparators and parity circuits. g

 SEQUENTIAL CIRCUIT OVERVIEW: This chapter describes the basic sequential
circuits everyone should be familiar with including flip-flops and all the major aspects
of Finite State Machines (FSMs).

 APPROACHES TO DIGITAL DESIGN: This chapter describes the three basic approaches
to digital design: 1) brute force design, 2) iterative modular design, and 3) modular
design.

 DIGITAL DESIGN HIERARCHY: This chapter provides a reminder of the path you’ve
taken to arrive at the point of designing a computer.

Why This Chapter is Important

This chapter is important because it describes most of the important concepts from a
typical beginning digital design course. In particular, this chapter provides a fast
overview of the topics presented in FreeRange Digital Design Foundation Modeling.

2.2 The Design Process

If doing digital design was like following a recipe, everyone would be doing it and, employers would not be
paying you the big bucks for you to do it. There is quite a bit of literature out there detailing the design process
from many different angles; not all of it is exciting reading. The truth is that “design” is a process, which is sort
of like a journey without needs to go anywhere. You know where you need to go, you know the tools at hand to
get you there, and you dive in and get going. The good news is that the starting point in digital design is not

FreeRange Computer Design Chapter 2

 - 28 -

always at the beginning, which means you’re absolutely expected to borrow from existing designs as part of the
design process. The other good news is that the more design youdo, the better you get at it.

Black box modeling is the mainstay of digital design. Accordingly, two of the most basic and important digital
design principles (modular design and hierarchical design) deal directly with black box modeling. Here are the
first four laws of digital design as they appear in Digital Design Foundation Modeling.

Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.

Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles
that require kludgy solutions, toss out the design and start over from square one.

Mealy’s Third Law of Digital Design: Every digital design problem can have many different
but equivalent solutions; the absolute right solution is eternally elusive.

Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you
think you’re going to generate the correct solution with the first pass, you’re bound for
disappointment. The digital design process is circuit; always make going backwards a few steps
to fix issues part of the design process. Don’t try to make your design perfect from the get-go,
make it simple to understand so that you can fix issues as they arise.

Digital design is not a process where you can simply find the correct formula and plug in the correct values1. The
path to a solution (notice I did not say “the” solution) is rarely clear from the start, but the path becomes more
familiar as you work on the problem. Working on the problem entails understanding all levels of the problem.
The point here is that by the time you finish your design, you’ll understand all levels of the problem. When you
first start the problem, the path to the solution may not be (is rarely) clear. You will make mistakes along the
way to solving your problem: we expect this in all designs. The key here is to make a mistake, learn from that
mistake such that the path to the final solution becomes clearer. The design process is thus a constant learning
process, it’s not a grunt work thing you can do by rote. If you fall, pick yourself up and keep going. Good digital
designers are people who know they are going to make mistakes, but have the wherewithal to quickly correct
their issues.

A significant portion of this book is about assembly language program, including program design and
understanding how the computer hardware implements instructions. The design process is similar for programs.
First, you’ll probably never get your program correct the first time you write it. Second, you learn to use the
available tools (simulators, debuggers, etc.) to help you in the design process. You’ll for sure develop your own
style with the goal of writing good programs in a timely and efficient manner.

Lastly, I found this quote somewhere that I feel is perfect for digital design, programming, and any other non-
trival task you may embark on.

"One day when I was studying with Schoenberg, he pointed out the eraser on his
pencil and said, 'This end is more important than the other.'"

-- John Cage, Silence

2.3 The New Digital Paradigm: Digital Design Foundation Modeling

We base our digital design knowledge on the Digital Design Foundation Modeling approach, or DDFM. This
approach builds upon both modular design and hierarchical design, which are the main tenets of modern digital
design. DDFM focuses on presenting digital design topics in the context of actual digital designs. The underlying
goals of DDFM are to simplify the presentation of introductory digital design, and to provide a simple circuit
model that describes all levels of digital design.

2.3.1 DDFM Overview

1 This would be a good description of analog design

FreeRange Computer Design Chapter 2

 - 29 -

This section provides the high-level details about DDFM. The focus of DDFM is to present digital design in a
simple and organized manner, which expedites learning the subject matter. These are the main tenets of DDFM:

 The main purpose of digital design is to solve problems using digital circuits

 We can best describe digital circuits in a modular and hierarchical manner

 Digital circuits are a set of digital modules that exchange information under the control of some entity

 We perform digital circuit design in a structured2 manner, meaning that we can model any digital
circuit using a relatively small subset of digital modules, which we refer to as the digital design
foundation modules. Each foundation module performs a relatively small set of simple operations.

 We present the digital design foundation modules at a high-level by modeling the modules in terms of
their data, control, and status signals, which allows us to use the modules in designs, while not requiring
us to initially understand underlying implementation details.

 We classify the digital design foundation modules as either “controlled” or “controller” circuits

 We consider there to be four approaches to controlling a digital circuit:

1) NO CONTROL (no flexibility in circuit behavior)

2) INTERNAL CONTROL (controlling circuits using internal signals)

3) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.)

4) CIRCUIT CONTROL (controlling circuits using FSM or computer)

 We categorize digital design approaches into three categories:

1) BRUTE FORCE DESIGN (BFD)

2) ITERATIVE MODULAR DESIGN (IMD)

3) MODULAR DESIGN (MD)

Figure 2.1 shows a high level generalization of a digital circuit. This figure provides a visual representation of a
the digital circuit model we work with in this text. Figure 2.1 shows a circuit with inputs and outputs; the interior
of the circuit contains combinatorial modules (cloud-shaped items) and sequential modules (square-shaped
modules). The inputs to the circuit can be either data or status signal; the outputs of the circuit can be either data
or control signals. The interior modules of the circuit communicate with each other using data, status, and/or
control signals.

Figure 2.1: A generic digital circuit containing a set of digital modules.

2 This is an analogy to structured computer program design

FreeRange Computer Design Chapter 2

 - 30 -

Figure 2.2(a) shows the standard approach to modeling digital circuits, where we classify all digital circuit
signals as either inputs or outputs. Figure 2.2(b) and Figure 2.2(c) shows how DDFM further classifies inputs
and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 2.2(b)
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure 2.2(b)
are able to 1) pass data from their data inputs to their data outputs under the direction of the “control” inputs,
and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status outputs of the
controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure 2.2(c) inputs the
status signals of controlled circuits and manages the controlled circuits by outputting the appropriate control
signals to control the controlled circuits3.

(a) (b) (c)

Figure 2.2: The old digital circuit model (a); models for controlled (b) and controller circuits (c).

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We
then consider the solution to any digital design problem as a matter of using a controller to properly control the
dataflow through a set of controllable modules. Figure 2.3 shows an example of many circuit modules controlled
by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of computer
control, such as a microcontroller. Figure 2.3 includes three different module shapes showing that controllable
modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer peripherals.

Figure 2.3: Our unifying digital circuit model.

2.3.2 The Three Approaches to Digital Design

Part of DDFM includes categorizing digital design into three different approaches. With some combination of
these three approaches, you can create any digital circuit. Table 2.1 below shows the pros and cons of these three
approaches.

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its simplicity
limits its practicality in non-trivial designs.

3 We purposely omitted data signal from the controller circuit. Controller circuits can have data inputs, but we generally try
limit controller circuit inputs and outputs to only status inputs and control outputs.

FreeRange Computer Design Chapter 2

 - 31 -

ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD
removes some of the limitations of BFD, it is only applicable to a few of circuits.

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus
where this text expends most of its effort.

Design Approach Pros Cons

Brute Force Design (BFD) Really straight forward Limited by truth table size

Iterative Modular Design (IMD) Straight forward Not applicable to all designs

Modular Design (MD) Massively powerful Requires a working brain

Table 2.1: Matrix explaining why Modular Design can save the world.

2.3.3 Notes on Modular Design Techniques

The general approach to becoming an efficient digital designer is to design on as high of level as possible. In
terms of the three design techniques, that means you should always aim for the modular design approach, which
necessarily incorporates all of your previously designed digital modules.

One of the underlying themes in digital design is the use of modularity, thus modern digital design consists
primarily of Modular Design. To put this statement in other terms, you can subdivide even the most complex
digital circuit into a set of the relatively few standard digital circuits. You do modular design by plopping down
black boxes and connecting them (thus forming BBDs) in intelligent ways that solve your given problem. The
black box diagrams are of course a form of modeling, which convey various levels of information regarding the
digital circuit. Here are a few rules you need to follow when doing modular design.

 Be clear and concise: A messy dark box model or circuit diagram is a tragedy that hinders the
transfer of information. Strongly consider using a ruler if you’re modeling by hand.

 Label everything: Make sure the reader of your model does not need to make any assumptions
about anything.

 Provide a definition for all black boxes: Black box modeling facilitates the notion of modern
digital design. Every box you use in your model should either be clearly defined somewhere (such
as at another level) or be a standard digital “box”. There are many standard digital “boxes” out
there. If you call out one of these boxes in your black box models, everyone knows what you’re
talking about and there is no need to define it at a lower level. The catch here is that you must use
these boxes in the exact way there were defined; if you don’t, people will not know what you’re
trying to model. Table 2.2 shows a few examples of proper black box usage.

FreeRange Computer Design Chapter 2

 - 32 -

Model Comment

This sort of looks like a 3-input OR gate, but having two outputs
makes it non-standard. Being non-standard, it’s a mystery how the
circuit assigns the outputs. This is a bad model. To make it valid
would require that it be defined somewhere so we all know what it is.

This is a true digital box. Since we know what an RCA is, and the
inputs and outputs of the box labeled RCA match what we know about
RCAs, we know exactly how it works. This is a valid model and there
is no need to define it further.

This is also a true digital box. If you replace the HA in a RCA with a
FA, you’ll have the extra carry-in input as is listed in this model.
Having this input is handy and often useful. This is a valid model.

This circuit has the RCA label, but since we know RCAs to have
multiple inputs (bundles) for the addend and augend, we’re left
scratching our heads. You could assume it’s a RCA but you could be
wrong. This is an invalid model.

This has all the correct inputs for an RCA, but since it has the ADDER
label, we can’t assume we know exactly what this box is doing. This is
an invalid model. You could make this model valid by providing a
definition for the ADDER somewhere in your design.

Table 2.2: Some good and bad example of standard digital dark boxes.

2.4 Important Digital Vocabulary

If you only remember a few things from introductory digital design, you should remember the items in this
section. These items probably won’t help you pass any specific course, but they may help you pass in interview
because even a substandard HR person can gauge whether you know these items or whether you’re a sack of
dead chi. As for vocabulary, there are 25 pages of vocabulary in the glossary of the FreeRange Digital Design
textbook, consider browsing that stuff if none of these terms make sense.

Functionally Complete: This refers to the fact that some logic gates have the ability to implement all
basic logic functions while others do not. NAND & NOR gates are functionally complete for example,
because a NAND gate can be used to implement an AND, OR, or an inversion function. This is not true
for AND & OR gates so they are not considered functionally complete.

Combinatorial vs. Sequential Circuits: The rough explanation is that sequential circuits contain
memory while combinatorial circuits do not. In other words, a sequential circuit has the ability to
“remember” at least one bit while combinatorial circuits do not. The better and longer explanation is
that outputs of combinatorial circuits are a strict function of the circuit’s inputs while in a sequential
circuit, the outputs are a function of the sequence of the circuit’s inputs. We derive the notion of a finite
state machine (FSM) from this previous definition. Sequential circuits have at least one feedback path
in them, which is the characteristic that gives them the notion of memory.

Mealy vs. Moore FSMs: In a Moore-type FSM, the circuit outputs are only a function of the state
variables. In a Mealy-type FSM, the outputs are a function of both the state variables and the external
inputs to the circuit.

Set-up and Hold-times: Generally speaking, in edge-sensitive devices, the non-clocking inputs to a
device must be stable (non-changing) for a given period of time both before and after the active clock
edge. The setup time refers to the time the inputs must be stable before the active clock edge while the

FreeRange Computer Design Chapter 2

 - 33 -

hold-time refers to the time the inputs must be stable after the active clock edge. If you violate setup
and/or hold times, the circuit will probably not work because the circuit will be “metastable”.
Metastability generally refers to the characteristic of the devices output as being neither high nor low
and… stuck in the netherworld.

Latches vs. Flip-flops: Both latches and flip-flops are 1-bit storage elements. The difference is that
flip-flops are “edge sensitive” latches, meaning that the flip-flops outputs can only change on an active
clock edge. The latch is level-sensitive device, meaning roughly that the outputs can change anytime.

The first task at hand in your introductory digital design course was to learn the basics of digital design. This
included the basic logic functions such as AND & OR, but was more specifically designed towards the gates that
implemented these functions. The circuits you initially designed were primarily gate-level, which you abstracted
up from the transistor level. The next part of the course used those logic gates to build the digital design
foundation modules such as multiplexors, decoders, RCAs, etc. These are all considered combinatorial circuits.
The next part of the course introduced sequential circuits with the introduction of memory elements such as
latches and flip-flops. The main use of sequential circuits in the introductory course was register, which of
course included two types of “registers with features”: counters and shift registers. Another way of looking at
what we did was that we kept abstracting our circuit models upwards, which allowed us to model circuits at the
modular level.

Table 2.3 uses the term modeling in a context that you’re somewhat used to hearing. This table provides an
overview to the circuits you used in your introductory digital design course, as well as a reference as to how you
implemented them. In this course, we’ll continue our abstraction of circuits upwards, which requires that we use
new techniques to represent those circuits as they necessarily become more complex. Our new tool is register
transfer language (RTL), which we mention in Table 2.3 but define in a later chapter.

The focus of this course is to develop a relatively complex digital circuit commonly referred to as a computer.
There are many approaches to designing computers; this text describes one way in relatively great detail. With
the knowledge you gain implementing this computer, you’ll be able to quickly understand the operation of other
computer architectures, as they as are nothing other than complex digital circuits.

Course

Design Focus

Circuit Models

Circuit
Implementations

Intro
Digital
Design

basic logic: gates, circuit
minimization

BBDs FPGA

combinatorial circuits: decoders,
MUXes, adders, parity
generators

BBDs, HDL FPGA

sequential circuits: latches, flip-
flops, registers, counters, shift
registers, FSMs

BBDs, HDL FPGA

Computer
Design

FSMs, counters, registers BBDs, HDL FPGA

computer architecture BBDs, HDL, RTL level FPGA

assembly language
programming, microcontroller

BBDs, (programmers
model), RTL level, HDL

FPGA

Table 2.3: Models and circuit implementation for CPE 133 and CPE 233.

In that we all aspire to be great digital designers, we want to be able to generate digital designs as efficiently as
possible. While we could implement all of our designs at the gate-level, this would not be efficient. A better
approach would be to implement designs at the “block level” or “object-level”, or what we refer to as “modular
design”. The general theme of this design approach is to use “black-box” models of known circuit elements
(such those listed in Table 2.3 or Figure 2.4) to model digital circuits at a relatively high level. This type of
design is extremely efficient because so nicely supports two important concepts in digital design-land: 1) the
concept of hierarchical design, and, 2) the ease at which we can use an HDL to implement modular designs.

FreeRange Computer Design Chapter 2

 - 34 -

The presence of large design libraries full of digital devices waiting for use by crafty digital designers fully
supports the notion of modular design using HDLs. As you know, the reality in digital design land is that there
are only a relatively few number of core digital devices out there (digital design foundation modules); you can
use these modules to implement any digital circuit as a set of these core digital devices. This decomposition is a
reversing of the hierarchical design process. If you are able to understand the operation of the digital design
foundation modules, you’ll also be able to understand any digital device, regardless of its complexity.

Figure 2.4 shows a quick overview of digital design as it relates to introductory digital design. What you should
see from Figure 2.4 is that there aren’t that many standard digital devices (or modules) out there and the ones
that are out there, are relatively simple devices. Digital circuits become complicated only after you toss down a
bunch of these modules into a design; hierarchical design mitigates this complexity. Note that most of the
modules referenced in Figure 2.4 are Foundation Modules.

In summary, here’s all I know about digital design:

1) Digital design is based on a relatively small set of digital devices

2) Digital design relies heavily on various modeling approaches, particularly modular-level design

3) Digital design modeling relies heavily on hierarchical modeling

Figure 2.4: The quick digital design overview (most of which was covered in CPE 133).

2.5 Basic Gates

A gate is a hardware device that implements basic logic functions. We use transistors to implement gates, but
transistors are too low level of abstraction for the needs of this text. Though we try to implement our circuits at
the highest level possible (or reasonable for a given problem), we sometimes need to drop down to the gate-level
in order to implement our designs. An inverter is not really a gate so we do not list it here. Figure 2.5 shows the
list of basic gates and their various forms.

FreeRange Computer Design Chapter 2

 - 35 -

Gate Description

Func

Comp Comments

AND Output =‘1’ when all inputs are
‘1’; otherwise output = ‘0’

no has two or more inputs
 has AND and OR forms
 aka: logic multiplication

OR Output =‘0’ when all inputs are
‘0’; otherwise output = ‘1’

no has two or more inputs
 has OR and AND forms
 aka: logical addition

NAND Output =‘0’ when all inputs are
‘1’; otherwise output = ‘1’

yes has two or more inputs
 has AND and OR forms

NOR Output =‘1’ when all inputs are
‘0’; otherwise output = ‘1’

yes has two or more inputs
 has OR and AND forms

XOR Output =‘1’ when all inputs are
not equal; otherwise output = ‘0’

no has two inputs only

XNOR Output =‘1’ when all inputs are
equal; otherwise output = ‘0’

no has two inputs only
 aka: equivalence gate

Table 2.4: Summary of digital design gates.

FreeRange Computer Design Chapter 2

 - 36 -

Standard Gates

AND form of AND gate OR form of OR gate

OR form of AND gate AND form of OR gate

AND form of NAND gate OR form of NOR gate

AND form of NOR gate OR form of NAND gate

XOR gate XNOR gate

Figure 2.5: The giant summary of logic gates.

2.6 Combinatorial Circuits
Combinatorial circuits are one of the two types of circuits in digital design. The outputs of combinatorial circuits
are a function of the circuit’s inputs. The following sections list the well-known digital circuits along with a brief
description; we list most of the modules as digital design foundation modules. Please consult the appropriate text
for full explanations of these circuits.

2.6.1 Half Adder

The Half Adder (HA) is generally the first somewhat meaningful in digital design. The HA is a one-bit adder
(adds two one-bit values) and outputs a one-bit sum and a carry-out. We generally design the HA using a truth
table (brute force design). Figure 2.6(a) shows the equations describing the HA’s two outputs while Figure 2.6(b)
show the associated BBD. The HA is somewhat useful for all those occasions where you want to add two one-bit
values.

FreeRange Computer Design Chapter 2

 - 37 -

bas

baco

(a) (b)

Figure 2.6: Boolean equations describing the outputs of the HA (a), and the associated BBD (b).

2.6.2 Full Adder

Once you figure out that a HA is not too useful, you move onto designing a Full Adder (FA). The FA is almost
the same as the HA but the FA has an extra input which is considered the carry-in (meaning it’s the carry in from
a carry-out output of some other FA or HA). Figure 2.7(a) shows the equations describing the FA while Figure
2.7(a) shows the associated dark box model.

cibas

baciacibco

(a) (b)

Figure 2.7: (a) Boolean equations describing the outputs of the FA, (b) the associated BBD.

2.6.3 Ripple Carry Adder

Once you realize that there is not too much opportunity out there for Half and Full adders, you generally move
onto the ripple carry adder (RCA). The RCA is generally the first circuit you design using iterative modular
design (IMD) noting that the 4-bit adder in Figure 2.8(a) would have required a truth table with 256 rows had it
been designed using iterative design techniques. The IMD technique easily extends the 1-bit adding elements
(HAs and FAs) to create multi-bit adders. Note that we can often times substitute the HA in the LSB position of
the RCA with a FA, which gives up the ability to make larger RCAs (wider, or more bits) by connecting the
RCAs in a cascade formation. Figure 2.8 (b) shows the BBD of a RCA while Figure 2.8(a) shows the RCA one
level below Figure 2.8(b). The RCA in Figure 2.8(a) can include a carry-in input if we replace the HA in the
LSB position with a FA.

(a) (b)

Figure 2.8: The guts of a 4-bit RCA (a), and the associated block diagram a 4-bit RCA (b).

We consider the RCA to be a Digital Design Foundation module. The RCA is a controlled circuit;
Figure 2.9 shows the RCA in appropriate digital design foundation notation. As you would expect from
an adder-type circuit, the RCA adds the two input operands (A & B) and the carry to generate the SUM
output. Note the RCA has no control inputs, which means the device always performs the same
operation on the three data inputs. The RCA’s CO output provides status for the RCA’s addition
operation. Table 2.5 provides a description of all the inputs and outputs to the RCA.

FreeRange Computer Design Chapter 2

 - 38 -

Figure 2.9: Data, control and status signals for a RCA.

 Signal Name Description

IN
P

U
T

D

A
T

A

A
One of two multi-bit addends (or operands). The data width of the two addends is
equivalent.

B One of two multi-bit operands. The data width of the two addends is equivalent.

Cin A “carry in” input.

O
U

T
P

U
T

D

A
T

A

SUM The result of summing the three inputs: two addends and the Cin input.

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

Co
A “carry-out” signal; this signal shows when the summation operation has
generated a carry. The carry is effectively the “n+1” bit of an n-bit RCA.

Table 2.5: The foundation matrix for a RCA.

2.6.4 Decoders

We use the word generic decoder, or just decoder, to refer to the digital device where the values of the decoder’s
input always produce the same values on the decoder’s output. This is a generic definition of a decoder, thus we
refer to most decoders as “generic” if we can model them in tabular format (a truth table). The basis of all things
digital are basic gates, which we defined using tables; we can thus consider basic logic gates as decoders because
of their tabular definitions.

In addition to the generic decoder, there is a standard decoder. The terms “generic” and “standard” decoders are
terms that you won’t find in other digital design texts; we created these names to simplify the digital design
paradigm. The standard decoder is a special type of a generic decoder and has a special relationship between the
inputs and outputs. Figure 2.10 shows that, a standard decoder is a subset of a generic decoder. Standard
decoders have specific uses while generic decoder usage is open-ended.

FreeRange Computer Design Chapter 2

 - 39 -

Figure 2.10: Venn diagram showing the hierarchy of decoders.

Modeling digital circuits using tables is powerful because we can easily translate the tables to a hardware
description language (HDL) models. You may have a notion of the “power of tables” from your programming
career in that using “look-up-tables” or “LUTs”; the same usefulness of LUTs applies to hardware modeling.
The approach in modern digital design is to allow the development tools to do the work for you. Thus, modeling
circuits using decoders (LUTs) hands a significant portion of the circuit implementation effort to the tools. If you
need some “logic” using an HDL, the best approach is often to model the function in tabular format.

2.6.4.1 Generic Decoder

The “Generic Decoder” is the name given to any combinatorial circuit that implements a combinatorial circuit
that you can’t label as some other standard digital circuit. Often times in digital design land, you’ll need to
implement a circuit with a combinatorial “input/output relationship”. Any time you need to implement such a
functional relationship, attempt to represent it in a tabular format, because you can then have defined a generic
decoder. Figure 2.11 shows a BBD of a generic decoder. There can be any non-zero number of inputs and
outputs; the number of inputs and outputs don’t need to match.

Figure 2.11: A black box diagram of a generic decoder.

You can define two general types of tables: 1) complete tables, and, 2) incomplete tables. Both tables are equally
straightforward to model using an HDL. We define a complete table as a table that has a row for every unique
combination of the circuit’s inputs; a non-complete table is any table that is not a complete table. We make this
distinction so you realize that you don’t need to completely specify every possible input combination for generic
decoders. Additionally, HDLs have solid support for modeling incomplete tables.

Figure 2.12 shows completely and incompletely specified tables. The table in Figure 2.12(a) has three inputs;
because there are eight rows in Figure 2.12(a), we consider this table completely specified. The table in Figure
2.12(b) has three inputs, but only five of those three inputs combinations have outputs. Not declaring outputs
indicates that for the missing input combinations, the designer for some reason does not care about the outputs.
Another approach to non-complete tables is to list the missing inputs and state the outputs as don’t cares, which
we do in Figure 2.12(c).

FreeRange Computer Design Chapter 2

 - 40 -

A B C VAL
0 0 0 011
0 0 1 110
0 1 0 010
0 1 1 011
1 0 0 111
1 0 1 100
1 1 0 000
1 1 1 111

X Y Z VAL
0 0 0 011
0 0 1 110
1 0 1 100
1 1 0 000
1 1 1 111

X Y Z VAL
0 0 0 011
0 0 1 110
0 1 0 - - -
0 1 1 - - -
1 0 0 - - -
1 0 1 100
1 1 0 000
1 1 1 111

(a) (b) (c)

Figure 2.12: A completely specified table (a), and an incompletely specified table (b) & (c).

The generic decoder is one of our Digital Design Foundation circuits. We consider the generic decoder
to be a controlled circuit; Figure 2.13 shows the generic decoder in appropriate foundation notation. The
generic decoder models a table, so the DATA_IN inputs act as the independent variables and the
DATA_OUT signals are the dependent variables. The generic decoder does not have either control
inputs or status outputs. Table 2.6 provides a description of the inputs and outputs to the generic
decoder.

Figure 2.13: Data signals for a generic decoder.

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA The independent variable of the look-up-table

O
U

T
P

U
T

D

A
T

A

DATA The dependent variable of the look-up-table

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

n/a -

Table 2.6: The foundation matrix for a generic decoder.

2.6.4.2 Standard Decoder

The Standard Decoder has some specific uses in digital design; we’ll see some of those designs later in this text.
We often label different flavors of standard decoders as DMUXes, but we’ll avoid using such terminology here.
Figure 2.14 shows a diagram gate-level diagram of a standard 2:4 decoder. There is a binary relationship

FreeRange Computer Design Chapter 2

 - 41 -

between the circuit’s inputs (which are select inputs) and the circuit’s outputs. If the standard decoder has one
input, there are two (21) outputs; if the standard decoder has two inputs, there are four (22) outputs, and so on.
Note that the output of the standard decoders form either one-hot or one-cold codes (the circuit in Figure 2.15
shows a one-hot code outout).

Figure 2.14: The important underlying details of a standard decoder.

The standard decoder is a Digital Design Foundation Module. The standard decoder is a controlled
circuit; Figure 2.13 shows the standard decoder in appropriate foundation notation. The standard
decoder has no data inputs; the only inputs are the SEL inputs, which decide the exact format of the
DATA_OUT signals. By definition, the DATA_OUT signals form a one-hot code. Table 2.7 provides a
description of all the inputs and outputs to the standard decoder.

Figure 2.15: Control and status signals for a 2:4 standard decoder.

 Signal Name Description

IN
P

U
T

D

A
T

A

n/a -

O
U

T
P

U
T

D

A
T

A

n/a -

C
O

N
T

R
O

L

SEL The inputs that select the desired form of the output.

S
T

A
T

U
S

S(3:0) The output signals chosen by the SEL input.

Table 2.7: The foundation matrix for a standard decoder.

2.6.5 Multiplexor

FreeRange Computer Design Chapter 2

 - 42 -

The multiplexor, or MUX, is an element that “selects” or “chooses” one of many data elements on the input to be
passed to the output. The inputs to a MUX are the date (the things “being chosen”) and control lines (does the
actual choosing). The control lines have the typical binary relationship to the circuit inputs in that one control
line can choose between two (21) items to appear on the MUX outputs, two control lines can choose between
four (22) items to appear on the circuit outputs and so on. The MUX’s data inputs can be single signals or
bundles. Figure 2.16 shows the inner workings of a 4:1 MUX with single-bit data inputs.

Figure 2.16: The well-known guts of a basic 4:1 MUX.

The MUX is a Digital Design Foundation Modules. The MUX is a controlled circuit; Figure 2.17 shows
the MUX in appropriate foundation notation. The SEL signal is a control input and decides which
DATA_IN signal becomes the DATA_OUT signal. The MUX thus has a control input but has no status
outputs. Table 2.8 provides a description of the MUX’s inputs and outputs.

Figure 2.17: Data and control signals for a 4:1 MUX.

FreeRange Computer Design Chapter 2

 - 43 -

 Signal Name Description

IN
P

U
T

D

A
T

A

A, B, C, D
Data inputs to the MUX; MUXes can have any number of data inputs. One of
these data inputs becomes the single data output.

O
U

T
P

U
T

D

A
T

A

F A single output, which is one of the inputs as selected by the SEL signal.

C
O

N
T

R
O

L

SEL
Selects which data input appears on F. The width of the SEL signal is such that
2SEL ≥ to the number of data inputs.

S
T

A
T

U
S

n/a -

Table 2.8: The foundation matrix for a MUX.

2.6.6 Comparator

The comparator is another common digital circuit. While comparators in general can come in many different
forms, Figure 2.18 shows the general form. It is referred to as a general form because there is only one output
(indicating whether the two inputs are equal or not). Other less general comparator forms include outputs such as
“great than or equal”, “greater than”, etc. The classic things to remember about comparators are 1) they involve
EXOR-type functions, and, 2) we generally design them using iterative modular design (IMD). Figure 2.18(a)
and Figure 2.18(b) show black box models and circuit implementation of a 2-bit comparator, respectively.

Figure 2.18: A black box model and a circuit diagram for a standard 2-bit comparator.

The comparator is a Digital Design Foundation module. The comparator is a controlled circuit. Figure 2.19
shows the appropriate digital design foundation notation for the comparator. Comparators always have two
inputs, but we can choose between which comparator outputs we want to include in our design (so our
comparator module has at least one, but not greater than three outputs). The LT output indicates when the A
input is less than B (A<B), while the GT input indicates when A>B. The EQ output indicates that A = B.

FreeRange Computer Design Chapter 2

 - 44 -

Figure 2.19: Typical data, and status signals for a comparator.

 Signal Name Description

IN
P

U
T

D

A
T

A

A, B Two values to be compared; these values have equivalent data widths.

O
U

T
P

U
T

D

A
T

A

n/a -

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

EQ, LT, GT
Signals that indicate a relation between the two inputs A & B. EQ is asserted
when A=B, LT is asserted when A<B, GT is asserted when A>B.

Table 2.9: The foundation matrix for a comparator.

2.7 Sequential Circuits

Sequential circuits are circuits that have the ability to “remember” at least one bit. The official definition of a
sequential circuit is that the circuit’s outputs are dependent upon the sequence of inputs. The notion of
remembering bits give sequential circuits the notion of having “state”. And thus, the notion of finite state
machines (FSMs) is born.

The simplest 1-bit storage element in digital design land was the “latch” which was based on cross-coupled NOR
and cross-coupled NAND cells. We consider latches to be “level sensitive” devices. Because we generally need
more control over devices, we usually us another 1-bit storage element, which we refer to as a flip-flop. There
are several types of flip-flops out there, but D flip-flops are the most common flip-flop in digital design based on
their simplicity. Recall that the D in “D flip-flop” refers to “data”. The D flip-flop generally has a clock input;
changes in state of a D flip-flop are synchronized to an active clock edge (either a rising or falling clock edge,
but not both).

2.7.1 Simple Registers

Registers are multi-bit storage elements modeled as a parallel configuration of D flip-flops that share a common
clock signal. When we refer to “registers”, we refer to simple registers; we refer to other common register types
by their names: counters and shift registers. Figure 2.20 shows four D flip-flops assembled to act as a simple
multi-bit register. In particular, Figure 2.20(a) shows the block diagram for a 4-bit register and Figure 2.20(b)
shows the underlying circuit. The block diagram in Figure 2.20 (a) shows that this register is rising-edge
triggered and that every flip-flop shares a common clock signal.

FreeRange Computer Design Chapter 2

 - 45 -

(a) (b)

Figure 2.20: A block diagram for a 4-bit register (a), and the associated lower-level model (b).

The register is a controlled circuit and is one of our Digital Design Foundation Modules. Figure 2.21
shows the appropriate digital design foundation notation for the register with a basic set of control
features. Registers typically have both data inputs and data outputs. The typical set of controls for a
register includes synchronous load signals (LD) and an asynchronous clear input. Table 2.10 show a
complete description of the registers input and output signals.

Figure 2.21: Typical data and control signals for a register.

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA_IN The data that can be latched into the register’s storage elements.

O
U

T
P

U
T

D

A
T

A

DATA_OUT
The DATA_OUT signal is the data currently being stored in the counter’s
storage elements.

C
O

N
T

R
O

L

CLK
Registers are synchronous circuits, in that the loading of data to the register
happens on the clock edge.

LD
Allows the latching (loading) of the DATA_IN signal to the counters storage
elements. This signal is always synchronous.

CLR
Latches 0’s into each of the register’s storage elements; can be synchronous or
asynchronous.

S
T

A
T

U
S

n/a -

Table 2.10: The foundation description for a simple register.

FreeRange Computer Design Chapter 2

 - 46 -

2.7.1.1 Special Register Circuits: The Accumulator

The accumulator is a useful and common circuit in digital design. The accumulator does what its name implies:
it accumulates. In digital design is that we can only add two numbers at a time, but often we need to add more
than two numbers. In this case, we still can only add two numbers at time, but we add the successive values to a
“running total”. The resulting circuit is relatively simple: we need a device to store the running total (a register)
and a device to do the adding (an RCA). Since we have flexibility in the features we add to the register, when we
design an accumulator, we need to make sure of the following items:

 We need to ensure we can clear the register, as anytime we’re accumulating something; we
typically start accumulating with a register value of zero.

 We need to ensure the width of the register is wide enough to hold the maximum possible
value based on the width of the values we’re adding and the maximum quantity of values we
need to add. For the sake of simplicity, the width of the accompanying RCA generally has the
same data widths as the register, which requires bit-stuffing of the input RCA’s data-widths.

Figure 2.22 shows a diagram of a generic accumulator. Note that some other entity needs to issues control
signals to the counter (CLR, LD, & CLK). For this example, we’re not connecting these signals, but we do in
later examples that use finite state machines (FSMs). Here are some important details.

 The register has a CLR control input so that we can clear the value stored in the circuit before
we commence accumulating. The circuit also has a LD control input, which some other entity
provides

 We list the output data width as “n” bits and the input data width as “m” bits. The notion here
is that we’ll be adding a bunch of numbers of width “m”. In doing this we need to do two
things:

1. Ensure the output data width “n” is wide enough to handle the maximum possible value
of the accumulation

2. Bit-stuff the “m” width input data to match the “n” width of the output. We do this
because we expect both inputs of the RCA to have the same data width. Figure 2.22
indicates this bit-stuffing with the square containing the “+”. For this diagram, we are
stuffing (n-m) bits to the DATA input.

Figure 2.22: Generic circuit for an n-bit accumulator.

2.7.2 Counters: Registers with Features

A counter is a type of register, so it inherits all the attributes of a register. The main new “feature” of a counter is
that it outputs a given sequence of code words, which is the “count” sequence. Counters typically synchronize
their stepping through the count sequence to an active clock edge input to the counter. Counters can have one or
more typical operational features, which we control with the counter’s “control” inputs. Counters can also have
status outputs that provide external circuits information about the counter.

Our approach is to define and describe every word and/or term you typically hear in the context of counters, and
then do a few example problems. When you say the word counter, it has a few standard connotations that you

FreeRange Computer Design Chapter 2

 - 47 -

can assume are true unless told otherwise. The following list describes even more assumptions made when
dealing with counters.

 Because counters are registers, they are sequential circuits

 An active clock edge synchronizes a counter’s traversing of the count sequence; there is one
count value, or code-word, from the count sequence at each clock cycle.

 A counter’s output represents a repeatable sequence of a given number of bits. The sequence the
counter “counts” in does not change; the bit-width of the counter won’t change either.

 When a counter completes a traversal through its count sequence (either in the up or down
direction), the counter automatically starts counting over (and is thus “circular”).

There is a set of vernacular associated with counters. Digital designer must be fluent with all the new terms
associated with counters so they can converse with their peers and understand important things such as
datasheets. Here are the common terms associated with counters:

 n-bit Counter: A counter that uses n-bits to represent each of the values (or code words) in its
count sequence.

 Up Counter: A counter that counts up (increasing count values in count sequence).

 Down Counter: A counter that counts only down (decreasing count values in count
sequence).

 Up/Down Counter: A counter that can counter either up or down according to a control input
on the device.

 Increment: An operation associated with counters where ‘1’ is added to the current value of
counter.

 Decrement: An operation associated with counters where ‘1’ is subtracted from the current
value of counter.

 Counter Overflow: The notion of a counter being incremented beyond its ability to represent
values; unless otherwise stated, overflow is generally characterized as the counter
transitioning from its largest representable value to its smallest value.

 Counter Underflow: The notion of a counter being incremented beyond its ability to
represent values; unless otherwise stated, overflow is generally characterized as the counter
transitioning from its smallest representable value to its largest value.

 Cascadeable: A characteristic of many digital devices such as counters and shift registers that
allow you to effectively increase the overall bit-width of devices providing inputs and outputs
such that you can easily interface the devices. One such output is the “ripple carry out”.

 Count Enable: A signal on counters that enables the counting operation of the counter when
asserted and disables the counting when not asserted.

 Ripple Carry Out (RCO): A signal typically found on counters that indicate when the
counter has reached its maximum count value (for an up counter) or minimum count (for a
down counter). Counters often use the term RCO to indicate when the counter has reached its
terminal count value.

 Parallel Load: A characteristic of a counter or shift register indicating that all the storage
elements in the device can simultaneously latch external values.

 Circular: When counters overflow their maximum or minimum counts, we consider them to
“overflow”. Counters are typically circular meaning that when the counter reaches the

FreeRange Computer Design Chapter 2

 - 48 -

maximum value, it automatically continues counting in the same direction starting at the
minimum value4.

The counter is a controlled circuit and one of our Digital Design Foundation modules. Figure 2.23
shows the appropriate digital design foundation notation for the counter. This foundation module is
more flexible (resulting in more control inputs) and thus harder to define than other foundation modules.
For example, the only required signal for a counter is a clock, as we consider the counter a synchronous
device; the only required information we need to know about counters is the bit-width of their internal
storage elements. Because counters are straightforward to design and/or model in with an HDL, we
typically only include (or connect) counter inputs and outputs as we need them.

Figure 2.23: Typical data, control and status signals for a counter.

Table 2.11 shows all the inputs and outputs that we can typically associate with a counter. Table 2.11
essentially lists a set of features that we can apply to a counter. The two things to note about this list is
1) that not every counter has every listed feature, and 2) actual counter implementations typically
combine many of the control features as required into less signals than listed.

4 This characteristic is for an up counter; the same idea is true for a down counter.

FreeRange Computer Design Chapter 2

 - 49 -

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA_IN
A counter is a register, so it can typically load data in to the counter’s storage
elements. The DATA_IN input is the data that is loaded to the counter.

O
U

T
P

U
T

D

A
T

A

DATA_OUT
A counter is a register, so the DATA_OUT signal is the data currently being
stored in the counter’s storage elements. The DATA_OUT signal is necessarily a
given value in the counter’s count sequence.

C
O

N
T

R
O

L

CLK
Counters are typically synchronous circuits, in that many counter operations are
synchronized with the active edge of the clock signal.

LD
As with registers, this signal controls the latching (loading) of the DATA_IN
signal to the counters storage elements. This signal is always synchronous.

CLR
Latches 0’s into each of the counter’s storage elements. Can be synchronous or
asynchronous.

HOLD, EN
Prevents the output from changing (HOLD) or enables the output to change (EN)
based on other control signals (sort of the same idea)

UP
Directs counter to count “forward” in the sequence; the an asserted up signal
counts forward while an non-asserted count signal counts backwards

DOWN Directs the counter to count “backward” in the sequence.

S
T

A
T

U
S

RCO

This signal indicates when the counter has reached the terminal value in the
associated count sequence. For counters counting up, the terminal value is the
max count value (all internal storage elements set); for counters counting down,
the terminal value is the min counter value (all internal storage elements cleared).

Table 2.11: The foundation description for a full-featured counter.

2.7.3 Shift Registers

A shift register is another type of register. Shift registers, and their various flavors, are useful devices because of
their ability to quickly perform a small but useful subset of mathematical operations.
We can decompose a shift register down to its most basic component, which we refer to as a shift register cell.
This cell is a storage element, which we model as a D flip-flop. Figure 2.24 shows a schematic diagram of a
generic shift register. Upon further inspection, you should discern the following:

 We can model the n-bit shift register as a set of “n” specially connected D flip-flops. The D flip-
flops in the shift register share the same clock signal.

 The difference between simple registers and shift registers is in the way that the individual
storage elements connect to each other. While simple registers have D flip-flops that receive
data from the inputs, the shift register’s storage elements receive data from interconnections
between individual storage elements. Figure 2.24 shows that the output of one flip-flop becomes
the input to the adjacent flip-flop in the shift register, which allows the device to “shift”.

 The number of bit storage elements in a shift register defines shift registers. The shift register in
Figure 2.24 represents a generic model of a shift register including the magic ellipsis in strategic
locations. Common descriptions of shift registers include “a 4-bit shift register” or “an 8-bit
shift register”, etc. Figure 2.24 shows a generic “n-bit shift register”.

FreeRange Computer Design Chapter 2

 - 50 -

Figure 2.24: A typical n element shift register.

Figure 2.25(a) shows a schematic diagram of a 4-bit shift register while Figure 2.25(b) shows a model of the
underlying circuitry. Figure 2.26 shows an example timing diagram for a 4-bit shift register in Figure 2.25 (b).
Figure 2.26 contains annotations to help with the following description.

(a) (b)

Figure 2.25: A block diagram for a 4-bit simple register (a) and a model of the underlying
circuitry of a 4-bit shift register (b).

Figure 2.26: An arbitrary timing diagram associated with the shift register of Figure 2.25(b).

 The schematic in Figure 2.25(b) labels each of the internal shift register signals to help describe
the operation of the basic shift register in Figure 2.26. The “Qx” notation indicates the bit
positions of the storage elements in the shift register. We consider Q3 the higher order bit while
Q0 (or data_out) is the lowest order bit5. Note that data_out and Q0 are the same signal.

 We consider shift registers to “shift” in either direction; that is, they shift to the left (“shift left”)
or shift to the right (“shift right”). Figure 2.25 (b) shows a right-shifting shift register.

 The notion of this circuit shifting is primarily a term of convenience and not altogether accurate.
The “thing” being shifted in Figure 2.25 (b) is the “data”. Another way to view this is that the

5 We often use shift registers for mathematical operations; numbers generally have weights associated with the bit positions.

FreeRange Computer Design Chapter 2

 - 51 -

circuit inputs 1’s and 0’s from the left side of the circuit and passing them through to the right
side.

 Since this is a sequential circuit, the storage elements have a state associated with them. For the
timing diagram of Figure 2.26, the initial state of each storage element is ‘0’, which is arbitrary.

 On the clock edge labeled ‘1’, all of the flip-flops transfer the value on their inputs to their
outputs. On the active clock edge, the left-most flip-flop latches “data_in”; Q3 latches into the
second to the left-most flip-flop, etc.

If you stand back a few paces, you can see the so-called shifting action of the shift register. The individual
signals are shifted versions of each other; specifically, Q3 is a shifted version of “data_in”, Q2 is a shifted
version of Q3, etc. Another way to view this is that the “data_out” signal is a delayed version of the “data_in”
signal. In this case, Q0 is a delayed version of Q3; the delay is three clock cycles because the pulse appearing on
Q0 is the same pulse that appeared on Q3 three clock cycles earlier. The right-shift operation (one shift in the
right direction) is the same thing as a divide-by-two operation with truncation6.

The shift register is a controlled circuit and one of our Digital Design Foundation Modules. We generally
consider all shift register operations synchronous, except for the CLR input, which is sometimes asynchronous.
Because shift registers are straightforward to model in with an HDL, we typically only include (or connect)
inputs and outputs as we need them. The width of the SEL input sufficient to support the shift register’s
operations. Figure 2.27 shows the foundation module for a shift register.

Figure 2.27: Typical data, control and status signals for a universal shift register.

6 Truncation means the lowest order bit is lost; a similar operation is “round-up” where the value of the lowest order bit is
“taken into account” and your weeds are killed at the same time.

FreeRange Computer Design Chapter 2

 - 52 -

 Signal Name Description
IN

P
U

T

D
A

T
A

 DATA_IN
A counter is a register, so it can typically load data in to the counter’s storage
elements. The DATA_IN input is the data that is loaded to the counter.

DBIT
The bit that becomes the left-most bit for a right shift operation or the right-most
bit for a left-shift operation

O
U

T
P

U
T

D

A
T

A

DATA_OUT
The DATA_OUT signal is the data currently being stored in the counter’s storage
elements.

C
O

N
T

R
O

L

CLK
Registers are synchronous circuits; most operations are synchronized with the
active edge of the clock signal.

CLR
Latches 0’s into the register’s storage elements; can be synchronous or
asynchronous.

DBIT
The bit that shifts into the register on shift operations, which is the new left-most
bit or the new right-most bit for shift right and shift left operations, respectively.

SEL
These bits select the operation the shift register performs. These operations could
include: shift left, shift right, hold, load, rotate left and/or right, barrel shifts, etc.
The width of this input depends on the number of possible operations.

S
T

A
T

U
S

n/a -

Table 2.12: The foundation description for a universal shift register.

2.7.4 Registers: The Final Comments

A register is nothing more than a set of bit storage elements that share a single clock signal. In other words,
registers are a parallel configuration of signal bit storage elements; what makes them parallel is the fact changes
in register state are generally synchronized to some event (usually a clock edge). Registers (simple, counters, and
shift registers) are quite common in digital design. All registers are sequential circuits, but some registers have
more “features” than others. The Venn diagram in Figure 2.28 shows how the various flavors of registers relate
to each other.

FreeRange Computer Design Chapter 2

 - 53 -

Figure 2.28: Venn diagram for the register family.

The main difference between the many types of register is their feature set. In an attempt to show all the
possibilities in one spot, Table 2.13 shows a possible breakdown of the register types and their relation to each
other. Keep in mind that many of the features listed in Table 2.13 can be either synchronous or asynchronous.

Register Type Sub-Types Features

plain register
 parallel load, preset, clear, load enable,

cascadeability

shift register
Universal Shift
Register (USR),
Barrel Shifter

parallel load, preset, clear, load enable, shift
left/right, arithmetic shift left/right, hold, rotate
left/right, cascadeability

counter
Up/Down Counters,
Decade Counters

parallel load, hold, preset, clear, increment,
decrement, cascadeability

Table 2.13: The feature progression of the register device.

2.8 Finite State Machines (FSMs)

The term “Finite State Machine” has many official meanings and definitions in digital-land. As you saw
previously, any circuit that has the ability to remember something (namely bits), can be regarded as having a
“state”. A circuit-oriented definition of a FSM is this: a circuit whose behavior can be modeled using the concept
of “state” and the transitions between the various states in that circuit.

We generally use FSMs for two purposes: 1) designing counters with special count sequences, and, 2) as
controller circuits, or a circuit that control other circuits. People use FSMs in one form or another in many
different technical disciplines and each discipline seems to have its own particular flavor of representing FSMs.
Despite these many flavors to modeling FSM, always keep in mind that the best approach is to be clear in a way
that expedites the transfer of information. Always remember that the state diagram is a model that visually
describes the behavior of the FSM.

2.8.1 High-Level Modeling of Finite State Machines

Digital design typically classifies FSMs as one of different two types: Moore-type or Mealy-type. We opt to
simplify this definition as follows: there is only one type of FSM, but FSMs can have one of two types of
outputs: Moore-types and/or Mealy-type outputs. All FSMs share the same properties: the only difference is the
two types of FSM outputs.

Figure 2.29 shows a basic model of an FSM. We can abstract the FSM’s internal circuitry into three separate
blocks: 1) Next State Decoder, 2) the State Registers, and 3) the Output Decoder. The output decoder can have
two types of outputs, which we refer to as Moore and Mealy-type outputs; Moore-type outputs are a function of
the present state of the FSM while Mealy-type outputs are a function of both the FSM’s present state and the
external inputs. Table 2.14 provides a detailed description of the FSM’s individual modules.

FreeRange Computer Design Chapter 2

 - 54 -

Figure 2.29: The lower-level BBD for a generic FSM.

Module Description and Comments

State
Registers

The State Registers represent the memory elements in the FSM. The term register implies
the circuit is a synchronous storage element. The state register is the only sequential module
in an FSM; the other two modules are both combinatorial circuits. The state registers store
the state variables of the FSM; the value stored in the state registers is the state of the FSM.

Next
State
Decoder

The Next State Decoder is a combinatorial circuit that provides excitation input logic to the
state register module. The next state logic generally has two types of inputs, which provide
the excitation inputs to the state registers: 1) the current value of the state variables (the
present state, and, 2) the inputs from the external world. Excitation inputs to the state
registers determine the next state of the state register. On the next active clock edge, the data
inputs to the state registers becomes the next state of the FSM, which is why we refer to
next state decoder as the next state logic. The external inputs to the next-state decoder
function as status signals from the world outside of the FSM.

Output
Decoder

The Output Decoder is a combinatorial circuit that generates the external outputs of the
FSM. The output decoder is responsible for generating the two types of FSM outputs:
Moore-type outputs and Mealy-type outputs. Moore-type outputs are a function of the
FSM’s state only, while Mealy-type outputs are a function of both the FSM’s state and the
external inputs to the FSM. The outputs from the output decoder generally serve as control
signals to the device(s) controlled by the FSM.

Table 2.14: A detailed description of the three main FSM functional blocks.

2.8.2 The FSM: Symbology Overview

Probably the hardest thing about FSMs is understanding the state diagram symbology. The good news is that it’s
relatively simple once you work with it.

2.8.2.1 The State Bubble

FSMs use the state bubble to represent a particular state in an FSM. Figure 2.30(a) shows a typical state bubble.
The following verbage lists some of the key features regarding the state bubble:

 A state needs some way to visually delineate it from other states, which is why the state
bubble contains identifying information. State bubbles provide the state with a symbolic name
that identifies the purpose of that state to the human reader.

 Timing diagrams represent the states by the time slots representing the possible states. Figure
2.30(b) shows that the boundaries of these time slots delineated the associated active edges of

FreeRange Computer Design Chapter 2

 - 55 -

the FSM’s clock input, which is the clock input to the state registers.. Figure 2.30(b) show
that the state registers are rising-edge triggered (RET) because the rising clock edge defines
the state boundaries.

(a) (b)

Figure 2.30: The State Bubble and associated timing diagram.

2.8.2.2 The State Diagram

The state diagram is one of many methods we use to model FSMs. The main purpose of the state diagram is to
convey meaning and understanding to the human viewer. State diagrams provide four main forms of
information: 1) the states in the FSM, 2) the state transitions the FSM makes, 3) the input conditions controlling
the state transitions, and, 4) the output values associated with the FSM. Figure 2.31(a) shows a fragment of a
state diagram. The following verbage describes some of the key features of this state diagram.

 We refer to the terminology describing how a FSM goes from one state to another as a state
transition or just transition. State diagrams use singly directed “arrows”, directed from the
source state to the destination state to represent state transitions.

 There are only two possible state transitions in a state diagram from a given state. On the active
clock edge, a transition can occur from, 1) one state to another state (indicated by the “state
change” label in Figure 2.31(a)), or, 2) the FSM can remain in the same state (indicated by the
“no state change” label in Figure 2.31(a)). We refer to the “no state change” arrow as a “self-
loop”.

 The state diagram contains no explicit clock signal; the clock signal is implied rather
specifically listed. The only part of the clock signal we’re interested in is the active clock edge;
the state transition arrows represent what action occurs on the active clock edge associated the
FSM.

 The two states in Figure 2.31(a) have unique names. In real life, you would want to give these
more meaningful names such as something to indicate why the state exists.

 The state names in Figure 2.31(a) give no indication how we would represent the states if we
were to implement the FSM. In other words, the state diagram provides no commitment to the
actual state variable assignment that disambiguates the states on a hardware level.

 The relation between the timing diagram in Figure 2.31(b) and the state diagram in Figure
2.31(a) is the key to understanding state diagrams in general. When we talk of state, we’re
talking about all the time in-between the active edges of the clock. The state bubble essentially
represents all the time between any two active edges of the system clock. The state transition
arrow represents what happens on each of the FSM’s active clock edges. On each clock edge,
one of two things must necessarily occur: the FSM transitions either to another state or the FSM
remains in the same state. A state transition occurs on every active clock edge, but sometimes it
transitions back to the same state.

 The concept of Present State (PS) and Next State (NS) is somewhat hard to define in a timing
diagram such as the one in Figure 2.31(b). The problem is that the present state (and hence the
next state) is constantly changing as you travel from left to right on the time axis. If you declare
one state as the present state, then you can declare the following state as the next state relative to
the present state. This definition changes as you traverse the timing diagram. PS/NS tables do a
better job of presenting present and next-state information.

FreeRange Computer Design Chapter 2

 - 56 -

(a) (b)

Figure 2.31: A state diagram (a) and the associated timing diagram (b) with interesting details.

2.8.2.3 State Transitions Controlling Conditions

As you would guess from examining the state diagram of Figure 2.31(a), there must be some mechanism that
decides which transition will occur from a given state on the next active clock edge. In Figure 2.31(a), state1 has
two arrows leaving the state, which mean there are conditions associated with those arrows that decide on which
transition occurs.

There are two forms of information that determine the transition a FSM takes: 1) at least one of the external
inputs to the FSM, and, 2) the present state of the FSM7. The external inputs to a FSM are generally status
signals from the circuit the FSM is controlling. Each state has its own set of conditions that govern transitions, so
we’re concerned on a state-by-state basis what external input conditions determine the state transitions from a
given state. Figure 2.32 shows that we indicate the conditions governing transitions by placing the conditions
next to the state transition arrows. On this note, there are three important things to keep in mind:

1) The conditions associated with the state transition arrows leaving a given state must be
mutually exclusive. This means that there can never be the same input conditions associated
with two different transitions arrows leaving the same state.

2) The set of conditions associated with a particular state must be complete, meaning it must
provide a transition arrow for every possible meaningful combination of input conditions. If
there is a set of conditions in given state not covered by the associated state transition arrows,
the FSM won’t know what to do8. State diagrams should leave no room for guessing, if they
do, their behavior will not be deterministic (which is an impressive way of saying your FSM
won’t always work as you intend).

3) If the transition is unconditional, then the state diagram indicates this by listing a “don’t care”
symbol by that transition.

Figure 2.32: How state diagrams indicate the conditions associated with state transitions.

7 Recall that the PS and the external inputs are the inputs to the next-state decoder.
8 In cases such as these, the tools you’re working with will generally not tell you about such conditions and will arbitrarily
decide what it wants to do. In general, software design tools are generally make the assumption you know what you’re doing
and that you always do the right thing. With that assumption, the tools gladly fill in any details that you have unintentionally
forgotten.

FreeRange Computer Design Chapter 2

 - 57 -

2.8.2.4 FSM External Outputs

The external outputs from a FSM are generally “control signals” that are controlling other circuits. The state
diagram has different states and thus the control signals output from one state are generally not the same as
control signals output from other states, so the FSM is performing different control functions based on the
different states.

There are two different types of outputs in a FSM: Mealy-type outputs and Moore-type outputs. Although these
outputs are similar in their controlling functions, they have one major difference. The outputs Moore-type
outputs are a function of the state variables only while the Mealy-type outputs are a function of both the state
variables and the current external inputs. Since Moore-type outputs are a function of the state variables only, we
represent them by placing their values inside the state bubble. Figure 2.33 shows a state diagram that uses this
approach. There can be any number of outputs represented inside the bubble.

Figure 2.33: The State Bubble with associated Moore outputs.

We can’t represent Mealy-type outputs inside the state bubble because they are a function the external inputs as
well as the state variables. To account for these characteristics in a state diagram, we list the Mealy-type outputs
next to the external inputs associated with the individual state transition arrows. We separate external inputs and
outputs with a forward slash. Figure 2.34 shows an example of this approach; we comma-separate multiple
Mealy-type outputs.

Figure 2.34 lists two sets of Mealy-type outputs because there are two transitions from state1. The arrows are
associated with the state transitions, which are based upon the current external inputs; the Mealy-type outputs are
also a function of those same inputs. Since the Mealy-type outputs are a function of the external inputs, we
represent them by placing them next to the external inputs. We always associated Mealy-type outputs with the
state the arrow is leaving (and not the state the arrow is entering). Additionally, the Mealy-type output is
associated with the external input, not the transition arrow as the diagram seems to show. To say the Mealy-
type output is associated with the transition arrow indicates you should rethink the issue.

Figure 2.34: Representing Mealy-type outputs in a state diagram.

In addition, we can represent both Mealy and Moore-type outputs in the same state diagram. Figure 2.35 shows
an example of a state diagram that contains both Mealy and Moore-type outputs.

FreeRange Computer Design Chapter 2

 - 58 -

Figure 2.35: A state diagram that has both Mealy and Moore-type outputs.

2.8.2.5 Non-Important FSM Outputs

While there are times when you may need to generate a “complete” state diagram, you must remember that the
state diagram is primarily meant for a human viewer. Combine this notion with the fact that even a modest sized
FSM can have enough external inputs and outputs to quickly compromise the readability of the state diagram.

There are generally many outputs from a FSM, but the state diagram does not necessarily need to assign a value
for every output in every state. If in any state a given output is not assigned, it is assumed to be a “don’t care” in
the context of that state, which means that output does not affect the external operations associated with that
state. You can thus omit outputs from a given state if those outputs don’t matter for that state. It is not
necessarily bad practice to list all external outputs for each state, but your state diagram becomes harder to
understand.

2.8.2.6 Non-Important FSM Inputs

The external input conditions control the state transitions of the FSM; these conditions must be mutually
exclusive. This seems like we require a complete set of inputs for each transition and for every state, but this is
not the case. In real FSMs, you’ll find that not all external inputs matter in every state. In those cases, we don’t
need to include the inputs that don’t matter next to the state transition arrow. If we include the inputs that don’t
matter, we make our state diagrams less readable.

The example state diagrams we’ve work with so far seem to indicate the FSM states are somehow limited in the
number or transition arrows that can leave (or enter) the state. There is no limit, though we do need to ensure the
conditions governing the transitions are mutually exclusive. There are a few key issues to be aware of regarding
the transition arrows exiting a given state.

 Your state diagram must account for every possible set of external input conditions for every
state. For example, if your FSM has “n” external inputs, every state must necessarily account for
2n possible combinations of those inputs in order to completely specify the FSM. In reality, the
2n is the worst-case scenario; you often find that not all inputs matter for all states.

 You must make sure that all conditions associated with the arrows leaving a given state are
mutually exclusive, which means that no two arrows can have the same conditions. If two states
had the same set of conditions, the FSM would know the correct transition.

 You can’t assume that an FSM stays in the same state if you don’t explicitly and completely
specify all transition arrows leaving the state. This means that if there is a condition where the
FSM does not transition to another state, it must indicate this condition with a self-loop, which
explicitly states the associated conditions.

FSM are neither magical nor intelligent. FSMs do exactly what you design them to do. This means you must
never allow the FSM to “make a decision” on its own. It’s quite easy to not completely specify a FSM and get a
good feeling that the FSM is working properly in all of your testing. Inevitably, if you don’t properly specify the
FSM, it will fail, and probably fail during a demo of your product to a potential buyer or investor.

FreeRange Computer Design Chapter 2

 - 59 -

2.8.2.7 The Final State Diagram Summary

Figure 2.36 provides a quick overview of the relation between the FSM black box and the example state
diagrams we’ve been working with in this section. What you should be gathering from this diagram is that
properly designed state diagrams have a particular structure and use a particular symbology.

 Singly directed arrows represent state transitions

 The FSM has external inputs that govern the state transitions from a given state

 Each transition arrow lists the external inputs that control its transition

 The state bubbles list the Moore outputs since they are only a function of state

 We list Mealy-type outputs with the external inputs (and hence the state transitions) since they are a
function of both the present state and the external inputs.

Figure 2.36: The relation between the state diagram and the high-level FSM.

The good news is that once you understand FSMs, and traverse the associated learning curve, you’ll agree that
there is not much to them. Here is everything in a nutshell.

 The heart of the FSM is the state registers; the heartbeat of the FSM is the clock signal that
controls the state-to-state transitions of the FSM.

 On each active clock edge, the state of the FSM can transition to the present state (self-loop)
or transition to a different state.

 The next state is a function of the present state of the FSM and the external inputs, which
form the inputs to the next-state decoder.

 The outputs of the next-state decoder are the inputs to the state registers and thus determine
the next state of the FSM.

 The FSM’s external inputs are generally status signals from the outside world.

 The FSM sends the control signals to the outside world via the output decoder.

 The external outputs from the FSM are a function of the state variables (Moore-type) or a
function of both the state variables and the external inputs (Mealy-type).

FreeRange Computer Design Chapter 2

 - 60 -

2.9 Chapter Summary

 All digital circuits can be categorized as being either a combinatorial or a sequential circuit. Combinatorial
circuits do not have memory and their outputs are a simple function of their inputs. Sequential circuits have
the ability to store bit, thus making their outputs a function of the sequence of inputs.

 All digital circuits, including the most complex digital circuits, comprise of a set of basic digital design
modules. These modules include both combinatorial and sequential circuits.

 The main combinatorial digital building block circuits are built from simple logic gates. These circuits
include the following:

 Half and full adders: circuits capable of adding two 1-bit values

 Ripple Carry Adders: circuits comprised of half and full adders chained together to form “n-bit” adders.

 Multiplexors: circuits used as signal selection circuits

 Decoder: circuits used to establish a given relationship between the circuit inputs and output.

 Comparators: circuits that compare two values and provides information regarding the relationship between
the two input values; well known to be made with EXOR-type gates.

 Flip-flops: one-bit synchronous storage elements

 Registers: n-bit synchronous storage elements

 Counters: n-bit register “with features” that output a count “sequence”

 Shift Registers: n-bit register “with features” that do fast division or multiplication by two.

 Finite State Machines (FSMs): circuits that have sequential and combinatorial elements typically used as
controllers for other digital circuits for counters with special count sequences. The general model of an FSM
as a circuit controller is that inputs to the FSM provide status information from modules external to the FSM
while FSM outputs represent control signals that are used to control modules external to the FSM.

 State Diagrams are used to visually model the operation of FSMs. State diagram use their own special
symbology to describe FSMs.

FreeRange Computer Design Chapter 2

 - 61 -

2.10 Chapter Exercises

1) In your own words, briefly describe what we mean by the term “digital bag of tricks”.

2) Briefly describe the main differences between a combinatorial and sequential circuit.

3) In your own words, describe the relation between memory of a sequential circuit and the notion that the
outputs are a function of the “sequence” of inputs to the circuit.

4) Briefly describe what characteristic gives a circuit the ability to store bits.

5) Briefly describe the difference between a half adder and a full adder.

6) Briefly explain whether it would be possible to construct a ripple carry adder using only half adders.

7) Briefly describe how a “ripple carry adder” was given such a name.

8) Briefly explain why is the “ripple carry adder” considered a slow adder?

9) We consider the carryout output of an RCA to be a status output; Briefly describe how you could use the
carryout as a data output.

10) At any given time, how many AND gates in a multiplexor are not dead? Briefly explain your answer.

11) In your own words, briefly describe the difference between a generic decoder and a standard decoder.

12) Briefly describe the relationship between LUTs and generic decoders.

13) What it the primary purpose of a parity generator?

14) What basic digital component do parity generators, parity checker, and comparators all share.

15) Briefly describe the difference between a flip-flop and a latch.

16) Briefly describe the differences between a Mealy and Moore-type FSM.

17) Briefly describe the purpose of a state diagram.

18) Briefly describe the relationship between the number of states in a state diagram and the minimum number
of bits in the associated FSM’s state registers.

19) Briefly describe why the conditions associated with transitions leaving a state bubble must be mutually
exclusive.

FreeRange Computer Design Chapter 2

 - 62 -

2.11 Chapter Design Problems

1) Design a circuit that continually outputs the following sequence:

{…0, 2, 4, 6, 8, 10, 12, 14, 0 , 1 , 2, 3, 4, 5, 6, 7, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 2, 3…}

 Use a counter controlled by an FSM in your solution

 Provide a state diagram describing the FSM controlling the circuit

 Minimize hardware and the number of states in your FSM

2) Design a circuit that, upon pressing a button, continually outputs the following sequence:

{0,1,2,3,3,4,5,6,7,7,8,9,10,11,11,12,13,14,15,15,0,1,2,3,3,…}

 Use the up counter shown below in your circuit as well as an FSM, but don’t add any other
hardware. In other words, your circuit should contain only two components: a FSM and the
counter shown below.

 Provide a state diagram describing the FSM controlling the circuit.

 Don’t connect the button directly to the counter.

 The button asynchronously clears the counter

3) Design a circuit that, upon pressing a button, continually outputs the following sequence:

{0,0,1,2,3,4,4,5,6,7,8,8,9,10,11,12,12,13,14,15,0,0,1,2,3,…}

 Use the up counter shown below in your circuit as well as an FSM, but don’t add any other
hardware. In other words, your circuit should contain only two components: a FSM and the
counter shown below.

 Provide a state diagram describing the FSM controlling the circuit

 Don’t connect the button directly to the counter

 The button asynchronously clears the counter

FreeRange Computer Design Chapter 3

 - 63 -

3 Advanced Registers

3.1 Introduction

The most commonly used circuit in digital design is the “register”. We’ve already used the term quite often in
this text, particularly regarding finite state machines (FSMs). Recall that a main component of FSM was the
storage associated with the state variables. This chapter describes registers with extra feature and some of their
many various flavors and incarnations. Most of the description appearing in this chapter is at a higher-level as
the low-level details are somewhat cumbersome and not overly useful.

Main Chapter Topics

 SIMPLE REGISTERS AND REGISTERS “WITH FEATURES”: This chapter defines and
describes basic including registers with extended features that make them more
useful in digital circuits.

 TRI-STATE DEVICES AND TRI-STATE REGISTERS: This chapter describes tri-state
devices and their use in tri-state registers and associated circuitry.

 BI-DIRECTIONAL REGISTERS: This chapter briefly describes the notion of bi-
directional registers and their relation to tri-state registers.

 SHIFT REGISTERS: This chapter describes various flavors of shift registers and
their basic implementations as well as their common extensions and associated
operations.

Why This Chapter is Important

This chapter is important because registers and their simple variations are extremely
useful and thus often found in just about all meaningful digital designs.

3.2 Registers: The Most Common Digital Circuit Ever?

Stated as simply as possible, a register is nothing more than a multi-bit flip-flop. Flip-flops are single bit storage
elements while registers multi-bit storage elements modeled as a given number of flip-flops sharing the same
clock signal. When we say, “register”, we typically mean “simple register”; this works well as the more
specialized registers have their own names. A later section introduces more advanced registers.

Figure 3.1 shows four D flip-flops assembled such that they act as a register; Figure 3.1(a) shows the block
diagram for a 4-bit register and Figure 3.1(b) shows the underlying circuit. Here are a few things to note about
Figure 3.1:

 The block diagram in Figure 3.1(a) shows a clock signal but also assumes other characteristics.
Since we model the register with D flip-flops, there must be an active clock edge not shown in
Figure 3.1(a). Unless otherwise stated, registers are generally active on the rising-edge of the
clock, which is what Figure 3.1(b) shows.

 Figure 3.1(b) shows that each flip-flop in the register shares the same clock. The result is that all
the flip-flops latch their data simultaneously.

FreeRange Computer Design Chapter 3

 - 64 -

(a) (b)

Figure 3.1: A block diagram for a 4-bit register (a), and the lower-level implementation details of
a 4-bit register (b).

3.3 Tri-State Registers

Although the underlying theme of digital design is the notion of binary signals, there is one other common and
useful “state” in digital-land1. Certain digital devices have the ability to have a third output in addition to the
standard ‘1’ and ‘0’. We refer to these devices as “tri-state” or “three-state” devices2, because these devices have
a third output known as the “high-impedance” state. The best way to refer to think about these devices is not to
consider these devices as having a third state, but rather to think about these devices as having a magic switch
that either allows the device to operate normally or kills the device altogether.

The notion of high-impedance is common in both analog and digital design. There are many ways out there to
model high impedance devices, but I prefer to model them using Ohm’s Law: V=IR, with V representing
voltage, I representing current, and R representing resistance. For this discussion, we can consider impedance the
same thing as resistance. If we rearrange Ohm’s Law, we obtain the R=V/I, which states that the resistance is
directly proportional to the voltage and inversely proportional to the current. In digital circuits, the voltage is
generally constant so we’ll only consider R and I. For the R value to be large implies that the I value to be small.
When I is small means that there is little current flowing in a circuit. Digital circuits require current in order to
operate, so a circuit with high-impedance means the circuit has low current, which implies the circuit is dead.
Yet another way to model high-impedance is as a switch that turns off the current to a circuit; an open switch is
the same as an open circuit or broken circuit, which implies the circuit is dead.

There are many great reasons out there for you to kill your digital circuit. The two major reasons in digital design
are to 1) save power, and 2) give your circuit the ability to share resources. The notion of sharing resources is
important and useful.

Although there are many tri-state-type devices out there, we can best explain them with a simple buffer. Figure
4.7(a) shows a tri-state buffer; this circuit is simply a buffer with a control input. The control input in Figure
4.7(a) is the “EN” input; this input controls whether the output of the device is in a high-impedance state or not.
Another way to think of the EN input is as a switch that either turns on or turns off the circuit. Note that because
of the way we drew the circuit in Figure 4.7(a) that the control input is active high; had the “EN” input included
a bubble, the control input would be active low.

Figure 4.7(b) shows a truth table that describes the operation of the tri-state device. Note that Figure 4.7(b) uses
the term “Z” to represent high-impedance3. Figure 4.7(b) states that the buffer output is in a high-impedance
state when the “EN” input is not asserted (EN=’0’) or the circuit is operating normally (outputs of 1’s and 0’s)
when the “EN” input is asserted. Figure 4.7(c) shows a compressed truth table describing the circuit. Figure

1 It’s not really a state though…
2 The difference between “tri-state” and “three-state” is that some company trademarked one of these terms. Be careful how
you use the terms; lawyers are waiting in the wings.
3 The term “Z” is how both digital and analog electronics represent high-impedance.

FreeRange Computer Design Chapter 3

 - 65 -

4.7(b) and Figure 4.7(c) indicate that the EN (enable) input essentially enables the input to appear on the output
of the device as.

EN A F
0 - Z
1 0 0
1 1 1

EN F
0 Z
1 A

(a) (b) (c)

Figure 3.2: A tri-state buffer (a) and associated truth tables in full and compressed form (b) and (c).

Example 3.1: Tri-State Buffer Timing Diagram

Use the following tri-state buffer diagram to complete the following timing diagram.

Solution: Figure 3.3 shows two different forms of the solutions to Example 3.1. In reality, there are many
different ways to represent high-impedance. What you’ll find out in digital-land is that every datasheet and every
simulator represents high-impedance in different ways; the two approaches in Figure 3.3 are two of the more
popular approaches.

The upper F timing in Figure 3.3 uses bundle-related notation for showing when the signal is high-impedance.
Note that when the EN signal is not asserted, the F output is in the high-impedance state; when the EN signal is
asserted, the A input appears on the F output. The lower F timing shows the same characteristics as the upper
one, but the timing diagrams shows the high-impedance output with a signal that is neither high nor low. For
single signals (as opposed to bundles), the lower version of the F timing is more common. Even better, devices
such as simulators that display these types of outputs typically use colors to represent the signal values such that
the high-Z output is a different color than the normal digital signal.

Figure 3.3: Two equivalent solutions to Example 3.1.

The notion of tri-stating applies to many digital devices. The notion of “tri-stating” is a feature of a device and
thus does not come free. When your particular circuit requires a tri-state device, then you use one; otherwise, you
avoid using a device with the tri-state feature to save costs. The tri-stating needs of a circuit are most often

FreeRange Computer Design Chapter 3

 - 66 -

associated with circuits that share resources in an effort to reduce overall circuit size and/or costs. One
particularly common tri-state device out in digital-land it the tri-state register.

The term tri-state register refers to the notion that you can place each of a register’s outputs into a high-
impedance state. The tri-state control input associated with a tri-state register always controls the registers output
in a parallel manner. In other words, the tri-state control places either all of the circuit’s output in high-
impedance state when the control is asserted, or all the registers output are in a digital state when the control
input is not asserted. Figure 3.4 shows a circuit diagram for a typical tri-state register. We know this device is a
tri-state register because of the triangle adjacent to the OUT signal. We also know that since this is a tri-state
device, the EN signal is what controls whether the output is hi-Z or a normal digital output.

Figure 3.4: A schematic diagram of a basic tri-state register.

Example 3.2: Tri-State Register Timing Diagram

Use the following tri-state register diagram to complete the following timing diagram. Assume the initial
value of the OUT signal is 0xA4.

Solution: Figure 3.5 shows the solution to Example 3.2. There are several particularly import thing to note about
the solution in Figure 3.5.

 Anytime the EN input is not asserted, the OUT signal is in its high-Z state. We arbitrarily represented
the high-Z state with “ZZZ”, which you should not equate with the fact that this problem is boring.

 The LD signal is effectively independent from the output. In this way, the register still loads the IN
signal into the register regardless of whether the EN signal is asserted or not. This event occurs
during the third rising-edge of the clock in Figure 3.5.

FreeRange Computer Design Chapter 3

 - 67 -

Figure 3.5: The solution to Example 3.2.

One of the reason tri-state registers exist is to save resources. This is a topic we generally save for advanced
digital design, but we’ll mention it here in case you never advance digitally. Aside from that lame attempt at
humor, the notion of using tri-state registers for resource sharing brings up a massively important point which
every digital designer needs to know.

As an example of resource sharing, Figure 3.6 shows two tri-state registers in same circuit. Note in Figure 3.6
that there is a connection between the outputs of the two registers. Because these two registers are sharing the
same routing resources, and because both of these devices have the ability to “drive the bus”, a potential problem
exists. Enabling both registers are simultaneously creates a situation we refer to as “bus contention”. Bus
contention occurs when two more output devices (registers in this case) simultaneously drive their data onto the
same lines bus line. Bus contention results in indeterminate circuit behavior and is thus something you should
avoid. For example, if one output device drives the bus with all 1’s and another device drives the bus with all
0’s, what would some input device see on these lines? Who knows!4

Figure 3.6: A schematic diagram of a basic tri-state register.

Working with circuits that share resources in this way certainly creates a new aspect to digital design. But all is
not lost; the way to avoid bus contention is to make sure that no more than one output device is driving the bus
lines at any given time. The way to “drive the bus” is to assert the enable input on the given device. Recall that
when the tri-state outputs are not asserted, the device is essentially removed from the circuit as the devices
outputs are providing no current to the circuit.

FreeRange Computer Design Chapter 3

 - 68 -

3.4 Bi-Directional Registers

A discussion on registers would not be complete without a description of bi-directional registers. In a continued
effort to save resources, some registers use a single bundle (or bus) to route the data into and out of a register.
These registers retain the required control signals including load control, tri-state control, and a clock, but the
share the input and output lines. Figure 3.7(a) shows a schematic diagram of a typical bi-directional register;
Figure 3.7(b) shows the same register drawn on a lower level to show some of the pertinent device
implementation details. There are a few items in Figure 3.7(b) worth noting.

 Figure 3.7(a) represents the bi-directionality of the device with the doubly directed arrow for the Q
bundle. In this way, the Q bundle can be either an input or an output depending on the EN control
signal.

 The diagram uses the standard “tri-state” upside-down triangle in conjunction with the double
directed arrow to officially represent the bi-directionality of the device.

 Figure 3.7(b) does not include the tri-state symbol. Figure 3.7(b) shows that you can model a bi-
directional register as a standard register with a tri-state buffer on the output. The notion with this
circuit is that the enable signal (EN) effectively prevents the register from driving its data to the
outside world when the EN signal is not asserted. However, despite the EN signal being unasserted,
the register can still latch any data that some other circuit is driving onto the data lines.

Bi-directional registers are similar to tri-state registers, but they do have a subtle difference. In tri-state registers,
the enable input either drives the output or places the output into high-Z mode. In bi-directional registers, the
device’s enable either drives its data onto the shared resource when the enable signal is asserted, or the device is
“listening” to the shared resource when the enable signal is not asserted.

(a) (b)

Figure 3.7: A circuit diagram for a bi-directional register (a), and the same bi-directional register
drawn on a lower level (b).

Once again, this is a slightly advanced subject so we won’t provide much more than a mention of some of the bi-
directional device’s functionality. We’ll leave this subject with one final diagram. The notion of tri-stating and
bi-directionality saves routing resources in a circuit, sometime at the cost of losing some flexibility in the circuit.
Figure 3.8 shows two functionally equivalent circuits that advertise this resource sharing. Figure 3.8(a) shows a
circuit with two register with tri-state outputs while Figure 3.8(b) shows a circuit with two registers with bi-
directional outputs.

FreeRange Computer Design Chapter 3

 - 69 -

(a) (b)

Figure 3.8: Two functionally equivalent circuit models: (a) is the tri-state version of the circuit while
(b) is the bi-directional version of the circuit.

3.5 Shift Registers

Basic shift registers are typically a circuit introduced in an introductory design course. They are a commonly
used digital circuit because of their ability to do integer math simply and quickly. More specifically, a single left
or right shift in a shift register performs a multiply or divide by two, respectively; these operations are done one
per clock cycle. The notion here is that multiplication and division in digital circuits often requires large and
complex circuitry; shift registers perform multiplication and division quickly, but at the cost of only being able
to multiply or divide by two.

We can extrapolate the operations of shift registers by noting that they can multiply or divide by powers of two.
In simple shift register, division by integral powers greater than one require extra clock cycles as shift registers
only perform one shift per clock cycle. Also worthy of noting here is that division by two (right shifts) cause a
truncation of the original data as one bit of the original shift register contents is lost per right shift. In summary,
shift registers don’t do a lot, but what they do, they do really well.

3.5.1 Basic Shift Registers

Figure 3.9 shows a comparison of block diagrams for a simple 4-bit register and a basic 4-bit shift register5. The
important thing to notice from these diagrams is that the simple 4-bit register generally deals with “parallel” data
while the basic shift register generally deals with “serial” data. What you’ll find later in this chapter is that the
definition of these devices starts to overlap as we add more features to the devices.

5 Keep in mind that the block diagrams show only the very basic devices for comparison purposes, which hopefully is
somewhat instructive.

FreeRange Computer Design Chapter 3

 - 70 -

(a) (b)

Figure 3.9: A block diagram for a 4-bit simple register (a) and a basic 4-bit shift register (b).

The operation of a shift register is simple but can be somewhat tricky when you first encounter it. Figure 3.10(a)
shows a schematic diagram of a 4-bit shift register while Figure 3.10 (b) shows a model of the underlying
circuitry. There is not a lot to say about Figure 3.10 as the fun stuff begins when you examine a timing diagram
associated with this circuit.

(a) (b)

Figure 3.10: A block diagram for a 4-bit simple register (a) and a model of the underlying
circuitry of a 4-bit shift register (b).

3.5.2 Universal Shift Registers

Shift registers that only shift in one direction are not overly useful in digital-land. Most shift registers do many
more operations such as shift left, shift right, parallel load, parallel clear, hold (don’t change state), pick up the
spare, etc. The term in digital-land for shift registers containing features such as these is “universal shift
register”, or “USR”. There is no one definition for universal shift registers; the only thing the term means is that
you’re dealing with some sort of shift register that does more than shift in one direction. From that point, you
need to consult the datasheet or designer as to what exactly the device does.

FreeRange Computer Design Chapter 3

 - 71 -

Example 3-3: Universal Shift Regsiter Timing Diagram

The block diagram on the right shows a model of a
universal shift register; use this model to complete
the timing diagram listed below. Consider the
following:

 SEL = “00”: hold
 SEL = “01”: parallel load of D_LOAD data
 SEL = “10”: right shift; DL_IN input on left
 SEL = “11”: left shift: DR_IN input on right
 All operations are synchronized to the rising

edge of the CLK signal.
 Propagation delays are negligent.
 Initial D_OUT value is 0x45

Solution: The first step in any problem involving a sequential circuit is to establish the initial state of the storage
elements. This problem states that the initial value of D_OUT value is 0x45; this value is the initial state of the
shift register.

From there, a good approach to problems such as these is to list what actions the SEL signal is selecting
throughout the timing diagrams. Figure 3.11 shows a partially annotated timing diagram highlighting the
operations selected by the SEL signal. Note that we synchronize all annotations with the rising clock edge.

Figure 3.11: A black box diagram of the universal shift register.

FreeRange Computer Design Chapter 3

 - 72 -

Figure 3.12 shows the final timing diagram. As you can see, most of the changes in the DR_IN, DL_IN, and
D_LOAD signals have no effect on the final output. The important thing to do for this problem is to verify for
yourself that each of the values in the D_OUT is correct.

Figure 3.12: A black box diagram of the universal shift register.

3.5.3 Barrel Shifters

One of the common shifting-related operations out there is a “barrel shift”. The operation of barrel shifters is
straightforward as it’s simply an extension of simple shifting operations. While simple shift registers only
performed one shift per clock cycle, barrel shifters are effectively capable of performing more than one shift per
clock cycle. As you would imagine, barrel shifters can shift either left or right.

The key to understanding barrel shifters is realizing the main reason they exist. Keep in mind that shift registers
contain “bits” which generally represent binary numbers. The notion of shifting left and right are associated with
multiplying by two (left shift) or dividing (right shift) by two. Thus, barrel shifters are then associated with
multiplying and dividing by “powers of two” (such as 4, 8, 16, 32, etc.). What these operations provide are
super-fast (namely, one clock cycle) multiply and divide operations. As you continue in digital stuff and/or
computer programming, you’ll find that multiplying and dividing binary numbers is relatively time consuming
relative to other computer operations (such as logic operations). Barrel shifters provide a cheap and fast,
although somewhat limited alternative.

We commonly use barrel shifters in arithmetic applications where we do not require 100% accuracy of results.
For example, there is always a big push to have your circuit perform “integer-based math” because working with
integers is much less “computationally expensive” than working with other options such as “floating point
numbers”. A good example of this is with non-professional cameras such as the ones on your cell phones.
Because we partially judge cameras on these devices by their operational speed (such as how fast you can take
pictures6), they generally use integer math. Using integer math causes you to lose some precision, but your eyes
will never know the difference. All you know is that your tiny hand-held device is able to take high definition
movies and do so without significant delay. Big wup.

Table 3.1 shows two examples barrel shifting operations. Both of these examples use an 8-bit value; the top
example is the value before the active clock edge while the bottom value is the value after the active clock edge.
The examples show both a starting and ending point for the barrel shifting operation described by the particular
row in the table. The (a) row shows a 2x right barrel shift that arbitrarily inputs 0’s on the left side of the register.
The (b) row shows a 2x left barrel shift that arbitrarily inputs 1’s from the right side of the register. The
operation in the (a) row represents a divide by two; the operation in the bottom row is one the many open
mysteries in this world.

6 In reality, there is a significant amount of processing taking place for even the most basic digital photograph.

FreeRange Computer Design Chapter 3

 - 73 -

 Description Example

(a)
barrel shift right 2x; stuff in a two 0’s from
the left side.

(b)
barrel shift left 2x; stuff in a two 1’s from the
right side.

Table 3.1: Examples of possible barrel shifting operations.

The examples in Table 3.1 are arbitrarily barrel shift of “2x”. This syntax refers to the notion that the barrel
shifter is “shifting two times” in one clock cycle. The truth is that it is only shifting one time, which implies there
are connections each shift register element and the element that is two shift register elements away from the
current element. As you can probably imagine, the barrel shifter requires the proper signal routing in order to
accomplish this shift. As a result, barrel shifters out in digital-land are typically limited by the different flavors of
barrel shifts (such as “2x”) and shift directions that they can perform. Barrel shifters in these applications are
typically associated with specific mathematical operations and truly don’t have the general need to perform
every possible shift length. Recall that for every barrel shift requires extra routing resources, which are generally
not cheap in digital-land.

3.5.4 Other Shift Register-Type Features

Two more of the common shifting operations are rotates and arithmetic shifts. These operations are also simple
in their basic states7. Rotate operations can be useful in many applications, though there is not one slam-dunk
great example I can think of; in theory, these operations fall into the category of “bit tweaking”. Arithmetic shift
operations are similar to simple shift operations but can work better with signed binary numbers.

Rotate operations include rotate left or a rotate right with the actual shifting occurring on the active clock edge.
The notion with rotate-type shifts is that no bits from the original register values are lost by “shifting them out”
of the register as was the case with simple shift registers. Specially, for a rotate right operation, the LSB of the
register becomes the new MSB while all other bits are shifted one position to the right. For a rotate left
operation, the MSB of the register becomes the new LSB while all other bits in the register are shifted one
position to the left.

 Description Example

(a)
rotate right; the LSB is transferred to the
MSB;

(b) rotate left; the MSB transfers to the LSB.

Table 3.2: Examples of rotate-type shifts.

7 The truth is that it can get really ugly out there. You many need to combine operations with as “barrel rotates” or “barrel
arithmetic shift”, or some type of shift to enhance your bowling skills. We won’t go there in this chapter.

FreeRange Computer Design Chapter 3

 - 74 -

Arithmetic shifts are similar to simple shifts in their ability to perform mathematical operations8. The key
different is that arithmetic shifts work with signed binary number and preserved the “signedness” of the value
they operate on. For an arithmetic shift left operation, the value of the sign bit does not change because of the
shift. Thus, the left shift operation retains the sign of the number as well as the ability to perform fast
multiplication with the left shift operation. For an arithmetic shift right operation, we both retain the sign bit as a
sign bit and propagate the sign bit to the right with each shift. This sounds somewhat strange, but it truly both
retains the sign of the value in the register as well as performing a fast division operation. I suggest working
through a few examples on your own.

 Description Example

(a)

An arithmetic shift right of a positive number
in 2’s complement form; the operation copies
the sign bit from sign-bit position to the next
bit on the right with each shift. This is a divide
by two on a signed number (positive).

(b)

An arithmetic shift right of a negative number
in 2’s complement form; the sign bit is copied
from sign-bit position to the next bit on the
right with each shift (the sign bit remains
unchanged). This is a divide by two on a
signed number (negative).

(c)

An arithmetic shift left on a positive value in
2’s complement form. The left shift does not
alter the sign; all other bits shift left and the
operation arbitrarily stuffs a ‘0’ into the LSB
position. The bit adjacent to the sign bit shifts
left into nowhere land. This is a multiply by
two on a signed number (positive).

(d)

An arithmetic shift left on a negative value in
2’s complement form. The left shift does not
alter the sign bit; all other bits shift left and
the operation arbitrarily stuffs a ‘0’ into the
LSB position. The bit adjacent to the sign bit
shifts left into nowhere land. This is a
multiply by two on a signed number
(positive).

Table 3.3: Examples of many flavors of arithmetic shifts.

8 When you read this paragraph, recall that we represent signed binary numbers using 2’s complement notation, AKA,
“diminished radix complement” notation.

FreeRange Computer Design Chapter 3

 - 75 -

3.6 Chapter Summary

 Registers: A register is a sequential circuit that can be considered nothing more than a parallel combination
of single-bit storage elements. These storage elements are modeled as a given number of D flip-flops that
share a common clock signal and possibly other control signals typically associated with D flip-flops (such
pre-set and clear signals). The register is typically used to “latch” (and thus remember) an n-bit wide set of
data on the active clock edge of the device.

 Tri-State Registers: Tri-state registers contain tri-state buffers on the register’s output. The tri-state
registers effectively allow the register to either place its data onto a shared routing resource with the tri-state
outputs enabled, or effectively remove itself from the circuit altogether with the tri-state outputs disabled.
When the tri-state register’s outputs are disabled, the circuit is “high-impedance”, or “high-Z” state. An
extra input signal is typically used to control the circuit’s tri-state outputs. The driving notion behind tri-
state register is to share, and thus save circuit routing resources, but come at the expense of overall circuit
flexibility.

 Bi-Directional Registers: Bi-directional register are registers that are tri-state registers that are configured
at a low-level to appear to have shared input and output lines. Bi-directional registers also represent attempts
to save circuit routing resources.

 Shift Registers: Shift registers are in many ways similar to simple registers; their primary difference is with
the inputs to the individual shift register storage elements. Shift registers are designed such that the data
output from one shift register element becomes the data input to a contiguous element. IN this way, data is
said to be “shifted through” the shift register. In general, there is one “shift” per clock cycle. Shift register
operations are often used to implement fast but limited mathematical operations with single right shift being
a divide-by-two and a single left shift being a multiply by two.

 Universal Shift Register: A type of shift register that performs more operations than a simple shift register.
These operations can typically include both a shift left and a shift right, a parallel load, a preset and/or clear.
Somewhere in here could also be arithmetic shift operations and various forms of rotate operations.

 Barrel Shifters: A type of shift register that performs multiple shifts on a single clock edge. In reality,
barrel shifters are wired such that they can shift multiple bit locations in one clock cycle, and probably do
not perform multiple shifts. Barrel shifters are useful for mathematical operations including multiplication
and division by powers of two.

FreeRange Computer Design Chapter 3

 - 76 -

3.7 Chapter Exercises

1) List three different types of registers.

2) The notion of a latch is generally associated with a one-bit storage element. Briefly describe whether it is
possible to have a multi-bit latch, and briefly describe the difference between a multi-bit latch and a register.

3) Briefly describe whether you can discern whether a register’s control inputs are synchronous or
asynchronous from looking at a schematic diagram.

4) Briefly describe why the third state in a tri-state register is not really a state.

5) Briefly explain the main benefit of using tri-state devices in your circuit.

6) Briefly explain the notion of using shared resources in a digital circuit.

7) Shift registers are known for doing “efficient integer math”. Briefy explain why this is so.

8) Briefly explain why universal shift registers have no real solid definition.

9) Briefly explain why the hardware footprint for barrel shifter is larger than the footprint for a simple shift
register.

10) Briefly explain the notion of bits being lost with a shift operation but not being lost with rotate operation.

11) Briefly explain whether it would be possible to use an arithmetic shift on an unsigned number.

12) Using the block diagram on the right to complete the
timing diagram provided below. Consider the register
to be rising-edge triggered and ignore all propagation
delay issues.

13) Using the block diagram on the right to complete the

timing diagram provided below. The LD input must
be asserted in order for the register to load the input
signal. Consider the register to be rising-edge
triggered and ignore all propagation delay issues.

FreeRange Computer Design Chapter 3

 - 77 -

14) Using the block diagram on the right to complete the timing diagram

provided below. The LD input must be asserted in order for the register
to load the input signal. The CLR input is an asynchronous input that
clears the register when asserted and has a higher precedence than the
LD input. Consider the register to be rising-edge triggered and ignore all
propagation delay issues.

15) Use the following tri-state register diagram to complete the following timing diagram. Assume the initial

value of the OUT signal is 0xA4.

FreeRange Computer Design Chapter 3

 - 78 -

16) Use the following tri-state register diagram to complete the following
timing diagram. Assume the initial value of the OUT signal is 0xBA.
Consider the register to be rising-edge triggered and ignore all
propagation delay issues.

17) Use the following tri-state register diagram to complete the
following timing diagram. Assume the initial value of the OUT
signal is 0xBA. Consider the register to be rising-edge triggered
and ignore all propagation delay issues.

18) Using the block diagram on the right, provide a schematic
diagram detailing how you would use this device to create
a 32-bit register with all the same features listed on the 8-
bit device.

FreeRange Computer Design Chapter 3

 - 79 -

19) Use the following tri-state register diagram to complete the following timing diagram. Assume the initial
value of the OUT signal is 0xA4.

18) Use the block diagram on the right to complete the timing diagram
below. Consider the circuit to be a 4-bit shift register (shifts from
right-to-left) that is active on the rising-edge triggered of the clock
signal. Consider the line labeled “Q” to represent the 4-bit value
stored by the shift register and the “data_out” output to represent
the value of the highest order bit stored by the shift register.
Assume the initial value stored by the shift register is 0xC. Ignore
all propagation delay issues with this circuit

FreeRange Computer Design Chapter 3

 - 80 -

19) The block diagram on the right shows a model of a
universal shift register; use this model to complete the
timing diagram listed below. Consider the following:

 SEL = “00”: hold
 SEL = “01”: parallel load of D_LOAD data
 SEL = “10”: right shift; DL_IN input on left
 SEL = “11”: left shift: DR_IN input on right
 The rising edge of the CLK signal synchronizes all shift

register operations
 Propagation delays are negligent.
 Initial D_OUT value is 0xAB

20) Complete the following timing diagram using the following USR characteristics. Assume
that all operations are synchronized with the rising edge of the clock signal. Assume that
propagation delays are negligent. Be sure to state any other assumptions you need to
make in order to complete this problem. Assume the 0x39 is the initial value stored by
the shift register. Assume “D_OUT” is an 8-bit output representing the value stored by
the shift register.

 SEL = “00”: rotate right
 SEL = “01”: rotate left
 SEL = “10”: divide by 8 (bit stuff 0’s)
 SEL = “11”: multiply by 8 (bit stuff 0’s)

FreeRange Computer Design Chapter 3

 - 81 -

21) A FSM can be used to generate a shift register. For this
problem, provide a state diagram that could be used to
model a 2-bit shift register. Consider the Q output to be a
2-bit bus that indicates the result of the synchronous
shifting action. Consider the DIN input as the bit being
shifted into the shift register (shifts left to right). Consider
the RESET input to be an asynchronous input that takes
precedence over all other inputs. When the HOLD input is
asserted, the Q output does not change.

22) A FSM can be used to generate a shift register. For this
problem, provide a state diagram that could be used to
model a 3-bit shift register. Consider the Q output to be
a 3-bit bus that indicates the result of the synchronous
shifting action. Consider the DIN input as the bit being
shifted into the shift register (shifts left to right).
Consider the RESET input to be an asynchronous input
that takes precedence over all other inputs.

FreeRange Computer Design Chapter 3

 - 82 -

23) The following diagram shows a circuit that is used to perform a serial-to-parallel conversion on the
OP_A and OP_B input and then perform a mathematical operation. In other words, two four-bit
numbers will be provided serially (LSB first) on the OP_A and OP_B inputs. The two tables below
describe the MUXes and the Universal Shift Register (USR).

 Provide a state diagram that could be used to control the circuit such that it performs A - B

and registers the result in REG_ACC (A & B are the parallelized versions of the OP_A &
OP_B serial data). The serial to parallel conversion will initiate when the signal GO (not
shown) is asserted. Minimize the number of states in your design. State any other assumptions
you deem necessary.

MUX description

if (sx = 0) then
 out <= in;
else
 out <= not
in;
end if;

Assumptions:

 LSB is first to arrive in serial bit
stream

 DR_IN = right side input to shift
register

 DL_IN = left side input to shift
register

 CLK signals are connected

 All setup and hold times are met

 All Shift register operations are
synchronous

Shift Register
Controls

SEL Operation

0 0 hold

0 1
parallel

load
1 0 shift right
1 1 shift left

FreeRange Computer Design Chapter 3

 - 83 -

24) The following diagram shows a circuit that can perform a mathematical operation. The two tables
below describe the MUXes and the Universal Shift Register (USR). The registers have a
synchronous load input (LD). Provide a state diagram that could be used to control the circuit such
that it performs the operation listed below. Minimize the number of states you use in your solution.

 If a GO signal is received (GO is not shown in diagram), the following operation is generated

and the result appears on the output: OP_OUT = (OP_B - OP_A) ÷ 16

MUX description

if (sx = 0) then
 out <= in;
else
 out <= not
in;
end if;

Assumptions:

 DR_IN = right side input to shift
register

 DL_IN = left side input to shift
register

 CLK signals are connected

 All setup and hold times are met

 All Shift register operations are
synchronous

 Registers (non-USR) have
synchronous load inputs (LD)

Shift Register
Controls

SEL Operation

0 0 hold

0 1
parallel

load
1 0 shift right
1 1 shift left

 - 84 -

PART TWO: Advanced Digital Design

FreeRange Computer Design Chapter 4

 - 85 -

4 Chapter: Register Transfer Notation

4.1 Introduction

Digital design is always abstracting things upwards in an effort to increase the efficiency of representing circuits.
As we move on describing computer circuits, we need to come up with a new, higher-level of abstraction for
representing circuits. The solution to this dilemma is what we refer to as register transfer language (RTL) or
synonymously, register transfer notation (RTN). This notation, or language, uses a simple syntax that provides a
clear and concise description of a circuit. A set of register transfer language (RTL) statements can completely
describe a digital system in a high-level manner, which is why it is so useful in computer design. Conversely, we
can also describe a digital system by a set of RTL statements.

Main Chapter Topics

 REGISTER TRANSFER NOTATION INTRODUCTION: This chapter introduces the notion
of register transfer notation (RTL). This chapter also discusses the motivations behind
RTL and the most accepted syntax or RTL form.

 MICROOPERATIONS: This chapter classifies and describes basic operations that you
can do with register and their relation to elementary operations.

 DATA TRANSFER CIRCUITS: This chapter describes three main types of data transfer
circuits and provides examples of their usage, advantages, and disadvantages.

Why This Chapter is Important

This chapter is important because register transfer notation is highly useful in designing
and/or describing computer operations because it provides a compact form to describe data
transfers and the signals that control them.

4.2 Register Transfer Notation Specifics

Before we go here, there is one important fact that you need to keep in mind. RTL is not like an HDL in that it is
not a compiled or interpreted language. With an HDL, there are many syntax-type rules you need to follow in
order for your code to synthesize. The same is not true for RTL: the rules (if there really are any at all) are lax. A
good analogy to this lack of rules is with the labeling of the inputs, outputs, and states of the state diagrams. The
guiding principle in drawing state diagrams was to simply make it readable and understandable to anyone who
has some idea of what the state diagram is modeling. Similar to state diagrams, since there is not absolute syntax
that you can draw upon, so you must be clear with the convention you use to write RTL equations. Equation 4.
shows an example of the general form of an RTL statement.

 [conditions :] destination register source register [,destination register source register, …]

Equation 4.1: The general form of a RTL statement.

The notation in Equation 4. reads as follows: the contents of the source register is transferred to the destination
register. Here are the important points to realize regarding this notation:

FreeRange Computer Design Chapter 4

 - 86 -

 There can be conditions associated with these transfers (as indicated by the italics in the far left of
Equation 4.) which allow the transfers to occur. We aptly refer to the left-pointing arrow as the
replacement operator.

 There can be multiple transfers associated with one RTL statements.

 A clock signal is rarely (if ever) included in RTL statements. The transfer is understood to occur on
the active clock edge associated with the system, thus the system clock synchronizes all
microoperations.

 The result of this transfer does not generally change the contents of the source register (and if it did,
the RTL statement would list it).

 The register transfer operations listed in one RTL statement happen in parallel. In the context of
digital circuitry, this means all the transfers happen on the same system clock edge.

Example 4.1

Draw a circuit that would implement the following RTL statement: R1 R2

Solution: Once again, there is an interesting relationship between a RTL statement and the underlying hardware.
This problem tells you what needs to be done and it is your job to design a circuit that does it. The RTL
statement provides a guideline on what the underlying hardware should be able to do. If the hardware you
generate can do it, you’ve got a right answer, but certainly not the only answer. In other words, there are
generally many solutions to a given problem such as this one. There is usually a preferred solution based on the
most efficient circuit so you should always strive for that option.

The thing to notice about the given RTL statement is that it lists two registers. Your final circuit therefore has at
least two registers. Also, note that there needs to be a path so data can flow from the R2 register to the R1
register. These two facts spell out the answer to the example. Churn them around in your head and you’ll arrive
at the circuit shown in Figure 4.1(a). The width of the data signals has been arbitrarily set to eight for this and
subsequent examples.

The data line labeled A represents the output of the R2 register from Figure 4.1(a). Since this signal is a bus, we
use the shorthand notation to represent all of the signals on the bus as listed in Figure 4.1(b). The “0x” notation is
C programming language notation that indicates the numbers that follow it are in hexadecimal format (thus
representing the eight bits of the signal). Figure 4.1(b) shows that we represent the state of the eight bits on the
signals labeled A and B with this notation. Figure 4.1(b) shows that the signals change on each clock edge. We
show this dependency by using the arrows pointing from the rising clock edge to the changing data in the B
signal. The values on the A signal are arbitrary as are the times they change; what’s more important is that you
understand the timing and data transfers. Note that the value of the A signal changes midway between the two
clock pulses but the new condition is not transferred to the B signal until the rising clock edge comes along.

(a) (b)
Figure 4.1: Solution and timing diagram for Example 1.

FreeRange Computer Design Chapter 4

 - 87 -

Example 4.2

Draw a circuit that would implement the following RTL statement: C1: R1 R2

Solution: This problem is similar to the previous problem but with a slight modification in the RTL statement.
Note that in this RTL statement, there is a dependency. In other words, data is transferred from the output of
R2 into the R1 register only if the C1 signal is asserted. Most RTL statements have some type of dependency
but most are more complex than this as you’ll see in the final example. The circuit in Figure 4.2(a) provides
the functionality specified by the given RTL statement. Note that the R1 register contains a LD input, which
enables the parallel loading of data into R1 on the active clock edge.

The timing diagram shown in Figure 4.2(b) is more instructive for several reasons. First, the C1 input is
somewhat dependent upon the clock. The thought here is that the active clock edge causes a change in some
other circuit that has on output that is currently driving the C1 input. Imagine that this signal is a Moore-type
output from some FSM (control unit). Note that both the rising and falling edges of C1 are synchronized with
the clock edge (with some delay included). The state of the C1 signal at the first clock edge is low so the data
is not loaded from R2 to R1. Remember, both the C1 signal needs to be high and the rising edge of the clock
must be present in order for the load to occur. The data on the A signal is arbitrary; the initial value of the B
signal is arbitrarily place in an unknown state but becomes known after the rising clock edge.

(a) (b)
Figure 4.2: Solution and timing diagram for Example 2.

Example 4.3

Draw a circuit that implements the following RTL statement: C1,C2: R1 R2, R2 R1

Solution: This problem is slightly different from the previous problem. This type of RTL statement shows that
more than one data transfer can happen simultaneously as indicated by the comma-separated equations on the
right side of the colon. The left side of the colon indicates a more complex condition that allows the data
transfers to happen. Figure 4.3(a) shows the circuit having this functionality. Note that the comma-separated
conditions of “C1,C2” say that both C1 and C2 need to be asserted in order for the transfers to occur. The and in
this statement can be nicely implemented as an AND gate as shown in Figure 4.3(a). Figure 4.3(b) shows an
accompanying timing. This circuit swaps the data between the R2 and R1 registers.

One other important matter to concern yourself with in Figure 4.3(b) is the relation between the CLK signal and
the C1 signal. The diagram lists that the state change in the C1 signal is caused by the CLK signal. The
underlying and unspoken detail here is that some other circuit in the system (that is not listed) is going to change
the state of the C1 signal. In other words, the C1 signal could be considered the output of some FSM that is
subsequently a function of another unmentioned input.

FreeRange Computer Design Chapter 4

 - 88 -

(a) (b)
Figure 4.3: Solution and timing diagram for Example 3.

Example 4.4

Draw a circuit that is able to implement the following RTL statements. Assume you have a
standard n-bit register available to you that has a LD (load) input.

R2 R1 R1 : C2C1,

R2 R1 R2 : C2 C1

Solution: The best approach to take when approaching these circuits is to start listing what you know about
the problem. We list the things you should realize about this problem below; Figure 4.4(a) shows the final
circuit.

 The “+” operator on the right side of the colon represents addition. If this operator had appeared in
the left side of colon, it would have represented an OR operator. The presence of an addition operator
implies that you have some hardware capable of performing the operation. In this case, the hardware
is a simple adder, such as an RCA. The typical adder adds two n-bit numbers and outputs the results.

 The circuit requires two registers. You know this because you see that there is an R1 and an R2 but
no other registers.

 The output of each register is going to be added. This means that the outputs of the registers must be
the inputs to the adder.

 The result of the addition must be made available to the inputs of both the R2 and R1 register. This
means the adder output is a source that has two destinations: the input of the R1 and R2 registers.

 There is some extra controlling logic required to enable the loading under the appropriate conditions.
This includes the AND gate and an EXOR gate.

Figure 4.4(b) shows a timing diagram associated with the circuit solution of Figure 4.4(a). There are a few things
to notice in this diagram:

 All transitions occur on the rising clock edge.

 Output data from the adder is transferred to the R2 register on the first rising clock edge (and not the
second rising clock edge) because the conditions of C1 and C2 satisfy the loading logic for the
register (the XOR gate).

FreeRange Computer Design Chapter 4

 - 89 -

 Output data from the adder is transferred to the R1 register when the state of signals C1 and C2 satisfy
the logic for the load input of the R1 register (second rising clock edge only).

(a) (b)

Figure 4.4: The solution for Example 1 (a) and an associated timing diagram (b).

4.3 Microoperations and Data Transfers

Microoperations are elementary operations that are performed on data stored in one or more registers. Note that
the registers themselves have the ability to perform elementary operations. When a register performs one of these
elementary operations, it is considered to be performing a microoperation. With this definition, we can state that
any time data stored in a register changes, it is the result of a microoperation. For example, the data in a simple
register changes when we clear the register or load a new value. Another example, then the output of a counter is
incremented, it is a result of a microoperation. This means that the control inputs to our register-type circuits
(simple registers, counters, and shift register) control what microoperations that particular circuit can perform.

Although we mentioned several types of microoperations in a previous chapter, we’ll introduce more
microoperations in this chapter and we’ll divide them into specific types. The types we list are somewhat
arbitrary in that they do not include every possible microoperation possible on any piece of hardware.
Additionally, some of the microoperations we list can fall into more than one of the listed types. The following
classification then is mostly for instructional purposes so don’t try to read too much into it. The four major types
of microoperations can be classified as follows:

 Transfers – data is not changed as data passes from one register to another

 Arithmetic – some arithmetic function is performed on data in registers

 Logic – some logical-type bitwise manipulation is performed on data in the registers

 Shift – the change in register data can be characterized by a shift in the data

4.3.1 Transfer Microoperations

Equation 4.2 shows a typical transfer microoperation represented by an RTL statement. In this equation, the
contents of register R2 are transferred to register R1 under the condition that X is asserted. This transition, as are
most all microoperation represented by RTL, is synchronized to some clock edge.

X : R1 R2

Equation 4.2: A typical transfer microoperation.

FreeRange Computer Design Chapter 4

 - 90 -

4.3.2 Arithmetic Microoperations

Table 4.1 shows some of the more popular arithmetic microoperations. The most important thing to remember
about the microoperations listed in Table 4.1 is that writing the equation means that you can either currently
perform the operation (the hardware, in this case some arithmetic circuit, exists) or you’ll soon be able to
perform the operation (you’re designing the hardware capable of performing the given function).

Arithmetic Micro-ops Worthy Comment Hardware Possibilities

!Cin : R1 R2 + R3

Addition; source registers are not
changed; assumes there is some
circuitry that is capable of doing
the addition; the values of R2 and
R3 do not change.

The output of R2 and R3 is directed to
the input of an adder. The output of the
adder is connected to the input of R1.

!Cin : R1 R2 + R1
Addition; one source is
destination; the value of R2
generally does not change.

The output of R2 and R1 are connected
to the input of an adder. The output of
the adder is connected to the input of
R1.

!Cin : R3 R3 + R3 Addition; doubling circuit

The output of R3 is connected to both
inputs of an adder. The output of the
adder is connected to the input of R3.

1 R4 R3 R2 :Cin Subtraction; the 2’s compliment
thing (R2 = R3 - R4);

The output of R3 and the complimented
output of R4 connects to the input of an
adder. The Cin input of the adder
(considering an RCA) is set to ‘1’ and
is included in the addition.

R5 R5
Complement contents of R5 (1’s
complement)

The output of R5 feeds into a row of
inverters; the output of the inverters
feed back to the R5 inputs.

Cin : 1R5 R5
2’s complement negation (multiply
by -1); value is R5 becomes -R5

The compliment of R5 and ‘0’ are
connected to the inputs of an adder. The
Cin input is set to ‘1’.

R1 R1 + 1 Increment R1; R1 register changes The magic increment input of a counter.

Cin : R1 R2 + 1
Add 1 to R2 and store result in R1;
the value of R2 does not change.

The output of R2 is added to 0 and the
Cin input is a ‘1’.

R1 R1 – 1
Decrement R1; R1 Register
changes

The standard decrement operation of a
counter.

R2 R1, R1 + 1
Assign R1 to R2; the R1 value
increments.

The output of counter R1 is latched to
register R2. At the same time, the value
in the R1 register is incremented.

Table 4.1: Some popular arithmetic microoperations.

4.3.3 Logic Microoperations

There are a handful of logic microoperations that provide useful tools for manipulating the data in registers.
Logic operations are generally considered to be bitwise in nature, meaning that the associated logic operator is
applied to each of the bits in the registers on a one-to-one basis. Table 4.2 shows some of the more common
logic microoperations.

FreeRange Computer Design Chapter 4

 - 91 -

Logic Micro-ops Worthy Comment Hardware Possibilities

R5 R5

Logical bitwise complement (1’s
complement); complement the current
value of R5 and return the new value to
R5; The current value of R5 changes.

The output of register R5 is
complimented and fed to the
inputs of R5.

R2 R5

Logical bitwise complement (1’s
complement); complement the current
value of R2 and store the result in R5; The
current value of R2 does not change.

The output of register is
complimented and becomes the
input of the R5 register.

R0 R1 AND R2
Logical bitwise AND of R1 and R2; the
result is stored in R0; the current values of
R1 and R2 generally do not change.

The output of R1 is ANDed with
the output of R2; the result
becomes the input to R0.

R1 R1 AND R2
Logical bitwise AND of R1 and R2; the
result is stored in R1; the current value of
R2 generally does not change.

The output of R1 is ANDed with
the output of R2; the result
becomes the input to R1.

R3 R1 OR R2
Logical bitwise OR of R1 and R2; the
result is stored in R3; the current values of
R1 and R2 generally do not change.

The output of R1 is ORed with the
output of R2; the result becomes
the input to R3.

R1 R1 XOR R2
Logical bitwise Exclusive OR of R1 and
R2; the result is stored in R1; the current
value of R2 generally does not change.

The output of R1 is EXORed with
the output of R2; the result
becomes the input to R1.

Table 4.2: Some popular logic microoperations.

4.3.4 Shift Microoperations

Here is the list of basic shift-type operations:

1. Simple shifts: The simple shift would include single shifts in either the left or the right direction. We
refer to this shift as simple because the shifts that follow are somewhat less simple.

2. Rotates: The rotate operations (rotate left and rotate right) either feeds the MSB to the LSB (on a left
shift operation) or the LSB to the MSB (on a right shift operation). All other bits shift accordingly.

3. Arithmetic shifts: The arithmetic shift is for operations where the bits stored in the register are
considered to be a signed number. In this case, the MSB is considered the sign bit and its present state
must be preserved in both the left and right shift operations.

4. Barrel shifts: A barrel shift essentially performs more than one simple shift (in any one direction) in
a single clock cycle. The distance of the barrel shift is arbitrary but is indicated in the RTL equation
with the “Xx” notation (where the capital X represents the effective number of bit shifts). These shifts
are actually quite useful since they provide a fast multiplication and division (depending on shift
direction). The only catch here is that the divisions and multiplications need to be by a factor of two.
We can use the barrel shift to instantly scale a mathematical result thus saving clock cycles that you
would need to expend to do the shifts (multiplication or division) on separate clock cycles.

FreeRange Computer Design Chapter 4

 - 92 -

Shift Micro-ops Worthy Comment Worthy Picture

R0 sr R0
shift right of R0; result is store in R0;
some undetermined valued is feed in
to the left side of the register.

R2 sl R2 (r-0)
shift left of R2; feed in ‘0’ from right
side

R2 sr R2 (l-1)
shift right of R2; result stored in R2;
feed in ‘1’ from left side

R2 rr R2
rotate right; the LSB is transferred to
the MSB;

R2 rl R2
rotate left; the MSB is transferred to
the LSB.

R2 bsr2x R2 (l-0)
barrel shift right 2x (two simple
shifts); result stored in R2; feed in ‘0’
from left

R3 bsl2x R3 (r-1)

barrel shift left 2x; result stored in R3;
feed in ‘1’s from right. This would be
the same as two simple shift lefts that
fed a 1 into the right.

R4 asl R4 (r-0)

arithmetic shift left; sign bit is copied
from left side with each shift; ‘0’ is
fed into the right side of the register;
this is essentially a multiply by two on
a signed number.

R5 asr R5

arithmetic shift right; sign bit is not
altered any shift; the sign bit is copied
from the MSB to the MSB -1 on each
right-shift; this is essentially a divide
by two on a signed number.

Table 4.3: Some popular shift-type microoperations.

One important thing to notice about the RTL equations written in Table 4.3 is that none of them contain
conditions. Generally speaking, there will be some unit in your computer that handles all of these functions. The
way you would officially tell the unit to perform a given function is to tweak the proper control signals (such as
“select-type” signals). These control signal values should appear in the RTL statements above. The above
equations do not because our discussion was primarily an introduction.

The last comment on the RTL matter is fact that only conditions appear on the left side of the colon. You need to
remember this because the “+” operator sometimes represents a logical OR and at other times represents
addition. An OR operation is considered a condition and can appear on the left side of the colon. However, an

FreeRange Computer Design Chapter 4

 - 93 -

addition operation could not be construed as a condition and would never appear on the left side of the colon.
Therefore, a “+” operator has special context in RTL equations. For example, for the equation in Equation 4.3,
the “+” operator on the left side of the colon represents an OR operation while the “+” operator on the right side
of the colon represents an addition operator. If ever in doubt, feel free to spell it out absolutely clearly in written
English, with footnotes, or with arrows.

 K1 + K2 : R1 R2 + R3

Equation 4.3: Equation showing "+" operator but having two different meanings.

4.4 Data Transfer Circuits

As you can tell by now, a functional datapath passes data around in a useful manner. We need to get into some of
the specifics of how the data is passed around; that is, we need to look at the underlying hardware and
understand exactly how things are done so that we can orchestrate such transfers. There are roughly four
different circuit styles for transferring data around:

1) MUX-based transfers

2) bus-based transfers

3) tri-state bus-type transfers

4) open collector

4.4.1 MUX-Based Data Transfers

Figure 4.5(a) shows a typical circuit that performs MUX-based data transfers. The table in Figure 4.5(b) includes
some example microoperations and the control signals required to perform those operations. We use the Sx
signals to control the two MUXes and the LDx signals are used to control the loading of data into the various
registers. We assume the width of the bus for this example and the other examples that follow to be of generic
width “n”. All transfers are synchronized on the rising edge of the clock. Below are a few other things to note
about this circuit; Table 4.4 shows the bit control information in RTL form.

 If a register does not need to be loaded for a particular microoperation, the LD signal is held low. The
state of the corresponding MUX control signal is therefore a “don’t care” but is listed as ‘0’.

 Most often, conditions of “don’t care” are not included in the RTL statement. In general, for a given
RTL statement, you should specify all associated signals to leave no room for testy ambiguity.

 Each signal source contains one and only one destination.

 The fact that the data signals in this example are of “width n” implies that they are bundles. In
computerland, the word bus is an overused and ambiguous term; the word bundle is a better term.

FreeRange Computer Design Chapter 4

 - 94 -

Microoperation S1 S2 LD1 LD2

R2 R1 0 0 0 1

R1 R2 1 0 1 0

R2 R1, R1 R2 1 0 1 1

R2 R1, R1 R1 0 0 1 1

(a) (b)

Figure 4.5: A circuit for MUX-based transfers (a) and control signals necessary to perform the listed
microoperations (b).

Microoperation S1 S2 LD1 LD2 RTL

R2 R1 0 0 0 1 12:2,1,2 RRLDLDS

R1 R2 1 0 1 0 21:2,1,1 RRLDLDS

R2 R1, R1 R2 1 0 1 1 21,12:2,1,2,1 RRRRLDLDSS

R2 R1, R1 R1 0 0 1 1 11,12:2,1,2,1 RRRRLDLDSS

Table 4.4: The table from Figure 4.5(b) with associated RTL statements.

4.4.2 Bus-Based Data Transfers

Although MUX-based transfers are versatile, they can be a waste of hardware. The versatility comes from the
fact that you can perform just about any action you can dream up, but it comes as the cost of extra hardware.
Bus-based transfers are similar to MUX-based transfers but are not quite as versatile. Figure 4.6(a) shows a
circuit for bus-based transfers. The microoperations in Figure 4.6(b) are the same ones listed in Figure 4.6(a).
Here are a few things to note about this circuit:

 This bus-based circuit has less hardware than the MUX-based circuit. This ends up being a trade-off
with functionality as is noted in the next bulleted item.

 Due to the limited hardware connections (compared to the MUX-based transfers), one of the desired
microoperations cannot be done. Bummer!

 This is called a bus-based transfer because there is one bus that had one source but multiple
destinations. Note that in the MUX-based transfers, each source had only one destination.

FreeRange Computer Design Chapter 4

 - 95 -

Microoperation S LD1 LD2
R2 R1 0 0 1
R1 R2 1 1 0
R2 R1, R1 R2 Can’t be done
R2 R1, R1 R1 0 1 1

(a) (b)

Figure 4.6: A circuit used for bus-based transfers (a); control signals to perform microoperations (b).

Microoperation S LD1 LD2 RTL Statement

R2 R1 0 0 1 12:2,1, RRLDLDS

R1 R2 1 1 0 21:2,1, RRLDLDS

R2 R1, R1 R2 Can’t be done bummer!

R2 R1, R1 R1 0 1 1 11,12:2,1, RRRRLDLDS

Table 4.5: The table from Figure 4.6(b) with added RTL statements.

4.4.3 Tri-State Bus-Based Transfers

These transfers are centered about the use of a tri-state buffer as in Figure 4.7(a). The name tri-state comes from
the fact that the output of the buffer can have three possible states as is shown in Figure 4.7(b). Two of the three
states are the now infamous 1’s and 0’s while the other state is the high-impedance state signified with the letter
Z. When the circuit goes into the high-impedance state, no current flows through the device. Any time there is
not current flowing through a conductive path, the path is considered an open circuit. In this case, if there is an
open circuit, the device is effectively removed from the circuit. A better wording for this would be that the
device has no significant effect on the circuit since no one is physically removing the device from the circuit.
The EN (enable) input essentially enables the input to appear on the output of the device as in indicated with the
truth table and compressed truth table of Figure 4.7(b) and Figure 4.7(c), respectively.

The hearts of tri-state bus transfers are registers that contains tri-state buffers on the output of the devices. In
other words, each of the bits stored in the register contains its own tri-state buffer. The EN input is connected to
each of the tri-state buffers in the register and controls each of the output bits in parallel. As is shown in the
circuit of Figure 4.8(a), we indicate registers with tri-state outputs with the triangles on the outputs.

FreeRange Computer Design Chapter 4

 - 96 -

EN A F
0 - Z
1 0 0
1 1 1

EN F
0 Z
1 A

(a) (b) (c)

Figure 4.7: A tri-state buffer (a) and associated truth tables in full and compressed form (b) and (c).

The circuit in Figure 4.8(a) has one major difference from the two previous circuits. The differences between
each the three types of transfers we’re looking at are highlighted in Table 4.6. The fact that tri-state buses
generally have more than one source means that there is possibility of bus contention. Bus contention occurs
when two more output devices (registers in this case) drive their stored data onto the bus line at the same time.
This results in indeterminate circuit behavior, so you should definitely avoid it. For example, if one output
device drives the bus with all 1’s and another drives the bus with all 0’s, what would some input device see on
these lines?

The way to avoid bus contention is to make sure that no more than one output device is driving the bus lines at
one time. The way to drive the bus is to assert the EN input on the registers so only one of these should be
asserted at any one time. When the device is not asserted, the device is essentially removed from the circuit
(although the inputs of the device are generally able to latch data).

Transfer Type Interesting Bus Characteristic for Buses

MUX-based one source - one destination
Bus-based one source - multiple destinations
Tri-state bus-based multiple sources - multiple destinations

Table 4.6: The major differences between transfer types.

Figure 4.8(a) shows the resulting circuit. The microoperations listed in Figure 4.8(b) are the same
microoperations for the previous types of data transfers. Once again, as you can see from the circuit diagram of
Figure 4.8(a), there seems to be less hardware in the circuit as compared to MUX-based and bus-based transfers.
As is shown in Figure 4.8(b), one of the RTL statements is still not possible. The most important thing to note
from the table in Figure 4.8(b) is the fact that for any given RTL statement, only one of the register enables is
active at a time. If more than one enable signal was active on a given bus line, there would be bus connection

Microoperation EN1 EN2 LD1 LD2
R2 R1 1 0 0 1
R1 R2 0 1 1 0
R2 R1, R1 R2 Can’t be done
R2 R1, R1 R1 1 0 1 1

(a) (b)

Figure 4.8: A circuit for tri-state bus-based transfers (a); signals controlling the microoperations (b).

FreeRange Computer Design Chapter 4

 - 97 -

Microoperation EN1 EN2 LD1 LD2 RTL Statement

R2 R1 1 0 0 1 12:2,1,2,1 RRLDLDENEN

R1 R2 0 1 1 0 12:2,1,2,1 RRLDLDENEN

R2 R1, R1 R2 Can’t be done unkempt

R2 R1, R1 R1 1 0 1 1 1,12:2,1,2,1 RRRLDLDENEN

Table 4.7: The table from Figure 4.8(b), with associated RTL statements.

And finally, there is an alternate method that is commonly used to draw the circuit of Figure 4.8(a). A somewhat
shorthand notation for the tri-state bus transfer circuit of Figure 4.8(a) is shown in Figure 4.9. These two circuits
are equivalent but note that the circuit of Figure 4.9 is much nicer to look at. The double arrows on the bus lines
indicate that the lines are both inputs and outputs.

Figure 4.9: An alternative method to draw the circuit shown in Figure 4.8(a).

Example 4.5

Using the circuit shown in Figure 4.10(a), write the RTL equations that would accomplish the following
list two sets of tasks: (write two different equations).

1) Transfer R1 to R2; increment R1

2) Transfer R2 to R1

Solution: Once again, there are a few quick things to notice about this circuit:

 Each of the registers has tri-stated outputs. This requires that the registers have enable signals, which
must be asserted in order to drive that register’s data on to the bus. This also means that only one of
the enable signals (EN1 and EN2) better be asserted at one time.

 The R1 register has a CNT_EN input, which roughly stands for count enable. This implies that the R1
register is a counter. Looking at the first required transfer indicates an increment operation (Rx Rx
+ 1) which, by using the logic of the previous problem, requires an adder. However, since this register
is a counter and counters typically count up one value at a time in a synchronous fashion, all you need

FreeRange Computer Design Chapter 4

 - 98 -

to do is assert the count enable to induce the required increment operation. In this case, assume that if
the count is not asserted, the value stored in the register does not change.

Here are the required RTL equations:

R2R1 :EN2,EN1,LD2LD1,,CNT_EN

1R1R1 R1,R2 :EN2EN1,LD2,LD1,CNT_EN,

Figure 4.10(b) shows the associated timing diagram. One important thing to notice about this timing diagram are
the transfers that occur on the first rising clock edge. On that clock edge, the data in the R1 register transfers to
the R2 register; at the same time, the data in the R1 register increments. Keep in mind that these diagrams
represent actual circuits. At the instance of the rising clock edge, the data transfers from R1 to R2. Since
CNT_EN is asserted, the increment of the count is also initiated on the clock edge but its effect does not happen
in time for the incremented data to be transferred to the R2 register.

The above increment operation is typical in digital circuits. It’s particularly important in basic computer circuits
because a counter is used to “sequentially step through a stored program”. Generally speaking, the output of the
counter is used as an address to access an instruction in instruction memory. Once one instruction is read, the
counter is incremented and then points at the next instruction in memory. We’ll be looking at this in more detail
in a later set of notes.

(a) (b)

Figure 4.10: The circuit for Example 3 (a), and an associated timing diagram (b).

FreeRange Computer Design Chapter 4

 - 99 -

4.5 Chapter Summary

 Register transfer notation (RTN) provides a shorthand approach to both designing and describing circuits.
RTN does not have absolute standards; each RTN approach may be different from other RTNs. RTN
represents a continued abstraction to higher levels of design in order to facilitate designing and
understanding relatively complex circuits.

 RTN generally deals with the transfer of data from one register (the source register) to another register (the
destination register). T

 Microoperations are elementary operations that are performed on data stored in one or more registers. We
can describe the operation of many sequential circuits in terms of the various microoperations they are able
to perform. There are many types of microoperations, but we generally attempt to categorize in order to
support understanding their functions. Some of the more popular types of microoperations include transfers,
arithmetic, logic, and shift operations.

 The key of a working computer is the ability to transfer data from a source to a destination (generally
register to register, register to circuit, or circuit to register). We generally attempt to classify type of data
transfers in order to support our understanding of them. The most common transfer circuits include MUX-
based, bus-based, and tri-state-based circuits. Each of the circuits has their advantages and disadvantages.

FreeRange Computer Design Chapter 4

 - 100 -

4.6 xxxxChapter Exercises

1) For this problem, complete the following two tasks:

 Write the minimum number of RTL statements that will transfer X to REGB and Y to REGA

FreeRange Computer Design Chapter 4

 - 101 -

2) For this problem, complete the following task:

 Write the minimum number of RTL statements that place B into REGA and C into REGB

3) For this problem, do the following task:

 Write the minimum number of RTL statements that will transfer X to REGA and Y to REGB.

FreeRange Computer Design Chapter 4

 - 102 -

4) For this problem, do the following task:

 Write the minimum number of RTL statements that will transfer A to REGA and C to REGB.

6) For this problem, do the following task:

 Write the minimum number of RTL statements that will transfer Y to REGB and X to REGA

FreeRange Computer Design Chapter 4

 - 103 -

7) For this problem, do the following task:

 Write the minimum number of RTL statements that will transfer X to REGA and Y to REGB.

8) For this problem, provide the proper control signals that would allow the following RTL statements to
occur. Complete the timing diagram below based on your provided control signals.

clock
cycle

RTL

1 RA RA AND RB
2 RA RA + RA ; addition
3 RB RA - RB

4
RA rr RB ; rotate right
B

ALU_OP Operation

00 logical AND of A & B
01 rotate right B input
10 subtract B from A
11 add B to A

FreeRange Computer Design Chapter 4

 - 104 -

FreeRange Computer Design Chapter 4

 - 105 -

9) The following diagram shows a circuit that can perform a mathematical operation. The two tables below
describe the comparator and the Universal Shift Register (USR). Provide a state diagram that could be used to
control the circuit such that it performs the operation listed below. Minimize the number of states you use in
your solution.

 If a GO signal is received (GO is not shown in diagram), one of the following two operations
occur:

 If (OP_A * 4) ≥ (OP_B * 4) then: REG_A (OP_A * 4); REG_B (OP_B * 4);

 otherwise: REG_B (OP_A * 4); REG_A (OP_B * 4);

Comparator description

if (A > B) then GT <=
‘1’;
else GT <= ‘0’;

if (A = B) then EQ <=
‘1’;
else EQ <= ‘0’;

if (A < B) then LT <=
‘1’;
else LT <= ‘0’;

Assumptions:

 DR_IN = right side input to shift
register

 DL_IN = left side input to shift
register

 CLK signals are connected
 All setup and hold times are met
 All shift register operations are

synchronous
 Registers (non-USR) have

synchronous load inputs (LD)

Shift Register
Controls

SEL Operation

0 0 hold

0 1
parallel

load
1 0 shift right
1 1 shift left

FreeRange Computer Design Chapter 4

 - 106 -

10) The following diagram shows a circuit that can perform a mathematical operation. The information below
describes the Universal Shift Register (USR) and memory timing. Provide a state diagram that could be
used to control the circuit such that it performs the operation listed below. Minimize the number of states
you use in your solution. Assume a 100MHz clock (10ns period) and a memory access time (tacc) of 25ns.

 If a GO signal is received (GO is not shown in diagram), the following operation occurs:

 DOUT (B_DAT) ÷ 8

 Memory Timing

Assumptions:

 DR_IN = right side input to
shift register

 DL_IN = left side input to
shift register

 CLK signals are connected

 All setup and hold times are
met

 All shift register operations
are synchronous

 Registers (non-USR) have
synchronous load inputs
(LD)

Shift Register
Controls

SEL Operation

0 0 hold

0 1
parallel

load
1 0 shift right
1 1 shift left

FreeRange Computer Design Chapter 4

 - 107 -

11) For this problem, perform the following:

 Write the minimum number of RTL statements that will transfer Z to RB and Y to RA.

12) The following diagram shows a circuit that can perform a mathematical operation. The information below

describes the Universal Shift Register (USR) and memory timing. Provide a state diagram that could be
used to control the circuit such that it performs the operation listed below. Minimize the number of states
you use in your solution. Assume a 100MHz clock (10ns period) and a memory access time (tacc) of 25ns.

 If a GO signal is received (GO is not shown in diagram), the following operation occurs:

 DOUT (B_DAT) ÷ 8

 Memory Timing

Assumptions:

 DR_IN = right side input to
shift register

 DL_IN = left side input to
shift register

 CLK signals are connected

 All setup and hold times are
met

 All shift register operations
are synchronous

 Registers (non-USR) have
synchronous load inputs
(LD)

Shift Register
Controls

SEL Operation

0 0 hold

0 1
parallel

load
1 0 shift right
1 1 shift left

FreeRange Computer Design Chapter 4

 - 108 -

13) For this problem, perform the following:

 Write the minimum number of RTL statements that will:
i.increment REG_B and store in REG_A

ii.add REG_B to REG_B and store in REG_A

14) For the following problem, assume the SEL inputs to the shift register (SR) cause the following operation

in the SR. Assume ”SR” refers to a shift register while “sr” refers to a shift right operation.

SEL RTL Operation

000 SR D_LOAD
001 SR bsl2x SR (r-0)
010 SR bsr2x SR (l-0)
011 SR sr SR (l-0)
100 SR asr SR
101 SR asl SR (r-0)
110 SR others => ‘0’ (loads all zero’s)
111 SR SR; (hold)

(a) transfer 5X into RC (unsigned)
(b) transfer 1.5X into RC (unsigned)
(c) transfer 2X into RC (signed)
(d) transfer 0.625X into RC (unsigned)
(e) transfer 4X+2 into RC
(f) transfer 2X-1 into RC

FreeRange Computer Design Chapter 4

 - 109 -

15) Write the minimum of RTL statements that will implement the following data transfers. Assume the

upper-most values on the MUX and decoder start with 0 and work down to 1 and 3, respectively.

a) Transfer RE to RD
b) Transfer RB to RC
c) Transfer RA to RC as well as RA to

RD
d) Transfer RD to RC and RB to RA
e) Design a FSM that could implement

the set of transfers listed in a), b),
c), and d).

16) Use the following circuit to complete the accompanying timing diagram. Register RA is a counter with a
count enable input. The initial value (in hex) on each register is RA=AA, RB=BB, RC=CC, and RD=DD.
Consider the rising edge of the clock to be the active edge.

FreeRange Computer Design Chapter 4

 - 110 -

17) Using the circuit provided, write the minimum number of RTL statements that will implement the

following data transfer. Consider the circuit elements with Rx labels to be registers with load inputs LDx
(listed) as well as clock inputs (not listed). Data is loaded into the registers only on the active clock edge.
The clock signal is not shown.

 Increment the value in RB and load the result into RA
 Add RA to RB and store the result in both RA and RB
 Decrement the value in RB and store the result in RB
 Transfer the value in RA to RB
 Clear RA and set RB (make all the bits 0 and 1, respectively)
 Load the -1 into RA
 Design a FSM that would decrease the value in RB by three and store the result in RA.

18) Using the circuit provided, write the minimum of RTL statements that will implement each of the

following data transfers. Consider the circuit elements with Rx labels to be registers with load inputs LDx
(listed) as well as clock inputs (not listed). Data is loaded into the registers only on the active clock edge.
The clock signal is not shown.

A)

 Sets RD
 Transfer RC to RD

B)
 Clear RC
 Transfer RA to RB

FreeRange Computer Design Chapter 4

 - 111 -

19) Design a circuit that can implement each of the following two RTL statements. Use busses where
necessary. All registers are synchronous and contain a control input (LOADx). Registers may also contain
other control inputs where necessary. ENx signals are used to control tri-state outputs. Use and any other
hardware you deem necessary. The “+” symbol represents an arithmetic addition.

RD RB RC), (RB RD :LOADB LOADD, ENB,

RD RC RC), (RA RD : LOADCLOADD, ENA,

20) Design a circuit that could implement the timing diagram shown below. Each of the “registers” in the

design is 8-bits wide. You are not responsible for setting the listed initial values. Use any hardware you
want. There are three clock cycles shown; provide an RTL statement describing the microoperations that
occur at each clock edge.

FreeRange Computer Design Chapter 5

 - 112 -

5 Structured Memory: RAM and ROM

5.1 Introduction

The previous chapters dealt with basic memory elements in digital design, but on a relatively small scale (flip-
flops and registers). While those types of memory are important, you typically find other types of memory in
digital systems. We classify flip-flops and registers as “incidental” memory; this chapter introduces the notion of
“structured1” memory, which has significantly more storage capacity than incidental memory. You must learn a
new set of skills and vernacular when you deal with structured memory; this chapter discusses some of the more
basic aspects of memory.

Main Chapter Topics

 OPERATIONAL OVERVIEW OF MEMORY: This chapter provides an overview of
the basic operational and performance characteristics of memory as well as
common terminology associated with memory.

 MEMORY TYPES: This chapter introduces the two accepted main types of
memory, RAM and ROM, by describing their differences and similarities.

 MEMORY INTERFACE METRICS: This chapter describes the basic interface issues
involved in structured memory device.

 STRUCTURED MEMORY MAPPING & MEMORY SYSTEMS DESIGN: Memory
systems are typically designed as many individual memory units as opposed to
one single unit. This form of design requires a unique high-level perspective of the
system and uses standard digital devices in their implementations. This chapter
provides an overview and introduction to structured memory system design.

Why This Chapter is Important

 This chapter is important because it describes the basics of concepts associated with
large memory devices such as well as working with and interfacing with those
devices.

5.2 Memory Introduction and Overview

There are many different types of memory out there; most of them are beyond the scope of a basic digital design course. If
you ever need to work with a new memory device, you’ll be ready because you’re familiar with the basic operation of
structured memory.

Before we start, we need to make one clarification. Often time when we discuss the notion of memory, we sometime use the
terms “data” and “information” interchangeably. In most cases, this is no big deal, but you need to understand there is a
distinct difference. In the context of digital design, data is nothing more than a bunch of 1’s and 0’s, while information
relates to the interpretation of the 1’s & 0’s. We often refer to data as having information content; there is actually a unit
used to measure the information content of data2. It is up to the user to interpret data as having certain information content or
not. For example, consider a memory unit; if the stored data represents instructions to a computer, then you could consider

1 I’ve adopted this term from the notion of “regular structures”, which roughly refers to larger semiconductor devices that
have a large and repeated structure that is dedicated to a single purpose. In this case, the purpose is memory.
2 Somewhat unfortunately, we use the term “bit” to measure the information content of data. This metric is a function of
probability and is not related to the “binary digit” definition of bit that we use in this text.

FreeRange Computer Design Chapter 5

 - 113 -

the data to be information. On the other hand, if you have a memory that you have never written to, the memory is still full
of 1’s and 0’s, but the data has no meaning.

5.2.1 Basic Memory Operations: READ and WRITE

The two operations associated with memory are reading and writing. The notion of a “memory read” or “reading from a
memory” refers to the action of retrieving data currently stored in memory. Retrieving data specifically means that you’re
copying the data from memory to another place, but not changing the data in memory. The notion of a “memory write” or
“writing to a memory” refers to the action of placing new data in memory, which means you are changing the data stored in
memory. Reading and writing memory are the copying of data from memory (reading) and the transfer of data into memory
(writing), respectively.

5.2.2 Basic Memory Types: ROM and RAM

There are many different flavors of memory in digital-land; each of these memory types has their own acronym describing
them. Despite this relatively high number of memory types, we classify all of them as either RAM or ROM, which are
acronyms for random access memory and read only memory, respectively. These terms are rather misleading, particularly in
regards to the attributes of modern memory. In an effort to classify memories as either RAM or ROM, these two acronyms
have rather loose definitions. Here is the information embedded in those acronyms.

 The notion of a “read only memory”, or ROM, implies that you’ll only be reading from a memory, and
never writing to it. Because the memory is a “read only” memory, you can only retrieve data from that
memory; you cannot “easily”3 alter the data in that memory.

 The notion of a ROM brings up the issue of whom or what put the data into the ROM. This starts
delving down into the various sub-types of ROM; we don’t want to go there because we want to keep
this discussion general. Writing to a ROM is a “special” operation performed by “something”. All we’re
interested in is that there is data in the ROM.

 The term random access refers to the fact that it requires the same amount of time to access (either
reading or writing) each “chunk” of memory stored in the device. While this notion seems rather
simple, not all memory devices fall into the category of “random access”. The two most obvious
notions of non-random access memories are “hard drives” and “tape drives”. The time required to
access data in your hard drive is different depending on the physical location of the data on the disk and
the current location of the read/write heads. Recall that the hard drive is a mechanical storage device
that requires motors to move a physical device (the read/write head) radially across the spinning media
to access the data. If the heads are close to the data, it requires less time to access the data than if the
heads must move a long way to access the data.

 Although the term ROM refers to read only memory, ROMs are also random access devices. Thus, you
can access any of the chunks of data stored on a ROM in an equal amount of time.

 All memories have the notion of being either volatile or non-volatile. If a particular memory is volatile,
the data stored in that memory is lost when you remove power from that circuit. Conversely, the data in
non-volatile memory is not lost when you remove power. We generally accept that RAMs are volatile
and ROMs are non-volatile.

Despite all these misleading terms and acronyms associated with structured memory, RAM and ROM do have accepted
definitions. Table 5.1 lists these accepted differences and similarities.

Memory Type Random Access Operations Volatility

RAM yes read & write volatile

ROM yes read non-volatile

Table 5.1: Accepted attributes of RAM and ROM.

3 Meaning that many types of ROM can be written to; we’ll not discuss those cases.

FreeRange Computer Design Chapter 5

 - 114 -

5.3 Software Arrays vs. Hardware Structured Memories

The notion of structured memory is not as new as it seems, as there is a direct analogy to the use of arrays in programming
languages. Recall that an array in computer programming is a data structure that allows you to store values and later
access those store values.

Accessing values in an array: This operation is analogous to a read of a memory. In computer
programming, when you access a value in an array, your program must provide an index that indicates
which value in the array you want to access. The array “returns” the requested value without changing
that value in the array. In hardware, the circuit must provide value (the address) that indicates which
address in the memory you want to read from. The memory then outputs that value; the read operation
does not change the value.

Changing values in an array: This operation is analogous to a write of memory. In computer
programming, when you place a new value into an array, your program must provide an index that
indicates which value in the array you want to change. The array then replaces that value with the new
value. In hardware, they circuit must provide a value (the address) that indicates which value in the
memory you want to write to and the new data. The memory then changes the value at that address to
the new value.

5.4 Memory Operation Details: Reading and Writing

Figure 5.1 shows a high-level diagram of a generic memory device. We can classify the various signals associated with
interfacing with a memory device into three categories: address lines, data lines, and control lines4. The following is a
general overview of these lines. In general, the widths of these bundles are associated with the specific capacity attributes
of the memory; we deal with those issues soon.

Data Lines: The data lines are a set of signals that route the bits you’re writing or reading into or out of
the memory device. The arrow associated with the data lines has an arrowhead on each end, which
signifies that data on those particular lines can travel either into the memory (for read operations) or out
of the memory (for write operations)5. The data lines can be either serial or parallel; the bundle notation
in Figure 5.1 means the data lines are parallel. Figure 5.1 happens to show only one set of data lines;
memories often separate input and output data lines.

Address Lines: The address lines are a set of signals that provide the memory with a “location” within
the memory to write to or read from. The address lines are the method that the memory uses to
differentiate between chunks of memory on the interior of the device.

Control Lines: The control lines are a set of signals that determine and direct the various operations
associated with the memory. The best example of the responsibility of the control lines are with RAM
devices that are both readable and writeable; the control lines allow the user to control which operation
occurs. The underlying notion of control lines is that simple memories have few control lines; more
complex memories have more control lines6.

We soon delve further into the details of memory interfacing; for now, you can consider the general interfacing operation
of a memory read as: 1) give the memory an address, 2) tweak the control lines, and 3) wait for the data. For memory
writes, you generally 1) give the memory an address, 2) give the memory the data, 3) tweak the control lines, and 4) wait
for the data to write to memory.

4 In this context, the notion of “lines” refers to a bundle of wires or signals. You often hear the term “lines” associated with
standard bundles such as “data”, “address”, and “control” lines.
5 But not both directions at the same time.
6 In an effort to increase memory capacity while keeping physical size small, interfacing some modern memories have
become rather complicated and thus have a relatively large number of control signals.

FreeRange Computer Design Chapter 5

 - 115 -

Figure 5.1: A general diagram of a memory integrated circuit.

5.5 Memory Specification and Capacity

When working with memory and memory systems, the two most important pieces of information are the capacity and the
speed of the memory. The memory capacity refers to how much data the memory can store while the memory speed refers
to how fast you can access (read or write) that data.

People in digital-land describe memory capacity in many different ways. As is typical in any human oriented pursuit, people
attempt to make their “thing” sound better than it really is; the same idea applies to memory capacity specifications. While
these statements are not lies, they are misleading. You, the digital designer must see through the smoke and hand waving
and understand the characteristics of the memory you’re working with.

We know that memory stores bits, and these bits are stored at certain addresses within the memory, but memories are rarely
bit-addressable. In other words, specific memory devices only allow you to access larger chunks of data. If you need to read
or write a single bit, you must start with the minimum chunk of addressable data specified by the device. Making memory
bit-addressable would create an inefficient device, so memories generally compromise by providing data only in chunks.

Memories usually store data in groups of bits, which we refer to as a word. The official definition of a word is the smallest
addressable unit (or chunk of bits) in a memory. This term is important because we typically described memories and
memory systems in terms of words rather than bits. Referring to memory in terms of words is the honest approach.

Figure 5.2 shows a diagram of a generic memory including some typical memory characteristics. The metrics in the diagram
are typical of most memory devices. Here is an overview of the most important aspects of Figure 5.2 while Table 5.2
summarizes all the gory details.

 The “2m x S” notation is how we state the capacity of a memory. The underlying notion is that we are
modeling the memory as a two-dimensional grid, as the “x” in “2m x S” indicates.

 Everything having to do with memories relates to binary. The term “m” refers to the width of the
address bus or number of address lines, which is the number of memory chunks that a memory can
access is two raised to the number of address lines. The true capacity of a memory (the amount of data
it can store) relates to the number of address lines.

 The term “S” is the width of the data bus or data lines, or the word width for the memory. Datasheets
often state this metric in bits, but should state it in word capacity.

 The total word storage capacity for the memory is how many words the memory can store. For this
particular memory, the word storage capacity is thus 2m.

 The total bit storage capacity for the memory is a product of the number of words and the number of
storage locations in the memory. Thus the bit storage capacity is given by 2m x S.

 We don’t include a bundle width indication on the control lines in order to keep the discussion general.
The notion of 2m x S is common; the control lines for memory modules tend to vary greatly across
different devices.

FreeRange Computer Design Chapter 5

 - 116 -

Figure 5.2: A diagram of memory indicating notions of storage capacity.

capacity (in bits) = 2m x S

Equation 5.1: Closed form formula for memory storage capacity in bits.

Symbol Definition

m Bit-width of address bus

S Bit-width of data bus (word size)

2m Memory capacity in words

2m x S Memory capacity in bits

Table 5.2: Summary of memory definitions and properties.

5.6 Memory Interface Details

This section examines the control lines and their relation to the data and address lines for basic read and write
operations on a generic memory. Recall that a memory write transfers a word to be stored in memory while a
memory read prompts a memory to output the contents of memory. The reading and writing of memory is
controlled by the “control lines” of the memory device. Every memory has its own method of reading and
writing; specifically, each memory has its own protocol for tweaking the control lines in such a way as to obtain
the desired function from the memory device.

Memory Writes: For a memory write operation, you provide the memory with data that
overwrites data currently stored in the memory. The information on the address lines provides
the location of where the word is stored. The bits on the data lines provide the data that we
transfer and store on the memory device. The write operation overwrites the data currently
stored at the address indicated by the address lines.

Memory Reads: For a memory read operation, you prompt the memory device to output the
data currently stored at a specific location in memory. The information on the address lines
provides the location in memory of where you want to read from. Thus, the address lines
provide the memory location of the word that transfers out of the memory; the transfer occurs
by placing the data at the specified address onto the data lines. Read operations don’t alter
values stored in the memory device.

FreeRange Computer Design Chapter 5

 - 117 -

Steps for Memory Writes Steps for Memory Reads

Apply the information representing the
memory location of where you desire to store
the given word to the address lines.

Apply the information representing the actual
data bits to be written to the data lines.

Tweak the control lines to make the write
operation occur.

Wait for data to write

Apply the information representing the
memory location of where you desire to
retrieve the given word to the address lines.

Tweak the control lines to make the read
operation occur.

Wait for valid data to be output

Table 5.3: Summary of generic steps required for memory reads and writes.

5.7 Memory Performance Parameters

When we speak about memory devices, we’re talking about actual physical electronic devices. This means that
read and write operations require finite amounts of time to happen. Most of the associated performance
parameters are outside the scope of this discussion, but some are basic enough for an overview here.

Figure 5.3 shows a BBD for a simple RAM. This RAM has two control inputs: CLK and WE, where WE is a
common acronym for write enable. The BBD for this RAM does not completely describe how the device
operates; you need more information, as we use this device in several examples. Here is what we need to know
about the device in Figure 5.3:

 The RAM in has an asynchronous read. This means that the RAM outputs the requested data
as soon as it is physically capable after it receives a new address value; the read operation is
not dependent upon the clock signal. The WE enable remains unasserted for read operations.

 The RAM in has a synchronous write. This means that write operations are synchronized with
the active edge of the clock, which we assume is the rising edge in this example. The device
initiates the write operation when it detects an asserted WE signal at the same time as a rising
clock edge. The write operation requires a finite amount of time to complete.

Figure 5.3: A typical control sequence for a memory read operation.

Figure 5.4 and Figure 5.5 show generic timing diagrams associated with typical read and write operations,
respectively. For this device, the number of address and data lines does not matter for this discussion

Figure 5.4 shows a timing sequence for a memory read operation. Because the reads are synchronous, we don’t
need to show the CLK input. The one control input of interest is the WE, which remains unasserted for the read
operation. Once a valid address appears on the ADDR input, the RAM outputs the data at that storage address
after a finite amount of time, which we refer to as the read access time.

FreeRange Computer Design Chapter 5

 - 118 -

Figure 5.4: A typical control sequence for a memory read operation.

Figure 5.5 shows a timing sequence for a memory write operation. Because this RAM has synchronous writes,
we include a CLK signal in the timing diagram. The writing of new data to the RAM is initiated by two control
signals: CLK and WE. For a write to initiate, the WE control input must be asserted when a rising edge appears
on the CLK input. The physical writing of data to the RAM occurs a finite amount of time later, which we refer
to as the write cycle time.

Figure 5.5: A typical control sequence for a memory write operation.

We use three main parameters to describe memory performance, which states how fast you can read from
memory (read access time), how fast you can write to memory (write cycle time), and roughly how much data
you can pass back and forth to and from the memory (bandwidth). Figure 5.4 and Figure 5.5 show graphic
examples of the read access and write cycle times, respectively. The list below provides a more detailed
description of these three performance parameters.

Memory Read Access Time: The minimum time required to access a word from memory. This is the
amount of time measured from the application of a valid address to the address lines to the
appearance of the valid data on the data lines.

Memory Write Cycle Time: The minimum time required to write a word to memory. This is the
time measured from the application of a valid address lines to the completion of the internal
operations required to successfully store the data in memory.

Memory Bandwidth: The maximum data transfer rate for a memory device. Since both read and
write operations require finite amounts of time, it’s worthwhile knowing the amount of data that we
can physically transfer to and from memory in a given amount of time.

FreeRange Computer Design Chapter 5

 - 119 -

As with just about everything in digital-land, the faster something can operate, the more highly regarded that
devices. This is maybe even more so true with structured memory devices as they are typically a major
component in many digital systems, particularly computer systems. Moreover, in many digital systems, more
than one device in the system must access memory. Often times more than one device must simultaneously
access memory; this situation creates what we refer to as a bottleneck. This condition is undesirable in the one or
more devices must wait to access memory7. The notion of “waiting” in digital-land means your device is
probably doing nothing, thus probably lowering the overall throughput of your system. Roughly speaking, the
faster your memory operates, the less chance of a bottleneck; or the less problematic that bottleneck is if you had
a slower memory.

Any time you work with a new memory device, you’ll find yourself concerned with the above parameters.
Probably one of the most informative items regarding working with memory devices is the associated timing
diagram, which you can find in the associated datasheet. There is almost a special language used to specify all
the timing parameter associated with memory devices, once you start working with memories, you’ll quickly get
the hang of things.

Example 5.1: Design #1: RAM Summation

Design a circuit that sums the values in a 16x8 RAM. Assume some external device previously
placed the data into the RAM. The summation begins when a GO signal asserts. The final sum
remains on the circuit’s output until another assertion of the GO signal. Assume the circuit
contains numbers in unsigned binary format. Provide two levels of BBDs for your solution as
well as a state diagram modeling the circuit’s FSM. State the forms of control the circuit uses.
Also, state how many clock cycles your circuit requires to complete the operation. Minimize
the amount of hardware you use in your design.

Solution: The first step in your solution is drawing the top-level BBD. The problem statement generally states
the exact characteristics of outputs in problems such as these (though sometime not overly explicit), but this
problem requires some extra thought and calculation. We need to show the width of the output, which represents
a summation of the 16 values in the RAM. The width of the data in the RAM is 8-bits, and we know they are
unsigned values. This means the largest value of the sum is 16 x (28-1). We could break out the calculator, but
it’s better to note that we’re working with powers of two, so the maximum summation is 24 x 28, or 212.
Therefore, the width of the summation is 12 bits. Figure 5.7 shows the top-level BBD for this problem.

Figure 5.6: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires. The following is an
outline of our thought process.

 We know this problem has a RAM because the problem description says so.

 Any RAM we work with in this text uses the output of a counter to provide an address input to the
RAM. Many different circuits or modules can provide the address inputs, but the simplest approach
for this text is to use a counter output provide the address.

7 There is a notion of “multi-port” memories. These memories typically allow some type of parallel operation such that two
devices can simultaneously read from two different memory locations. These types of memories become expensive and
certainly exercise the inherent trade-offs in digital systems designs.

FreeRange Computer Design Chapter 5

 - 120 -

 The circuit also is summing all the values in the RAM. Because the RAM can only output one
value at a time, we need a circuit that keeps a running total of the RAM’s stored values. This calls
out for an accumulator, which is a combination of an RCA and a register. The accumulator’s
register provides a persistent output.

 Something must control this circuit, and this control is non-trivial, which calls out for a FSM.

Figure 5.7: The lower-level BBD for this example.

Figure 5.7 shows the final circuit for this problem; meaningful commentary follows the diagram.

 The counter always counts up when it’s not loading.

 We need to zero-extend the RAM data to make it 12 bits, which makes the RAM output compatible
with the output of the accumulator’s register, and the other input to the RCA. We use the square
symbol with a “+” in the center to do this (which is arbitrary).

 We had to include an annotation stating that the counter’s CLR input has precedence over the UP
control input.

Figure 5.8 shows the state diagram for this example; here are a few items of interest to note about the state
diagram.

 We drew the state diagram using two states, which requires treating CLR as a Mealy-type output.
This approach was arbitrary, but it saved drawing an extra state.

 In the “wait” state, the register’s LD input is disabled; we enable it while the circuit is summing.

 We always disable the RAM’s WE input as this problem requires no writing to the RAM.

 The FSM remains in the “sum” state until the counter asserts RCO.

Figure 5.8: The state diagram associated with this example.

FreeRange Computer Design Chapter 5

 - 121 -

The FSM controls both the LD and CLR inputs, while the UP input of the counter is hardwired to always count
up. The GO signal is a form of external control. This circuit thus has external, circuit, and internal controls.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle
causes the FSM to transition from the “wait” state to the “sum” state. The summing operation for this circuit thus
requires 17 clock cycles.

Example 5.2: Design #2: Minimum Value & Address Displayer

Design a circuit that finds the smallest value in a 16x8 RAM. Assume some external device
previously placed the data into the RAM. The summation begins when a GO signal asserts.
The circuit’s output shows the minimum value as well as the address where that value resides
in RAM. Both the value and the address remain on the circuit’s output until another assertion
of the GO signal. Assume the circuit contains numbers in unsigned binary format and that
every value in the RAM is unique. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also,
state how many clock cycles your circuit requires to complete the operation. Minimize the
amount of hardware you use in your design.

Solution: This is another problem that requires iterating through all the values in a RAM. In this case, the circuit
outputs the minimum value in RAM as well as the address of that minimum value. Figure 5.9 shows the top-
level BBD for this solution.

Figure 5.9: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires. Here is the general
thought process.

 The problem description states that the circuit contains a RAM; we then know that the circuit then
uses a counter to generate an address for the RAM. There are 16 values in the RAM, so the width of
the counter’s output is 4-bits.

 The circuit needs to store two values: the smallest value in the circuit and the location in RAM of
the smallest value. These values both need to be persistent after the algorithm completes, so we
know that the circuit requires two register. The register storing the smallest value is eight bits while
the register storing the address of that value is four bits.

 This circuit needs to do continual comparisons to find the smallest value, so we also require an 8-bit
comparator.

 In an effort to make this circuit generic, we first pre-load the 8-bit register with the minimum
possible unsigned 8-bit value. The first step in the algorithm is then to load “all 1’s” into the
register that holds the minimum value, which we do in order to reduce the complexity of the overall
circuit. This is somewhat of a trick, but it is something you see often.

FreeRange Computer Design Chapter 5

 - 122 -

 We use a MUX to select what value appears on the minimum value register’s DATA input. We first
need to load the register with the maximum 8-bit value; after that, we need to be able to load the
register with the current RAM value when the comparison result dictates.

 We need to state that CLR has precedence over the UP input for the counter, and that the CLR input
has precedence over the LD inputs for the two registers.

Figure 5.10: The lower-level BBD for this example.

Figure 5.11 shows the state diagram for this example. Although it looks quite busy, it’s actually very structured,
as the following items indicate.

 We model the LD1 and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We did
this in order to save a state in the state diagram.

 When the GO signal asserts, the FSM clears the address register and counter, and loads the
minimum value register with the largest possible 8-bit unsigned binary value.

 This circuit does not write to RAM, so we always disable the WE signal.

 The “search” state appears busy, but it’s actually structured. Two things are happening. First, when
the LT signal is not asserted, we don’t load any new values to either register (LD1 & LD2 are not
asserted). When the LT signal is asserted, we load the current address (the output of the counter) to
the address register, and load the current RAM data output to the minimum value register. One of
these two operations always happens no matter whether the RCO signal is asserted or not. When
the RCO signal is asserted, that means the counter’s output is at its maximum value and we must
terminate the algorithm by transitioning back to the “wait” state.

 There are four arrows leaving the “search” state; each of these arrows has the four different possible
combinations of the RCO & LT inputs.

FreeRange Computer Design Chapter 5

 - 123 -

Figure 5.11: The state diagram associated with this example.

The FSM controls both the LD and CLR inputs for both registers, while we hardware the UP input of the counter
to always count up. The GO signal is a form of external control. This circuit thus has external, circuit, and
internal controls.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle
causes the FSM to transition from the “wait” state to the “search” state. This circuit thus requires 17 clock cycles
to locate the minimum value for the circuit.

Example 5.3: Design #3: Value Event Counter

Design a circuit that finds the number of times the value 0x47 appears in a 16x8 RAM.
Assume some external device previously placed the data into the RAM. The search for the
given value begins when a GO signal asserts. The circuit’s output persistently shows the
resultant count value until another assertion of the GO signal. Assume the circuit contains
numbers in unsigned binary format. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also,
state how many clock cycles your circuit requires to complete the operation. Minimize the
amount of hardware you use in your design.

Solution: This is another problem where we need to carefully choose the width of the output value. This problem
asks that we count the number of value in the RAM that are equivalent to 0x47. The greatest count is when all
the values in the RAM are 0x47, which is a count of 16. We thus require an output data width of five bits. Figure
5.12 shows the top-level BBD for this problem.

Figure 5.12: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires; here is our module
inventory thought process.

 We know the circuit requires a RAM, so we know the circuit then uses a counter to generate an
address for the RAM. There are 16 values in the RAM, so the counter’s output is 4-bits wide.

FreeRange Computer Design Chapter 5

 - 124 -

 We are looking for the value of 0x47, which means we need to compare the data at each RAM
location with that value. Our circuit thus requires a comparator.

 We must determine the number of times the 0x47 appears in the RAM, so the first thought may be
that our circuit requires an accumulator. We could use an accumulator, but we can satisfy our
circuit’s needs with an event counter, which is a counter that increments when it detects a certain
event. The event we are detecting is the presence of 0x47 in the RAM.

 We need a FSM to control our circuit.

Figure 5.13 shows the lower-level BBD for our solution. Here are a few interesting items in that BBD:

 The comparator hardwires one the “event” value to one of its inputs.

 We don’t need to provide a note for the event counter regarding the precedence of the LD and CLR
inputs; the FSM handles that aspect of the circuit.

 The CLR signal on the two counters are physically the same signal.

 The DATA input to the RAM is hardwired to zero; when we find the value of 0x47 at a particular
address, the circuit writes 0x00 to that address location.

Figure 5.13: The lower-level BBD for this example.

Figure 5.14 shows state diagram for our solution. The state diagram looks rather busy, but once again, it is nicely
structured. If you see and understand that structure, the state diagram seems relatively simple. Here the full story:

 We model the LD and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We did
this in order to save a state in the state diagram.

 This WE input is always disabled in the “wait” state. The state of the WE signal in the “scan” state
depends on the EQ input, where it writes a new value to RAM when the EQ is asserted, or does not
change the RAM contents otherwise. We thus model the WE input as a Mealy-type output in the
“scan” state and as a Moore-type output in the “wait” state.

 The “scan” state has four arrows leaving the state, where each arrow represents one combination of
the two inputs (RCO & EQ).

 When the RCO is not asserted, the circuit either increments the count and clears that corresponding
address in RAM, or it does nothing; it then transitions back to the scan state. When RCO is
asserted, it performs the exact two actions, but the FSM then transitions to the “wait” state.

FreeRange Computer Design Chapter 5

 - 125 -

Figure 5.14: The state diagram associated with this example.

The FSM controls the LD, CLR, and WE inputs for the counters and RAM. The GO signal is a form of external
control. Thus, this circuit has both circuit an external control.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle
causes the FSM to transition from the “wait” state to the “search” state. This circuit thus requires 17 clock cycles
to locate the minimum value for the circuit.

5.8 Memory Mapping

You can typically find the notion of memory mapping in microcontroller (MCU) and microprocessor-based
(MPU) systems. The idea is that different areas of memory are typically used for different purposes in most
digital systems. The notion of a MCU or MPU-based system generally implies that the system is becoming
relatively complex. The segmenting of memory, or the designation of certain parts of memory to specific
purposes, aids in the overall understanding of the system. This makes it well work looking at in this chapter.

The notion of memory mapping is an exercise in the study of binary and hexadecimal numbers. Even a simple
digital system is large enough not to deal with binary values and ranges, so we quickly convert to hexadecimal
notation to describe memory mapping. The use of hex notation is not complicated, but it is somewhat of a
language all its own. The good news is that once you see a few tricks and work with it for a while, you’ll for sure
find it rather straightforward.

The main idea behind memory mapping is to use multiple smaller chunks of memory space to create a larger
memory space. The larger memory space is not “full” in all cases, as there may be areas of memory space that
have no physical memory. Under these conditions, the thing we’re most interested in is the address ranges
associated with a particular chunk of memory as it relates to the larger chunk of memory. The best approach to
understanding these issues are with a few example problems. It grinds down to a binary math problem, which
heavily implies tweaking around with powers of two.

Before we proceed, let’s show some important numbers regarding binary number ranges and their hexadecimal
representations. Table 5.4 shows the relation between the number of address bits of a given memory and the
associated address range. The first column in Table 5.4 shows the number of address bits associated with a given
memory while the other three columns show the zero-based address ranges possible from those given address
bits. Note that the decimal representations quickly become barely perceptible. We don’t even bother writing out
the binary equivalents, as we would quickly inundate your brain with 1’s and 0’s.

There are a few other important things to realize about Table 5.4 The “Address Range” column provides the
associated address range in an 8-digit hexadecimal format. Note the maximum address in any range is associated
with all the address bits being at a ‘1’ value. This subsequently provides the “1→3→7→F” format associated
with the first non-zero digit reading from left to right. Also note for both the third and fourth columns of Table
5.4 that the number ranges double as you proceed downwards in the table. This is a by-product of the underlying
binary nature of memories.

FreeRange Computer Design Chapter 5

 - 126 -

of
Address

Bits

Decimal
Range

Address
Range

(hexadecimal)

Abbreviated
Range

1 0-1 0-00000001 -
2 0-3 0-00000003 -
3 0-7 0-00000007 -
4 0-15 0-0000000F -
5 0-31 0-0000001F -
6 0-63 0-0000003F -
7 0-127 0-0000007F -
8 0-255 0-000000FF -
9 0-511 0-000001FF -
10 0-1023 0-000003FF 0-1K
11 0-2047 0-000007FF 0-2K
12 0-4095 0-00000FFF 0-4K
13 0-8191 0-00001FFF 0-8K
14 0-16383 0-00003FFF 0-16K
15 0-32767 0-00007FFF 0-32K
16 0-65535 0-0000FFFF 0-64K
17 0-131071 0-0001FFFF 0-128K
18 0-262143 0-0003FFFF 0-256K
19 0-524287 0-0007FFFF 0-512K
20 0-1048575 0-000FFFFF 0-1M
21 0-2097151 0-001FFFFF 0-2M
22 0-4194301 0-003FFFFF 0-4M
23 0-8388607 0-007FFFFF 0-8M
24 0-16777215 0-00FFFFFF 0-16M
25 0-33554431 0-01FFFFFF 0-32M
26 0-67108863 0-03FFFFFF 0-64M
27 0-134217727 0-07FFFFFF 0-128M
28 0-268435455 0-0FFFFFFF 0-256M
29 0-536870911 0-1FFFFFFF 0-512M
30 0-1073741823 0-3FFFFFFF 0-1G
31 0-2147483647 0-7FFFFFFF 0-2G
32 0-4294967295 0-FFFFFFFF 0-4G

Table 5.4: Number of bits and associated number ranges.

Example 5.4: Memory Mapping with Two Devices

Show the address ranges in both binary and hexadecimal associated with the use of two 64x8
memories to form one 128x8 memory.

Solution: The first part of this solution is to draw a diagram to enhance our understanding of the sparsely worded
problem. Figure 5.15 shows a diagram we’ll use to solve this problem. As you can see from Figure 5.15, we’ve
virtually attached two 64x8 memories, which as the effect of forming a 128x8 chunk of memory8.

8 We could have created a 64x16 memory, but that is a topic we’ll deal with in a later section.

FreeRange Computer Design Chapter 5

 - 127 -

Figure 5.15: The diagram associated with Example 5.4.

The first thing to note is that a 64x8 memory uses 6 bits for its address lines. Indexing 6 bits into Table 5.4
shows that associated range is 0→3F, or “000000”→”111111”. The using two of these memories would create
twice the capacity of a 64x8 memory, for an overall memory capacity of 128x8. In other words, you can model
two 64x8 memories as one 128x8 memory. Indexing into Table 5.4, you can see that a 128x8 memory is
associated with seven address bits. The only difference between these two memories in the 128x8 configuration
is the most significant bit of the virtual 7-bit address; the six lower bit ranges are essentially equivalent. The final
address value for the lower-order memory in Figure 5.16 is thus ‘0’ appended to the 64x8 range while the final
address value for the higher-order memory is ‘1’ appended to the 64x8 range. In other words, pasting two
memories together requires some other mechanism for differentiating between the two memories, which we do
quite easily by adding one more bit in the most significant bit position.

Figure 5.16 shows the final solution to this example problem. The hexadecimal numbers on the left side of the
diagram show the range of associated address values; the numbers on the right side show the binary equivalent to
the hexadecimal values. This is a massively important diagram for several reasons. First, note how the 1-bit
values change on the memory boundaries: the MSB becomes a ‘1’ and the other bits all become ‘0’. Secondly,
notice that the original 6-bit ranges are the same for both the lower and higher-order memories.

Figure 5.16: The final solution to this example.

Example 5.5: Memory Mapping with Four Devices

Show the address ranges in both hexadecimal and binary associated with the use of four 8Kx16
memories to form one 32Kx16 memory.

Solution: The good news is that this problem is similar to the previous example. The first step in this problem is
to draw a diagram to help up see what exactly the problem is asking us to do. Figure 5.17 shows a block diagram
that is modeling four 8Kx16 individual memories as one 32Kx16 memory.

FreeRange Computer Design Chapter 5

 - 128 -

Our next step is to examine Figure 5.17 and figure out some of the metrics we’ll need to use to complete this
problem. First, an 8K memory requires 13 address lines while a 32K memory requires 15 address lines. What
this tells us is that the most significant two bits in the 15-bit address are what we’ll need to use to differentiate
between the least significant 13 bits. Also from Figure 5.17 is the notion that the 13-bit range for an individual
memory is [0x0000,0x1FFF]. We’ve seen this problem before; each 8Kx16 chunk of memory has a different
upper two bit; these bits are “00”, “01”, “10”, and “11”. Yep, it’s that binary sequence yet again. We complete
this problem by pasting this set of bits in front of the address range values given for the 8K memory:
[0x0000,0x1FFF]. Figure 5.18 shows the final solution to this problem with gory details included.

Figure 5.17: The diagram associated with this example..

Figure 5.18: The final solution to this example.

5.9 Memory Organization

Discrete memory devices do not come in every possible configuration and capacity. This means if you need
some type of special capacity, you’re going to need to synthesize it from various memories of smaller capacities.
The architecture of the overall memory created from smaller memories is what we refer to as memory
organization. If a digital system you are working with has a specified memory capacity but it is created from

FreeRange Computer Design Chapter 5

 - 129 -

many smaller memories, you immediately know the capacity of the memory but you don’t necessarily know
anything about the organization of memory.

The most appropriate title for this section would be something like: “using many smaller memories to create a
larger memory”, but that title would run across two lines. The choice of “memory organization” attempts to
reflect the notion that many times you’ll need to satisfy your particular memory needs by configuring many
smaller memory devices in a system such that it creates some particular form of a larger memory. You could use
many different approaches to doing this; this section outlines only one major approach.

If you need to create a larger capacity memory from a many smaller capacity memories, you can do it in two
basic ways: 1) increase the number of words that the memory can store, or 2) you can increase the effective
width of the words stored in that memory. You could also do both, but we’ll not deal with such problems in this
section. The two subsections within this section deal with increasing word size and increasing the number of
words store.

5.9.1 Extending Memory Word Length

Extending word length is the most straightforward approach to building larger capacity memories. The fun starts
when we extend the number of addressable words in the next subsection. Extending word length is more
straightforward because it only requires special circuit configuration and but typically does not require additional
circuitry as does extending the addressable memory space. The best approach to explaining the concept of
extending word length is through an example problem.

Example 5.6: Extending Memory Word Length

Show a circuit diagram that uses two of the following listed 256x8 RAMs to effectively create one
memory with a 256x16 capacity. Assume the memory has bi-direction data lines. The control signals
CS, OE, and WE are the chip selects, output enable, and write enable, respectively.

Solution: This problem is straightforward because we don’t need to tweak the address lines in order to address
all the possible words in the 256x16 memory. Figure 5.19(a) shows one possible architecture for the solution to
this example. Here are the worthy things to note from the solution.

 The two 256x8 RAM devices share all the same control lines as both RAMs always need to act
simultaneously for both reads and writes.

 The final circuit comprises of the two 256x8 RAM sharing the address lines. This is possible because
the overall number of words for the larger capacity memory does not change.

 The money shot of the solution lies in the interpretation of the outputs of the two 256x8 RAMs. The
output of each 256x8 RAM becomes half of the final data width for the 256x16 RAM. In other
words, each 256x8 RAM contributes eight bits to the final 16-bit output of the 256x16 RAM.

 The schematics in Figure 5.19(a) and Figure 5.19(b) are functionally equivalent. Sometimes it is
clearer or easier to draw the schematic one way rather than the other.

FreeRange Computer Design Chapter 5

 - 130 -

(a) (b)

Figure 5.19: Two different ways of representing a 256 x 16 memory.

5.9.2 Extending Memory Address Space

Although using multiple memories to extend the data width of an aggregate memory is straightforward, using
multiple memories to extend the overall address range can be slightly tricky. This section describes these issues
and provides some options for solutions.

Figure 5.20 highlights the main issue involved with extending address space in a multiple memory system. For
this problem, we don’t consider extending the data width. As you can see from Figure 5.20, the issues lie in how
to handle the addressing needs of the individual memories. Figure 5.20 shows four MxN memories; we intend to
include these four memories into one system. The resulting memory space is thus 4MxN. In order to have
sufficient address space to address the 4MxN overall memory, we must increase the number of address lines on
the system by two. In this way, the two extra address bits are sufficient to address one of the four internal
memories.

One important thing to notice about Figure 5.20 is that the individual memories have tri-stated outputs. The
characteristic helps define the overall problem: When we present the memory system with an “M+2” address, we
need only one of the internal memories to drive their data onto the data lines. We somehow need the “M+2”
address lines to effectively apply an address that addresses the full memory space but only actuates one of the
internal memories. We only want one internal memory activated because the internal memories are sharing one
set of data lines.

FreeRange Computer Design Chapter 5

 - 131 -

Figure 5.20: An overview of the extending address space dilemma.

Figure 5.21 facetiously shows an overview of our approach to the extending memory space. The approach we’ll
take is to insert circuitry into the “Magic_CKT” module. This module is then responsible for translating the full
“M+2” address space into m address lines and an appropriate number of control lines. We’ll of course need at
least two control lines, but there could be more depending on the control requirements of the internal memories.
We’ll present some relatively straightforward examples highlighting an approach based on relatively simple
control requirements of the internal memories.

FreeRange Computer Design Chapter 5

 - 132 -

Figure 5.21: An overview of the solution to the extending address space dilemma.

Example 5.7: Extending Memory Address Space

Use as many of the following RAMs as you need to create a memory with a 512x8 capacity.
Assume the CS input is an active-low chip select that “turns off” the device, which leaves the data
outputs in a high-impedance state. The WE and OE are the write enables (writing) and output
enables (reading), respectively. Also, provide a memory map that shows the address space
accessible by each of the underlying memories.

Solution: Figure 5.22 shows the first part of the solution to this problem, which is to draw a black box diagram
of the final solution. In order to create an address space that accesses 512 memory locations, we need nine
address lines. Since the underlying memories can address 256 memory locations, we’ll need two of these
memories to access the required 512 locations.

FreeRange Computer Design Chapter 5

 - 133 -

Figure 5.22: The black box diagram for the solution to this problem.

Relative to Figure 5.22, we’ll need to add circuitry that divides the address lines between the lines that are
common to the each 256x8 device and the extra lines required for the larger memory configuration. For this
problem, we’ll have eight address lines for the underlying memory devices and one extra address line to
differentiate between the underlying memories based solely on the “8+1” address lines. The approach we’ll take
is to insert a standard 1:2 decoder to handle the extra address line. Standard decoders are ideal devices for this
application as they have only one active output at any given time. Figure 5.23 shows the final circuit solution to
this problem. Here is some happy information regarding the solution in Figure 5.23.

 The decoder in Figure 5.23 is a standard 1:2 decoder with active-low outputs. We chose a decoder with
active-low output in order to have those outputs properly interface with the active-low CS inputs of the
individual memory devices. This standard decoder has only one active output a time; being that the
outputs are active-low, we can consider the outputs of the decoder as “one-cold”9. This configuration
provides the controls to enable only one memory device at a time. The input to the 1:2 decoder thus
becomes the most significant bit in the overall 9-bit address. When the input to the decoder is ‘0’, the
decoder actuates the top memory; when the input to the decoder is ‘1’, the decoder actuates the lower
memory. Recall from the problem statement that when the memory’s chip select is not active, the
device effectively provides high-impedance to the data lines.

 The two memory devices share the lower eight address lines. Once again, the CS signal determines
which memory device is active based on the ninth address line (the input to the decoder).

 The two memory devices share the OE and WE lines. The notion here is that some outside device
utilizes these controls as required. There are generally no loading issues associated with these signals as
only one memory device is actuated at a given time.

 The total number of address lines is independent of the size of the standard decoder. The characteristic
that determines the minimum size of the standard decoder is the number of memory devices internal to
the overall memory system. In other words, the standard decoder’s responsibility is to use the
appropriate address bit(s) to actuate the proper memory associated with all the address lines.

9 For example, a decoder with one-cold outputs has one output at a ‘0’ state and all other outputs at a ‘1’ state.

FreeRange Computer Design Chapter 5

 - 134 -

Figure 5.23: The final circuit solution to this example.

The final part of this solution is to generate of memory map that shows the overall memory space as well as the
addresses associated with the underlying memory modules. The solution to this part of the problem is similar to
the memory space discussion of a previous section. Figure 5.24 provides the final solution to this example with
some supporting notes to follow.

 In accordance with Figure 5.24, the nine-bit addresses for the overall device start at all 0’s and end
with 0x1FF, or all 1’s.

 Figure 5.24 shows the addresses of the underlying memories in both hexadecimal and binary. Note
that the binary addresses have a space inserted in the number to highlight the notion that the ninth
address bit is used to delineate between the two memories.

Figure 5.24: The memory map associated with this example.

FreeRange Computer Design Chapter 5

 - 135 -

Example 5.8: Extending Memory Address Space with More Devices

Use as many of the following RAMs as you need to create a memory with a 32Kx8 capacity.
Assume the CS input is an active-low chip select that “turns off” the device, which leaves the data
outputs in a high-impedance state. The WE and OE are the write enables (writing) and output
enables (reading), respectively. Also, provide a memory map that shows the address space
accessible by each of the underlying memories.

Solution: The first thing to note is that this problem is very similar to the previous example problem. That being
the case, the first step in this problem is to draw a diagram of the final high-level object. Figure 5.25 shows the
high-level schematic diagram associated with this problem. The first thing we see is that we need four devices
with 8K worth of memory space to create a memory with 32K addressable memory locations. This means that
we’ll need four 8Kx8 devices in the final circuit. Using Table 5.4 we see that a memory with 32K memory
locations requires 15 address lines.

Figure 5.25: The black box diagram for the solution to this example.

The biggest similarity between this problem and the previous problem is with the use of a standard decoder to
handle the “magic_ckt” in Figure 5.21. The standard decoder in this problem is slightly different in that it needs
to choose between four different memories. This simply requires that the final circuit use a 2:4 standard decoder
in place of the 1:2 decoder of the previous problem.

Figure 5.26 shows the final solution to the circuit portion of this problem. Note that this solution is similar in
overall structure to the solution of Figure 5.23, with the main difference being that we now need to choose
between four discrete memory devices instead of the two devices. A standard 2:4 decoder easily handles this task
by effectively using the two most significant bits of the 15-bit address lines as the select inputs to the standard
decoder.

The memory map in Figure 5.27 shows the second part of this solution. Figure 5.27 highlights the mechanics of
this solution with the binary numbers on the right side of the memory map. As you can see, each of the lower 13-
bits for the individual memories are the same; only the two most significant memory bits differentiate the 15-bit
address. As you would expect, since the circuit must choose between activating one of four memory devices, the
circuit must use a minimum of two bits for this task.

FreeRange Computer Design Chapter 5

 - 136 -

Figure 5.26: The circuit diagram solution for this problem.

Figure 5.27: The memory map associated with problem.

FreeRange Computer Design Chapter 5

 - 137 -

Example 5.9: Circuit Design for a Memory Map

Design a circuit that implements the following
memory map. Show two solutions to the problem,
1) Using only 2:4 standard decoder, and 2) using
only one 1:2 standard decoder. Use two of the
8Kx8 RAMs listed below in your design. Assume
the CS input is an active-low chip select that “turns
off” the device, which leaves the data outputs in a
high-impedance state. The WE and OE are the
write enables (writing) and output enables
(reading), respectively.

Solution: This problem is slightly different in that it does not use the entire memory space listed in the problem
description. In other words, the memory space has is divided into four sections, but only two of those sections
contain active memory. Because there are only two sections with active memory, the solution only requires the
use of a 1:2 standard decoder. We’ll do this problem in two different ways in order to highlight the differences in
using standard decoders of different size.

Figure 5.28 shows the most straightforward solution to this problem, which is to use a 2:4 decoder. The good
thing about this solution is that each address in the 32K address space associated with the memory map is
unique. The second part of this problem describes this issue further. The downside of the solution in Figure 5.28
is that the 2:4 standard decoder is partially unused. This implies the device is probably physically bigger than it
needs to be, which may or may not be an issue10. Another possible upside of this solution is that is facilitates a
later possible expansion of the memory map in that all the support hardware is in place; expansion would thus be
a matter of dropping other 8Kx8 memory devices.

Figure 5.29 shows the solution for part 2) of this example. This solution replaces the 2:4 standard decoder from
the part 1) solution with a 1:2 standard decoder. The upside of this solution is that it uses a smaller decoder. The
possible downside of this solution is that each memory location in each 8Kx8 RAM is accessible using two
different addresses. The problem results from effectively no longer using the ADDR(13) in the circuit solution.
Because the solution is not using this address, the address bit is effectively a “don’t care”. As a result, the
addresses of 0x1FFF and 0x17FF effectively access data from the same location in the lower-order 8Kx8
memory. In other words, for this solution, 0x1FFF and 0x17FF access memory location 0xFFF in the lower-
order memory. While this certainly is an issue to consider, it may or may not be a problem for your particular
system.

The main possible problem with this particular circuit design is that the memories may be driving the data bus at
times where the memory is not being access. Recall that this is a relatively simple memory that uses the chip-
select input signal to actuate the memory; when the memory is not actuated, the memory outputs are effectively
in a high-impedance state.

10 Keep in mind that if you plan on modeling the 2:4 decoder with VHDL and then synthesizing it, the synthesizer will
probably mitigate the size issue of the standard decoder.

FreeRange Computer Design Chapter 5

 - 138 -

Figure 5.28: The black box diagram solution for solution for this example part 1).

Figure 5.29: The black box diagram solution for this example part 2).

FreeRange Computer Design Chapter 5

 - 139 -

Example 5.10: Modeling a Memory Map

Design a circuit that implements the following
memory map using a 3:8 standard decoder. Use
three of the RAM devices listed below in your
solution. Assume the CS input is an active-low chip
select that “turns off” the device, which leaves the
data outputs in a high-impedance state. The WE
and OE are the write enables (writing) and output
enables (reading), respectively.

Solution: This problem presents a slightly different twist beyond the previous problems. The memory map is not
full and the memories in the memory map are not contiguous. Neither of these characteristics are a big deal, they
do present some interesting challenges. Thus, Figure 5.30 shows the first step to this solution, which is to draw
the black box diagram of the high-level final circuit.

The most useful piece of information presented in Figure 5.30 is the notion that the circuit requires 16 address
lines. We know this from examining the memory map in the problem statement. What we look for in problems
like this the minimum number of address bits required to solve the problem. The worst case in the problem is the
address with the most number of bits. In this problem, we can see that 0x4000 and 0x5FFF only require 14 bits,
but every other listed address requires 16 bits. Thus, our final circuit requires 16 bits for the address lines.
However, be sure to keep in mind that we won’t be using every address in the 16-bit range, which is why we did
not state any memory capacity information in the circuit diagram of Figure 5.30.

Figure 5.30: The black box diagram solution for this example.

The next part of this solution is broken into two parts. The best approach to first list the all the address ranges in
both hex and binary for both the segments that include memory as well as the segments that are not associated
with a memory device. The 8K address space requires 13 bit; the “magic_CKT” portion of the circuit handles the
other three bits. In all likelihood, we’ll be able to handle the “magic_CKT” portion of the circuit using a 3:8
standard decoder as stated in the problem. Figure 5.31 shows the result of this step.

Figure 5.31 conveniently shows the 16-bit addresses divided into 3-bit and 13 bit segments in the binary address
listing. From this listing, you can see that the hex address values from the problem statement fall on 8K

FreeRange Computer Design Chapter 5

 - 140 -

boundaries. This is good news as this allows us to easily use the 3:8 standard decoder in the solution. The
important information in Figure 5.31 includes an accounting for every address in the 16-bit address space. Note
that a 16-bit address space is associated with a 64K memory. Since we’re implementing this memory with eight
8K memory device, there should rightly be eight 8K segments in Figure 5.31. The truth is that some of unused
segments represent more than one 8K with of address.

For example, the first segment listed in Figure 5.31has no associated memory. This address range scans two 8K
segments worth of memory, a fact that Figure 5.31 does not explicitly show. In reality, the first segment in the
first address range covers 0x0000 through 0x1FFF while the second 8K segment covers 0x2000 through
0x3FFF. The other two ranges that do not have memory only cover one 8K segment.

The important thing to note in Figure 5.31 is that in the binary numbers associated with the memory, the range of
the least significant 13 bits of the address is always 0x0000 to 0x1FFF. This means that the most significant
upper three bits differentiate between the 8K memory spaces. We know that a 64K memory can be created from
eight 8K memories; in this problem, we’re only interested in the 64K space while the total memory capacity is
only 24K. The most significant three bits in the binary address of Figure 5.30 then become the inputs to the
associated 3:8 standard decoder. Figure 5.32 shows the final solution to the first portion of the problem.

Figure 5.31: The full memory map (all addresses listed) for this example.

FreeRange Computer Design Chapter 5

 - 141 -

Figure 5.32: The black box diagram solution for first part of this problem.

The potential problem with the circuit solution in Figure 5.32 is the notion that the 3:8 standard decoder is vast
overkill for the problem. The problem could have used a 2:4 standard decoder since it only needed to control
three memories. On the other hand, if we had used a 3:8 decoder, it would have required extra circuitry in
addition to the decoder in order to make the address actuate the correct memories.

Figure 5.33 shows the block diagram for the solution to the second part of this example. You can see from this
diagram that our mission is to design a circuit that implements the “GEN_DEC” portion of the circuit. As the
name of the box implies, our solution is simply a generic decoder. This decoder has three inputs and three
outputs; the inputs are the most significant address lines while the outputs actuate the appropriate discrete
memory when the 16-bit address conditions are correct.

The solution to the second portion of the problem is approaching trivial once you realize all two things. First, the
solution is a generic decoder. Second, the information presented in Figure 5.33 provides us with all the
information we need to create the required generic decoder. Note that in Figure 5.32, the standard decoder
actuates on output only when the inputs are “010”, “100”, and “110”. More specifically, “010” actuates CS2,
“100” actuates CS4, and “110” actuates CS6. If none of these three addresses is selected on the input lines, the
module’s outputs turns off all the discrete memory devices.

FreeRange Computer Design Chapter 5

 - 142 -

Figure 5.33: The black box diagram for the second part of the solution to this example.

Example 5.11: Generating a Memory Map From a Circuit

Provide a memory map that you could use to describe the following design. Make sure
to provide the starting and ending addresses for each memory and non-memory
segment.

Solution: This problem is the same old memory mapping problem but in the reverse order. This problem
provides a circuit and you are responsible for generating a memory map. The first thing to notice about this
problem is that there are three 8K memories in the circuit. The second thing to notice is that the problem uses a

FreeRange Computer Design Chapter 5

 - 143 -

standard 3:8 decoder for the “magic_CKT” part of the circuit. Thus, the inputs to the standard decoder are
effectively the three most significant address bits (15:13), which implies the circuit can possibly address up to a
16-bit address space. The problem only uses 3/8 of the total possible address space, or 24K.

Each 8K RAM shares the same 13 bits of address lines. This means the address range for any 8K RAM by itself
is 0x0000→0x1FFF, with the standard decoder handling the other three bits. The best approach to take for this
problem is to note that the 64K address space is divided in to eight 8K segments, but the circuit uses only three
of the possible eight segments. The first used segment is associated with the three most significant address bits of
“000” as indicated by that RAM’s chip select being connected to the ‘0’ output of the standard decoder. This
makes the range for the first segment 0x0000→0x1FFF. The next 8K segment is not used; the starting address of
this unused segment is one greater than the last valid address associated with the previous segment, or 0x2000.
The ending address of this unused segment is 0x1FFF greater than 0x2000, or 0x3FFF.

You can continue this same type of analysis for all the other segments in the problem. The only slightly tricky
thing to note is that the segments associated with 3-4 and 6-7 represent two 8K segments, which means the range
effectively has 16K worth of segment space, or 0x0000→0x3FFF. After you realize all of this, the problem
becomes somewhat of a math problem. Figure 5.34 shows the final solution to this problem with the addresses
listed in both hexadecimal and binary for your viewing convenience.

Figure 5.34: The final memory map for this example.

5.10 Digital Design Foundation Notation: RAM

We consider the RAM to be a Digital Design Foundation module. The RAM is a controlled circuit. Figure 5.35
shows the digital design foundation notation for the counter. This foundation module is both data inputs and data
outputs, both of which are the same width. We use a simple device for the foundation model and consider read
operations to be asynchronous and write operation to be synchronous. The WE signal controls whether the
device is reading or writing, where WE is asserted for write operations and unasserted for read operations. We
consider ROMs to be a subset of RAMs; ROMs are not able to write. Table 5.5 shows the foundation description
for the RAM.

FreeRange Computer Design Chapter 5

 - 144 -

Figure 5.35: Typical data, control and status signals for RAM. .

 Signal Name Description

IN
PU

T

D
A

T
A

DATA_IN Data to be synchronously written to RAM.

O
U

T
P

U
T

D
A

T
A

 DATA_OUT Data stored in the RAM at the address given by the ADDR input.

C
O

N
T

R
O

L

CLK The CLK signal synchronizes the writing of data to the RAM

ADDR
The RAM stores the value of IN_DATA at the address associated with the value
of ADDR on the active clock edge (synchronously) when the WE signal is
asserted.

WE
When asserted, allows the loading of DATA_IN to the RAM location specified
by ADDR, which is a write operation. When unasserted, the RAM outputs the
data stored at the location specified by the WE input.

S
T

A
T

U
S

n/a -

Table 5.5: The foundation description for a RAM.

FreeRange Computer Design Chapter 5

 - 145 -

5.11 Chapter Summary

 Memory is a form of a sequential circuit, but we further divide memory into two categories: “incidental
memory” and “structured memory”. Incidental memory refers to items such as flip-flops and registers
(relatively small) while structured memory refers to larger capacity regular structures.

 There are many type of memory in digital-land, but we can roughly classify them all as either ROM or
RAM. ROM is “read only” memory while RAM is “random access” memory. Both of these memories have
the random access attribute in that all of the data on the devices is accessible in the same amount of time.
ROMs are considered non-volatile while RAMs are not. RAMs can be both written to and read from while
ROM can only be generally read from.

 The notion of reading from a memory, or a memory READ, consists of making the data within the memory
at a given address available to entities external to the memory. Memory reads generally do not alter the data
stored in the memory. The notion of writing to a memory, or a memory WRITE, consists of overwriting data
contained in the memory at a given address with data provided by some entity external to the memory.

 Interfacing with memory generally requires tweaking one the three types of I/O associated with memory.
The three types of memory I/O are address lines, data lines, and control lines. The address lines provide an
index into the memory and allow access to a particular chunk of data stored in memory. The data lines
provide a path for data to flow into (write) or out of (read) memory. The control lines provide a structured
approach to read from and/or writing to the memory device.

 Memories are generally rated by the capacity (how many bits they can store) and the speed (how fast you
can read and/or write the memory). The term “word” is used to refer to the smallest chunk of memory
available at a given address in the memory. Memory capacity can be stated in bits or words; any other
approach is suspect as it can be misleading

 Memories typically store two raised to an integral power number of words. The integral power in this case is
the number of address lines on the memory. The number of address lines is sometimes referred to as the
width of the address bus.

 Memory speed is rated by how fast you can read from it and/or write to it. The term “read access time”
refers to how fast you can read from a memory. The term “write cycle timing” refers to how fast you can
write data to a memory. The term “memory bandwidth” refers to the maximum amount of data going to and
coming from a particular memory in a given amount of time.

FreeRange Computer Design Chapter 5

 - 146 -

5.12 Chapter Exercises

1) In your own words, describe what is meant by the term “random access” in the context of computer
memories

2) In your own words, describe what is meant by the term “volatile” in the context of computer memories.

3) In your own words, describe the accepted functional differences between RAM and ROM.

4) In your own words, explain how read and write access times affect the bandwidth of a given memory.

5) Describe a circuit situation where having a large memory bandwidth would be important.

6) Faster memories are typically more expensive than slower memories. Speculate on why you feel this would
be the case.

7) A given RAM capacity is specified as 1Kx24.

a) List the capacity of this RAM in both bits and bytes.

b) List the number of address lines this RAM would contain.

8) A given RAM capacity is specified as 1Kx32.

 List the capacity of this RAM in both bits and bytes.

 List the number of address lines this RAM would contain.

9) A given RAM capacity is specified as 8Kx32.

 List the capacity of this RAM in both bits and bytes.

 List the number of address lines this RAM would contain.

10) A given RAM capacity is specified as 16Kx24.

 List the capacity of this RAM in both bits and bytes.

 List the number of address lines this RAM would contain.

11) Fill in the missing information in the following table.

Memory
Specification

Address Bus
Width

Memory Capacity in
Bits

Memory Capacity in
Bytes

256 x 8
256 x 24
1K x 16
2K x 8
8K x 32

32K x 12
64K x 16
256K x 8
1M x 16
4M x 32
8M x 8

64M x 48
128M x 32

12) Show the address ranges in both binary and hexadecimal associated with the use of two 256x8 memories to
form one 512x8 memory.

FreeRange Computer Design Chapter 5

 - 147 -

13) Show the address ranges in both binary and hexadecimal associated with the use of two 4Kx8 memories to
form one 8Kx8 memory.

14) Show the address ranges in both binary and hexadecimal associated with the use of four 4Kx8 memories to
form one 16Kx8 memory.

15) Show the address ranges in both binary and hexadecimal associated with the use of four 128Kx8 memories
to form one 512Kx8 memory.

16) Show the address ranges in both binary and hexadecimal associated with the use of eight 1Kx8 memories to
form one 8Kx8 memory.

17) Show a circuit diagram that uses the following
listed RAM to effectively create one memory
that is 256x24. Assume the memory has bi-
direction outputs. The control signals CS, OE,
and WE are the chip selects, output enable, and
write enable, respectively.

18) Show a circuit diagram that the following RAM
to effectively create one memory that is
16Kx16. Assume the memory has bi-direction
outputs. The control signals CS, OE, and WE
are the chip selects, output enable, and write
enable, respectively.

19) Show a circuit diagram that the following RAM
to effectively create one memory that is
64Kx16. Assume the memory has bi-direction
outputs. The control signals CS, OE, and WE
are the chip selects, output enable, and write
enable, respectively.

FreeRange Computer Design Chapter 5

 - 148 -

20) Show a circuit diagram that the following RAM
to effectively create one memory that is
256Kx16. Assume the memory has bi-direction
outputs. The control signals CS, OE, and WE
are the chip selects, output enable, and write
enable, respectively.

21) Show a circuit diagram that the following RAM
to effectively create one memory that is
1Mx32. Assume the memory has bi-direction
outputs. The control signals CS, OE, and WE
are the chip selects, output enable, and write
enable, respectively.

22) Use as many of the following RAMs as you need to
create a memory with a 2Mx8 capacity. Assume the
CS input is an active-low chip select that “turns off”
the device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write
enables (writing) and output enables (reading),
respectively. Also, provide a memory map that
shows the address space accessible by each of the
underlying memories.

23) Use as many of the following RAMs as you need to

create a memory with a 4Mx8 capacity. Assume the CS
input is an active-low chip select that “turns off” the
device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write enables
(writing) and output enables (reading), respectively.
Also, provide a memory map that shows the address
space accessible by each of the underlying memories.

FreeRange Computer Design Chapter 5

 - 149 -

24) Use as many of the following RAMs as you need to
create a memory with an 8Kx8 capacity. Assume the
CS input is an active-low chip select that “turns off”
the device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write
enables (writing) and output enables (reading),
respectively. Also, provide a memory map that
shows the address space accessible by each of the
underlying memories.

25) Design a circuit that implements the following
memory map. Show two solutions to the problem, 1)
Using only 2:4 standard decoder, and 2) using only
one 1:2 standard decoder. Use two of the 16Kx8
RAMs listed below in your design. Assume the CS
input is an active-low chip select that “turns off” the
device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write
enables (writing) and output enables (reading),
respectively.

26) Design a circuit that implements the following
memory map. Use only a 3:8 standard decoder. Use
three of the 16Kx8 RAMs listed below in your
design. Assume the CS input is an active-low chip
select that “turns off” the device, which leaves the
data outputs in a high-impedance state. The WE and
OE are the write enables (writing) and output enables
(reading), respectively.

FreeRange Computer Design Chapter 5

 - 150 -

27) Design a circuit that implements the following
memory map. Show the solution Using only one 3:8
standard decoder. Use three of the 16Kx8 RAMs
listed below in your design. Assume the CS input is
an active-low chip select that “turns off” the device,
which leaves the data outputs in a high-impedance
state. The WE and OE are the write enables (writing)
and output enables (reading), respectively.

28) Complete the memory map below that describes the following design. Make sure to provide the starting and
ending addresses (hex or binary) for used each memory device. Assume the CS input is an active-low chip
select that “turns off” the device, which leaves the data outputs in a high-impedance state. The WE and OE
are the write enables (writing) and output enables (reading), respectively.

29) Design a circuit that implements the following
memory map. Show a solution using only one 3:8
standard decoder. Use four of the 16Kx8 RAMs
listed below in your design. Assume the CS input is
an active-low chip select that “turns off” the device,
which leaves the data outputs in a high-impedance
state. The WE and OE are the write enables (writing)
and output enables (reading), respectively.

FreeRange Computer Design Chapter 5

 - 151 -

30) Design a circuit that implements the following

memory map. Show a solution using only one 3:8
standard decoder. Use four of the 8Kx8 RAMs listed
below in your design. Assume the CS input is an
active-low chip select that “turns off” the device,
which leaves the data outputs in a high-impedance
state. The WE and OE are the write enables (writing)
and output enables (reading), respectively.

FreeRange Computer Design Chapter 5

 - 152 -

31) Design a circuit that implements the following

memory map. Show a solution using only one 3:8
standard decoder. Use five of the 8Kx8 RAMs listed
below in your design. Assume the CS input is an
active-low chip select that “turns off” the device,
which leaves the data outputs in a high-impedance
state. The WE and OE are the write enables (writing)
and output enables (reading), respectively.

32) Provide a memory map that
you could use to describe
the following design. Make
sure to provide the starting
and ending addresses for
each memory and non-
memory segment.

FreeRange Computer Design Chapter 5

 - 153 -

33) Provide a memory map
that you could use to
describe the following
design. Make sure to
provide the starting and
ending addresses for
each memory and non-
memory segment.

34) Complete the memory map
below that describes the
following design. Make
sure to provide the starting
and ending addresses (hex
or binary) for used each
memory device. Assume
the CS input is an active-
low chip select that “turns
off” the device, which
leaves the data outputs in a
high-impedance state. The
WE and OE are the write
enables (writing) and
output enables (reading),
respectively.

FreeRange Computer Design Chapter 5

 - 154 -

5.13 Chapter Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the number of states in the associated state diagrams

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 Explicitly state whether state diagrams have Mealy or Moore outputs where appropriate

 Disregard all setup and hold-time issues

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X
can change no more than once per clock period.

 State all forms of control for your solution.

1) Design a circuit that upon the pressing of a button, determines how many values in a 16 RAM are negative,
and displays that value until another button press. The RAM contains 8-bit signed numbers in RC format.

2) Design a circuit that upon the pressing of a button, finds the maximum value in a 16x8 RAM, and displays
that value until another maximum value is found after another button press. The RAM contains 8-bit
unsigned numbers.

3) Design a circuit that upon the pressing of a button, finds the minimum value in a 16x8 RAM, and displays
that value until another minimum value is found after another button press. The RAM contains 8-bit
unsigned numbers.

4) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM are evenly
divisible by eight, and displays that value a button press restarts the process. The RAM contains 8-bit
unsigned numbers.

5) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM have a
value of 15 or less, and displays that value until a button press restarts the process. The RAM contains 8-bit
unsigned numbers. Don’t use a comparator in this problem.

6) Design a circuit that upon the pressing of a button, sums all the values in a 16x8 RAM and displays that
value until a button press restarts the process. The RAM contains 8-bit unsigned numbers.

7) Design a circuit that upon the pressing of a button, determines if the value in a 16x8 RAM are in ascending
order. If they are in ascending order, the circuit turns on an LED; otherwise it leaves the LED unlit. The
circuit does this each time a button is pressed. The RAM contains 8-bit unsigned numbers.

8) Design a circuit that upon the pressing of a button, determines how many bits are set in a in a 16x8 RAM
and displays that number on the output. The circuit does this each time a button is pressed.

9) Design a circuit that reads all the values in a 16x8 RAM. If the value is less than 26, the circuit changes that
value to 0x00. The circuit does this each time the button is pressed. The RAM holds unsigned binary values.

10) Design a circuit that upon the pressing of a button, determines how many values value in a 16x8 RAM are
even parity and how many values are odd parity. The circuit does this each time a button is pressed.

11) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit counts the number of values in each even address location in a
16x8 RAM that are evenly divisible by 8 and stores that count in a register.

12) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit finds the minimum value in a 16x8 RAM. Upon completion, the
circuit continually outputs both the minimum value and the RAM address of that value until another GO
signal is detected. The RAM contains unsigned 8-bit values.

FreeRange Computer Design Chapter 5

 - 155 -

13) Provide the hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit counts how many values in each even address location in a 16x8
RAM are evenly divisible by 8. Consider address “0000” to be an even address location.

14) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit stores the largest value in a 16x8 RAM into an 8-bit register.

15) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit sums the values in each memory location of a 16x8 RAM if they
are less than 63 and stores the result in a register. The final result should not be changed until another GO
signal is detected. The RAM contains unsigned 8-bit values.

16) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit counts number of values in each memory location of a 64x8 RAM
that are less than 32 and stores that count in a register. The final result should not be changed until another
GO signal is detected. The RAM contains unsigned 8-bit values.

17) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit sums the values in two 8x8 RAMs and outputs that sum until it
receives another GO signal. Design your circuit for either minimum operating time or minimum hardware;
state which approach you are taking. The RAM contains unsigned 8-bit values.

18) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit finds the maximum value in a 16x8 RAM, and then clears that
value in RAM. Upon completion of this operation, the circuit waits for another GO signal. The RAM
contains unsigned 8-bit values.

FreeRange Computer Design

 - 156 -

PART THREE: Introduction to Computers

FreeRange Computer Design Chapter 6

 - 157 -

6 The Basic Computer in High-Level Terms

6.1 Introduction

The purpose of this chapter is to describe the notion of “computers” at a high level using terms associated with
computer programming and basic digital design. We’re assuming you have experience with both basic digital
design concepts and basic computer programming concepts1. This is an important chapter as it gives you a
meaningful roadmap for the stuff you’ll be learning from this text and the associated laboratories. As you may or
may not know, FreeRange Digital Design Foundation Modeling is my book on digital design; it is available for
free download from www.unconditionallearning.com.

Main Chapter Topics

 HIGH-LEVEL OVERVIEW OF COMPUTER ARCHITECTURE: This chapter provides a
high-level overview of computer architecture, which provides a context for the
information in this text.

 COMPUTER PROGRAMMING CONTEXT: This chapter provides a context for the act of
programming computers in terms of hardware, software, and the human destine to
interact with them.

 LEVELS OF PROGRAMMING: This chapter describes the various levels possible for
programming computer.

 COMPUTER PROGRAMMING CONTEXT: This chapter provides a context for the act of
programming computers in terms of hardware, software, and the human destine to
interact with them.

Why This Chapter is Important

This chapter is important because it provides a high-level overview of the computer
design by placing computer design into a familiar context.

6.2 High-Level View of Learning “Digital Stuff”
Why are we doing this? Why did you bother learning about basic digital design and basic computer
programming concepts? I hope that the answer is not because you want to get a job making the big bucks2. The
good answer is that you have a strong desire to have some external device help you solve problems. Herein lays
the major difference between your first course in digital design and this text.

6.2.1 Solving Problems with Digital Circuits

Whether you know it or not, the thing you did in your first digital course was to learn how to design digital
circuits that could solve problems. There are many ways to solve problems, designing digital circuits to solve

1 FreeRange Digital Design Foundation Modeling is a viable text describing a relatively high-level approach to learning
digital design. You can find this text and a complete set of learning materials at the following website:
unconditionallearning.com.
2 It may actually be the case, but don’t admit it to anyone.

FreeRange Computer Design Chapter 6

 - 158 -

them is just one of those ways. Note that the advantage of designing digital circuits to solve problems was that
the digital circuit forming your solution works really fast.

The general way you solved problems with digital circuits was that you received a problem you needed to solve,
then you designed a digital circuit to solve that problem. Then you were given another problem to solve, and
then you had to design another digital circuit to solve that problem. The point is that you designed a different
circuit to solve each problem; we often refer to these specific circuits as one-off solution because they only solve
one problem. While there is nothing inherently wrong with this approach, one could argue that there is a better
approach, particularly as the number of problems you need to solve using digital circuits increases. This is
because that hardware you designed to solve any particular problem has little chance of being able to solve other
problems. In other words, you circuit was roughly speaking single purpose.

The good thing to note here is that your digital circuit was probably the “fastest acting” approach you could have
taken, which means after you design the circuit (which may have taken awhile), the circuit operated relatively
fast.

6.2.2 Solving Problems with Computers

Solving problems with digital circuits is great if you have the time to design a new circuit every time you need to
solve a new problem. The truth is that you’ll not always have the time to design such circuit, especially as the
solutions become more complex. The solution is to design a relatively generic digital circuit that you can use to
solve many different problems without having to redesign the circuit each time you have a new problem. The
solution is thus to design a digital circuit called a computer. Roughly speaking, the general construction of that
big digital circuit (the computer) does not change. What does change for this approach is the “program” you
write for that computer. In rough terms, the program provides a means of controlling the other part of the digital
circuit in such a way as to solve the given problem. In this way, you don’t have to continually change the digital
circuit to solve problems, you now only need to change the program.

6.2.3 Final Problem Solving Overview

You now know two ways to use digital circuits to solve problems. Either you can design a new circuit with each
new problem (inherently a hardware solution) or you can design a generic digital circuit (a computer) and write a
new program to solve a given problem (inherently a software solution). Each approach has its pros and cons. But
wait, it gets better. If you have the good fortune of being tasked to solve a problem using a digital circuit, there is
nothing stopping you from using a computer-type circuit with supporting circuitry. I believe they call this co-
design; it’s definitely an art in itself. Think about it, if you can offload some of your processing tasks to external
hardware, you’ll be able to use a more “simple” computer (which most often means less hardware, slower clock
speed, etc.). It’s a long story.

6.3 What is a Computer?

In truth, if you ask a 100 people what a computer is, you’ll most likely receive 100 different replies. The working
definition for a computer that we’ll go with for now is this: a computer is a device that sequentially executes a
stored program. This so-called “device” is generally some special set of hardware that someone has configured
to interact in a useful way with the stored program. The underlying factor is here is that as a result of executing a
program, we’ll end up with some useful result. The hardware in the computer is generally not changeable, but we
change the “result” by changing the program. We consider the program to be software; this software executes on
the computer’s hardware. This definition of a computer works for now; we’ll be adding to it in later chapters.

The only thing that a computer can provide us with is data: 1’s and 0’s; it’s up to the user to interpret this data in
such a way as to make the 1’s and 0’s into actual information. The real purpose of a computer is to process the
data according to the directions contained in a stored program and return something useful in the form of bits. In
the end, a computer may be nothing more than a device that twiddles bits, which allows us to model a computer
with the standard block diagram in Figure 6.1.

FreeRange Computer Design Chapter 6

 - 159 -

Figure 6.1: General model of a computer.

The three blocks in Figure 6.1 deserve some explanation, as these are common terms in the world of computer
design. We’ll delve more into these later, but for now, here’s a short overview.

 The processor is a generic term for a module that inputs data, does something to it (such as
processes it), and delivers the result somewhere. The processor is the “brains” of the computer,
which means its main responsibility is to crunch data as required by the program stored in
memory and being executed by the computer.

 The memory is one of the few words in computer design that is not an acronym. The memory
holds data that allows the computer to operate properly. In short, the memory module, at the very
least, stores the program the computer is executing. In reality, there are many other pieces of
“memory” in a computer; we’ll get to those later.

 The I/O is short for Input/Output. For any computer to be useful, it needs to communicate with
the outside world. In a generic sort of way, the computer receives input data from the outside
world (input such as a keyboard press or sensor data) and then delivers some result back to the
outside world (output such as display device or audio device).

Outside of the modules in Figure 6.1, the other important item is the directed arrows. In this overly simplified
drawing, the arrows indicate that the processor connects to the memory and the I/O, which indicates that it is
exchanging data with these devices. Likewise, the memory connects to the processor and the I/O. Note that only
the I/O connects to the outside world.

Figure 6.1 lists a computer model that provides an opportunity to present one of the most commonly used words
in the world of computer design. Namely, Figure 6.1 provides a description of a computer architecture. The
word architecture is the commonly accepted method of describing the hardware of a computer at a relatively
high level. More specifically, the computer architecture depicts the arrangement and interconnection of a
computer’s functional blocks. Figure 6.1 shows the architecture at quite high level but it does actually provide
much useful information.

One of the problems with the use of the words “computer architecture” is that it is not specific to any one level
of describing a computer. This is the same notion as a “model” of something: there can be many ways to model
something; we base the appropriateness of any model on how well it delivers the information we’re interested in.
This is why when you hear someone use this term, you can never be sure exactly what level of description they
are referring to.

6.4 You and the Computer

Assuming that a given computer has already been designed, you’re either a computer user or a computer
programmer or both (and both at the same time). The most basic interaction with a computer is for you to “use”
the computer. This roughly means that you’re interacting with a physical device that some computer is
controlling.

Figure 6.2 shows a model of this simple interaction using a cheesy diagram. In Figure 6.2, “You: the user” is
interacting with the computer. This means that somehow you are providing the computer with data. This data
may come from typing on a keyboard of some type of sensor data such as a heart monitor. We model this
interaction in Figure 6.2 with an arrow directed away from “You: the user” and going into the box label
“Computer”. Note that the Figure 6.2 model of a computer only show an interior box label “memory”, which

FreeRange Computer Design Chapter 6

 - 160 -

emphasizes the notion that we consider the computer be “running” because it is executing a set of instructions (a
program) stored in its memory.

For the computer to be actually useful, it must return data to you. This data could take on any forms such as a
visual display, a blinking LED, a buzzing, etc. The computer generates the data it provides you with and outputs
that data by the running program; the program most likely under constant influence by your input as “You: the
user”. Yes, a simple model indeed. You embody this model about a bajillion times each day, but who’s
counting?

Figure 6.2: A basic model of an eerie human-like face interacting with a computer.

You don’t always have to be a simple user of a computer; you can also write computer programs. Figure 6.3
shows a diagram that models you as the programmer (labeled “You: the programmer”). There are several steps
for you to program the computer.

 The first step is that you have to write a “computer program”. The notion here is that you use some
type of “computer language” and some form of software (such as a text editor) to write your
computer program. The “computer language” is generally some sort of text that is syntactically
structured so that the next step in the process can understand it.

 The second step translates the computer program to something that the computer (particularly the
underlying hardware) can understand and use. You generally write the program in a language you can
understand, and then you input it into another piece of software that translates the instructions in the
computer language you’re using into a stream of 1’s and 0’s, which computer’s underlying hardware
can understand. Recall that the computer itself is a digital device and thus can only understand 1’s
and 0’s; software such as a compiler or an assembler translate your programs to 1’s and 0’s.

 The third step is get the 1’s and 0’s that make up your program into the memory of the computer and
start the program running. We’re going to leave this step outside this conversation due to the notion
that there are many ways to do this and we want to keep speaking in generalities.

Figure 6.3: A basic model of an eerie human-like face writing a program to execute on a computer.

6.5 Computer Architecture: For the Hardware People

We’ve agreed that a computer is a piece of hardware that executes a stored program. We went over some high-
level details regarding the operation of a computer in a previous section. In this section, we’ll leverage your
current knowledge of digital design, which allows us to delve deeper in to the basic computer model of Figure
6.1. Figure 6.4 expands on the computer model of Figure 6.1 by listing the useful sub-modules for some of the
computer’s basic blocks. The goal of this new computer architecture is to provide you with more high-level

FreeRange Computer Design Chapter 6

 - 161 -

insight into how a basic computer operates. We’ll do this by describing the basic block in Figure 6.4 in more
detail.

The I/O Module: This module did not change from the previous computer model. One interesting
item to note is that the model in Figure 6.4 has the I/O module only connected to the processor. This
is arbitrary; different architectures would have different interconnects but this model attempts to
keep things generic.

The Memory module: A typical digital circuit can contain many types of memory ranging from flip-
flops to large structured memory devices (such as RAM & ROM). The memory module in Figure
6.4 contains two memories:1) instruction memory, and 2) “data” memory. As we spoke of earlier,
the instruction memory stores the program that the computer executes. The data memory stores
“data” that the computer requires to obtain required results. We use the term “data” memory to
mean many things, all of which are outside of the context of this discussion. In short, computers
generally store data in various places as a means to obtaining the required result.

The Processor module: We divide the processor module into two separate sub-modules: the CPU
and the Control Unit.

 The Control Unit is responsible for reading an instruction and sending out the appropriate
control signals to the other hardware modules in the computer that are responsible for executing
that instruction. Note that the arrow points from instruction memory to the Control Unit for the
instruction and from the Control Unit to the CPU with control signals. The Control Unit is
typically a finite state machine (FSM), no different from the ones you studied in an introductory
digital design course. The Control Unit is responsible for making sure the right things happen at
the right time (and in the correct sequence) to implement the computer’s instructions.

 The acronym CPU stands for Central Processing Unit. The CPU “processes” data under control
of the Control Unit, which is in turn following orders from the instructions in instruction
memory. As with many FSMs, the Control Unit receives status of various operations from the
CPU as Figure 6.4 indicates with an arrow directed from the CPU to the Control Unit. One of
the main sub-modules of the CPU is the ALU, which stands for Arithmetic Logic Unit. The
notion of the ALU is somewhat antiquated in that a typical ALU does more than simple
arithmetic and logic instructions. The term CPU is also antiquated; in days gone by, hardware
was expensive and there was typically only one piece of hardware that did all the number
crunching/bit manipulation and had a “central” location in the hardware. Processing in modern
computers typically happens in different places, not in one place.

Figure 6.4: A more detailed computer basic computer architecture.

6.6 Computer Architecture: For the Programmer People

You’re either a user of a computer or a programmer of a computer (you can be both at the same time). If you’re a
computer programmer, you’ll need to understand the computer architecture you’re programming as well as the

FreeRange Computer Design Chapter 6

 - 162 -

tools you have for programming and ensuring that program works properly. These two items fall under the
notion of the “programmers model” (sometimes referred to as the programming model) and the “instruction set”.
This section describes these two items in terms that you should be familiar with from your previous digital
design and computer programming experience.

If the field you end up going into has something to do with computer design or low-level computer
programming, you’ll always need to learn about new computers, namely, 1) their basic construction, and 2) how
to program them. When learning about a new computer, the two items you initially look at are the programmer’s
model and the instruction set. We go in-depth into these topics later, but for now, we only provide a brief
overview.

6.6.1 Programmer’s Model

The Programmer’s Model is a high-level view of the hardware resources that the programmer can utilize using
the various computer instructions that make up their programs. Note that while a computer is comprises of a
relatively significant amount of hardware, the programmer cannot control all of that hardware. Also, note the
programmer controls the hardware by writing “instructions” that the computer will execute; the instruction set
lists the instructions available to the programmer.

6.6.2 Instruction Set

While the programmer’s model shows the resources available to the programmer, the instruction set allows the
programmer to use those resources. In other words, the instruction set is what the programmer uses to create an
actual program. Every different computer has a different instruction set because the underlying hardware is
different and there is a different set of instructions that control that hardware.

6.6.3 Computer Instructions

So what exactly is an instruction? As with everything else in a computer, it is nothing more than a set of bits.
These bits act as control signals that implement or allow certain data processing operations to occur in a
computer. Although it is possible for us humans to write strings of 1’s and 0’s and use them to represent
directives (instructions) to the hardware that makes up the computer, it’s not the most efficient approach to
programming a computer. Computers are complex monsters; we must constantly do what we can to make them
easier to understand, design, and eventually use; writing programs using ones and zeros does not mitigate the
overall complexity of controlling the computer.

6.7 Programming Language Levels

If you’re reading this sentence, you’ve probably programmed a computer. If you’ve programmed a computer,
you certainly must have some notion of the low-level details of what you were actually doing as you
programmed that computer. In case you did not know what you were doing, this section aims to give you a quick
overview of the big picture regarding the programming of computers.

Once again, the bit patterns that are associated with the instructions control the operation of a computer. You can
write a computer program at one of three different “levels”; these levels are 1) “machine code”, 2) “assembly
code”, 3) and some “higher-level language”. This section describes these levels including the information of
Figure 6.5.

6.7.1 Machine Code

We refer to programs in the form of 1’s and 0’s as machine code or machine language; it’s the lowest level of
programming. A program written in machine code is nothing more than a set of 1’s and 0’s arranged in bit-
patterns that direct the operations that the underlying architecture should perform. The good part about writing
programs using machine code is that there is no need to use other software (not including a text editor) as a
precursor to writing a program. The downside of this approach is that programs are nearly impossible to write
and completely unreadable. There probably was a day when all programmers had to use machine code to write
all their programs, but that was back when dinosaurs were biting each other while they were programming their
dinosaur computers. Although every program that anyone ever writes eventually ends up as machine code, the
programs rarely start that way anymore.

FreeRange Computer Design Chapter 6

 - 163 -

6.7.2 Assembly Language

The next level up in the programming hierarchy from machine code is assembly language programming. In an
assembly language, we replace the bit-patterns that form the instructions by mnemonics, which generally
describes in shorthand notation the operation the computer should perform. Each of these mnemonics (and some
other associated information) is associated with some specific set of 1’s and 0’s. People sometimes refer to
assembly language as a “symbolic machine code”, which advertises the fact that assembly language is still low
level. The set of mnemonics for a given computer is generally what we consider the instruction set for that
computer.

The upside of using assembly language programming over machine code is that mnemonics bring a level of
understandability to the code as opposed to attempting to use your human brain to interpret endless strings of 1’s
and 0’s. The downside, (if it we consider it one) is that you need another piece of software referred to as an
“assembler” to translate the assembly language instructions to machine code. The downside of assembly
language programming is that every different computer architecture (the computer hardware) necessarily has a
different assembly language. Although writing code in different assembly languages is not that complicated once
you know one assembly language, it does, however, have a slight learning curve.

In the end, it’s still all about using the assembly language instructions to crunch bits. The reality is that the
flavors of bit-twiddling are limited (in other words, you can only do so many things with bits). This means that
once you know one assembly language (and have a grasp of generic programming concepts), you can relatively
quickly and easily switch to another by simply learning the syntax and instruction set of the new assembly
language. For example, every instruction set has an instruction that rotates a value in a register: in one assembly
language, the accompanying mnemonic may be ROR and in another language, the same function would be RR.
Same function, different mnemonic.

6.7.3 Higher Level Languages

The next step beyond assembly language programming is to use some type of higher-level language (HLL).
Because each assembly language instruction generally performs only a basic operation, assembly language
programs can quickly become long (many lines of assembly instructions) when the program is implementing a
relatively complex set of operations. One possible solution to producing long programs is switching to coding
the programs using a HLL. When you use a HLL, each line of code in the HLL can represent many lines of
assembly code, which leads to shorter and arguably more understandable programs. When you use a HLL, you
must use a compiler to translate the HLL code into machine code. Most likely, the compiler first converts the
HLL code to assembly code before the final translation to machine code.

Using a HLL has one distinct advantage over assembly code: once you know one HLL, you can write code for
any architecture without know anything about the underlying assembly language, assuming you have the correct
compiler. This effectively lessens the learning curve for switching processors and generally makes your HLL
code independent of the computer architecture your programming. One major downside of HLLs is that the code
is not necessarily as efficient as it would be if a human generated the assembly code.

FreeRange Computer Design Chapter 6

 - 164 -

(a) (b) (c)

Figure 6.5: The three different levels in which you can program a computer.

6.8 The Digital Design Hierarchy

This text is about moving towards designing a computer. You’ve come a long way down the digital path to get to
this point and here is a reminder of some of the more important milestones along the way. It all started with your
first digital design course. Computer design represents what the next step in the natural progression of your
“digital education”. Here is a brief reminder of the progression:

 The typical digital design course starts with number systems including a strong emphasis on
binary number systems and various methods to represent information in binary form (binary
coded decimal, 2’s complement, signed and unsigned numbers, etc.). Although this was not
digital design, we’ll be using many of these concepts directly because we have a sincere interest
in the ways computers store and interpret bit patterns.

 Next came the basics of digital design: AND, OR, NOT functions and gates. This quickly got into
the design of basic combinatorial circuits with way too much emphasis on reducing Boolean
equations before circuit implementation. The circuits that we implemented at this point were
generally pointless but they provided an enjoyable academic exercise.

 Next, we placed the basic gates in certain configurations in order to obtain certain functionality.
This allowed us to abstract our designs to a higher level in order to avoid talking about working
with low-level things such as gates as much as possible. The resulting devices were more complex
than gates but the complexity was manageable because you understood the basic functionality of
the circuit from a high level. These more complex devices included such things as MUXes,
decoders, adders, comparators, etc. You may have forgotten how these devices are structured, but
you hopefully remember how the devices operate. For example, the mention of the word “MUX”
brings to my mind a form of data selection. It probably doesn’t bring to mind a circuit any more
complex than a block box.

 The concept of basic memory arrived with the introduction of sequential circuits. Our main use of
sequential circuits was with registers and their various forms such as counters and shift registers.
We used these memory devices to construct finite state machines (FSMs). The FSM has one
primary function: it’s a circuit that controls other circuits. We later added the notion of structured
memory, which was our definition for memory models designed specifically to store large
amounts of data.

FreeRange Computer Design Chapter 6

 - 165 -

This progression represents part of the big picture: these were all tools we can use to design and understand a
basic computer. Note that many times along this progression, we constructed circuits out of small boxes, placed
the small boxes into another box, and gave it a new name. This embodies the general approach of computer
design and the understanding of complex digital circuits of any type: the hierarchical approach. We’ve applied
this approach from early on in your beginning digital design course in that we studied gates rather than the
underlying transistors that implemented them. We extended this approach with slightly more complicated
circuits which were a special assembly of gates (decoders, MUXes, etc.). And in the end, it was this hierarchical
approach that allowed us to understand complex circuits by abstracting upwards. For example, the concept of a
4:16 standard decoder with a chip enable is easy to comprehend while the transistor-level circuit that implements
this functionality would fill a page and would not be at all pleasurable to look at.

This hierarchical concept becomes even more important as we move into computer design. We consider a
computer to be nothing more than a very complex state machine. The problem is that even the simplest computer
has so many possible states that the techniques we’ve used to design and analyze state machines are essentially
worthless if we try to apply them directly to computer design. Because of this, we necessarily need to take a
different approach to designing sequential circuits such as computers, namely, the hierarchical approach. In
particular, it’s a top-down approach to the design of computers, which entails describing at a high-level the
functional blocks in a computer.

FreeRange Computer Design Chapter 6

 - 166 -

6.9 Chapter Summary

 A computer is a device that sequentially executes a stored program. Note that this is one of many definitions
for a computer; this definition is quite high-level.

 A computer is comprised of three main subsections: the memory, the input/output, and the processor. The
processor crunches data based on instructions stored in memory; the input/output allows the computer to
interact with the outside world.

 You as a human interact with computer as either a user or a programmer, or both. You the programmer write
programs using a text editor; some other piece of software translates your program into machine code or
machine language, which is the only language a computer can actually understand.

 The programming side of a computer is defined at a relatively high level using the Programmer’s Model and
the Instruction Set. The Programmer’s Model shows the resources that the programmer can control using the
computer’s Instruction Set.

 Programmers can program computers at three different levels: 1) machine code, 2) assembly code, and 3) a
higher-level code. The application you’re working on and your immediate supervisor generally dictate what
level you’ll be programming at.

 The notion of “digital design” could mean many things. The idea is that you can perform digital design at
one of many different levels. As you progress towards more complicated digital designs, and particularly
computer designs, you’ll be designing at higher levels of abstraction. Though it would be possible to design
an entire computer at the transistor level, no one actually does it as design computer at the transistor level
because designing at higher levels of abstraction is much more feasible and cost effective.

FreeRange Computer Design Chapter 6

 - 167 -

6.10 Chapter Exercises

1) In your own words, define the word “computer”.

2) Briefly describe the main purpose of any digital circuit, including a computer.

3) List the pros and cons of using a computer to solve problems as opposed to designing a dedicated digital
circuit.

4) List and briefly describe the function of the three main modules of a computer.

5) Briefly describe what is meant by the term “computer architecture”.

6) Briefly describe why there is no one absolutely correct model for any digital circuit.

7) Briefly describe the main use of a computer architecture.

8) Briefly describe what is meant by the term “computer instruction”.

9) Briefly state the purpose and relationship between the programmers model and the instruction set.

10) The programmers model does not show all of the hardware associated with a computer, only a subset of the
associated computer hardware. Briely describe why some of the computer hardware is not included in the
programmers model.

11) Briefly describe why there so many different assembly languages out there.

12) Briefly describe why computer instructions are represented using mnemonics.

13) Briefly describe what makes it relatively easy to learn a new assembly language once you know one of
them.

14) Briefly describe why programming using machine code is nearly impossible.

15) Briefly describe the distinct advantage does using a higher-level language have over using an assembly
language.

16) I claim to have designed a portable assembly language; briefly state why you would be skeptical of such a
statement.

17) Briefly describe a possible advantage that programming using assembly language has over programming
using a higher-level language.

18) Briefly describe the three levels of programming.

19) Briefly describe what is meant by the notion of a “digital design hierarchy”.

20) Briefly describe why it is that you can use a high-level module without understanding the low-level
implementation details.

FreeRange Computer Design

 - 168 -

PART FOUR: RISC-V Assembly Language Programming

FreeRange Computer Design Chapter 7

 - 169 -

7 Assembly Language Introduction

7.1 Introduction

Assembly language programming is overwhelming once you first see it. First, it is programming, but
programming that is different from languages such as C and Python. Second, you have to learn the “instruction
set” and a bunch of assembly language “tricks” to be able to successfully and efficiently program in assembly
language. Third, you probably need to become familiar with many hardware concepts regarding the computer
associated with the assembly language you’re setting out to learn1. There is a lot to learn, but most all of the stuff
you need to learn is relatively simple (once you see what is going on).

The problem with teaching assembly language programming is that there is no good place to start. It seems
everything you need to know is based on something else you need to know, but if you’re just starting out, you
don’t know anything. This chapter chooses to start somewhere; the stuff you learn in this chapter helps you learn
the more detailed stuff in later chapters. This chapter also reviews a standard structured approach to designing
assembly language programming. As the programs you write become more complex, it becomes important for
you to take a healthy and sane approach to designing and writing programs.

Main Chapter Topics

 BEGINNERS VIEW OF ASSEMBLY LANGUAGE: This chapter gives a generic
overview of assembly languages in a context that just about anyone can understand.

 PROGRAMMING LANGUAGE LEVELS: This chapter put assembly language
programming into a proper context of the different levels of possible for
“programming a computer”.

 ASSEMBLY LANGUAGE: GOOD OR BAD: This chapter describes some the good and
bad points of using programming at the assembly language level.

 AN APPROACH TO WRITING ASSEMBLY LANGUAGE PROGRAMS: This chapter
provides an outline of the appropriate approach to writing assembly language
programs.

 FLOWCHARTS: This chapter provides motivational verbage that highlights the
advantages of using flowcharts and describes the basic symbols associated with
flowcharting.

Why This Chapter is Important

This chapter is important because it introduces assembly languages and associated
concepts as well as basic program structure concepts.

7.2 Bits to Mnemonics and Back Again

We generally model a computer as a device that sequentially executes a set of stored instructions. We use the
individual instructions to control the various subsystems in the computer in such a way as to produce a
meaningful result. In the end, we view computers operations as simply the pushing around of bits (1's and 0's).

1 You actually don’t need to be familiar with the computer hardware, but it will help you create all around great assembly
language programs.

FreeRange Computer Design Chapter 7

 - 170 -

Computer instructions are nothing more than bits that instruct the computer to perform predefined operations,
which control the bit pushing.

We refer to the computer instructions at the bit-level as a machine language or machine code. As you could
imagine, dealing with an endless stream of bits is overwhelming for the average human brain. The solution is to
replace the machine language with assembly language. An assembly language is a simple upward translation of
the machine language where we represent the bit patterns that form the instructions by mnemonics. We design
the assembly mnemonics in such a way as to convey the purpose of the instruction as it relates to the function
that it causes the computer hardware to perform. The upside of this translation from bits to mnemonics is that the
purpose of an instruction is much easier to envision and understand for humans. The downside the bits-to-
mnemonic translation is that the translation needs to be undone in order for the computer to execute the
instructions. A software program known as an assembler translates the assembly code to machine code.

Controlling a specific computer architecture in such a way as to do something useful requires a specific machine
language, and hence, an accompanying assembly language, for that architecture. This means there are as many
different assembly languages out there, as there are different sets of computer hardware, or computer
architectures. Computers generally differ by the number and type of operations, the “size” of data they work
with, and the way and number of ways they store the data. From a high level, computers are generally able to
carry out essentially the same functionality, but they must do so within the limits of their underlying computer
architecture. The programmer exercises the basic functionality of a computer by using the assembly language
associated with a particular computer and the assembler associated with that assembly language.

7.3 Programming Language Levels

The bit patterns that make up the instructions are what controls computer: computers understand nothing other
than bits. Although it is possible to write programs using the bit-patterns directly, this approach is too tedious to
make is useful and there are approaches that are more “useful” as well. The methods used to program computers
are generally broken into three general levels: 1) machine code, 2) assembly code, 3) and higher-level languages.
This section describes these levels; additionally, Figure 7.1 shows a graphic of these levels.

(a) (b) (c)

Figure 7.1: The visual choice to programming from a user's perspective.

7.3.1 Machine Code

Machine code is the lowest level of programming, meaning the level closest to the actual hardware. A program
written in machine code is nothing more than a set of 1’s and 0’s, which we arrange in bit-patterns that control
the operations that the underlying architecture can perform. The good part about writing programs using machine
code is that there is no need to use other software (not including a text editor) as a precursor to writing a
program. The downside of this approach is that programs are completely unreadable, as the look like a mind-

FreeRange Computer Design Chapter 7

 - 171 -

boggling stream of 1’s and 0’s. There probably was a day when all programs had to be written in machine code,
but that was sometime in the prehistoric computer era when the earth was ruled by computersaureses. Although
every program that is ever written eventually ends up as machine code2, programs rarely start that way.

7.3.2 Assembly Language

The next level up in the programming hierarchy from machine code is assembly language programming. In an
assembly language, we replace the bit-patterns that form the instructions by mnemonics that loosely indicate the
operation the instructions perform in the underlying computer hardware. The upside of using assembly language
programming over machine code is that mnemonics bring a level of understandability to humans reading the
code. The downside, (if you can consider this one) is that you need another piece of software referred to as an
assembler to translate the assembly language instructions into machine code. The assembler is rarely an overly
complicated piece of software based on the notion that assembly languages are generally highly constrain in their
structure compared to higher-level languages. The downside of assembly language programming is that every
different computer architecture (the computer hardware) necessarily has a different assembly language.
Although writing code in different assembly languages is not that complicated once you know one assembly
language, any new assembly language has a learning curve, with a steepness that depends on the overall
complexity of the assembly language3.

7.3.3 Higher Level Languages

The next step upwards beyond assembly language programming is to use some type of higher-level language
(HLL). Because each assembly language instruction generally performs only a basic operation, assembly
language programs can quickly become long (many lines of assembly instructions) when the program requires a
relatively complex set of operations. One possible solution to producing long programs is switching to coding
the programs using an HLL.

When you use a HLL, each line of code in the HLL can represent many lines of assembly code, which leads to
shorter and arguably programs that are more understandable to humans. When you use a HLL, you must use a
compiler to translate the HLL code into machine code. Most likely, the software first converts the HLL code to
assembly code before the final translation to machine code. Using a HLL has one distinct advantage over
assembly code: once you know one HLL, you can write code for any computer architecture without know
anything about the underlying assembly language assuming you have the correct compiler. This effectively
flattens the learning curve for switching processors and makes you HLL code architecturally independent of the
underlying hardware. The official technical term for this is HLLs are portable while assembly languages are not
portable. The only downside of HLL is that the code is not necessarily as efficient as it would be if a human
generated the assembly code. Compilers are good, but humans who know what they’re doing (meaning they
understand the assembly language and underlying hardware) are better.

7.4 Assembly Languages: The Goodness of “Low-Level”

Through the years, assembly languages have received some rather bad press. Most people who have worked with
assembly languages find that assembly language programming can be tedious, primarily because the programs
tend to be “long” when they are actually performing a useful task. The length of assembly programs appears to
be long because they generally only have one “simple” instruction per line of text in the source code.

On the other hand, working at a low-level has several distinct advantages over using a higher-level language.
Moreover, programming using a higher-level language without knowledge of the computer architecture that you
intend to execute the code on can be outright inefficient in some cases. Here are some of the many benefits of
programming in assembly:

 Assembly language programming inherently provides an overview of the underlying
computer architecture. Therefore, writing programs using assembly language are essentially a
simultaneous lesson in computer programming and computer architecture.

2 More specifically, if someone executes the program on a computer.
3 The notion here is that an assembly language instruction can be very simple or very complicated. Simple instructions, such
as basic bit tweaking, are not a big deal. But, more complicated hardware can be designed to do many things with a single
instruction. In this case, you’re going to have to spend more time reading the manual.

FreeRange Computer Design Chapter 7

 - 172 -

 Assembly language programming requires that the programmer have source code
organizational techniques in order to produce viable (readable, understandable, maintainable)
source code. The programmer can control the potential “length” of assembly language
programs by using modular programming techniques. Learning and applying these techniques
helps improve the quality of source code you write at any level.

 Assembly language programming can ensure certain portions of the code operate efficiently.
Even if you are primarily writing in a higher-level language, there may be portions of the code
that can be “coded by hand” to make sure the machine code is as efficient as possible4.

 There is a common argument that modern compilers are as efficient as a human (an intelligent
one) programming in assembly language. I don’t believe this as it sounds more like a
marketing ploy for a compiler company than it does true science. If you’ve ever dealt with
optimizing the code generating step in a writing a compiler, you’ll understand the inherent
limitations in the process. Without doubt, there are some efficient compilers out there, but it is
highly unlikely that they all fall into the “good as a human” category.

 Assembly language programming helps the programmer develop a true appreciation for the
higher-level languages. The more complicated the task, the more you’ll want to move to a
higher-level language for bulk of your programming needs. But then again, maybe not, as you
should never put 100% trust in a compiler.

 Assembly language programming builds character. Yes, recent research has proven this true
in practically every known case.

There are well over 5000 different microcontrollers out there in the real world, which implies there are about the
same number of different assembly languages. This number does not include the various proprietary
microcontrollers and other projects that were never were released to the public. The question that should be
asking yourself now is: “With so many assembly languages out there, what are my odds of ever using the one
we’re about to learn?” This is a good question. The answer is that you’ll probably never see the any given
assembly language that you work with ever again. But here’s the truth: working with an assembly language for
the first time can be challenging, but the skills and knowledge you gain in the process easily transfers to other
assembly languages and in general makes you a better programmer.

What makes all assembly languages similar is that they all do the same thing: they manipulate bits. The only
difference between any two assembly languages is exactly how the underlying hardware manipulates the bits and
how the bits are stored, which are characteristics governed by both the instructions available to the programmer
and the underlying hardware. To come up to speed quickly when learning a new assembly language, you simply
need to understand the basic programming resources, which allows you to use them effectively. The quickest
way to do this is by perusing the Programmers Model and the Instruction Set:

 Programming Model: The programming model is the programmer’s view of the computer: it
shows what hardware resources are available for the programmer to use. These resources
primarily include registers and other types of memory. Another useful definition for the
Programming Model is the set of registers that the instructions in the associated instruction set
can manipulate.

 Instruction Set: The instruction set lists the set of operations that the hardware can perform under
control of the programmer.

One interesting point here is that there is no mention of the actual architecture of the device. There is also no
mention of the external interface of the device. These are interesting points because they highlight the fact that
the discussion of assembly languages generally means that we are abstracting our approach to the device to a
higher level. The general thought here is that we are now going to be writing assembly language programs. We

4 The standard trick here is to use a “profiler” to determine the typical executional characteristics of a program. As you may
find out one day, programs usually spend most of their time executing a small subset of program’s instructions. Therefore is
you want to speed up your program without spending a lot of time doing so, you rewrite the higher-level code in these
sections using assembly code. In this way, you get your program speed-up without having to recode your entire program.

FreeRange Computer Design Chapter 7

 - 173 -

generally assume that some other fine person implemented the device in some type of hardware setting and has
setup the environment so that all we have to do is provide the working source code.

7.5 Problem Solving with Programming

In the rush to complete your assignment for your instructor or supervisor, you can easily lose track of what it is
you’re attempting to accomplish. In the worst cases, you find yourself mired with either the low-level details
while ignoring the big picture, or you completely grasp the big picture while being unaware of the important
low-level details you’re probably passing over. In the end, if you want to be a successful programmer, you need
to answer “yes” to the following questions:

1) Did you write your program in a reasonable amount of time? If you answer “no”, you need to
realize that you can’t spend forever writing the program… at some point you have to call it done.

2) Does your program work properly in all possible cases? Of course if you answer “yes” to this
question, it means that you’ve course tested the poop out of your program

3) Can someone else easily understand and/or reuse your code? If you answer “no” to this questions,
then you’re either a bad programmer or you’re into creating job security for yourself.

The key to ensuring that you answer “yes” to all of these questions is to keep your programs as simple as
possible. Why? Because complex programs, if they work at all, are well known to be fragile. A fragile program
is like an academic administrator’s ego: you constantly worry about breaking it if you accidentally do anything
wrong. Yes, the program running on your smart phone is a result of millions of lines of code and is seemingly
complex, but that’s not the point. If you can decompose even the most complex program into simple building
blocks, then the program is by definition simple5. The key to writing good programs is writing simple, well-
structured code (see section 7.6).

After you’ve been programming in assembly for a while, you’ll find that you’ve probably developed your own
coding style and your own approach to the entire “problem solving” package. Recall that the reason you’re
writing any program is to solve some problem. When you first start out programming, particularly using an
assembly language, you should take a nicely disciplined approach. This section describes a high-level approach
to the entire problem solving process, not just the program writing part of the approach. Though this is certainly
not the only approach you can take, it’s the approach you should take until you have developed your own
successful assembly language programming style.

There are three basic requirements you must meet before attempting to solve problems by writing assembly
language programs: 1) Understand the instruction set, and, 2) understand basic programming constructs and
techniques, and 3) understand the underlying hardware architecture. These two items are somewhat detailed and
we provide more information in the following verbage.

1) Understand the Instruction Set: What this means exactly is that you must understand every aspect of
the instruction set if you plan to write viable problems. This is totally possible because there generally a
relative few number of instructions for a basic architecture and most of the instructions are relatively
simple 6. Some of the aspects you need to be familiar with are:

a. Peculiar aspects of individual instruction: Different instructions have different ways of doing
things. The push for the efficiency in the underlying hardware can make some instructions
very confusing and hard to understand. For example, how the hardware forms memory
addresses in instructions that reference memory.

b. Forms of instructions: We generally divide the various instructions in an instruction set into a
smaller subset of instructions that share the same instruction formats; each of these formats
manipulates the underlying hardware in the same manner.

c. How instructions use registers: Different instructions use different number of registers and use
those registers differently.

5 So when your phone freezes of does something stupid... probably bad code. Please don’t blame the hardware.
6 This statement is even more true with RISC architectures.

FreeRange Computer Design Chapter 7

 - 174 -

2) Understand the Underlying Hardware Architecture: You of course must intimately familiar with the
Programmers Model, but that often is not enough to write good programs. You must also understand the
how the various modules in the architecture do the things they need to do to implement the instructions
in the instruction set. We’re trying to be good programmers here, but that can only happen if we have a
basic understanding of digital the digital circuitry that forms the computer.

a. Space limitations on various memory elements: Computers have a finite number of memory
elements, with emphasis on finite; hardware designers typically cut corners in order to save space
(reduce overall hardware) and power consumption. The savvy programmer needs to understand the
limitations in order to effectively solve the problem at hand.

b. Digital tricks: The hardware is capable of doing many things, though some of them are not obvious.
Two example of this would be to use shifting for divides/multiples by two, and, the various tricks
to manipulate bits: set, clear, toggle, and hold.

c. Input/Output architecture: Computers can handle input/output operations in a few common but
different ways. Programmers need to various I/O architectures to write efficient programs.

d. Interrupt architecture: Computers generally interface with the outside world according to the
programs they are running. If you need to interface with the computer, there are ways to have the
computer stop what it’s doing and deal with your requests. All computers do it, but they do it in
different ways; you need to be familiar with those ways.

3) Understand Basic Programming Techniques and Constructs: You must understand basic
approaches to programming in order to write code. One of the many good things about assembly
language programming is that there are only a few constructs you need to know. Even though there are
only a few constructs you need to know, the most complicated assembly language program (a well-
written one, that is) is a conglomeration of these constructs. The basic items we’re referring to are:

a. iterative constructs (loops): The two types of iterative constructs are loops when you know in
advance how many times you’ll iterate (based on a count) and when you don’t know how many
times you’ll iterate (based on a condition). Either of type of iterative constructs can be further
classified as a “while loop” or a “do-while” loop.

b. if/else constructs: The if/else construct is the basic decision-making program flow construct in
assembly language programming.

c. bit manipulation and bit masking: Computers “handle” bits in only four different ways, which
programmers must be well-versed with. Additionally, bit masking is one of the basic techniques to
operate on bits, which is generally what you’ll find yourself doing on a microcontroller7.

4) Understand the “Toolchain”: There will be several “tools” you need to be familiar in order to run
your code on actual hardware. These tools are essentially the various software packages that allow your
solution go from an idea to a working computer that solves the problem. Here are a few of those items
(assuming we’re writing assembly language programs and having them run on a programmable logic
device, or PLD):

a. The text editor: Knowing the features in text editors helps you write programs in an efficient
manner.

b. The Assembler: This software translates your assembly language program code to a set of 1’s and
0’s that your hardware understands.

7 Recall that microcontrollers are generally designed to control other pieces of hardware. This means they must read
individual “status” inputs and respond by sending out “control” outputs to the items the MCU is controlling.

FreeRange Computer Design Chapter 7

 - 175 -

c. The PLD Computer Aided Design Tools: These tools allow you to model and synthesize your
computer hardware such that you can execute the programs you wrote.

Once you’ve met the basic requirements, you’re then ready to solve the problem by writing an assembly
language program. The three basic steps to writing assembly language programs are:

1) Understand the Problem: This is an important step because if you don’t understand the problem, there
is no way you’ll generate a viable solution8. The general idea here is that you’ll get a high-level picture
of the problem, which starts your brain thinking a path to the solution, which is of course the next item.

2) Generate a Path to the Solution: The notion of generating a path to the solution involves writing
designing an algorithm that will solve the problem using the given parameters. In reality, there is no
way you can solve the entire program with one giant plop: your brain does not work that way, and
computer programming (as of this writing) does not work that way either. You’ll be designing an
algorithm, and there are two standard approaches to algorithm design:

a. Pseudo Coding: Pseudo code is an unstructured semi-written-language approach to describing a
path the solution. We’ll not cover this approach in this text, but it truly is helpful and something
that all programmers should know.

b. Flowcharts: The flowchart provides a visual description of the basic flow of your program.
Flowcharting describes program flow by using a few basic shapes. We dedicate the bulk of this
chapter to flowcharting, so we’ll opt not to say much here.

3) Translate the Path to Assembly Language Code: Once you’ve mapped out your algorithm, you must
then translate the algorithm into the actual assembly language instructions that will implement that
algorithm on a given processor. For this step, you’ll need to meet the two requirements of solving
problems using assembly language.

A few comments regarding all these new rules and things:

 You can’t step item #1; you need to understand the problem before you can solve it.

 You can skip step #2, but you shouldn’t. In addition, if your program is anything other than simple, you
won’t be skipping step #2 if you plan to actually generate a viable solution to the problem.

 You can’t do step #3 if you don’t have a solid understanding of the instruction set.

7.6 Structured Programming

The official definition of a simple program is one that we can decompose into simple parts. A consequence of
this definition is that if we can’t decompose our programs into simple parts, it’s a complex program. There are
many concerning issues with complex programs including the fact that they suck. Let’s face it; if you’re not a
disciplined programmer, you’re going to be writing spaghetti code, and you’re going to hate life as much as your
boss or instructor hates you. Here are some more specific issues regarding complex programs:

 They have a lower probability of working in all cases, or working at all

 They’re hard to understand, maintain , and modify

 It is hard or impossible to reuse part of the programs

The approach you should take to programming is to write “structured code”. The basis of writing structured code
is to realize that you can categorize any code you can possible write into one of three “structures”: 1) the
sequence construct, 2) the if-then-else construct, and, 3) the iterative construct. In other words, your code is

8 You’ll generate a bunch of code, but it will generally be worthless. You may get lucky, but engineers don’t rely on luck;
only administrators rely on luck (and a wild show of waving hands) to solve problems.

FreeRange Computer Design Chapter 7

 - 176 -

either 1) doing something or going somewhere else to do something, or, 2) doing something conditionally, or, 3)
doing something repeatedly. These constructs become easier to understand after you see them modeled with a
flowchart.

If you’re truly writing structured programs, your code is going to be a series of these three constructs. In other
words, you should be able to decompose your program into a set of these three structures. Disclaimer: just
because you’re writing structured code does not guarantee that the program is going to work properly, as there
are other issues regarding computer programming that you need to contend with. The payoff is that structured
code is essentially the most cost effective approach to creating and maintaining a working program. Even if your
program does not initially operate as expected, structured code helps you expedite debugging and testing your
program. Structured programming has the added benefit of helping new programmers learn to work with the
instruction set and develop their own great programming style.

7.7 Motivational Discussion of Flowcharting

You can view the writing of any useful software (or firmware) as a solution to some problem. In other words,
any worthwhile program that was ever written was done in order to do something useful. We can characterize
this usefulness as providing a meaningful result; we can further characterize the solution as being an algorithm.

An algorithm is a computational or logical method of producing a desired result. Flowcharts are useful because
they facilitate the development and visual representation of algorithms. The flowchart is the software analog to
the black block diagrams (BBD) we use to describe hardware subsystems. Recall that hardware block diagrams
are able to quickly convey an understanding of the circuit at hand. You’ll find that flowcharting an algorithm
serves the same purpose: flowcharts quickly convey the basic operation of an algorithm. Another way to look at
it is that BBDs model hardware while flowcharts model algorithms; programmers can then use the flowcharts as
a guide to generating their programs. Keep in mind that both flowcharts and block diagrams worked well with
hierarchical design to further promote understanding of the items they model.

A flowchart has two basic purposes. It is the best idea to consider it a design tool, which is how we’ll be
emphasizing it here. But being that flowcharts present a graphical representation of the order in which operations
are carried out by programs, we can also consider them a great documentation tool that provides another
description of your program in addition to the code (well commented code) itself. The use of flowcharts as a
documentation tool is a by-product of proper program design. The flowchart is a great aid for anyone who needs
to design a program; when the program is complete, the flowchart automatically becomes a great documentation
item for anyone who later needs to understand your program. In the end, the flowchart is great design tool and
documentation tool.

We can judge any piece of program code by the following qualities (with lots of overlap among these qualities):
modularity, reusability, understandability, readability, modifiability, and extendibility. If you can write code that
contains all of these qualities, you win the big prize of having reliable code. In the real world, you’ll mostly
likely be working on a team of people who all in one way or another is contributing to the production of a given
product that is running some program. As you can imagine, it’s a big piece of software since there are so many
people are working on it. In this case, if even one small part of the code does not contain all of the above
qualities, the code will spawn many problems that have a strange tendency of never going away. Problems that
don’t go away will create a lifetime of problems for anyone and everyone who has any dealings whatsoever with
the project. The result is an unmaintainable, unmanageable, and worst of all, unreliable piece of software crap
that people will continuously marvel at the fact that it ever works at all. And most likely the moment it fails will
be at a customer demo.

Flowcharting supports all the qualities of good source code. So if the discussion above has not convinced you
that you should use flowcharts in your program design and subsequent documentation, just do it anyway.
Someday you’ll thank yourself for building a sound foundation of solid programming practices.

The overall purpose of flowcharts is to quickly present information regarding a process or algorithm (particularly
one code using a programming language). In addition to this goal, here are a few other fun items about
flowcharts to keep in mind:

 There are many options so as how to generate flowcharts, we’ll stick with the basic symbols.
You can add the bells and whistles later as you see fit.

FreeRange Computer Design Chapter 7

 - 177 -

 There is no “right” method to do flowcharts. In that they are tools to help you design and/or
document your work, you’ll need to provide your own definition of “right”. A good place to
start, however, is with the basic concepts presented here.

 If your flowchart meets the overall goal stated above, you have a good flowchart. Part of this
definition of “right” should be the level of detail that your flowcharts provide. You many need
to have several flowcharts for one section of code where each of the flowcharts would present
data at a different level. Flowcharts do quite well presenting various levels of detail.

 Don’t hesitate to present “flowcharts within flowcharts” because as you’ll see, they nest quite
nicely. The only rule you should follow is that any single flowchart should contain about the
same level of detail (note the ambiguity of the word “about”). If you need to change that level
of detail, you should start a new flowchart.

 Consider keeping flowcharts as generic as possible. For example, describe an algorithm using
generic programming operations that could be used for any hardware. Once your flowcharts
start calling out specific items such as loop iteration counts and hardware specific items such
as regsiters, the flowchart becomes less usable when and if the hardware changes.
Additionally, if you make the flowchart generic, it can remain unchanged with minor changes
in the algorithm.

7.7.1 The Basics of Flowcharting

Table 7.1 shows the a few basic symbols that we typically use in flowcharts. When you see flowcharts in various
places, you’ll be seeing other symbols also, but these other symbols represent bells and whistles. As far as
structured programming goes, the symbols in Table 7.1 represent the basic functionality of sequential programs,
so the discussion in this chapter sticks with those symbols. We’ll start continue this discussion by looking at the
flowcharts as they relate to some of the basic programs we’ve written so far. We’ll look at a few examples of
flowcharts supporting basic programming constructs. We’ revisit them when we have some actual assembly
language coding experience in a later chapter.

FreeRange Computer Design Chapter 7

 - 178 -

Symbol Description

Flow lines and flow arrows: the directed line segment indicates a
sequence that the program follows. These lines guide the reader
through the other flowcharting symbols in the correct order.

Process: The rectangle symbol indicates that the algorithm
performs the operation or process listed in the rectangle. All
process symbols have only one exit flow line but can have
multiple entry points.

Predefined Process: These are a special type of process symbols
that we generally use to specify a process that is predefined (such
as a subroutine) or defined in some other location.

Decision: The algorithm determines program flow by the
condition specified inside the diamond. The decision symbol has
only two exit flow lines, which are either yes, or no. Decision
boxes and have multiple entry points.

Terminal: specifies the beginning or end of a program or
subroutine.

Off-Page Connection, Entry: This symbol indicates that a given
flow line continues on another page. We generally fill these
symbols these symbols with a short label such as “A” that
matches the off-page exit connection.

Off-Page Connection, Exit: This symbol indicates that a given
flow line continues on another page. We generally fill these
symbols with short labels that match the off-page entry
connection. .

Table 7.1: The basic symbols used in flowcharting.

7.8 Structured Programming Revisited
We gave a motivation blurb regarding structured programming in an earlier section; we now need to fill in a few
of the details. Recall that the notion of structured programming is that we can decompose any well-written
program in to a conglomeration of three basic structures: 1) the sequence structure, 2) the if-then-else structure,
and 3) the iterative structure. As you’ll see, we use two or more of the basic flowcharting main symbols to model
each of these structures: the process box, the decision box, and associated flow lines. Not surprisingly,
flowcharts are probably the best way to define/understand these three basic structures.

7.8.1 The sequence Structure

The sequence structure is a set of two or MORE process boxes placed in a series and considered as a new
“higher-level” process box. Figure 7.2(a) shows the basic model of a sequence structure using standard
flowcharting symbols. The notion of a sequence should seem familiar, as it is simply a form of abstracting to a
higher level. The main characteristic of a sequence structure is that it begins at one point and ends at another,
which is simply a way of stating that the sequence structure has on entry point and one exit point. If a structure
has more than one entry point or more than one exit point, then it is not a sequence structure and necessarily not
a part of structured programming. In this case, you can possibly model it as a sequence structure if you further

FreeRange Computer Design Chapter 7

 - 179 -

decompose the objects using standard structures. In Figure 7.2(a), the solid boxes are the lower-level items and
the dotted box is the higher-level item.

7.8.2 The if-then-else Structure

The if-then-else structure represents a decision point: the program decides to take one path or another based on
some condition in the program. Figure 7.2(b) shows the basic model of an if-then-else structure using standard
flowcharting symbols. To be a true if-then-else structure, the two paths must eventually merge after the
execution of the chosen path completes. This characteristic assures that the if-then-else structure is similar to the
sequence structure in that the if-then-else structure has one entry point and one exit point. Keep in mind that a
variation of the if-then-else structure is the if-then structure. In this case, the structure either does something or
does nothing, as compared to the if-then-else structure that does something or does something else. A specialized
form of the if-then-else structure is the in-case-of structure, commonly known as a case structure. This is similar
to the notion in higher-level languages of using if-then-else statements or case statements to implement the same
functionality.

7.8.3 The iterative Structure

The iterative structure models a set of instructions that repeatedly performs the same process until the structure
makes the decision to exit the structure. Figure 7.2(c) shows the basic model of an iterative structure using
standard flowcharting symbols. The iterative structure is independent of the terminating condition, meaning that
the terminating condition can be any condition supported by the exact form of the underlying language’s flow
control statement. Similar to the sequence and if-then-else construct, the iterative construct has one entry point
and one exit point.

(a) (b) (c)

Figure 7.2: Models for (a) a sequence structure, (b) an if-then-else structure, and c) an iterative structure.

Figure 7.3 shows flowcharts modeling the two types of iterative loops: the while loop and the do-while loop.
Recall that the do-while loop always executes the associated process at least one time, which is does by
executing the process before it checks the terminating condition. The while-loop checks the terminating
condition before executing the associated process and thus can exit the loop before executing the process. Figure
7.3(a) shows a flowchart modeling the while loop and Figure 7.3(b) shows the flowchart modeling the do-while
loop.

FreeRange Computer Design Chapter 7

 - 180 -

(a) (b)

Figure 7.3: Example flowcharts modeling a while loop (a) and a do-while loop (b).

7.9 The Truth about Software

Software is definitely mysterious. Have you ever seen a program running? There’s a program running the
machine that's keeping your grandmother alive during her hospital stay… do you know who wrote that program?
Do you know how extensively the person or people who wrote that program actually tested that program? Did
the person in charge of that software think of every possible test scenario before they released the code? Should
you be worried about all this stuff? I’m not sure what the answers are, but if you were worried about whether all
the software that runs the world is really working correctly, you’d probably need to take lots of medication to
make it through the day.

If you’re reading this sentence, you’re probably embarking on learning to write assembly language. Yep, it’s real
fun to make the LED blink or the numbers count, which sure seems trivial but is really rather important.
Someday you’ll graduate and find yourself on a team developing a new product. You’ll be surprised how
instantly that team starts depending on you to write good code for their next product; you will sort of wish you
started writing good code from the get-go if you haven’t already. When you see your company’s product on the
shelf or flying through the air, are you going to be worrying about whether your code really works or not?

7.9.1 Software Quality

Does your software work properly? How would you know if you did not extensively test it? Do you think your
boss is going to ask you if you extensively tested your code? No, they will not ask you; they’ll more than likely
assume that you did because that is part of being a good programmer. What they’re going to be asking you is if
your software is completed or not. If you ask for more time to test it properly, no one will consider you a team
player and you’ll probably be soon laid off and then be hired as an academic administrator.

In reality, the testing and debugging of your software is most likely going to require more time than it required
you to get to that point (which includes planning and writing the software). In most jobs, you’ll barely have
enough time to design and write the software before the release date; testing is not usually a high priority. Sad to
say that the only thing that has a lower priority than testing software is actually documenting that software.

Your mission is still to write good code. Good code is going to work, and if it doesn’t work, it’s going to be easy
to debug. Code that is easy to debug is presents a shorter path to getting the code to work. But let’s be real here:
all the testing in the world won’t guarantee that your code will work 100% of the time. What testing will show
you is that your code has bugs; testing is not going to show you that your code does not have bugs. All is not lost
here; there are a few simple rules to follow to help you write good code. If you’re conscientiously striving to
write good code, your code will be in a constant state of improvement. If you learn from your mistakes, you
won’t be making those mistakes again.

7.10 Writing Good Programs

There are many great books out there describing various techniques you can use to write good programs.
Because you are probably a student in an academic environment, you generally don’t get a chance to experience
the normal “real world” approach and accompanying expectations of writing real software. In academia, the
main goal of your software is to complete the assignment at hand. In this case, you know full well that your
program is probably being graded by a robot, which means most of the corners you cut attempting to submit the
assignment before the due date go unnoticed by any other human.

FreeRange Computer Design Chapter 7

 - 181 -

There are several problems with writing code in an academic environment. First, courses in academia typically
place way too much emphasis on completing the assignment at any cost. Your program does what it should in
that it made the robot grader happy, but at what cost? Your code may be crappy, unreadable, unorganized,
unmaintainable code—the robot doesn’t care. Because no human outside of yourself ever sees the code to inform
you of your diminished code quality, you develop bad habits that you may never break. In addition, in academia,
you generally have the choice of obtaining any grade outside of an F and still attain success on the assignment
and pass the class. If truth, if you apply the same approach outside of academia9, you’d be fired rather quickly,
and then later be hired as an academic administrator.

There is a right way to write code. Though you may not always have the time to take this approach, you know
you should be taking this approach. We all strive to be lucky enough to have the time and/or resources to embark
on writing good programs. There is much more to writing good programs than plopping down some instructions.
The final word here is that writing good code is a process that extends well beyond regurgitating instructions
and/or expressions; enjoy the journey.

1) Know how to write proper code: There is more to programming than simply writing code. Anyone can
write good code, but it’s truly a learning process. The main problem in academia is that lazy professors
don’t take the time to ensure their students are writing good code. The typical lazy professor typically
verifies the code appears to be working (or has a robot check to see if it’s working) and quickly moves on to
check-off the next program.

a) Make your code look good: Good-looking code is code that looks good standing ten feet back. In truth,
most people (non-robots) who look at your code are only going to take a cursory glance it; people rarely
take the time to determine if your code is actually good or not. Just like most everything else in life,
people make a snap judgement based primarily on appearances: if you code looks good, it must be
good. Therefore, if you’re not writing good code, the least you can do is make it look good.

b) Write structured programs: Structured programs are easier to “get working”, understand, maintain, and
most importantly, debug. To be able to write structured programs, you must understand the three basic
structured programming constructs: 1) sequences, 2) if-then-else, and 3) iterative constructs.

c) Know the entire instruction set: If you don’t know the instruction set, you’ll never be able to write good
assembly language programs. If you writing in a higher-level language, knowing the underlying
assembly language instruction set helps you write “better” code10.

d) Know the tools: There are various tools that help you write good code in an efficient manner.
Assemblers and compilers have various options to help you write code that it more understandable and
more portable. Simulators/debuggers often have many features that are not overly obvious to help you
ensure your code is working properly.

e) Look for examples of good code: If you strive to write good code, you’ll become more and more aware
of what good code actually is. You’ll then look at other people’s code for examples of what to do and
what not to do. Learn by experience, including other people’s11.

2) Write simple code: Simple code has many things going for it, though job security is not one of them. Good
programmers know and understand the notion that there is a certain eloquence and beauty to good code; it’s
a characteristic that defies description. If you’re trying to impress people with your code, strive to impress
them with the simplicity of your code. You may not impress your butthead friends and colleagues with your
code, but other good programmers will be totally impressed and adopt some of your coding practices.

a) Write understandable code: the assembler does not care what your program looks like, but other
humans do. Understandable code is easier to get working properly, including the eventual debug part of
the process. If you pass crappy code along to colleagues, they’ll quickly lose respect for you

9 Keep in mind this level of incompetence ensures you a promotion if you’re an academic administrator.
10 But if you’re writing in a higher-level language, often times you’re doing it for its portability characteristics, so you may
not know what anything about the underlying hardware.
11 As quoted to me by Keith Swanson in 1980. Thanks Keith.

FreeRange Computer Design Chapter 7

 - 182 -

programming abilities. Be sure to find an approved style file and make you code look like the code in
the style file (or preferably, better).

b) Comment your code: Use comments to primarily state “why” your code is doing something is generally
more important than stating “what” your code is doing. Avoid commenting on things are obvious. Keep
comments brief, but be sure to add extra comments for code that is doing something strange of patently
unobvious.

c) Use labels in your code: Labels cost nothing but do provide a vehicle for making your code more
understandable. Labels are generally short mnemonics that quickly transfer information; use labels as a
special form of commenting. Don’t worry, we’ll talk about labels in an upcoming chapter.

d) Use white space: In fact, use a liberal amount of white space. Everything, including comments,
directives, and instructions should be properly and consistently indented. Use blank lines to delineate
separate ideas in the code stream. Also, use blank lines to delineate subroutines.

e) Write modular code: Possibly the main attribute of simple code is that it is modular. Modular code is
easier to write, understand, reuse, debug, and maintain. The main vehicle for modules in assembly
language programming is subroutines. Each subroutine should have a header that describes the purpose
of the module, and what resources the subroutine changes.

f) Don’t write tricky code: Well, sometimes you have to in the name of efficiency… However, if you do
write tricky code, make sure you comment the code with an excruciating amount of detail.

g) Write portable code: The notion of portable code means that if something in the underlying hardware
changes (either the MCU of external hardware controlled by the MCU); your code will require little or
no modification in order to work properly. Try not to write code that requires intimate knowledge of the
hardware, or keep such knowledge to a minimum (and well commented). Use directives defined in the
initial portion of your code to define constants used by the hardware.

h) Use look-up-tables (LUTs) when possible: You can’t say enough good things about LUTs. Always be
on lookout for instances in your code where a LUT is appropriate (makes your code clearer and/or more
efficient).

i) Write “bullet-proof code: Though it is somewhat beyond the scope of this text, write code that going to
work in every possible setting, including multi-threaded environments. Don’t rely on the calling code to
do the right thing; always do the right thing in each section of code you write.

j) Write code with testability in mind: Someone, possibly you, is going to have to debug and/or
understand your code, so structure you code with testability in mind, include commented code, self-
commenting labels in the code, and relatively simple code.

k) Write code knowing that the requirements will change: Not only will the requirements change, they will
change before you’ve completed your assigned task. It’s generally fairly easy to predict such changes;
you don’t need to be psychic, but it helps. They call this “feature creep”.

FreeRange Computer Design Chapter 7

 - 183 -

7.11 Chapter Summary

 An assembly language is a set of mnemonics that represent operations that the associated computer can
perform. These mnemonics represents 1’s and 0’s, which are “assembled” by an assembler, which outputs
machine code (the 1’s and 0’s). Assembly language programs are written using the instruction mnemonics.

 We can write computer programs at three different levels 1) machine code (low-level), 2) assembly
language (medium-level), or 3) a higher-level language (high-level). No intelligent person writes programs
using machine code as this approach is too tedious. Assembly language programs can become long due their
relative low level compared to higher-level languages. Writing programs in higher-level languages is
relatively efficient as the compiler typically generates many lines of assembly code for one line of higher-
level code.

 Assembly languages are associated with specific hardware architectures. If you switch computer hardware,
you necessarily need to switch assembly languages. Higher-level languages are portable in that if you switch
computer hardware, you simply need to use a different compiler on the higher-level code.

 There are many good reasons why you may want to use an assembly language over a higher-level language.
Writing assembly language generally allows the knowledgeable programmer to generate code that is more
efficient than a typical compiler. Assembly language programming also requires the programmer to be
somewhat knowledgeable about the underlying computer architecture.

 Assembly languages essentially tell the underlying hardware how exactly to push bits around. There are
only so many things you can do with bits, so learning a new assembly language after you know one is
relatively easy, as it mostly requires learning a new syntax and becoming familiar with the associated
programmers model.

 Writing programs to solve problems is an art form. However, those learning the art can get a good start by
not losing sight of the problem being solved and by following this simple set of guidelines.

 Structured programming using basic constructs assembled in a workable manner to write programs.
Programs that are not properly structured often end up becoming “spaghetti code”, and are essentially, giant
pieces of crap.

 Flowcharts provide a simple approach to program design and program documentation.

 Flowcharts as a design tool give programmers a visual representation of program flow, which is important in
assembly languages as they can quickly become long and complicated.

 Flowcharts as a documentation aid will help others quickly understand the intended purpose and flow of
your assembly language source code.

 Flowcharting is based on a few simple symbols including program flow, process, predefined process,
decision, and terminal.

 The three basic structured programming structures are the sequence, if-then-else, and iterative constructs. If-
then-else constructs include case-type constructs while iterative constructs include both do-while and while
constructs.

 Your software is going to have bugs; the best you can hope for is to keep the number of bugs and the
damage the bugs cause to a minimum.

 Verification and debugging of programs usually takes longer than the actual planning and writing of
programs.

 Writing good programs is an art form. If you’re not an artist, you can follow a basic set of guidelines to
prevent your code from becoming crappy.

FreeRange Computer Design Chapter 7

 - 184 -

7.12 Chapter Exercises

1) Briefly describe why you can model a computer as a device that “pushes bits around”.

2) Briefly describe how an assembly language program is converted into machine code.

3) Briefly describe the general purpose of instruction mnemonics.

4) Briefly describe why it is that every program ever written and executed on a computer ends up at the
machine code level.

5) Briefly describe what the term “computer architecture” refers to.

6) Briefly describe whether it would be possible to have two different assembly languages be associated with
the same computer architecture.

7) Briefly describe whether it would be possible to have two different computers use the same assembly
language.

8) Briefly describe why is it is that assembly language programs can quickly become long.

9) Briefly describe what an assembler is and what it does.

10) Briefly describe what a compiler is and what it does.

11) Briefly describe why assembly language programmers need to stay organized with their coding style.

12) Briefly describe why it is important for assembly language programmers to understand the hardware
associated with the computer they are writing assembly language for.

13) Briefly describe why compiler and assemblers are good at knowing there is an error in the code but much
less good at figuring out the exact error.

14) Briefly describe why it is that a compiler will never be as good at optimizing code as a good and
knowledgeable human.

15) Briefly describe why it is that you must learn a new assembly language if you move to a different computer
architecture.

16) Briefly describe what’s the best way to increase the operating speed of a large program written using a
higher-level language and compiled?

17) Briefly describe why it is that programming in a higher-level language is more portable than programming
at the assembly language level.

18) Briefly describe the three general differences between different computer architectures.

19) Briefly surmise why it is that assemblers are “free” more often than compilers.

20) In your own words, describe the main purpose of an algorithm.

21) What is the hardware analog to a programming flowchart?

22) What are the two main purposes of flowcharts?

23) Briefly describe what the notion of a generic flowchart refers to.

24) Briefly describe why it is a good idea to keep your flowcharts as generic as possible.

25) I suddenly got the idea to use a start symbol rather than a diamond symbol for a decision point in my
program. Briefly describe why this is a bad idea.

26) Briefly describe why it is important to write assembly language code that not only works, but also looks
good.

27) Briefly describe whether you know good-looking code actually works properly by just looking at the code.

28) Briefly describe why it is important to ocassionally examine other people’s assembly language code.

FreeRange Computer Design Chapter 7

 - 185 -

29) Briefly describe the likelihood that you’re going to need to extensively test your assembly language code.

30) Briefly describe the likelihood that you’ll actually have time to extensively test your assembly language
code.

31) Briefly describe why it’s a good idea to always make your assembly language code as simple as possible.

FreeRange Computer Design Chapter 8

 - 186 -

8 Introduction to RISC-V Assembly Language Programming

8.1 Introduction

Assembly language programs are not complicated, but they are somewhat different from higher-level language
programs you’ve written. There are many approaches you can take to learning to write assembly language
programs; the approach we’ll take in this chapter attempts to get you writing programs as quickly as possible.
This chapter does not attempt to tell you everything you’ll ever need to know about every RISC-V instruction in
the instruction set. What we’ll do instead is arbitrarily tell you only what you need to know to enable you to
write and understand basic assembly language programs. Once you have a basic grasp of writing programs, we’ll
delve into more of the details regarding writing RISC-V assembly language programs.

The heart of assembly language programming is the instruction set associated with the computer that you’re
planning on programming. Each assembly language instruction comprises of a set of 1’s and 0’s that magically
somehow control the associated computer’s hardware. The notion of the precise 1’s and 0’s that make up the
instruction is low level, so we don’t cover them in this chapter. All of these issues fall under the category of
“instruction set architecture”, or ISA.

Main Chapter Topics

 INSTRUCTION SET DESIGN: This chapter covers some of the high-level details
associated with designing an instruction set from scratch.

 ISA DESIGN ISSUES: This chapter covers discusses a few of the important design
parameters associated with ISA design.

 ASSEMBLY LANGUAGE PROGRAM STRUCTURE: This chapter outlines the basic
and preferred structure of assembly language programs including comments,
assembler directives, and assembly language source code.

 INTRODUCTION TO EMBEDDED SYSTEMS: This chapter presents the notion of an
embedded system as it relates to basic assembly language programming.

 COMPUTER OVERVIEW: This chapter once again describes the “big picture” in the
context of the RISC-V MCU instruction set and programming model.

 INSTRUCTIONS OVERVIEW: This chapter presents high-level views of instructions
by describing their general purpose and high-level classifications.

 RISC-V MCU INSTRUCTION VERNACULAR: This chapter describes some of the
commonly used vernacular describing assembly the RISC-V MCU ISA and
associated programming model.

Why This Chapter is Important

This chapter is important because it describes the basic structure of assembly
language programs and provides several well-commented assembly language example
programs.

FreeRange Computer Design Chapter 8

 - 187 -

8.2 Instruction Set Architecture Design Issues

There are people out there who spend their entire lives delving into the low-level details of instruction sets and
particularly, instruction set architectures (ISAs). We’re not going to go too deep into the subject in this textbook,
but we’re going to mention some of the most basic ISA design principles. This is one of those issues where 90%
of the work in ISA design goes into the final 10% of the design. What this means is that you can generate a
“good” ISA without a super-significant amount of work; most of the work (the 10% part) involves squeezing as
much performance out of your ISA as possible. We won’t go there.

The approach we take in this text is to allow someone else to do the thinking for us. The result is that the RISC-
V is a very well thought-out instruction set, which is the result of the fact that RISC-V is an open-source
architecture. The RISC-V is efficient, effective, and highly functional. Possibly the best part about RISC-V is
that it is highly extensible, which means we can use it for a beginning class in computer architecture, and later
use the same ISA for more advanced courses.

8.2.1 Instruction Set Design

There are most definitely some great theories on instruction set design out there in computerland. The good news
is that all of the good stuff was inserted into the RISC-V ISA. The many engineering decisions made along the
way add the sparkle to the RISC-V ISA.

If you had to declare the big issues in instruction set design, you would most likely find them related to the type
of computer you’re designing. Don’t lose sight of the big picture: you’re solving problems with a digital circuit.
To make your solution non-generic (meaning that you can use the same circuit to solve many problems), you
decided that your digital circuit will be a computer. You now have a choice: design the computer yourself or use
some off-the-shelf solution.

The big issue is that if you design the computer yourself, you can design it with your specific needs in mind.
Your design will thus be specific purpose: it does a great job of solving your problem, but probably a not so
good job being able to solve “just any problem”. On the other hand, it you use some off-the-shelf computer, that
computer is most likely going to be a general-purpose computer design. It probably won’t solve your problem as
good as your specific computer design, but will do a good job on a wide set of problems.

General-Purpose Computer: If you’re designing a general-purpose computer, then you don’t
really know exactly how people will use the computer. It is therefore your job as the ISA
designer to provide enough instructions to do “just about anything”, which means you’ll be
including instructions that do generic/typical operations associated with computers/computer
hardware. You’re essentially guessing what instructions programmers and/or compiler writers
will find useful; it’s an educated guess, but it’s still a guess.

Specific Purpose Computer: If you’re designing a specific purpose computer, you’ll know
exactly how people will use that computer. Designing a specific purpose computer is generally
an easier task than designing a general-purpose computer because there is typically no
“guessing” involved as to what the computer needs to do. In this case, you include only the
instructions you know you will use, thus your computer may not be able to do everything a
general purpose computer does, but it will perform your specific task better (faster, less
hardware) than the general purpose computer. Keep in mind that you’re going to need to write
your own assembler and/or compiler to support your computer design.

8.3 ISA Driven Computer Hardware Designs

How do you go about designing a computer? Are there some rules somewhere that you follow? It there a list of
tasks somewhere that you follow and then magically have a computer once you’ve completed the tasks? I truly
don’t know the answer to these questions. What I do know is the computer design approach taken by the RISC-
V. But first a story. Way back in grad school I took a course in the MPEG standard at the time1. The general
process was to encode the movie in a compressed format, then decoding it to watch the movie. The standard did

1 MPEG is a standard used to compress and encode motion pictures.

FreeRange Computer Design Chapter 8

 - 188 -

not describe the encoder though: it only described the decoder. I found that shocking at the time. The reason it
only defined the decoder was to give designers ultimate flexibility in how they designed the encoder; the only
constraint was that whatever they encoded must be able to be decoded by the any MPEG compliant decoder.
This story seems pertinent because it relates to the RISC-V MCU computer design.

If you think about it, you may not realize what came first: the hardware or the instruction set. The truth is that the
instruction set came first. All subsequent designs are based on the ISA description. Thus, compilers, assemblers,
and most importantly for us, the actual RISC-V computer hardware is based on one directive: to do whatever it
takes to support the RISC-V ISA. Thus, the ISA came first. The result of this is that the RISC-V MCU hardware
is unique. It was primarily an implementation of one person’s ideas to support the RISC-V ISA. The reality is
that two different people would probably come up with different designs for the same problem. The only
requirement here is that the hardware designs must be able to implement the instructions in the ISA.

For this text, we give you the computer hardware design, thus you don’t have to design hardware yourself. The
approach taken by this text is to say: “here is the hardware that will implement the RISC-V ISA: it is your
mission to completely understand the hardware, particularly how it implements the given ISA”. It’s very doable,
but not trivial. On one hand, it’s only a digital circuit, comprising of standard digital modules that you’re used to
working with. On the other hand, the hardware implements a modestly complex computer. The intended learning
mission for you is to develop an understanding of the hardware as it relates to the ISA, which then provides you
with the tools such that you can design your own ISA and supporting hardware. You’ll thus be able to provide
the complete computer-based solution to any problem you face.

8.4 RISC-V MCU Assembly Language Program Structure

This may be your first experience with assembly language, so you may be totally lost at this point. This section
aims to provide you with a quick overview of assembly language, programs written in assembly language, and
the items provided by running the assembler on your program. This is a quick overview; we go into more detail
in later chapters.

8.4.1 The Assembly Language Program

Figure 8.1 shows a simple assembly language program. The program does not do much, but it does contain all
the important parts of a program written in assembly language. We follow Figure 8.1 with a description of the
important parts of the program with a level of detail that supports your current knowledge of the RISC-V ISA.

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

#---
Program: example_program

This program inputs a value, toggles all bits, and outputs the
value. This program performs these tasks repeatedly.

#---
.text # indicate segment with directive
 #
init: li x10,0xC0008000 # initialize input port address
 li x11,0xC000C000 # initialize output port address

main: lw x15,0(x10) # get data from input port
 xori x15,x15,-1 # toggle all bits in the data
 sw x15,0(x11) # output data to output port
 j main # branch and repeat

Figure 8.1: A simple assembly language program.

There are three basic parts to any assembly language program: 1) comments, 2) assembler directives, and 3) the
assembly language source code. The only thing you need to make your program run is assembly code, but the
other parts of your program are important for writing good assembly language programs.

8.4.1.1 Comments

Comments increase the readability and understandability of your programs; you should always use comments if
these two qualities are important to you. Comments represent “messages to humans”; more specifically,

FreeRange Computer Design Chapter 8

 - 189 -

comments represent messages from the human writing the code to some other human who may be reading the
code. RISC-V code indicates comments with pound signs (“#”). Here are some other fun facts about comments.

 The assembler ignores all the text on a given line after the pound sign

 The pound sign can appear anywhere on a line of code

 There are no “block comments” in RISC-V; each commented line must include a pound sign.

 The code in Figure 8.1 uses comments in two different ways: to describe “big” things such as
the overall functioning of the program, and to describe “little” things such as the purpose of a
particular line of code.

8.4.1.2 Assembler Directives

As the name implies, assembler directives give the programmer some measure of control over the operation of
the assembler. This means that assembler directives are messages from the programmer to the assembler. The
code in Figure 8.1 contains only one directive, which is on line (08). Typical assemblers generally have a large
set of directives available for the programmer, and the various directives come in different forms. We’ll address
the topic of assembler directives in a later chapter.

8.4.1.3 Assembly Code

What makes an assembly language programs a program is the fact that it contains code. The code is the various
assembly language instructions. The code in Figure 8.1 contains six assembly language instructions (no need to
worry about what they do). The instructions themselves appear indented towards the right. Other things to note
are as follows:

 Assembly code only contains one and only one assembly instruction per line. This imposes a
fixed structure on assembly language programs that don’t exist in higher-level language
programs.

 The various assembly instructions contain a different number of operands.

8.4.1.4 Labels

Labels are an important part of any program because they serve two purposes, and often serve both of these
purposes at the same time. They are thus both useful to humans reading the program, and also to the assembler.
These labels typically appear quite commonly in assembly language programs. They are actually somewhat like
directives in that they are messages to the assembler. Labels are hard to classify what they are as they are not
instructions, but they are a “part” of some instructions; but even though they are part of some instructions, they
not increase program size. Labels can also can act as comments, because they don’t actually do anything other
than provide information to the human reader. This will make more sense when we start writing actual programs
in a later chapter.

 Lines (10) and (13) contain labels, which are on the beginning of the lines that contain assembly
language programming code. Labels always appear starting in the first column of the assembly
code and are always terminated with a colon.

 The label on line (10) serves purely as a comment for human readers. It differs from the label on
line (13) because that label is part of the instruction on line (16). This is a common use of labels
where main goal is to increase the readability of code for humans without increasing code space.

 The label on line (13) is basically required because it appears as part of the instruction on line
(16), thus the instruction relies on that label.

8.4.2 Important Assembly Language Program Formatting

The assembly language programmer has the ability to make the most eloquent assembly language programs
possible. These are not “rules”, but it something everyone should follow. You can argue that all you care about is
the whether the program works or not, but there is much more to the story. Your mission is to both make the

FreeRange Computer Design Chapter 8

 - 190 -

program work, and to make the program readable and understandable to other humans. A few things to note
about the code in Figure 8.1:

 The code contains a “file header” or “file banner” describing the contents of the file. The notion
here is that the code for the program is stored in a file.

 The code has many different forms of alignment. The code aligns just about everything:
instructions, the first operands in the instruction line, the comments associated with each
instruction, and the comments associated with the file header.

 Lines (09) and (12) have nothing on them, but this “whitespace” effectively delineates the
various parts of the program. You should always use whitespace to delineate “ideas” in your
code. Whitespace does not make your programs longer in the context of computer instructions; it
just makes code program text longer.

8.4.3 The Actual Program

People new to assembly language programs often have experience with writing higher-level language programs.
The typical higher-level language program runs the associated code, then stops running. The programs we
consider in this course are typically associated with “embedded systems”; one major characteristic of an
embedded system program is that the run, and keep running, and never stop running (unless you remove power
from the underlying hardware).

The program in Figure 8.1 does not have the ability to “stop running”. Note that the program in Figure 8.1 takes
the form of an endless loop, the instruction on line (16) is an unconditional branch instruction which direct the
program to start executing instructions appearing earlier in the program. An interesting thing to note about the
RISC-V ISA is that there is no instruction that directs the computer to “stop executing instructions”. Most ISAs
associated with microcontrollers likewise do not contain instructions that “halt” the processor.

8.4.4 Visual Description of Program

The assembly language code for the program can appear intimidating to people new to assembly language. To
help sooth these fears and worries, we can of course describe programs with flowcharts. This is a simple program
so we don’t expect the flowchart to be overly complicated. Figure 8.2 shows a flowchart the models the
operation of the program in Figure 8.1. A few things to note here:

 This is “a” flowchart, and not the flowchart. There are many ways to represent this program
using a flowchart, this is one of them.

 The flowchart has a start terminal symbol, but no ending symbol, which models the notion that
these programs always run. You’ll later see that the instruction set does not have any instructions
that stop the hardware from executing instructions.

 The flowchart shows that the initialization portion of the code only executes once because the
first process symbol is outside the loop.

 We included a medium level of detail in the flowchart. For example, we stated “initialize port
addresses”, but we did not say which ones and their associated addresses.

FreeRange Computer Design Chapter 8

 - 191 -

Figure 8.2: A flowchart modeling the operation of this example program.

8.5 What the ISA Really Does

We keep talking about the ISA (instruction set architecture), but what does it really do? We’re setting out to use
the computer to solve a problem. We’ll use an off-the-shelf ISA and implement a computer that supports that
ISA. The ISA is the blanket term for the set of instructions that control the underlying hardware of the computer.
Figure 8.3 show a basic high-level description of the underlying hardware, including the three accepted standard
modules of a computer. We can thus classify all of our instructions according to what they do to the underlying
hardware. Here is roughly what the set of instructions in the instruction set do in the context of the diagram in
Figure 8.3. The bullets below roughly represent the arrows in Figure 8.3.

 Some instructions use the I/O block, which allow us to obtain data from and provide data to the
outside world

 Some instructions use the microprocessor to crunch bits

 Some instructions store data in the memory block

 Some instruction get data from the memory block

 Some instructions do nothing except determine where in the program to go in order to do the
next thing the program needs to do

Figure 8.3: The basic computer model at a lower level.

When we describe the operations of the instructions at a high level, they seem rather simple. They are simple,
but they can seem daunting because there seem like there are so many of them. Always remember that there’s
not that much to do in the computer hardware; it becomes a matter of understanding what your program needs to
do and how to do it in the context of the underlying hardware. As you’ll see as you become more familiar with
the instruction set (or ISA), most of the instructions share many similarities. The devil is always in the details.

FreeRange Computer Design Chapter 8

 - 192 -

8.6 RISC-V MCU Assembly Language Basics

Before we start on assembly language, let’s review the big picture. There are many details here; we need to start
out on the same page.

8.6.1 The Big Picture

Recall that our aim is to use a computer to solve a problem; we’ll need to program the computer in order to do
that. We can program the computer at three different levels, but we’ll be describing programming an assembly
language level, which is one step above programming using machine code level and one step below the
programming using a higher-level language.

We can model computers at many levels, but let’s review the highest level in the context of assembly language
programming. Figure 8.4 shows a high-level model of a computer that you’ve seen before and will work for us
here. What we have is a model of hardware that the computer instructions will eventually control such that it will
solve a problem for us. Generally speaking, our computer will read in data from the outside world (via the I/O
module), that data will be crunched around in some intelligent way (via the Processor module), and then the
result is output back to the outside world (vial the I/O module). All this stuff happens under control of a program
(set of instructions) that is stored on the computer (in the memory module). Along the way we may need to store
temporary calculation values in the listed memory model, thus the memory stores both data and instructions.

The RISC-V MCU has a set of instructions that we’ll use to program the computer. Relative to the description in
the previous paragraph, we can divide our instructions into the following categories. This is a high-level
description, but it supports our high-level architecture diagram in Figure 8.4.

 Instruction that pass data between the computer and the outside world

 Instructions that pass data between the various memory modules

 Instruction that crunch data

 Instructions that control the basic flow of the program

Figure 8.4: General model of a computer.

Let’s drop down a level to the instruction set architecture (ISA) level and the Programming Model (or
Programmers Model). Recall that the instruction set is the instructions that control the hardware listed in the
Programming Model. There is much more hardware in the RISC-V MCU, but we programmers don’t have direct
control over that hardware via the instruction set. The only thing we’re interested in at this point is the
instruction set and the hardware we can control with it. The notion here is that if we can properly control the
hardware (using programs, which are full of instructions from the instruction set), we’ll be able to solve the
problem at hand. Figure 8.5 show the RISC-V MCU ISA (a) and the programming model (b).

FreeRange Computer Design Chapter 8

 - 193 -

Program Control
jal rd,imm jal imm j imm
jalr rd,rs1,imm jalr rs jr rs
call imm tail imm
ret mret
beq rs1,rs2,imm beqz rs1,imm
bne rs1,rs2,imm bnez rs1,imm
blt rs1,rs2,imm blez rs1,imm bgt rs1,rs2,imm
bge rs1,rs2,imm bgez rs1,imm bgt rs1,rs2,imm
bltu rs1,rs2,imm bltz rs1,imm bgt rs1,rs2,imm
bgeu rs1,rs2,imm bgtz rs1,imm bgt rs1,rs2,imm
Load/Store (& I/O)
lb rd,imm(rs1) lbu rd,imm(rs1) sb rs2,imm(rs1)
lh rd,imm(rs1) lhu rd,imm(rs1) sh rs2,imm(rs1)
lw rd,imm(rs1) sw rs2,imm(rs1)
Operations (crunch)
addi rd,rs1,imm add rd,rs1,rs2
 sub rd,rs1,rs2 neg rd,rs1
xori rd,rs1,imm xor rd,rs1,rs2 not rd,rs1
ori rd,rs1,imm or rd,rs1,rs2
andi rd,rs1,imm and rd,rs1,rs2
slli rd,rs1,imm sll rd,rs1,rs2
srli rd,rs1,imm srl rd,rs1,rs2 sgtz rd,rs1
srai rd,rs1,imm sra rd,rs1,rs2 sltz rd,rs1
slti rd,rs1,imm slt rd,rs1,rs2 snez rd,rs1
sltiu rd,rs1,imm sltu rd,rs1,rs2 seqz rd,rs1
Axillary
nop auipc rd,imm lui rd,imm
csrrw rd,csr,rs1 csrw csr,rs1
la rd,imm li rd,imm mv rd,rs

(a) (b)

Figure 8.5: The Instruction Set (a) and the Programming Model (b).

We use the instructions in Figure 8.5(a) to control the hardware resources listed in Figure 8.5(b). Note from
Figure 8.5(a) that we classified the instruction in heading that indicate what the operations the instructions
perform. Also from Figure 8.5(b), we can see that we have some different hardware to control. Even if you’re
only going to be a programmer, you need to have a basic understanding of the hardware listed in Figure 8.5(b)2.
One thing to note in Figure 8.5(b) is that all the resources the instruction set has direct control over is memory of
some sort. We can see from Figure 8.5(b) that we have the following memory resources.

Register file: This is 32 32-bit general purpose registers can use to crunch and/or store numbers

Program Counter: this is a register that hold that address of the instruction in Memory that the
computer is currently executing

Memory: This stores sets of bits such as computer instructions and various forms of information
including data and address information. The “stack” is a special area in memory that we’ll
describe later.

Now that we have a more accurate description of the actual RISC-V MCU hardware, we can provide a better
description of how the instructions control the computer such that we obtain our desired result. We’ll provide
this description in the context of the instruction classifications of ISA in Figure 8.5(a). Remember, this is a quick
overview; we provide more details later.

8.6.1.1 Program Control

Programs don’t generally run from the “beginning” to the “end”, which is another way of saying they don’t
execute the instructions from memory one after the other, then stop. Typical programs go from executing

2 We’re trying to keep the hardware as separate as possible from the software; later chapters in this text deal with the more
detailed hardware aspects of the RISC-V MCU. To be a good programmer, you need to have at least a basic understanding of
the underlying hardware of the computer your program will execute on. If you have this understanding, you programs will be
operate “more better” than if you don’t have any knowledge of the underlying hardware.

FreeRange Computer Design Chapter 8

 - 194 -

instructions from one area of memory to another, so there need to be instructions that support this operation. We
refer to this type of instruction as program control instruction because these instructions alter the normal
sequential execution of instructions.

We classify program control instructions as “branch” instructions, as they can cause program execution to jump
from one area of program memory to another area (not sequential execution). We further classify these
instructions as “conditional” and “unconditional” branch instructions. The notion of condition means that we go
somewhere else if the conditions are correct; otherwise, we continue on to execute the next instruction in
program memory. Unconditional branch instructions always go somewhere else. The RISC-V jump-type
instructions always go somewhere else (such as in a subroutine call); the conditional branch instructions may or
may not so somewhere else based on some condition of the hardware (such as in an if/else) construct.

8.6.1.2 Load & Store

This is classic computer vernacular that you need to become familiar with. Loading refers to reading something
out of memory and writing the data to another memory location such as a general-purpose register (loading).
Storing refers to copying something from somewhere such as a general-purpose register and writing that data to
memory (storing). We have 32 registers to work with, and we try to do most of our number crunching with
registers because they are “faster” than working with memory (a topic for another section). When we run out of
registers but still need extra storage, we must load and store data from memory.

The RISC-V MCU of course has I/O. There are several approaches that computers use to perform I/O; the RISC-
V MCU uses what we call “memory mapped” I/O. Because of this, we don’t need instructions dedicated to doing
I/O. However, what we need to do is use the load instructions for inputting data from the outside world, and use
the store instructions for outputting data to the outside world. This works by configuring the hardware to not do
normal memory access operations when certain memory addresses are access (once again a topic for another
chapter).

8.6.1.3 Operations

Computers, and particularly the CPUs in computers, are responsible for “crunching” numbers, or doing special
“bit manipulations”. These operations include operations such as adding, subtracting, ANDing, ORing, shifting,
etc. The RISC-V MCU has a set of instructions dedicated to crunching numbers. The important thing to note
here is that we can only do number crunching using registers. This means if you have numbers in memory that
need crunching, you first must load them from memory to the registers.

8.6.1.4 Auxillary

There are also a set of instructions that are hard to place in any of the previous classifications, so we refer to
them as the auxillary instructions. Most of these instructions “set up” the hardware to do the right thing when
other instructions are executed. These will make more sense when we describe them in a meaningful context.

8.7 Instruction Types

We consider the RISC-V MCU to have two types of instructions, which we refer to as “base instructions” (or
just instructions) and “pseudoinstructions”. The hardware only understands the base instructions, but we can use
pseudoinstructions to make our programs more understandable to the human reader. The assembler is
responsible for converting pseudoinstructions into base instructions. Someone designed the RISC-V MCU
instructions to be very versatile; as a result, we can use those instructions to perform special operations; we give
these operations new mnemonics of their own and call them “pseudoinstructions”. Figure 8.5(a) uses shading to
indicate pseudoinstructions.

The assembler is responsible for translating the pseudoinstructions into real instructions, or a “set” of real
instructions. There are two types of pseudoinstructions: ones that translate into one real instruction, and ones that
translate into two real instructions.

8.7.1 Instruction Formats: High Level

We generally consider instructions to “operate” one thing; we thus refer to the things the instructions operate on
as the “operands”. The different instructions in the RISC-V MCU ISA require a different number of operands to

FreeRange Computer Design Chapter 8

 - 195 -

do their work, depend on what the instruction needs to do. Figure 8.6 shows examples of the various numbers of
operands associated with a few example instructions. Generally speaking, the operands are data that exist
somewhere, such as in a register or memory, though there is more to it than that. We once again get into the
details in a later section.

of
Operands Example Comment

0 ret Pseudoinstruction; translates one instruction

1 call imm Pseudoinstruction; translates two instructions

2 lui rd,imm Real instruction

3 and rd,rs1,rs2 Real instruction

Figure 8.6: Examples of various numbers of instruction operands.

8.7.2 Instruction Operand Addressing

This is a common term when dealing with assembly languages, so common that we often forget what it really
means. ISAs have “addressing modes”, which is a technical way to state how the instruction specifies where to
find the data associated with a given operand that the instruction uses. Once again, think back to the
programming model for the RISC-V MCU; there are resources that instructions can manipulate, but the
instructions need to be able to specify the exact location of those operands. Table 8.1 shows examples of RISC-
V MCU addressing modes.

Address Mode Instruction Form Comment

immediate jal rd,imm Uses an immediate value as an operand

register add rd,rs1,rs2 Uses register locations to specify operands

indexed lbu rd,imm(rs1) Uses in immediate and value and register
contents to generate operand

Table 8.1: Various addressing modes and descriptions.

8.8 Instruction-Related Terminology
We’re almost to the point of learning some of the details associated with instructions. When you read about the
instructions associated with any computer hardware, you typically run into a common “vernacular” that the
documentation uses to describe that hardware. The same is true for the RISC-V MCU. This section describes that
vernacular in enough detail to help you understand the lower-level details once we get there.

8.8.1 Changing Stored Values

All instructions in the ISA change the value of at least one stored item listed in the programming model. Figure
8.7 shows the RISC-V MCU programming model, which once again shows there are three main classifications
of what the instructions can change:

General Purpose Registers: There are 32 general-purpose registers that instructions access to
store data that is not stored in Memory.

Program Counter (PC): the program counter contains the address in memory of the instruction
that the computer is currently executing. The PC advances “normally” in sequential instruction
access, but can also load new values to support program control instructions such as jump and
branch instructions.

Memory: Memory changes primarily when we store values into it (write operations). There are
two ways to transfer non-instruction data into memory 1) copy data from a register (a store
operation), and 2) input from the outside world (an input operations). Similar, there are only two

FreeRange Computer Design Chapter 8

 - 196 -

ways to copy data in memory to some other area: 1) copy data from memory to a register (a load
operation), and 2) output data from memory to the outside world (an output operation).

Control and Status Register (CSR): we’ll discuss this in further detail later

Figure 8.7: The RISC-V MCU programming model.

8.8.2 Alternate Register Names

Figure 8.7 shows the 32 general purpose registers. These registers form the basis of number crunching in the
RISC-V MCU. Although we consider these registers to be general purpose, by convention in the RISC-V MCU
specification, we consider some of these registers to have alternate purposes, so we give these registers
alternative register names. The different register names once again make your program more understandable to
humans reading your code. The assembler is responsible to interpreting register names and generating the correct
machine code for all instructions. You can use either form of register names in your program, but you should use
the ones that make the most sense. Table 8.2 shows the registers listed with their standard “x#” designation and
their alternate definition. Here is some information to know about these alternate definitions:

 Register x0 is hardcoded to 0 (the number zero). You can read from this register, but you can’t
write to it.

 Several registers are special for reasons of varied importance. For this reason, x1 and x2 should
not be considered general purpose (meaning, don’t use them). We’ll tell you the reasons later
when it makes more sense.

 The acronym “ABI” stands for “Application Binary Interface” and is common in the RISC-V
documentation. We use it here, but may never use it again.

 Many of the ABI registers have standard alternative uses besides x1 & x2. We’ll talk about
those later as well.

reg ABI reg ABI reg ABI reg ABI
x0 0 x8 so/fp x16 a6 x24 s8
x1 ra x9 s1 x16 a7 x25 s9
x2 sp x10 a0 x18 s2 x26 s10
x3 gp x11 a1 x19 s3 x27 s11
x4 tp x12 a2 x20 s4 x28 t3
x5 t0 x13 a3 x21 s5 x29 t4
x6 t1 x14 a4 x22 s6 x30 t5
x7 t2 x15 a5 x23 s7 x31 t6

Table 8.2: Official and alternate general-purpose register names.

8.8.3 Source and Destination Designations

Many of the RISC-V MCU instructions both access and change register values. The general approach is that
instructions may access data in one or two registers, and use that data to alter the data in another register. We

FreeRange Computer Design Chapter 8

 - 197 -

refer to the registers that instructions access but do not changed as source registers; we refer to the registers that
instructions change as the destination register. There can be more than one source register but there is never
more than one destination register (some instructions don’t have destination registers). Instructions use special
definitions when referring to source and destination operands. Table 8.3 shows examples of instructions and their
operand specification and usage. Note that in Table 8.3, we use the vernacular “rd” and “rsx” to designate
destination and source operands, respectively. Don’t worry about what the instructions do; you only need to
consider the form and names of the operands.

Instruction Form Comment

jal rd,imm No official source operand designation; we
consider the “imm” value to be a “source”

add rd,rs1,rs2 Two source operands listed as rs1 & rs2.

lbu rd,imm(rs1) One source operand; the “imm” value is part
of the source operand calculation

addi rd,rs1,imm One source operand; we consider the “imm”
value to be a “source” operand

Table 8.3: Example instructions showing source and destination operands.

8.9 Embedded Systems Programming

As we get closer to talking about actual programming, let’s describe the ultimate goal. Most assembly language
programs end up in some embedded system. An embedded system is a computer-based system that requires no
outside user intervention in order for it to run properly. This means the system fires up into a working state and
stays working for as long as the system remains powered. Note that this is different from what you may be
familiar with in your higher-level language programming courses. The programs you wrote in those courses
typically did something relatively useful, and then “ended”. The notion of most embedded systems is that the
program they are running never ends, unless of course you remove power from the circuit. The reality of
embedded systems is that they just sit there waiting to react to inputs or conditions from the outside world.

8.9.1 Software vs. Firmware

Often times when you’re generating source code, a question of semantics often arises. When you are writing
code, are you writing “software” or are you writing “firmware”? Regardless of the particular hardware you’re
writing the code for, some portion of memory in the computer you’re programming is dedicated to the storage of
your program. The instructions that make up your program tell the computer exactly how to process data and
what to do with the data it processes. If the user can change program memory, we consider the program stored in
memory as software and we refer to the computer system a general-purpose system. If the user cannot change
the program in program memory, we consider the program as firmware, as it was written for a single purpose
computer3.

Another way to view the software vs. firmware argument considers the target platform. In other words, if you’re
design code that can run on any computer, you’re probably writing software. If your program only runs on a
specific piece of hardware, then you’re probably writing firmware. I remember this by thinking about a program
that blinks an LED or writes to a display on a given board. The odds are slim that another piece of hardware will
have that same display or same LED, which makes the code you wrote hardware specific, which means it’s
firmware. If your program runs on every PC in the world, then you’ve written software.

3 The reality is that most people use the term software in reference to true software or true firmware. In most cases, this is OK
because you know what the person using this term intended because of the context it was used in. The term firmware, on the
other hand, is never used to mean software. The biggest mistake that people generally make is that they think that firmware
has a direct connection to assembly language programming. The reality is that firmware can be in the form of assembly
language or a higher-level language (or both). Don’t fall into this trap.

FreeRange Computer Design Chapter 8

 - 198 -

Many people mistakenly conclude that they are writing firmware if they simply writing their source code using
an assembly language. According to the definitions of firmware and software, you can write firmware using
either assembly language or a higher-level language. Likewise, you can also write software using either
assembly language or a higher-level language.

FreeRange Computer Design Chapter 8

 - 199 -

8.10 Chapter Summary

 The act of designing an instruction sets is an independent action of designing the hardware that will be able
to execute those instructions.

 There are three main parts of an assembly language program: 1) comments, 2) assembler directives, and 3)
the assembly source code. Comments are messages from the programmer to other humans attempting to
understand the code. Assembler directives are message from the programmer to the assembler. The
assembly source code is messages from the programmer to the underlying computer hardware.

 Labels in assembly language programming act as both messages to the assembler and messages to other
humans, depending on how the programmer decides to use them.

 Meaningful assembly source code is neat, structured, and highly organized. It’s easy to write crappy
assembly language code, but a much better idea is to follow some basic formatting rules to make you source
code highly readable and understandable. One the best approaches to generating good source code is to use
comments to describe what you’re doing and delineate different sections of the code. All languages have
associated style-files that show what good assembly code looks like; be sure to access the style-file
associated with any assembly code you work with.

 The instructions in a computer control the computer hardware in meaningful ways. This roughly means that
the instructions control the flow of data through the computer in order to help the computer obtain a
meaningful result. A typical computer has relatively many assembly language instructions, but those many
instructions can be divided into just a few groups based on what the instructions do in the hardware.

 Assembly code is often associated with embedded systems programming. In typical embedded systems, the
associated program never terminates. Likewise, the RISC-V instruction set has no instruction that stops
execution of any running program.

 We can divide the source code for any given assembly language program into various sections, which are
standard in embedded systems programming. The two sections discussed in this chapter are, 1) the
initialization code, and, 2) the main code. Every assembly language program should have these two sections
clearly labeled.

FreeRange Computer Design Chapter 8

 - 200 -

8.11 Chapter Exercises

1) In terms of instruction set design, briefly describe the two types of computer that someone may ask you to
design.

2) In terms of instruction set design, briefly describe why it is “easier” to design a specific purpose computer as
opposed to a general-purpose computer.

3) Briefly describe why the design of an instruction set is an independent function of design hardware that
could implement that instruction set.

4) What is the range in the number of operands that RISC-V instructions can have?

5) List and briefly describe the three parts of an assembly language program.

6) An assembly langue program must include assembly code; briefly describe the main purpose of the other
two parts of an assembly language program.

7) The three parts of an assembly language programs provide “messages” to various entities. Briefly describe
those entities and the associated messages.

8) What is the first comment that every assembly language source code file should contain.

9) Briefly describe why it is that embedded systems program rarely terminate unless you power-down the
hardware.

FreeRange Computer Design Chapter 9

 - 201 -

9 Assembly Language Programming Operations

9.1 Introduction

I’ve been at this juncture before: how am I supposed to teach assembly language programming? A few comments.
First, it’s hard to teach anything when not in the correct context. The correct context is that we generally write
programs to solve problems. Even though we know that computers solve problems, we don’t know how to write
assembly language programs, so we can’t solve any problems yet. We know there are bunches on instructions, and
we’ve probably programmed using a higher-level language, but assembly language is significantly different and
it’s hard to make the connection between this strange new language and problem solving. Second, so much of the
information you need to program in assembly language is based on other information that you don’t know yet.

The solution is to start somewhere. If it seems strange at first, please know that it will seem less strange as you
understand more and start writing actual assembly language programs. My feeling is that you should read a lot of
stuff relatively fast in order to get a feel for the material, then go back and read it slowly so that you completely
understand the material.

Main Chapter Topics

 INPUT/OUTPUT: This describes the various approaches in to performing input and
output operations, with an emphasis on memory mapped I/O, which is the approach
the RISC-V architecture uses.

 INTRODUCTION TO INSTRUCTIONS: This chapter introduces the first set of basic
RISC-V commonly used in assembly language programs, including data transfer and
bit-crunching instructions.

 MEMORY ACCESS INSTRUCTIONS: This chapter introduces the instructions that the
RISC-V MCU uses to access main memory.

 MICROCONTROLLER INPUT/OUTPUT: This chapter describes the basic forms of
input/output architectures, with an emphasis on memory-mapped I/O.

Why This Chapter is Important

This chapter is important because it represents an introduction to the RISC-V instruction
set in such a way as to be able to write basic RISC-V programs.

9.2 Basic Instructions and Usage
Recall that a computer is roughly a device that inputs data, churns it around, and then outputs it. This being the
case, the approach we’ll take to introducing assembly language programming is to start with instructions that input
and output data, and instructions that crunch data. Our goal here is to present some basic functionality in order to
be able to present/describe the remainder of RISC-V instructions in a more meaningful context. This is going to be
easier than it sounds. We’ll start with a data transfer instructions and then move onto data crunching instructions.

9.2.1 The First Data Transfer Instruction

The heart of the RISC-V data crunching mechanism is the set of registers, which we refer to at the register file (or
reg file). What you’ll see is that all data crunching operations in the RISC-V involve the registers. For this
discussion, the most basic data crunch is the transfer of data from one register to another, with some crunching in

FreeRange Computer Design Chapter 9

 - 202 -

between. For this operation, we don’t actually crunch the data, but we do move the data around, which is an
operation we actually do quite a bit in assembly languages.

We chose this data transfer because it illustrates two points. First, we see our first assembly language instruction,
which we find out is actually a pseudoinstruction. Second, we examine the base instruction the assembler uses to
implement the pseudoinstruction.

9.2.1.1 The mv Pseudoinstruction

Transferring data from one register to another is probably the most basic operation on the RISC-V MCU. We use
the mv instruction to make register-to-register transfers, with the notion that we’re “moving” data from one register
to another (hence, the symbolic name “mv”). Table 9.1 shows most of the useful forms of information regarding
the mv instruction. Here is some other information about Table 9.1:

 The Instruction Form column shows the basic form of the instruction, where rd is the destination
register and rs1 is the source register. Some instructions have two source registers, which is why we
attach a ‘1’ to the rs.

 The RTL column shows what the instruction does using register transfer language. Notice that the
RTL form highlights the painful notion that the data is transferring from the right operand to the left
operand1.

 Table 9.1 also provides two examples of the instruction as it could appear in a program. You can
see that we replace the rd and rs1 registers from the Instruction Form column with actual RISC-V
MCU register names. The second example uses alternative register names with the mv instruction
where t3 and a4 are equivalent names of x13 and x28, respectively.

 For the top example in Table 9.1, executing the instruction copies the data in register x11 into
register x10. The data in x11, the source register, does not change. The data in x10 changes2
because it is loaded with the data from the source register x11. Executing this instruction results in
the loss of information in x10.

Instruction Form RTL Examples

mv rd,rs1 rd ← rs1 mv x10,x11 # copy x11 into x10

mv a4,t3 # copy t3 into a4

Table 9.1: An overview of the mv instruction.

Every instruction in the RISC-V MCU instruction set has an extended description in the associated assembly
language instruction manual. Table 9.2 shows the entry for the mv instruction. The information provided is all
the pertinent information regarding the mv instruction. Here are the important things to note about Table 9.2:

 The RTL has a different form, which uses the rd, and rs1 values as indexes into what appears to
be an array named “X”. This array notation refers to the register file, thus the array in question is
zero-based and has 32 elements (0→31), which is C (and thus Verilog) notation. Prepare to
become accustomed to the syntax.

 There is an extended written description for the instruction, which says what we’ve already been
saying in the previous verbage.

 The “Usage” information provides more information in the example. The example reminds us that
all the registers in the reg file are 32 bits. Note that we place an underscore in the middle of the

1 This is not overly intuitive, but is typical in assembly languages based on the notion that early MCUs first used this right-to-
left notation and most everyone else followed.
2 Data in x10 will not change if the data in x11 is equivalent to the data in x10 before the instruction executes. I hate to be
nitpicky, but I thought you’d like to know.

FreeRange Computer Design Chapter 9

 - 203 -

eight hex characters, which is an artifact from Verilog that we adopt to make the hexadecimal
string more readable.

 The extended description also has a “See Also:” area, which list related instructions.

 Most importantly, we see that the mv instruction is actually a pseudoinstruction, which is
significant for several reasons. First, the extended description provides no instruction type or
instruction format that we see in base instructions. Second, we become interested in which base
instruction the assembler replaced the mv instruction with to make this work. It so happens that the
assembler replaces this instruction with an addi instruction, which we’ll talk about next.

mv move (pseudoinstruction – addi)

RTL: X[rd] ← X[rs1] Form: mv rd,rs1

Description: The mv is a pseudoinstruction based on the addi instruction. The mv instruction copies the contents of the
source register rs1 into the destination register rd. The contents of the source register do not change. The mv
instruction is equivalent to the following instruction: “addi rd,rs1,0”.

Usage:

 mv X10,X11 # copy the contents of source register X11 into
 # destination register X10
 # X10=0x021F_3B0D X11=0345_668A (before exec)
 # X10=0x0345_668A X11=0345_668A (after exec)

See Also: addi

Table 9.2: The description of the mv instructions from the RISC-V MCU assembler manual.

Example 9.1: mv Code Fragment

Write a fragment of RISC-V assembly language code that does the following three operations:

1) Copies value in register x20 to register x21

2) Copies value in x31 to x2

3) Clears the value in x10

Solution: Figure 9.1 shows the solution to this example. There are several particularly important things to note
about this solution:

 The code is only a fragment; it’s not a program or a subroutine. Additionally, the choice of registers
used in this example is arbitrary, except for the x0 register (see comment below).

 The mv instruction on line (02) copies the value in register x20 to register x21. The previous value in
register x20 is lost because the instruction overwrites it with the value in x21. The instruction does not
change the value in x21. Yes, this does feel backward in that the instruction copies the operand on the
right into the operand on the left. This is an artifact from early computer days but is common practice
in most computer hardware documentation.

 The mv instruction on line (04) copies the value in x31 to x2. The previous value in x2 is lost; the
value in x31 does not change.

FreeRange Computer Design Chapter 9

 - 204 -

 The instruction on line (06) clears the value in x10 because the value in register x0 is always zero. We
have a choice of instructions when clearing register values, but using the mv instruction is the best
approach to setting any register value to zero.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)

#~~~~~~~~ program fragment ~~~

 mv x21,x20 # copies value in x20 to x21 1)

 mv x2,x31 # copies value in x31 to x2 2)

 mv x10,x0 # clear value in x10 (make zero) 3)

#~~~~~~~~ program fragment ~~~

Figure 9.1: Solution for this example.

9.2.2 The Second Data Transfer Instruction

The mv instruction provided a means to transfer data from one register to another register. While, this is useful, it’s
not always what programmers need to do. Another major form of data transfer is from an immediate value to a
register. We perform this data transfer using the li instruction. Table 9.3 shows an overview of the li instruction.
The high-level view of this instruction is relatively simple so we won’t provide an in-depth description.

Instruction Form RTL Examples

li rd,imm rd ← imm li x10,0x23 # put 0x23 in x10

li x12,0x1100C000 # put 0x1101C000 in x12

Table 9.3: An overview of the li instruction.

The li instruction is similar to the mv instruction in that it is a pseudoinstruction. There is an important difference,
which is worth knowing to programmers. While the assembler instruction always translates the mv instruction to a
single base instruction (addi), the assembler translates the li instruction to either one or two base instructions.
The assembler translates the li instruction to an addi instruction if the associated immediate value can be
represented using 12 bits (the width of the immediate field in the addi instruction). If the associated immediate
value can’t be represented using 12 bit, the assembler translates the li instruction to two base instructions (addi
& lui). Table 9.4 shows the assembler manual entry for the li instruction. Here are a few things to note
regarding the li instruction:

 Programmers should remain aware of the fact that the size of the immediate value in the li
instruction determines how many base instructions the assembler uses to represent the li
instruction. The notion here is that we always try to write programs that are both space efficient and
time efficient; reducing the number of instructions in our programs generally does both.

 Yes, there are some underlying details involved with the actual encoding of the li instruction. Note
that we opted to not describe the lui instruction as part of our li instruction overview. The good
news is that we can use the li instruction without worry because the assembler makes the one vs.
two-instruction decision for us once it determines the size of the imm value operand in the li
instruction.

FreeRange Computer Design Chapter 9

 - 205 -

li load immediate (pseudoinstruction – addi)

RTL: X[rd] ← imm Form: li rd,imm

Description: The li instruction writes an immediate value to the destination register rd. This is an
pseudoinstruction and is equivalent to the following instruction: “addi rd,X0,imm” if the immediate value can
be represented with the 12-bit immediate field in the addi instruction, or a combination of two instructions (addi &
lui) if the immediate can’t be represented by a 12-bit immediate value.

Usage:
 li X9,1023 # write an immediate value into destination register X9
 # X9=0x021F_3B8A (before exec)
 # X9=0x0000_03FF (before exec)

See Also: addi, lui

Table 9.4: The assembler manual entry for the li instruction.

Example 9.2: li Code Fragment

Write a fragment of RISC-V assembly language code that does the following three operations:

1) Loads the value -1 into value in register x10

2) Places the value 0x134FADE8 into register x28

3) Copies the value -0x34 into register x17

Solution: Figure 9.2 shows the solution to this example. And yes, there are several particularly important things to
note about this solution:

 This code fragment provides three examples of a li instruction, yet the problem states three different
accepted forms of vernacular to describe the problem.

 The instruction on line (2) places 0xFFFFFFFF into x10. The RISC-V uses 2’s complement notation
for representing negative numbers. The assembler makes the translation from signed decimal in the
code to 32-bit 2’s complement in the actual hardware.

 The instruction on line (4) places the 32-bit hex value into register x28; no need for fancy translations
here.

 The instruction on line (6) places the 2’s complement representation of -52 (-0x34) into register x17.
The actual value placed in x17 is 0xFFFFFFCC, which is -52 in 2’s complement notation. The
assembler handles all the base conversions for us relatively mathematically challenged humans.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)

#~~~~~~~~ program fragment ~~~

 li x10,-1 # copies value in x20 to x21

 li x28,0x134FADE8 # copies value in x31 to x2

 li x17,-0x34 # clear value in x10 (make zero)

#~~~~~~~~ program fragment ~~~

Figure 9.2: Solution for this example.

9.2.3 The First Data Crunching Instruction

FreeRange Computer Design Chapter 9

 - 206 -

The first instruction we looked at was a data transfer instruction, which turned out to be a pseudoinstruction. When
we look deeper at the mv instruction (or read the assembler manual description), we see that when we use a
pseudoinstruction such as mv, the assembler replaces it with a base instruction. In this case, the assembler replaces
the mv instruction with the addi base instruction.

We refer to the addi instruction as an “immediate” instruction because one of the operands is an immediate
value and it uses that operand to calculate the value it places in the destination operand. The mnemonic for
the instruction includes the word “add” which indicates to humans that this instruction is adding two values.
The “i” at the end of mnemonic indicates that one of the operands appears in the instruction as an immediate
value rather than being located in a register. Table 9.5 shows preliminary information about the addi
instruction with several examples. The important issues in Table 9.5 include:

 The instruction form column shows the instruction using both immediate and register addressing.
One of the source operands is rs1, where the “r” implies that the data is in a register. The other
operand is “imm”, which implies the other operand is provided in the instruction as a number. The
destination operand, rd, once again has an “r” prefix, which means the instruction places the result
of the addition into the destination register.

 The RTL column shows that the instruction adds the two source operands (rs1 & imm) and
“transfers” the result to the destination register. The addi instruction does not change the source
operands and can only change the destination operand.

 The four examples show typical usage of this instruction as it would appear in a source code listing.

1) The first example uses a “0x” prefix to indicate that we are listing the immediate value in
hexadecimal. The example instruction only lists two hex characters in an effort to save space,
but could have listed more characters. As you see later, there are limitations on the magnitude
of the immediate value for this instruction.

2) The second example uses alternate register names and specifies the immediate value in
decimal. Note that the assembler interprets numbers without escape character prefixes (such
as “0x”) as decimal.

3) The third example shows that the destination register can also be the source register3. In this
example, unlike the other examples, the value in the source register does change because the
source and destination registers are the same. We use this example extensively in assembly
language programming because it represents a decrement of register x15.

4) The fourth example is of special interest to us because when we use the mv pseudoinstruction,
the assembler translates that instruction to something like this example (only the destination
register name is different). The instruction completes a “move” by using zero as an immediate
value; when we add zero to the source register, it does not change the value in the source
register and the result of the addition is stored in the destination register. In other words, the
instruction copies the value in the source register to the destination register.

3 Use of a source register as a destination register is very common in assembly languages. It’s easily described in hardware, but
we’ll save that description for another chapter.

FreeRange Computer Design Chapter 9

 - 207 -

Instruction Form RTL Examples

addi rd,rs1,imm rd ← rs1+imm addi x12,x11,0x75 # add 0x75 to x11;
 # store result in x12

addi a2,t1,34 # add 34 to t1; store
 # result in a2

addi x15,x15,-1 # add -1 to x15; store
 # result in x15

addi x20,x25,0 # transfer x25 value to x20

Table 9.5: An overview of the addi instruction.

The addi instruction also has a complete description in the assembler language instruction manual. We’ve
included the entry for the addi instruction in Table 9.6. There is some very important information in the addi
instruction description that was no in the mv description based on the fact that addi is a base instruction while mv is
a pseudoinstruction. Here are the important differences:

 We know that the instruction adds a register value to an immediate value, but there is more to it than
that. The registers are 32 bits wide, but the magnitude of the immediate value is limited to 12 bits,
which we can see from the image in the “instruction format” row. Additionally, the assembler
interprets the 12-bit immediate value as a signed value, which means the assembler is going to
interpret the left-most bit of the 12-bit value as a sign bit. Because the instruction is doing 32-bit
arithmetic, the hardware sign extends the 12-bit value to create a 32-bit value before it does the
addition, which the RTL description states with the “sext(imm)” notation 4.

 The Instruction Format row contains two types of information worth noting. First, the addi
instruction is an “I-type” instruction, which is one of the six instruction formats used in the RISC-V
ISA. The row also shows an image of the underlying bit values for the instruction. Recall that the
assembler translates each mnemonic such as “addi” and associated operands into machine code.
The image in this row shows the associated machine code for this instruction. From that machine
code, you can see that there is only 12 bits available to encode the immediate value associated with
the instruction. Also, some areas have numbers in them (opcodes) and some areas have labels in
them (field codes); these are hardware issues that we don’t need to be aware of as programmers and
we’ll thus discuss them in the hardware portion of this text.

4 The use of “sext” is common in the RISC-V documentation and we always interpret this as sign extension. Recall there is also
a notion of zero-extension.

FreeRange Computer Design Chapter 9

 - 208 -

addi addition with immediate

RTL: X[rd] ← X[rs1] + sext(imm) Forms: addi rd,rs1,imm

Description: The add instruction performs an addition operation on the operand rs1 and the immediate value and stores the
result in the destination operand rd. The instruction overwrites value in the destination operand; the source operand is not
affected unless it specifies same register as the destination. The 12-bit immediate value is sign-extended before addition.
Both source operands are treated as signed values in 2’s complement format. The addi instruction ignores any arithmetic
overflow resulting from the operation.

Instruction
Format
(I-type)

Usage:

 addi X10,X11,0x0DC # addition of values in X11 to 0xDC
 # result stored in X10; X11 is not affected.
 # X10 = 0x0000_0045 X11 = 0x0000_0024 (before exec)
 # X10 = 0x0000_0100 X11 = 0x0000_0024 (after exec)

See Also: add, sub

Table 9.6: The description of the addi instruction from the RISC-V MCU assembler manual.

Example 9.3: addi Code Fragment

Write a fragment of RISC-V assembly language code that does the following three operations:

1) Add the value 0x12345678 to register x29 and store the result in x11

2) Increment the value in register x15

3) Decrement the value in register x22

4) Subtract the value of 30 from register x12 and store the result in x8

Solution: Figure 9.3 shows the solution to this example. And yes, of course, there are several particularly
important things to note about this solution:

 This code fragment provides four examples of typical addi instruction usage but uses some new and
interesting wording.

 The instruction on line (2) adds 0x12345678 to the value in register x29 and stores the result in register
x11. The instruction does not alter the value in x29 but does alter the value in x11.

 The instruction on line (4) adds 1 to the value in x15, which is a classic “increment” operation. This
instruction uses x15 as both a source operand and destination operand, which is typical in assembly
language programming.

 The instruction on line (6) subtracts 1 from the value in x17 (same as adding -1), which is a classic
“decrement” operation. The assembler handles all the knarly 2’s complement details.

 The instruction on line (8) subtracts 30 from the value in x12 and stores the result in x8. The
instruction does not alter the value in x12. The assembler does the all the 2’s complement conversions
for us wimpy human programmers.

FreeRange Computer Design Chapter 9

 - 209 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)

#~~~~~~~~ program fragment ~~~

 addi x11,x29,0x12345678 # adds 0x12345678 to value in x11

 addi x15,x15,1 # increments value in x15

 addi x17,x17,-1 # decrement value in x17

 addi x8,x12,-30 # subtract 30 from x12; store result in x8

#~~~~~~~~ program fragment ~~~

Figure 9.3: Solution for this example.

9.2.4 Memory Related Data Transfer Instructions

One of the three computer subsystems is “the memory”. When we refer to memory in the RISC-V MCU
architecture, we refer to the larger structured memory, or the “main memory”. There are other memory resources
such as the program counter, the register file, the control unit, etc., but when we say “memory” in the context of
the RISC-V MCU, we are generally referring to the large memory.

Since this section of the text deals with programming, we prefer to deal with the RISC-V MCU programming
model, which we show in Figure 9.4. The programming model shows the resources available to the programmer,
which the programmer can control using instructions in the instruction set. As you can see in Figure 9.4, all of the
instruction-controllable features in the RISC-V MCU are sequential elements. Additionally, Figure 9.4 also shows
that main memory serves two purposes: stores the program (PROGRAM) and stores data (STACK & DATA). The
diagram lists the overall size of main memory as 16k x 32, but there is more to that number, which we’ll discuss
shortly.

Figure 9.4: The RISC-V MCU programming model.

9.2.4.1 RISC-V Main Memory

The main memory in the RISC-V OTTER serves two purposes: part of it stores the program, and other parts of it
store data. The non-program storage part of memory also supports hardware related items such as the stack and
heap, which are items we deal with in a later section. Memory is memory; there is nothing inherently special about
it other than the fact that is stores data. The implication here is that we can use instructions to write to that memory
and read from that memory, which are actions that fall under the category of data transfers. Recall that storing data
is a write operation that changes a value in the memory, while loading data is a read operation that does not change
any data in the memory.

The RISC-V main memory is quite specialized. It’s a memory in the sense that you can read from it and write to it,
but it’s special in the way is stores/access program memory and data memory. Most of these details are out of the
scope of the programming section of this text, so we save them for another chapter. The overall size and
accessibility of memory are two issues that we need to mention here, as programmers need to be aware of the
details.

The main memory stores both instructions and data. When we state the capacity of main memory, we generally do
so using two different metrics. All RISC-V MCU instructions are 32-bits wide, so all memory accesses associated

FreeRange Computer Design Chapter 9

 - 210 -

with instruction memory output are 32-bits. This being the case, we often refer to main memory as being 16k x 32;
this means the memory can hold 16k instructions with each instruction being 32 bits wide. On the other hand, the
main memory also stores data. The “data” portion of the memory is byte addressable, which means we can access
(read and write) individual bytes. Because of this, it sometimes makes more sense to speak of the memory capacity
in terms of bytes, or 64k x 8. Note that the overall bit capacity is the same, but we refer to it using two different
metrics depending on context.

9.2.4.2 Accessing Main Memory Data

There are two things you can do with memory, read it and write it. In computer terms, we refer to reading data as
“loading” data, which generally means we read data from memory and copy it somewhere without changing the
data in memory. We refer to writing data as “storing” data, which generally means we copy data from somewhere
and overwrite some data currently in memory. The notion of instructions that access data include two types of
instructions: load instructions that read data from memory, and store instructions that write data to memory. Here
are the two most important things to note about load and store instructions in the RISC-V ISA:

1) Load and store instructions always involve registers. More specifically, load instructions read data
from memory (a read operation) and copy that data into a register (the value in memory does not
change, the value in the register does). Store instructions copy data from a register into memory (a
write operation), which necessarily changes that value in that specific memory location but does not
change the source register.

2) Once again, memory is memory, so any read or write operation (load or store) means we’ll need to
provide an address to read or write from. Additionally, if we’re writing to memory (store), we need
to also provide the data. For read operations (loading), we need to provide a destination to copy the
read data to. Yes, memory has control signals also, but the underlying hardware takes care of those
details for us programmers.

Loading and storing information from/to memory on the programming level is not much different from the same
actions on the hardware level. While we don’t have to worry about the underlying control signals, we are
responsible for specifying an address of the data in memory we’re accessing, and a place to put that data (loading)
or a place to get the data from (storing). The RISC-V ISA uses special notation for accessing memory; this notation
is similar for both load and store instructions. The similarity is that the instructions specify the memory address in
the same way; the differences are that the load and store instructions specify a destination or source register,
respectively. Table 9.7 provides an overview of the load and store-type instructions. Here are the important things
to note in Table 9.7:

 Both instructions use the same specific syntax to allow the programmer to specify the memory
address for the memory access instruction. The memory address is a summation of the “imm” value
(immediate) and the source register (rs1). In the case of memory access instructions, the base
register is a source register. The base register holds a 32-bit value, but the assembler encodes the
imm value as a signed 12-bit value, so the imm value is sign-extended before the hardware adds it to
the base address. This of course means that the immediate value can be a negative number, which
we’ll see later in some actual examples.

 The left-most operand in the load-type instruction is the destination register, which is the register
where the instruction copies the data from memory into. The left-most operand in the store-type
instruction is a second source register, which holds that data that will be copied into the memory at
the address specified by the right-most operands.

 Both forms of memory access instructions use what we refer to as “indexed addressing”. The notion
here is that the imm value is an index, which uses the rs1 source operand as an “initial address”. We
typically refer to the imm value as an offset and address source operand as the base address. This
type of addressing mode is common in assembly languages.

FreeRange Computer Design Chapter 9

 - 211 -

Load-type instructions Store-type instructions

(a) (b)

Table 9.7: Overview of the load and store-type instructions.

There are five types of load instructions and three types of store instructions in the RISC-V ISA. In order to keep
this discussion simple and uncluttered, we’ll only be discussing the lw (load word) and sw (store word)
instructions in this section. Table 9.8 shows an overview of these two instructions including examples.

Load

Instruction Example Comment

lw rd,imm(rs1) lw x7,-4(x22) Loads word from memory address = (-4 + value in x22) into x7

Store

sw rs2,imm(rs1) sw x5,0x34(x8) Stores contents of x5 into memory address = 52 + value in x8)

Table 9.8: An overview of lw and sw instructions.

Example 9.4: Code Fragment Using lw & sw Instructions

Write a fragment of RISC-V assembly language code that does the following three operations:

1) Copies the data in main memory address 0x0000F004 to x13

2) Copies the value in register x16 to the main memory address stored in x18

3) Copies the word two words past the main memory address in x20 to x31

4) Stores the value in x18 to main memory address 0x24

Solution: Figure 9.5 shows the solution to this example. And yes, there are several particularly important things to
note about this solution:

 This code fragment provides four examples of a sw & lw instructions, yet three of the problems do not
use the words “load” or “store”. Typical MCU vernacular.

 The instructions on lines (02-03) takes care the of part 1). For this problem, we need to first get the
address value into a register, which we do on line (02); using x10 was an arbitrary choice. The
instruction on line (03) then copies the word at the address in x10 into x14, there is a zero offset value
provided, so the effective address is what is in x10. The instruction does not change the value in x10
after the instruction on line (02). Note that this operation required two instructions based on the
magnitude of the address: 0x0000F004 can’t fit into the 12-bit immediate value associated with the lw
instruction.

 The instruction on line (05) store the word in x16 into memory at the address in x18. Note there is a
zero offset value, which means the value in x18 is the effective address.

 The instruction on line (07) copies the value from eight greater than the address in x20 into x31. In this
case, the instruction uses the offset to advance the value 8 past the address in x20; the instruction uses

FreeRange Computer Design Chapter 9

 - 212 -

“8” because that represents two “words” worth of data based on the number of bytes in two words
(which is 8). The underlying RISC-V hardware generates the effective address by adding the value of 8
to the value in x20.

 The instruction on line (09) stores the value in x18 into address 0x24. In this case, the immediate
value, 0x24, is the effective address because the instruction uses x0 as the base register.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

#~~~~~~~~ program fragment ~~~

 li x10,0x0000F004 # copies value in x20 to x21
 lw x13,0(x10) # load data at address x10 into x13

 sw x16,0(x18)

 lw x31,8(x20) # copies value in x31 to x2

 sw x18,0x24(x0) # clear value in x10 (make zero)

#~~~~~~~~ program fragment ~~~

Figure 9.5: Solution for this example.

9.3 Input/Output (I/O)

The architectural diagram Figure 9.6 represents another model of a basic computer system. You can see that the
microprocessor is able to communicate with the other blocks in the computer system. For this section, we are
mainly interested in how the microprocessor communicates with the outside world in the context of the RISC-V
MCU instruction set. Keep in mind that the only reason that computers are useful is because they are able to
communicate with the outside world. It’s true that computers crunch data really fast, but this speed would be
useless if it were not able to transfer data such as results to and from the external environment. Lastly, also keep in
mind that there are many hardware aspects to this communication that we’re omitting from this section and leaving
for our hardware-related discussion of the I/O.

Communications with the outside world occur through the I/O block as Figure 9.6 indicates. The microprocessor is
responsible for crunching data and the memory is responsible for storing the program and intermediate results. The
I/O block is typically a placeholder of sorts; the block does not necessarily imply external hardware is involved.
Once again, there is a lot to this story; but limit the discussion to what we need to know for this section and cover
the full details later.

Figure 9.6: Generic computer architecture diagram.

There are actually several main types of standard approaches for computers to communications with the outside
world, including, 1) Programmed I/O, 2) Interrupt Driven I/O, and 3) Direct Memory Access (DMA). Below is a
brief description of each.

1) Programmed I/O: Programmed I/O falls into one of two main categories: Port mapped and
memory mapped. These two categories are similar from a programmer’s perspective; their main

FreeRange Computer Design Chapter 9

 - 213 -

differences lie in the underlying hardware implementation. We refer to this approach as
“programmed” I/O because true input or output happens as a result of the program issuing a
dedicated input or output instruction. The main thing to keep in mind about performing I/O is that
the MCU is getting (input) from something or giving (output) to something; therefore, the program
must both state what it is you’re getting or giving and which external devices you’re getting it
from (input) or giving it to (output). An output-type instruction provides both a source of data
internal from the computer to output to the outside world, and some type of specification as to
which external device to output that data to. Similarly, an input instruction provides a destination
within the microprocessor to receive data from the outside world as well as a specification of
which external device to receive that data from.

Each external device (both input and output devices) has a unique value, which we typically refer
to as an “address” or “port address” that the programmer uses to specify which external device the
I/O instruction is intending on communicating with. The differences between port mapped and
memory mapped I/O lies in how exactly you specify the external device you’re performing the I/O
with (the source for inputting and the destination for outputting). The next two items describe
those differences in more detail.

a) Port Mapped I/O: Port mapped I/O uses a “port number”, or “port ID”, or “port_id” to
specify the external device associated with the given I/O instruction. The port_id is simply a
number; roughly speaking, the external hardware uses (or, “decodes” maybe be a better word)
the port_id to “activate” a given I/O device. In this way, every I/O device necessarily has a
unique port_id number. The port_ids are a function of the hardware; if you’re writing
assembly code for a given piece of hardware, someone must tell you, the programmer, the
specific port_ids for the I/O devices associated with your given system. We consider
architectures that use port mapping as having separate address space for I/O, which may
seem strange, but makes sense when after you read about memory mapped I/O. Finally,
typical port mapped architectures have dedicated instructions for I/O, such as IN and OUT
instructions for input and output operations, respectively.

b) Memory Mapped I/O: In contrast to port mapped I/O, memory mapped I/O does not have
dedicated IN-type and OUT-type instructions. The memory-mapped approach uses memory
access instructions to handle I/O. As you may guess, memory access instructions must
provide an address in memory of the item you’re trying to write or store (output) or trying to
read or load (input). In a memory-mapped architecture, the hardware designer configured the
hardware such that if you read or write from memory using a “special address” associated
with an external device, you’re not really reading or writing memory; you’re actually
inputting data from or outputting data to a particular external device, respectively. Each I/O
device has its own unique address similar to port address in port mapped I/O. In memory-
mapped systems, we consider the I/O to be sharing the address space with the data memory
(recall that port mapped systems have a separate I/O space). Once again, the hardware
designer must provide the programmer with the address values associated with various I/O
devices; you would not know the addresses otherwise.

2) Interrupt I/O: There are some special issues associated with programmed I/O. In rough terms, the MCU
is not always inputting or outputting data: it only does so when it needs to. The problem is figuring out
when it needs to or not. If you don’t use interrupt-driven I/O, the MCU needs to expend clock cycles to
determine when it needs to do I/O. The problem arises when dealing with input. Many peripheral
devices require that you “get data from them” when they’re ready to give the data to you. The problem
is that you generally do not know when such devices are ready to give you data, so the only solution is
to constantly ask these devices if they’re ready to give you data; we refer to this process as polling. The
reality is that if your processor is stuck polling something waiting for a response, it means your
processor is not available to do other things, possibly other really important things5. Another way to
look at this is that it is a waste of processing power. Wasting processor power is actually not a big deal
unless there is some other important task that needs doing while you’re polling.

5 Such as restart some dude’s heart…

FreeRange Computer Design Chapter 9

 - 214 -

Instead of the processor constantly asking if an input device is ready to provide data, or an output
device is ready to receive data, it’s better (in terms or processing efficiency) to have the devices tell the
processor when they’re ready to act. Having devices communicate directly with the processor happens
via the interrupt mechanism on a given MCU. When a device is ready to communicate with the MCU,
we generally refer to this as the external device is “requesting service” from the MCU. We refer to this
mechanism as an “interrupt” because the processor stops what it is currently doing (stops executing the
code it is currently executing) in order to take care of the device requesting service. This mechanism
actually switches processing to a different set of instructions when the MCU receives an interrupt.
When the external device, or “peripheral”6 is satisfied, the MCU returns to the code it was executing
before it received the interrupt. This is a topic for another chapter; we mention it here for clarity.

3) Direct Memory Access (DMA): The final type of I/O is another form of I/O that does not require an
excessive amount of processing power from the processor. This type of I/O is generally associated with
large data transfers between memory and peripherals (as you may have gathered from the name). The
idea here is that the processor limits its involvement with transfers. The concept of DMA is relatively
simple but is more complex in cases where you need to actually design the system that implements it or
program the device that controls it.

We can characterize the three types of I/O by what device is in control of handling I/O. For programmed I/O, the
MCU is in charge. With interrupt driven I/O, some external device is in control. With DMA, some device external
to the MCU is also in control with “help” from the MCU. Which device is in control of the MCU’s resources is a
hot issue in the wonderful world of embedded systems.

9.3.1 RISC-V Memory Mapped I/O

The RISC-V MCU uses memory mapped I/O. This means that the RISC-V uses memory access instructions to
perform I/O. More specifically, the RISC-V MCU uses load instructions to perform input and store instructions to
perform output. What makes a load or store instruction into a memory access instruction is the value of the address
associated with the instruction. When working with MCUs, there is always a notion of memory address space,
which MCUs typically defines by providing a memory map.

Figure 9.7 shows the memory map for the RISC-V MCU. This memory map is important for both programmers
and hardware people as it shows how the MCU uses the memory spaces associated with the 32-bit addresses or
“address space”, used by the RISC-V MCU. Figure 9.7 shows that memory addresses 0x11000000 or above are
associated with the I/O. What you can also see from Figure 9.7 is the notion that the address ranges from
0x0000000 to 0x0000FFFF refer to actual memory (we’ll discuss the stack, data, and code segments in another
chapter). It is thus up to the programmer to utilize the address space via the load and store instructions to properly
access I/O or memory. Keep in mind, the assembler acts on the memory address as written, and does not know
hardware details such as the difference between memory access and I/O.

The port addresses for I/O devices have generally been setup by some hardware designer. In other words, they are
a function of the underlying hardware. For any given piece of hardware that the RISC-V may be running on, the
hardware designer (or someone with a similar title) needs to provide the programmers with the port addresses such
that programmers can properly access external hardware, which means properly perform I/O.

6 Devices in digital systems are often referred to as peripherals. This is nothing more than saying that there is a module there
that is communicating in some way with the processor.

FreeRange Computer Design Chapter 9

 - 215 -

Figure 9.7: The RISC-V MCU memory map.

9.3.2 RISC-V Input & Output Instructions

This is where it starts to get really confusing. The problem is that we run into vernacular issues once we start
reusing instructions for more than one purpose. What we have now is input that uses a load instruction, which is
associated with memory read. Then we have output that uses a store instruction, where the store instruction is
associated with a memory write. I still toil with this when I use this vernacular. Table 9.9 provides the big
overview of this vernacular.

Instruction Operation Comment

lw (load) Memory read Copies data from memory to register

 input Copies data from outside world to register

sw (store) Memory write Copies data from register to memory

 output Copies data from register to outside world

Table 9.9: Overview of dual purpose load and store instructions.

We’re ready to look at the actual input and output instructions. Table 9.10 shows the lw instruction used as an
input and the sw instruction used as an output. Here is some more pertinent information regarding Table 9.10:

 The instructions can specify any register for source and/or destination. The registers in the example
are arbitrary.

 The immediate field associated with both the lw and sw instruction limits the size of the offset. The
immediate value for both instructions is limited to a 12-bit value, which the assembler interprets as a
signed value.

 The base register is a 32-bit value used in the address calculation. The examples in Table 9.10
assume that the proper data is currently in the base register before hardware executes the lw or sw
instructions.

FreeRange Computer Design Chapter 9

 - 216 -

Instruction Operation Comment

lw x10,0(x23) input
Inputs data from the port address calculated by adding the
offset (0) plus base register (x23) into register x10.

sw x11,0(x24) output
Outputs data in register x24 to the port address calculated by
adding the offset (0) plus the base register (x24)

Table 9.10: Overview input (load) & output (store) instructions

We’re ready to show most of the instructions we’ve introduced into actual code. We’re not yet to the point of
writing actual programs, but we can write “fragments” of programs to illustrate a few points. We’ll do this by way
of example problems. Here is our first example program having to do with programming.

Example 9.5: Load & Input Code Fragment

Write a fragment of RISC-V assembly language code that loads a word from memory address
0x3F4 to register x21, and also inputs a word from port address 0x11008000 to register x16.

Solution: Figure 9.8 shows the solution to this example. There are several particularly important things to note
about this solution:

 RISC-V assembly language uses the “#” symbol for comments; the assembler ignores everything
following this symbol. There are currently no block-type comments in RISC-V.

 The code appears strikingly nice. We’ve aligned the instructions themselves. We’ve aligned the first
operand for each instruction. We’ve aligned the comments. We included white space (blank lines)
between what we feel are different types of instructions on line (4) and line (6). Everything we’ve
done with the code takes advantage of the fact that the assembler ignores white space. You can’t see
it, but we also wrote this code without using tabs, using spaces to indent various items7.

 When we think “input”, which means input from devices external to the RISC-V MCU, we
immediately think “load”, which means we need to issue some type of load instruction. Because it’s
input, some hardware person (or the problem specification) needs to provide us the programmer with
a port address that we can use to access the input data. The problem description did in fact provide
us with a port address.

 The fragment uses two li instructions on lines (02-03) to load values (considered immediate values)
into two registers. The assembler translates the first li instruction on line (02) into a lui & addi
instruction because the immediate value can’t be represented using 12-bits. Because the second li
instruction has an immediate value that we can represent using 12-bits, the assembler translates that
instruction into an addi instruction.

 For this problem, we don’t care about the values in x21 & x16 because the two lw instructions
overwrite them.

 The form of the two lw instructions on line (05) and line (07) are identical not including the different
register definitions. Despite looking the same, they are distinctively different. The first lw
instruction on line (05) performs a memory read while the second lw instruction on line (07)
performs an input operation. The difference between these two instructions is based solely on the
value of the address. In the case of the first lw instruction, the address is 0xFFFF or less, which
makes it a true memory access. In the case of the second lw instruction, the address is 0x11008000,

7 It’s a bad idead to use the tab key when writing code. Different editors (such as those of someone else working on the code)
and different printers interpret tabs differently. Use the spacebar for indentation and make sure your editor does not
automatically insert the tabs instead of spaces.

FreeRange Computer Design Chapter 9

 - 217 -

so the instruction performs an input operation. Note that the assembler does not know the difference;
the differences are actually only known to the hardware.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)

#~~~~~~~~ program fragment ~~~

 li x15,0x11008000 # put 0x11008000 value into x15
 li x20,0x3F4 # put 0x3F4 into x20

 lw x21,0(x20) # copy value from mem address 0x3F4 to x21

 lw x16,0(x15) # input value from port address 0x11008000 to x16

#~~~~~~~~ program fragment ~~~

Figure 9.8: Solution for this example.

Example 9.6: Store & Output Code Fragment

Write a fragment of RISC-V assembly language code that stores a word in register x29 into memory
address 0x774; the fragment should also output the data in register x18 to port address 0x1100C000,
and also inputs a word from port address 0x11008000 to register x16.

Solution: Figure 9.9 shows the solution to this example. There are several particularly important and informative
things to note about this solution:

 The code is similar to the previous set of code in appearance: everything looks great standing two
meters away. You can’t say enough about having good-looking code, particularly when people
automatically thing good look code works good8. This is also a fragment of code and not a complete
program.

 The code first loads address values into registers using li instructions on line (02-03). One of the
address values is greater than 0xFFFF so it is necessarily a port address (line 02). The other address
is a valid memory address because the address is less than 0x00010000.

 The code on lines (02-03) falls into the category of “initialization code”; we do our best to put values
into registers that we use often and leave them there without changing them. We try to do it this way
because these two li instructions don’t really do anything useful, so we want to execute them as
little as possible.

 The sw instruction on line (05) performs a memory write operation because the address that is being
“written to” is less than 0x00010000. We also use a new notation in the comment, which is an array
notation of sorts, to indicate that the instruction uses the value in x11 as an index into memory.

 The sw instruction on line (07) performs an output operation, which means it sends the value x18 to
the outside world (meaning some external device not part of the RISC-V MCU. The RISC-V
hardware interprets the fact that the address is greater than0xFFFF and essentially implements an
output operation as opposed to a memory write operation.

8 The also automatically think that bad looking code works poorly. Write good looking code.

FreeRange Computer Design Chapter 9

 - 218 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)

#~~~~~~~~ program fragment ~~~

 li x10,0x1100C000 # put 0x11008000 value into x15
 li x11,0x774 # put 0x3F4 into x20

 sw x29,0(x11) # write value x29 to mem[0x0774]

 sw x18,0(x10) # output value in x18 to port address 0x1100C000

#~~~~~~~~ program fragment ~~~

Figure 9.9: Solution for this example.

9.3.3 Load and Store: The Complete Story

Our main mission in this chapter is to give you a general feel for the RISC-V ISA and how “things are done” in
RISC-V. If you continue in your career with computer-type stuff, you’ll probably find that although computers all
roughly do the same stuff, they have a different “feel” for how they do things. When you’re learning your way
around a new architecture, you definitely need to learn both items.

In order to keep things as simple as possible, we’ve up to this point only presented a subset of the load and store
instructions in the RISC-V instruction set. The idea behind the other versions of the instructions is the same, so
we’ll quickly describe these new instructions in this section. Keep in mind that load and store instructions comprise
of eight of the 40 or so instructions in the RISC-V ISA, which underscores the notion that there are many
similarities between instructions in the ISA.

Table 9.11 shows the complete set of load and store instructions in the RISC-V ISA. These instructions differ in
several different ways, which we of course list below. The main “idea” behind the load and store instructions and
their relation to memory and I/O remains the same as our previous discussion.

1) The load and store instructions operate on three different sizes of data. The main memory in the
RISC-V MCU is byte addressable, which means a byte is the smallest size of data we can access in
main memory. Although the main memory is byte addressable, memory access instructions can also
access halfwords (two bytes) or words (four bytes) with a single instruction9.

2) When we issue a store instruction, the instruction causes the main memory to deal with the required
width of the instruction based on the exact instruction (sw vs. sh vs. sb). In other words, when you
store a value from a register, the main memory in hardware only store the proper amount of data
from the register, which is the lower byte for the sb instructions, the lower two bytes for the sh
instruction, or the entire register contents for the sw instruction.

3) Loading words into register from memory is different from storing words. When you store a word,
you always for from a register (or a known part of a register) to memory, so there are no “extra
bytes” to worry but. When you load a halfword or a byte from memory into a register, there is a
question of what to do with the extra bytes. For example, when you load a byte (8 bits) in to a 32-bit
register, where do not place that byte and what do you do with the bytes in the register that you don’t
have data for?

First, the data from memory always fills the right-most bytes in the register, which means when you
load a byte, the hardware places it into the right-most of the four bytes in the register. Second, what
happens to the extra bits when you load a byte or halfword? The answer depends on which
instruction you use. There are two types of load instructions for loading data lengths other than
words, which are lb & lbu, and the lh & lhu pairs. The difference, for example, between the lb
and lbu is what the hardware does with the unused bytes. For the lb instruction, the hardware
considers the byte a signed value and then sign extends the three unspecified bytes, which means
copying the sign bit of the byte into all the other 24 bits in the register. For the lbu instruction, the

9 We use the word access to mean both reading and writing to memory.

FreeRange Computer Design Chapter 9

 - 219 -

hardware considers the byte to be an unsigned value and zero-extends the value to fill the register,
which means it placed 24 0’s into the unused bits10.

Load

Instruction Example Comment

lb rd,imm(rs1) lb x8,0(x11)
Loads byte into x8; upper 3 bytes are sign extension of byte;
Memory address = 0 + value in x11

lbu rd,imm(rs1) lbu x7,14(x23)
Loads byte into x7; upper 3 bytes are zero extension of byte;
Memory address = 14 + value in x23

lh rd,imm(rs1) lh x8,4(x21)
Loads 2-bytes into x8; upper 2 bytes are sign extension of half word
Memory address = 4 + value in x21

lhu rd,imm(rs1) lhu x6,2(x23)
Loads 2-bytes into x6; upper 2 bytes are zero extension of half word
Memory address = 2 + value in x23

lw rd,imm(rs1) lw x7,-4(x22) Loads 4-bytes into x7; Memory address = -4 + value in x22

Store
sb rs2,imm(rs1) sb x5,3(x6) Stores right-most byte of x5 into memory address = 3 + value in x6
sh rs2,imm(rs1) sh x4,34(x7) Stores lower 2 bytes of x4 into memory address = 34 + value in x7
sw rs2,imm(rs1) sw x5,0(x8) Stores contents of x5 into memory address = 0 + value in x8

Table 9.11: Overview of the complete set of RISC-V load & store instruction.

Example 9.7: Loading and Storing with Different Data Sizes

Write a fragment of RISC-V assembly language copies the word value at the address given in x10 to
four registers starting at x20. Each register should receive one byte of the word data at address x10.
Consider the bytes of the word value to be unsigned values. Don’t use any shift-type instructions in
your solution.

Solution: Figure 9.10 shows the solution to this example. Yet another expressive example; here’s the stuff that
allow you to impress your friends at parties:

 The problem states that you need to take the individual bytes from memory and store them as bytes
in consecutive registers starting at x20. There are several ways to do this but we’ll use the approach
that leverages the different versions of memory access instructions.

 The problem states to divide up a word in memory into byte in registers. The problem also states that
we want the bytes in the registers to be unsigned. We have five different flavors of load instructions,
including one for words (lw), halfwords (lu & lhu), and bytes (lb & lbu).

 Our approach for this solution is to issue four lbu instructions, which we do on lines (02-05). Note
that we use the same base address for each of the lbu instructions (x10), but we increment the offset
portion of the instruction by ‘1’ with each instruction. This advances the address one byte greater
than the base address in x10. Recall that the memory is byte addressable, which is why we increment
the offset by ‘1’ with each instruction.

10 The same stuff happens for the lhu and lh instructions, but we won’t bore you with the details again.

FreeRange Computer Design Chapter 9

 - 220 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)

#~~~~~~~~ program fragment ~~~

 lbu x20,0(x10) # left-most byte of word goes into x20
 lbu x21,1(x10) #
 lbu x22,2(x10) #
 lbu x23,3(x10) # right-most byte of word goes into x23

#~~~~~~~~ program fragment ~~~

Figure 9.10: Solution for this example.

9.3.3.1 Load & Store Instructions Relation to I/O Data Widths

When dealing with I/O, the widths of the input and output data become somewhat of an issue. The issue is the fact
that the RISC-V load and store instructions handle only a limited range of data widths, namely words, halfwords,
and bytes. The notion of I/O is that we need to communicate with peripherals outside of the RISC-V MCU, which
generally means we need to deal with the peripherals on their terms. For example, if you’re RISC-V MCU is
driving 12 LEDs (thus an output), we need 12 bits to control those LEDs. Note that 12 bits is bigger than a byte
and smaller than a halfword.

The first thing to note is that you need to deal with I/O according to the configuration of the hardware you are
working with. For example, if you had to drive 12 LEDs, designer can configure the hardware many different
ways, though two of the ways represent the most common approach. The following is a description of these two
approaches; you’ll want to compare and contrast these to get a feel for how to properly utilize such outputs.

1) Configure the hardware to associate the 12 signals driving the LEDs with a single port address. In
this way, driving the LEDs with an output instruction (a store) would require that you use a sh
instruction at the very least. In this way, you could drive all 12 LEDs with one output instruction.

2) Configure the hardware to associate eight LEDs with one output port address and four LEDs with a
different output port address. In this way, driving all 12 LEDs would require issuing at least two
output instructions. The best approach in this case would be to issue two sb instructions.

One issue you that you may need to consider with the second option is what happens to the entire unused bit when
where there is a size mismatch between the data width offered by the instruction (byte, halfword, word) and the
width of the actual output. In this case, you can probably assume that someone has configured the hardware such
that you can issue any instruction with a larger width and it would work. For example, when you issue a sb (store
byte) instruction to drive four LEDs, what happens to the missing LEDs? This is actually more of an issue when
inputting data of widths that don’t match the instruction widths. In these cases, you definitely need to be aware of
how the associated hardware configuration. For example, when you input four bits using an lbu instruction, you’ll
get a register filled with 32 bits, and you can probably be sure the lower four bits are the data you’re trying to
input, but what is the other data.

In the end, you hope someone has both configured the hardware in an intelligent manner, and that they let you the
programmer know how they configured that hardware. As a programmer, you should try to match data widths with
your I/O instructions the best you can even though it may not matter. For example, if you’re inputting five bit,
issue a lb or lbu instruction, even though the hardware may do the same thing using an lh, lhu, or lw
instruction.

9.4 The First Program Flow Control Instruction

Our working definition of a computer was a digital device that sequentially executes a programmed stored in
memory. We’ll get into more details later, but what this generally means is that the hardware executes an
instruction stored in memory, then executes the next instruction stored in memory, etc. Note the “sequentialness”
of instruction execution in this definition. Programs would quickly run out of instructions if sequential execution of
instructions were all that the computer could do. In reality, computer hardware “can be directed” to execute any

FreeRange Computer Design Chapter 9

 - 221 -

instruction in memory. The truth is that some instructions have the ability to direct the computer hardware to
execute an instruction that is not necessarily the next instruction in program memory.

The notion of the next instruction that the computer executes falls under the topic of program flow control. We
refer to instructions that have the ability to direct instruction execution to an instruction other than the next
instruction as program flow control instruction. In RISC-V computer lingo, there are two types program flow
control instructions: jumps and branches11. Both of these instruction have the ability to send program flow to
somewhere other than the next instructions; the difference between these instructions is that jump instructions
always cause a change in program flow while branch instructions can cause a change in program flow, but only
under certain conditions. The RISC-V vernacular here is that jump-type instructions cause a change in program
flow control unconditionally while branch instruction conditionally cause a change in program flow control.

This section briefly introduces a jump-type instruction, which is the final instruction we need to start writing actual
RISC-V assembly language programs. A full description of RISC-V program flow control instructions appears in
Section 10.3.

9.4.1 Introduction to Program Flow Control

The only way to stop a RISC-V assembly language program from running (once you start it) is to turn off the
power. You’ll find that there is not “stop” of “halt” instruction in the RISC-V instruction set. The intent of many
computer programs is to always run, which generally means to keep monitoring input and waiting for an indication
that the computer needs to so some task based on that input12. To successfully keep a given program running (or
executing in a meaningful way), the program must somehow direct program flow from the last instruction in the
program to some other instruction in the program. We use program flow control instructions to accomplish this
redirection.

The most simple program flow control instruction is the j pseudoinstruction. This instruction translates to a jal
instruction, but we’ll save the underlying details for another section. What we’re interested in at this time is a
simple unconditional branch instruction so we can start writing complete programs. Table 9.12 shows the details of
the j pseudoinstruction; we’ll quickly use this in a simple program to explain its actual usage.

Instruction Form
Equivalent Base
Instruction(s) Example Usage Comment

j label jal x0,label j label Jump to instruction
associated with label

Table 9.12: The basic unconditional branch pseudoinstruction.

Example 9.8: Our First RISC-V Assembly Language Program

Write a RISC-V assembly language program that continuously reads data from port address
0x11003300 and outputs the data to port address 0x11005500.

Solution: Figure 9.11 shows the solution to this example. Since this is our first complete program, we’ll describe it
in a painful amount of detail:

 This problem is nice in that it contains the three main parts of an assembly language program (four
parts if you include labels) 1) comments, 2) directives, and 3) instructions.

 There is nothing special about the port addresses called out by the problem other than the fact that
they are 32-bits values. The RISC-V address space is 32 bits with requires we always provide port
addresses as 32-bit values.

11 As you’ll see later, subroutine calls and return from subroutines in RISC-V are both a type of jump instruction.
12 This is the classic embedded systems model.

FreeRange Computer Design Chapter 9

 - 222 -

 The choice of registers x10, x11, and x20 in the solution was arbitrary; we could have used other
registers instead.

 The program starts with an informative file header (or file banner) that describes the purpose of the
program. Always include file headers; we sometimes don’t include them in this text as a space-
saving manner. The comments on lines (00-03) represent the file banner.

 An assembler directive appears on line (04). This is the “.text” assembler directive that roughly
indicates the text that follows are all instructions. We’ll deal more with assembler directives and
memory segmentation in a later chapter.

 All assembly language programs require some of initialization code at the start of the program. Line
(06) represents the start of the initialization code. Note that we use an “init” label to indicate that the
code that follows is some type of initialization code. The program does not use the “init” label in any
way; it serves only to indicate to human readers of the code the general purpose of that section of
code. This label, as with all labels, does not increase the size of the program eventually stored in
program memory.

 The purpose of the initialization code is to place the port addresses into a register, which we must do
because the I/O instructions in RISC-V use registers to generate absolute memory address. We use
the li (load immediate) instruction on lines (06 & 07) to put the I/O port addresses into memory.

 The lw instruction on line (09) inputs the data from the input port to register x20. The sw instruction
on line (10) outputs the data in register x20 to the output port.

 The j instruction on line (11) is the program flow instruction. This instruction directs program
execution to some other executable instruction in the program. Note that no instructions follow the j
instruction, so there is no “following” instruction program execution can sequentially flow to. The
only possibility is to direct program flow to some other instruction in the program. The fact that the
argument of the j instruction is “main” directs the program flow back to the instruction following
the “main” label. We cover the details of exactly how the computer does this in a later chapter. Thus,
the j instruction essentially ensures that the program never runs out of instructions to execute by
directing program flow to some other valid instruction in the program. Wildly exciting!

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

#---
Program Description: The program continuously reads data from port
address 0x11003300 and output that data to port address 0x11005500.
#---
.text

init: li x10,0x11003300 # input port address
 li x11,0x11005500 # output port address

main: lw x20,0(x10) # input data
 sw x20,0(x11) # output data
 j main # repeat I/O sequence

Figure 9.11: Solution for this example.

Figure 9.12 shows a flowchart that models the operation of this program; here are a few things to note about this
amazing flowchart:

 The flowchart shows the basic flow of the program without providing any assembly language
specific details. Making flowcharts generic in this way makes them arguably more maintainable.
For example, if the flowchart was specific to port addresses and registers associated with the
RISC-V OTTER MCU, the flowchart would be harder to read and thus less usable if the hardware
changed.

 The program contains no conditional branch instructions so the flowchart does not contain any
decision symbols.

FreeRange Computer Design Chapter 9

 - 223 -

 The flowchart almost has a process block for each instruction, but note there are no process block
for the unconditional jump instruction on line (11). Because the branch instruction (jump) in
unconditional, we represent it with flow lines.

Figure 9.12: A flowchart modeling the operation of this example program.

Example 9.9: Input, Modify, & Output Data

Write a RISC-V assembly language program that continuously reads data from port address
0x1100DD00, adds 47 to that data, then and outputs the data to port address 0x1100DF00. Don’t
worry about overflow in the addition instruction.

Solution: Figure 9.13 shows the solution to this example. Since this is our second complete program, we’ll opt not to
repeat the level of detail from the first program; here are the main differences to make yourself aware of:

 What we need to do in this program is modify each piece of input data before we output it. We add 47 to
the input data on line (11) as the problems requests. We use the addi instruction to do this because we are
adding a constant value to the input value. The instruction adds 47 to the value in x20 and then stores the
result in x20. In this case, the value in x20 is always modified.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#---
Program Description: The program continuously reads data from port
address 0x1100DD00, adds the value 47 to that data, and then outputs
that data to port address 0x1100DF00.
#---
.text

init: li x10,0x1100DD00 # input port address
 li x11,0x1100DF00 # output port address

main: lw x20,0(x10) # input data
 addi x20,x20,47 # add 47 (an immediate value) to the data
 sw x20,0(x11) # output data

 j main # repeat I/O sequence

Figure 9.13: Solution for this example.

There are a few ways to do this problem in real life, but to do so, we must know more instructions. The addi in
this chapter added an immediate value to a register and stored the sum in another register. There is also an add
instruction in the RISC-V instruction set that adds values from two registers and stores that value in another
register. Figure 9.14 shows an alternative solution to this example that uses an add instruction; here are some
worthy comments regarding that solution, noting that most of this solution is similar to the previous solution.

FreeRange Computer Design Chapter 9

 - 224 -

 Since we’ll be using an add instruction to add 47 to the input value, we first must put 47 into a register;
we do this with an li instruction on line (08). We need to do this because the add instruction is a
register/register instruction; the addi instruction was a register/immediate instruction.

 We use the add instruction rather than the addi instruction on line (12). The addi instruction required us
to always add a constant value to the input data; using the add instruction with the extra register operand
allows us to effectively add a variable value to the input data, which we could do by changing the value in
x15 somewhere in the program after it has been initialized.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#---
Program Description: The program continuously reads data from port
address 0x1100DD00, adds the value 47 to that data, and then outputs
that data to port address 0x1100DF00.
#---
.text

init: li x10,0x1100DD00 # input port address
 li x11,0x1100DF00 # output port address
 li x15,47 # place the value 47 in a register

main: lw x20,0(x10) # input data
 add x20,x20,x25 # add 47 (from register) to the data
 sw x20,0(x11) # output data

 j main # repeat I/O sequence

Figure 9.14: An alternative solution for this example.

Example 9.10: Input Multiple Data, Modify, & Output Data

Write a RISC-V assembly language program that continuously does the following: reads data from
port address 0x1100CC00 two times (two different pieces of data), adds that data from those two
inputs together, then outputs the data to port address 0x1100EE00. Use an add instruction rather
than an addi instruction in your solution. Don’t worry about overflow in the addition operation.

Solution: Figure 9.15 shows the solution to this example. Since this solution is similar to previous solutions, we’ll only
describe the significant differences:

 The main difference in this problem is that we need to read two pieces of data and sum that data before
we output it. We read the data from the same input port, but we need to place it in two different
registers, which we do on lines (10-11).

 We add the data using a register/register-type add instruction on line (12). This instruction adds the
values in x10 and x11 and then stores the sum back into x10. Though it may seem like we’re reusing
registers in this instruction, this is typically the way we do it. We could have stored the sum in a
different register, but the way we did it in this examples saves us from reusing another register. Having
32 registers sounds like a lot, but unused registers become scarce when coding complex algorithms.

FreeRange Computer Design Chapter 9

 - 225 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#---
Program Description: The program continuously does the following: reads
data from an input two times, sums the two input values, then outputs the
data to an output port.
#---
.text

init: li x20,0x1100CC00 # input port address
 li x21,0x1100EE00 # output port address

main: lw x10,0(x20) # input first piece data
 lw x11,0(x20) # input second piece of data
 add x10,x10,x11 # sum two input value to register x10
 sw x10,0(x21) # output data

 j main # rinse, repeat

Figure 9.15: Solution for this example.

Figure 9.16 shows a flowchart modeling the operation of this program. This flowchart resembles previous
flowcharts so we’ll omit any extra verbage for this problem.

Figure 9.16: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 9

 - 226 -

9.5 Chapter Summary

 Transferring data between storage elements is probably the most common operation in microcontrollers. We
can group the RISC-V instructions based on where they transfer data to and from.

o mv: transfers data from register to register

o li: transfers data from an immediate value to a register

o Load-type instructions (lw, lh, lhu, lb, lbu): transfer data from memory to register (memory
access) or from external devices to register

o Store-type instructions (sw, sh, sb): transfers data from register to memory (memory access) or
from register to external devices.

 Input/Output operations are what make computers useful. The three main type of I/O are programmed I/O,
Direct Memory Access (DMA), and interrupt driven I/O. The two main types of programmed I/O are port
mapped and memory mapped I/O (MMIO)

 The RISC-V MCU uses memory-mapped I/O, which means that load and store instructions (memory access)
also perform I/O operations. The RISC-V assembler does not know whether a particular load of store
instruction will perform a memory access or an I/O operation; the underlying RISC-V hardware implements
the correct instructions based on the effective address of the load and store instruction. If the effective address
is within a range specified by the hardware designer, the load/store operation is an I/O; otherwise, the
operation is a memory access.

o Load-type instructions: used for memory reads and input

o Store-type instructions: used for memory writes and output

FreeRange Computer Design Chapter 9

 - 227 -

9.6 Chapter Exercises

1) What is the difference between pseudoinstructions and base instructions?

2) All data crunching instructions involve which particular module of the RISC-V architecture. Hint: this module
is part of the programmers model.

3) Briefly describe the primary difference between the mv and li instructions.

4) Name and briefly describe the three types of I/O used by computers.

5) li is a pseudoinstruction that the assembler translates to either one or two base instruction. Briefly describe
what determines how many base instructions the compiler will use.

6) Briefly describe why there are signed and unsigned load-type instructions but not signed and unsigned store-
type instructions.

7) Briefly explain how pseudoinstructions are converted to base instructions.

8) Name and briefly describe the two types of programmed I/O.

9) Who or what decides whether a particular computer architecture will use memory mapped I/O or port mapped
I/O.

10) For any given MCU-based circuit, who is responsible for “setting up” the port addresses?

11) Briefly explain if there is any way for a programmer who knows nothing about hardware to discern port
addresses without being told directly?

12) Briefly explain why instruction sets such as the RISC-V instruction set have no need for “halt” or “stop”
instructions.

FreeRange Computer Design Chapter 9

 - 228 -

9.7 Chapter Programming Problems

For the following problems:

 Minimize the amount of instructions in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code

1) Write a RISC-V assembly language program that continuously reads a word of data from port address
0x1100A000 and outputs that data to port address 0x1100B000.

2) Write a RISC-V assembly language program that continuously reads a word of data from port address
0x1100C000, adds the value 0x434 to the input value, and then outputs the data to port address 0x1100D000.

3) Write a RISC-V assembly language program that continuously reads a word of data from port address
0x11000020, adds the value -45 to the input value, and then outputs the result to port address 0x11000030.
Don’t worry about overflow (or underflow) from the addition operation.

4) Write a RISC-V assembly language program that continuously reads signed halfword data from port address
0x1100C000, doubles that input value, and then outputs the result to port address 0x1100D000. Don’t worry
about overflow from the mathematical operation.

5) Write a RISC-V assembly language program that continuously reads unsigned halfword data from port address
0x1100FF00 two times, doubles each of the two input values, sums the results of the doubling operation, and
then outputs the result as a word to port address 0x1100EE00. Don’t worry about overflow from the addition
operation.

6) Write a RISC-V assembly language program that continuously reads unsigned byte data from port address
0x1100AA00 three times, sums those input values, then outputs the result an unsigned word to port address
0x1100AB00. Don’t worry about overflow from the addition operation.

7) Write a RISC-V assembly language program that continuously reads word data from port address 0x11001000
two times, multiplies each of those values by three, sums the results, and then outputs the final result to port
address 0x11002000. Don’t worry about overflow from the addition operation.

8) Write a RISC-V assembly language program that continuously reads word data from port address
0x1100DDD0 eight times, sums the inputs and then outputs the result to port address 0x1100EEE0. Don’t
worry about overflow from the addition operation.

9) Write a RISC-V assembly language program that continuously reads signed byte data from port address
0x11001111 four times; the program subtracts one from the first input value, two from the second input value,
three from the third input value, and four from the fourth input value, sums the results, and outputs the result
as a signed halfword to port address 0x11002222. Don’t worry about overflow (or underflow) from the
addition operations.

10) Write a RISC-V assembly language program that continuously reads signed halfword data from port address
0x11001000 two times, multiplies each of those values by two, and outputs the two results as words to port
addresses 0x11002000 and 0x11002002, respectively. Don’t worry about overflow from the addition
operation.

FreeRange Computer Design Chapter 10

 - 229 -

10 Instructions, Constructs, and Bit-Level Manipulations

10.1 Introduction

We can model assembly language programming as an exercise in pulling “things” out of an assembly language
“bag of tricks” in a structured manner in able to solve our given problem. The notion here is that there is
generally not that much you can do with assembly languages compared to higher-level languages. My feeling is
that the most complicated part of learning to program in an assembly language is learning and keeping track of
the various “tricks”. These so-called tricks, are not really tricks; they’re actually simple operations that would
take you extra time to be aware of if someone did not point them out to you.

Assembly language programs are simple because they are inherently limited in their ability to do things. The
result of this simplicity is that programs use the same programming constructs and instructions to do the same
type of operations repeatedly. The good news is that there only a relative few constructs and they’re all relatively
simple. Everything about assembly language is simple; assembly language programming only seems hard
because there are initially so many new things to learn. This chapter describes some of the more important
considerations programmers should be aware of when writing robust assembly language code.

Main Chapter Topics

 BIT CRUNCHING INSTRUCTIONS: This chapter describes the remaining instructions that
“crunch” bits including logic, arithmetic, and shift-type instructions.

 PROGRAM FLOW INSTRUCTIONS: This chapter describes program flow instructions
including conditional and unconditional branch instructions.

 ITERATIVE CONSTRUCT ISSUES: This chapter describes some of the important
underlying issues regarding iterative constructs.

 MANIPULATING BITS: This chapter describes the common bit manipulations found in
assembly language programming known as bit masking.

 AUXILIARY INSTRUCTIONS: This chapter describes a few other useful instructions and
pseudoinstructions that are hard to easily classify with other instruction types.

Why This Chapter is Important

This chapter is important because it describes some of the basic programming concepts and
approaches beyond simple description of individual instructions.

10.2 Bit Crunching Instructions

The RISC-V ISA contains a set of instructions that we can describe as bit crunching. These instructions
primarily change the value in the destination operand based on a given operation between source operands.
There is always one destination operand and that operand is always a register. There are always two source
operands, one of them is always a register, and the other operand can either be a register or an immediate value.
Many of the bit crunching operands are similar in that the instruction set uses two different instructions to
perform the same operation but on two sources register operands or one source register operand and one
immediate value operand.

FreeRange Computer Design Chapter 10

 - 230 -

Important to note here is that the RISC-V MCU instruction set does not directly provide the ability to test the
validity of bit-crunching operations. This is because the underlying hardware does not provide any type of status
signal regarding the result of any given operation. Because of this, programmers are required to use the
flexibility of the instruction set in order to determine items such as when an ALU operation overflows the 32-bit
register width.

10.2.1 Logic Instructions: AND, OR, & XOR

We grouped these instructions together because they are all logic-based instructions. All of these instructions
perform what we refer to as bit-wise logic operations on their operands. This is a common notion in
computerland; it simply means that given logic operator performs the logic operation on the corresponding
individual bits of the two operands.

Table 10.1 shows the two forms of the instructions implementing AND, OR, and EXOR operations. Their
instruction type differentiates the two forms, where the two-register operand form is an “R-Type” instruction and
the one register one immediate value form is an “I-Type” instruction. These are differentiated by the “i” postfix
on the instruction mnemonic; “R” roughly stand for register and “I” roughly stands for immediate. Both
instruction types perform the given operation on the individual bits in the two operands and store the results in
the designated destination register. These instructions do not alter either source operand.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

R-Type and rd,rs1,rs2 rd ← rs1 ∙ rs2 and x10,x20,x21 32-bit operation

I-Type andi rd,rs1,imm rd ← rs1 ∙ imm andi x8,x8,0xF0 imm max: 12-bits

R-Type or rd,rs1,rs2 rd ← rs1 + rs2 or x15,x15,x16 32-bit operation

I-Type ori rd,rs1,imm rd ← rs1 + imm ori x7,x8,255 imm max: 12-bits

R-Type xor rd,rs1,rs2 rd ← rs1 ^1 rs2 xor x30,x28,x8 32-bit operation

I-Type xori rd,rs1,imm rd ← rs1 ^ imm xori x10,x9,0x44 imm max: 12-bits

Table 10.1: The two forms associated with the four logic instructions.

Figure 10.1 shows a well-commented code fragment that demonstrates the use of both forms of the logic-based
instructions. While most of these instructions are straightforward in the sense that they are performing bitwise
logic operations that should be familiar to you, you should take special note of a few items:

 We initialize few registers with known values on lines (01-03) so we can use them in the
instruction examples that follow. We also included a label on line (01) which acts as a comment to
indicate that we’re performing some type of initialization, in this case, of a few register values.

 The immediate version of each instruction has limitations on the size of the immediate value. For
these instructions, that limit is 12 bits. The RISC-V hardware is responsible for sign-extending
each 12-bit immediate value to form a 32-bit value so that the operation becomes a true bitwise
operation (meaning both source operands are 32 bits when the hardware does the logic operation).
The register-register version of these operations does not require any modification of the source
operands.

 As implied by the previous bullet, the transformation of an immediate value to a 32-bit value is
typically a two-step process. The assembler does the first step by converting the immediate
operand appearing as part of the instruction in to a 12-bit signed number; this value is
subsequently stored as part of the instruction. The RISC-V hardware performs the second step in
this conversion by sign-extending the 12-bit immediate value stored as part of the instruction to

1 Could not find proper XOR symbol in my editor, so I’m opting to use the “^”, which is the XOR operator in the C
programming language.

FreeRange Computer Design Chapter 10

 - 231 -

form a 32-bit value. At this point, the RISC-V hardware can now implement a true bitwise
operation.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

#~~~~~~~~ program fragment ~~
init: li x10,0xFFFF0A8B # Initialize three registers
 li x11,0xF000000F #
 li x12,0x0F0000FF #

 and x20,x10,x11 # Op: x10 AND x11 (0xFFFF0A8B AND 0xF000000F)
 # Result: x20=F000000B; x10 & x20: no change

 andi x21,x10,0xFF # Op: x10 AND 0xFF (0xFFFF0A8B AND 0x000000FF)
 # Result: x21=F000008B; x10: no change

 or x22,x10,x12 # Op: x10 OR x12 (0xFFFF0A8B AND 0x0F0000FF)
 # Result: x22=FFFF0AFF; x10 & x12: no change

 ori x23,x10,1023 # Op: x10 OR 0xFF (0xFFFF0A8B AND 0x000003FF)
 # Result: x23=FFFF0BFF; x10: no change

 xor x24,x10,x12 # Op: x10 XOR x12 (0xFFFF0A8B AND 0x0F0000FF)
 # Result: x24=FFFF0AFF; x10 & x12: no change

 xori x25,x10,0x3FF # Op: x10 XOR 0xF (0xFFFF0A8B AND 0x000003FF)
 # Result: x25=FFFF0574; x10: no change

#~~~~~~~~ program fragment ~~

Figure 10.1: Usage examples for register and immediate forms of the logic instructions.

Example 10.1: Crunching Input Data

Write a RISC-V assembly language program that continuously inputs data from port address
0x1100CC00, performs a 1’s complement on that data, then outputs the result to port address
0x1100EE00.

Solution: Figure 10.2 shows the solution to this example. Since this solution is similar to previous solutions, we’ll
only describe the significant differences:

 As with previous problems, the program has a great file banner (lines (00-04)) and a declaration of
the text segment using the “.text” directive on line (05). Also similar to previous example, we must
place the stated input and output port addresses into register, which we do on lines (07-08).

 We know we need to complement all the bits in the input value, so we look for a “complement”
instruction in the RISC-V instruction set. We of course don’t find one. Our approach is using what
we have in the instruction set, which is the xor instruction. Recall that if we XOR a bit with a 1, the
result is to toggle (or complement) that bit. Therefore, to perform a bit-wise 1’s complement, we
must use the xor instruction, which we do on line (12).

 You may be wondering why we did no simply use the xori instruction, such as something like this:
“xori x10,x10,0xFFFFFFFF”. The problem is that the size of the immediate value is
limited to 12 bits in immediate-type instructions. Had we tried to use the xori instruction in this
form, the assembler would have declared that an error. The only solution we had is to put the 32-bit
value into a register prior to the xor instruction, which we do on line (09). We effectively pre-
loaded the register with the value we needed for the 32-bit complement. This works nicely, but it
does have the drawback of “reserving” a register, which means we can’t use that register for
anything else in a given program.

FreeRange Computer Design Chapter 10

 - 232 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#---
Program Description: The program continuously does the following: reads
data from an input port, does a 1’s complement on that data, then outputs
the result to the output port.
#---
.text # declare text segment

init: li x20,0x1100CC00 # input port address
 li x21,0x1100EE00 # output port address
 li x22,0xFFFFFFFF # set all bits in x22

main: lw x10,0(x20) # input data
 xor x10,x10,x22 # complement all bits in input
 sw x10,0(x21) # output result data

 j main # rinse, repeat

Figure 10.2: Solution for this example.

Example 10.2: Crunching Input Data

Write a RISC-V assembly language program that continuously inputs data from port address
0x1100CC00, performs a 1’s complement on the lower eight bits of the input data, then outputs the
result to port address 0x1100EE00.

Solution: Figure 10.4 shows a possible solution for this example. We purposely used the previous solution as a
starting point for this solution to show that you can solve this problem two ways. You’ll see that one way is more
efficient than the other way.

 This solution is the same as the previous solution; the only different is that we modified the li
instruction on line (09) to load the register with 8 1’s rather than 32 1’s. The xor instruction on line
(12) uses this new data in x22. This works, but savvy RISC-V assembly language programmers
know they can write the program to perform the same operation but use less instructions.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#---
Program Description: The program continuously does the following: reads
data from an input port, does a 1’s complement on the lower 8 bits of the
input data, then outputs the result to the output port.
#---
.text # declare text segment

init: li x20,0x1100CC00 # input port address
 li x21,0x1100EE00 # output port address
 li x22,0xFF # set lower eight bits in x22

main: lw x10,0(x20) # input data
 xor x10,x10,x22 # complement the lower eight of input
 sw x10,0(x21) # output result data

 j main # rinse, repeat

Figure 10.3: A less efficient solution for this example.

Figure 10.4 shows the better and preferred solution for this example. This solution is better because it uses less
instruction than the previous solution. It also officially uses one less register; using as few registers as possible is
generally good practice in assembly language programming.

FreeRange Computer Design Chapter 10

 - 233 -

 Because we only need to toggle the lower eight bits in the input value, we can use an xori
instruction rather than an xor instruction. Recall that immediate-type instructions limit the size of
the immediate value to 12 bits. This means that we don’t need to preload a register with a 32
value, which makes the program functionally equivalent to the previous program but more space
efficient (uses one less instruction).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#---
Program Description: The program continuously does the following: reads
data from an input port, does a 1’s complement on the lower 8 bits of the
input data, then outputs the result to the output port.
#---
.text # declare text segment

init: li x20,0x1100CC00 # input port address
 li x21,0x1100EE00 # output port address

main: lw x10,0(x20) # input data
 xori x10,x10,0xFF # complement the lower 8 bit of input
 sw x10,0(x21) # output result data

 j main # rinse, repeat

Figure 10.4: The preferred solution for this example.

10.2.2 Arithmetic Instructions: Addition & Subtraction

The arithmetic-type instructions perform the basic mathematical operations of addition and subtraction. Like
many simple MCUs, the RISC-V MCU only has a bare minimum of arithmetic instructions, namely addition and
subtraction. If you need to do more complex math such as multiplication and division, you need to use the
addition and subtraction instructions to do so2. Recall that we are using the RISC-V OTTER as a microcontroller
(MCU), meaning that the main purpose of the RISC-V is to “control” things. The RISC-V OTTER can do some
math, but complex mathematical operations are something it does not do efficiently3. The RISC-V OTTER MCU
contains three mathematical instructions: add, addi, and sub.

Before we continue, we must mention an underlying characteristic of the RISC-V MCU. When our intention is
to crunch bits, we need to sometimes consider the “meaning” of the bits we’re crunching. Some RISC-V
instructions perform operations that treat the source operands as unsigned numbers; other instructions treat
operands as signed numbers. When working with any RISC-V instruction, particularly the arithmetic
instructions, the programmer needs to be aware of the default operation of the instruction based on its treatment
of signed and unsigned numbers. Sometimes the operations are obvious, and sometimes not. The savvy
programmer always checks the details in the assembly language manual to ensure they are using instructions
properly.

The add, addi, and sub instructions perform operations as if the values of the operands are unsigned. If you
need to work with any other form of numbers, such as radix complement (2’s complement), you need to work
out the details in your program’s code. Keep in mind that each MCU does things differently, so you’ll always
want to check the spec before you start programming. Note that the RISC-V instruction set contains register and
immediate forms of the addition instruction, but only a register form of the subtraction instruction.

2 The notion here is that multiplication is repeated addition and division is repeated subtraction.
3 Keep in mind we’re using a specific version of the RISC-V MCU; other versions include some complex instructions, such
as instructions that deal with floating point numbers as well as other instructions that perform division and multiplication.

FreeRange Computer Design Chapter 10

 - 234 -

Instr
Type Instruction Form Instruction RTL Example Usage Comment

R-Type add rd,rs1,rs2 rd ← rs1 + rs2 add x11,x21,x31 32-bit operation

I-Type addi rd,rs1,imm rd ← rs1 + imm addi x7,x8,0x0F imm max: 12-bits

R-Type sub rd,rs1,rs2 rd ← rs1 - rs2 sub x15,x14,x17 32-bit operation

Table 10.2: The two forms associated with the four logic instructions.

Figure 10.5 shows yet another well-commented code fragment that demonstrates the use of both forms of the
arithmetic-type instructions. While these instructions do what the mnemonic implies, there are some underlying
details that programmers must be aware of so they can write working programs. Here are a few things to note
about the code in Figure 10.5.

 We initialize few registers with known values on lines (01-03) so we can use them in the
examples that follow.

 The first example on line (06) is a reg-reg addition, with no surprise in the results.

 The second example on line (09) is the reg-imm version of the addition instruction. Here we list
the immediate value as -0xFF. The assembler converts this value to a two’s complement format
and then sign-extends it to 0xF01. It does this to fit in the 12-bit immediate field associated with
this type of immediate instruction. Before the instruction executes in hardware, the hardware sign
extends 0xF01 again to become a 32-bit value: 0xFFFFFF01.

 The third example on line (12) shows a subtraction operation. The second operand is all 1’s,
which is either a big number or a -1 depending on how you interpret the format. The hardware
does no interpretation of the format and does the subtraction as listed. The instruction subtracts a
negative number, which is effectively addition; the result reflects this notion. In this case, the
hardware performs the required 2’s complement operation before it adds the second operand.

 The fourth example on line (15) is another subtraction. This time we are subtracting a positive
number, so the operation requires no 2’s complement conversion of the second operand.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

#~~~~~~~~ program fragment ~~
init: li x10,0x0000FFFF # Initialize several registers
 li x11,0x00000001 #
 li x12,0xFFFFFFFF #
 li x13,0x00000003

 add x20,x10,x11 # Op: x10 + x11 (0x0000FFFF + 0x00000001)
 # Result: x20=00010000; x10 & x11: no change

 addi x21,x10,-0xFF # Op: x10 + -0xFF (0x0000FFFF + 0xFFFFFF01)
 # Result: x21=0000FF00; x10: no change

 sub x22,x13,x12 # Op: x13 - x12 (0x00000003 - 0xFFFFFFFF)
 # Result: x22=0x00000004; x12 & x13: no change

 sub x23,x13,x11 # Op: x13 - x11 (0x00000003 - 0x00000001)
 # Result: x22=0x00000002; x13 & x1: no change
#~~~~~~~~ program fragment ~~

Figure 10.5: Usage examples for register and immediate forms of the arithmetic instructions.

10.2.3 Shift Instructions

FreeRange Computer Design Chapter 10

 - 235 -

The RISC-V MCU supports integer-based math with a modest but useful set of shift instructions. Recall that a
single bit shift to the right to the right or left is a fast way of dividing and multiplying by two. The left shift is
true multiplication by two so long as the MSBs are not lost from the left end of the result. The right shift is a true
divide by two except in the case that the LSB of the value being shifted is ‘1’; truncation occurs when we right-
shift a set LSB value. We typically use arithmetic shifts for signed values and logical shifts for unsigned values.

RISC-V MCU has three types of shift instructions including a shift left, shift right, and an arithmetic shift right.
Either each of these shifts can be simple shifts (shift one bit positions) or barrel shifts (shift multiple bit
positions). For each of the shift instructions, one of the source operands provides the number of bits to shift. For
reg-type instructions, the lower five bits in the second source register provides the number of bit positions to
shift. For immed-type instruction, the lower five bits of the immediate operand provides the number of bit
positions to shift. While we can consider these shift-type operations as a form of mathematical operations, we’ve
grouped them separately from the arithmetic instructions4.

The first thing to know about the shift instructions is their most basic difference. The logic shifts (the non-
arithmetic shifts) automatically replaced bit positions made vacant by the shift with zeros (the same for shifts in
either direction). The arithmetic shift (which only shifts right) fills in vacated bit positions with copies of the
sign-bit associated with the source operand that the instruction shifts. We sometimes refer to these operations as
zero-filling or sign-filling. Table 10.3 shows some example of shift instruction usage including other information
as well.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

R-Type sll rd,rs1,rs2 rd ← rs1 << rs2[4:0] sll x10,x20,x21 5 rs2 LSBs only
zero-filled

I-Type slli rd,rs1,imm rd ← rs1 << imm[4:0] slli x8,x8,0xF0 imm: 5 LSB only
zero-filled

R-Type srl rd,rs1,rs2 rd ← rs1 >> rs2[4:0] srl x5,x5,x16 5 rs2 LSBs only
zero-filled

 I-Type srli rd,rs1,imm rd ← rs1 >> imm[4:0] srli x7,x8,15 imm: 5 LSB only
zero-filled

R-Type sra rd,rs1,rs2 rd ← rs1 >> rs2[4:0] sra x30,x28,x8 5 rs2 LSBs only
sign-filled

I-Type srai rd,rs1,imm rd ← rs1 >> imm[4:0] srai x10,x9,0x12 imm: 5 LSB only
sign-filled

Table 10.3: The two forms associated with the four logic instructions.

Figure 10.6 show some examples of shift-type instructions. The instructions follow the basic rules of
logical and arithmetic shifts, but there are a few things to note here and there, which we list here:

 The number of bits to shift for any shift instruction is always a positive number. It is therefore not
possible to shift in a negative direction.

 The first example on line (05) performs a shift left operation base on the value in x12. The value is
x12 is much larger than 32; the underlying RISC-V hardware only considers the lower five bits of
the x12 for the shifting operation. The programmer should strive to not rely on the hardware to do
the “right thing” in such cases.

 The arithmetic shift propagates the sign bit in the operation. To be clear, the sign-bit is the left-
most bit in the first (left-most) source operand.

4 Recall that a single bit-level shift-left and shift-right operations are clever ways to perform a multiply by 2 or divide by 2,
respectively.

FreeRange Computer Design Chapter 10

 - 236 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

#~~~~~~~~ program fragment ~~
init: li x10,0xFFFF0A8B # Initialize three registers
 li x11,0xF000000F #
 li x12,0xFF000010 #
 li x13,0x80007000 #
 li x14,0x00007000 #

 sll x20,x10,x12 # Op: x10 sll x11 (0xFFFF0A8B sll 0xFF000010)
 # Result: x20=0x0A8B0000; x10 & x12: no change

 slli x21,x10,0x04 # Op: x10 sll 0xFF (0xFFFF0A8B sll 0x000000FF)
 # Result: x21=0xFFF0A8B0; x10: no change

 srl x22,x10,x12 # Op: x10 srl x12 (0xFFFF0A8B srl 0xFF000010)
 # Result: x22=0x0000FFFF; x10 & x12: no change

 srli x23,x10,0x8 # Op: x10 srl 0x8 (0xFFFF0A8B srl 0x00000008)
 # Result: x23=0x00FFFF0A; x10: no change

 sra x24,x13,x11 # Op: x13 sra x12 (0x8000F000 sra 0xF000000F)
 # Result: x24=FFFF0000; x13 & x11: no change

 srai x25,x14,0x3 # Op: x14 sra 0x3 (0x8000F000 sra 0x00000003)
 # Result: x25=00000E00; x14: no change
#~~~~~~~~ program fragment ~~

Figure 10.6: Usage examples for register and immediate forms of the shift-type instructions.

10.3 Auxiliary Instructions
The RISC-V instruction set has several other instructions that we’ll mention in this section.

10.3.1 Various Simple Pseudoinstructions Operation: the nop Instruction

There are a few simple pseudoinstructions used by the RISC-V ISA. Because of their simplicity, we’re grouping
them together in this section.

10.3.1.1 Pseudoinstruction: nop

First, the mnemonic “nop” stands for “no operation”. While it does not make sense to have an instruction that
does nothing, there are times assembly language programming land that we want to do nothing. The only reason
we ever want to do nothing is to wait for some other event to happen. Thus, the nop instruction serves only to
create a delay but changes nothing else in the MCU. Most assembly languages include a nop in their instruction
sets.

 For the RISC-V MCU, there is a nop pseudoinstruction available. The assembler then translates
this instruction of an addi base instruction. Table 10.4 provides the details; we provide the
following details.

 The nop pseudoinstruction has no operands.

 When the assembly encounters the nop pseudoinstruction in the source code, it replaces it with a
base instruction. The assembler can actually use one of many different base instructions to
“perform” a no operation, but the assembly chooses an addi instruction. For example, another
way to perform a nop would be this instruction: “ori x1,x1,0”. Not overly exciting.

 As with many pseudoinstructions, they primarily exist for two reasons: to make assembly
language source code easier for humans to write5 and understand code. For example, when you see
a nop instruction in code, you know immediately what the instruction is doing. If you were to see
an equivalent base instruction, such as the addi in Table 10.4, you might wonder for a moment
what the instruction was actually doing.

5 As opposed to a computer writing the assembly language code, as is what the typical compiler is responsible for doing.

FreeRange Computer Design Chapter 10

 - 237 -

Instruction Form Example Usage
Equivalent
Base Instruction Comment

nop nop addi x0,x0,0 Do nothing

Table 10.4: On overview of the nop pseudoinstruction.

Figure 10.7 and Figure 10.8 show examples of using nop instructions in code. The code in both of these figures
creates a delay by first initializing a loop count (iteration variable) on line (02). The code in Figure 10.7 uses a
do-while loop construct to crate the delay while the code in Figure 10.8 uses a while loop construct to create a
delay.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

init: li x10,0xFFF # input port address

loop: addi x10,x10,-1 # decrement loop count
 nop # insert delay
 beq x10,x10,done # check condition
 j loop # branch to loop
done: # done with loop

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 10.7: A code fragment implementing a delay using a do-while loop.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

init: li x10,0xFFF # input port address

loop: beq x10,x10,done # check condition
 nop # insert delay
 addi x10,x10,-1 # decrement loop count
 j loop # branch to loop
done: # done with loop

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 10.8: A code fragment implementing a delay using a do-while loop.

10.3.1.2 Pseudoinstruction: not

The not is a pseudoinstruction is once again quite useful. Its official purpose is to perform a 1’s complement
(toggles all the bits, or does a bitwise inversion) on the source operand and store the result in the destination
operand. We of course recall that toggling a bit is always done with an XOR function, so it’s no surprise that the
assembler replaces the not pseudoinstruction with some type of XOR instruction. Table 10.5 shows the details,
and here is some extra explanation.

 The assembler replaces the not instruction with a xori instruction. While we need to do a
bitwise XOR operation on the full 32 bits, it appears the immediate field in the xori instruction is
limited to a 12-bit value. The hardware is responsible for sign-extending the 12-bit immediate
value to a 32-bit value so the instruction does the XOR operation in a true bitwise manner.

FreeRange Computer Design Chapter 10

 - 238 -

Instruction Form Example Usage
Equivalent
Base Instruction Comment

not rd,rs2 not x8,x9 xori x8,x9,-1 Do 1’s complement

Table 10.5: On overview of the not pseudoinstruction.

Table 10.6 shows a program fragment that uses the not pseudoinstruction. The fragment initializes two registers
on line (02-03); the code one lines (05-06) performs a bitwise inversion (1’s complement) the values in the
initialized registers. Note that on line (06) the source and destination registers are the same.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)

#~~~~~~~~~~~~~~ code fragment ~~
 #
init: mv x10,x0 # clear x10
 li x20,0xAFAFAFAF # load x20 with pointless value
 #
ex1: not x11,x10 # x11=0xFFFFFFFF after execution (x10 => no change)
ex2: not x20,x20 # x20=0x50505050 after execution
 #
#~~~~~~~~~~~~~~ code fragment ~~

Table 10.6: Code fragment example using the not pseudoinstruction.

10.3.1.3 Pseudoinstruction: neg

The neg is a pseudoinstruction is also quite useful. Its official purpose is to perform a 2’s complement (toggles
all the bits then add 1) on the register specified by the source operand. Programmers typically use the neg
instruction when working with signed numbers. Be sure to note the difference between the neg instruction (2’s
complement) and the not instruction (1’s complement). Table 10.7 shows the details, and here is some extra
explanation.

 The assembler replaces the neg instruction with a sub instruction. The instruction then subtracts
the source operand from zero and stores the result in the destination register. This is equivalent to
toggling all bits and adding one; this is one of the standard tricks associated with representing
numbers 2’s complement format.

 The implication of using the neg pseudoinstruction is that the instruction is assuming the value in
the source register is in 2’s complement format; otherwise, the instruction would make no sense.

Instruction Form Example Usage
Equivalent
Base Instruction Comment

neg rd,rs2 neg x8,x9 sub x8,x0,x9 Do 2’s complement

Table 10.7: On overview of the neg pseudoinstruction.

Table 10.8 shows an example using the neg pseudoinstruction. The code first initializes two registers on line
(02-03). The code then uses the neg pseudoinstruction to perform a 2’s complement on the initialized values.
We included a not pseudoinstruction in this example on line (08) to highlight the difference between the neg
and not pseudoinstruction; note that the value in x20 and x20 are not equivalent, but only differ by the 1, which
underscores the difference in the definitions of the 1’s and 2’s complement.

FreeRange Computer Design Chapter 10

 - 239 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)

#~~~~~~~~~~~~~~ code fragment ~~
 #
init: li x10,-1 # load x10 with -1 (x10=0xFFFFFFFF)
 li x20,0x000000FF # load x20 with pointless value
 #
ex1: neg x11,x10 # x11=0x00000001 after execution (x10 => no change)
ex2: neg x21,x20 # x21=0xFFFFFF01 after execution (x20 => no change)
 #
ex3: not x20,x20 # x20=0xFFFFFF00 after execution
 #
#~~~~~~~~~~~~~~ code fragment ~~

Table 10.8: Code fragment example using the not pseudoinstruction.

10.3.2 xxxxSet If Less Than: slt, slti, sltu, sltiu

The RISC-V ISA include six base conditional branch instructions and ten other conditional branch
pseudoinstructions, all of which are program flow control related instructions. These instructions allow the
program to make conditional branch decisions based on the values in two registers. There are actually two
drawbacks with the branch-type instructions. First, the instruction “branches” if the condition is met; but it may
be the case where you don’t want to branch. You may have other tasks to complete before you actually need to
branch. Second, the branch-type instructions base their inherent comparison on two registers only. It sometimes
can become inconvenient to not be able to base program flow control decisions based on immediate values rather
than register values.

The RISC-V ISA also contains a group of compare-oriented instructions that provide programmers with
expanded flexibility in performing branches. The group of “set if less than” instruction partially solves the issue
of being constrained to basing branches on register comparisons by provided the ability to establish “less than”
relationships based on immediate values.

Table 10.9 provides an overview of the set if less than (slt) instructions. There are two main types of slt-type
instructions. All slt-type instructions set the destination register (writes ‘1’ to the register) if the result of the
comparison is true; the differences lie in the comparisons made by the instructions. The immediate forms of the
instructions (slti & sltiu) compare a register to an immediate value, while the register-immediate forms of
the instructions compare two register values. Additionally, the instructions either interpret the two operands
differently, as both unsigned values (sltu & sltiu) or signed values (slt & slti).

Table 10.9 uses some special vernacular in the associated RTL to describe the instructions. First, it uses “<u” and
“<s” for unsigned and signed comparisons, respectively. Second, it uses a C programming language type
operator to describe the result of the comparison. The “? :” is an arithmetic if operator. This operator includes an
expression on the left of the question mark, and a value on each side of the colon; the RTL statements in Table
10.9 use a comparison in place of the expression. If the comparison evaluates are true, the operator assigns the
value on the left side of the colon (‘1’) to the destination register; otherwise, the operation assigns the value on
the right side of the operator (‘0’). Thus, the destination register is either set or cleared as a result of executing
any one of these slt-type instructions.

The immediate forms of the slt-type instructions represent the immediate operand in a 12-bit field in the
instruction format. The hardware interprets these values as signed values, which gives the immediate value an
effective range of [-2048,2047]. The RISC-V MCU hardware sign-extends these values prior to the comparison.
Table 10.9 indicates sign-extension of the immediate value with using the “sext(imm)” notation in the RTL
statement.

FreeRange Computer Design Chapter 10

 - 240 -

Instr
Type Instruction Form Instruction RTL Example Usage Comment

R-Type slt rd,rs1,rs2 rd ← (rs1 <s rs2) ? 1 : 0 slt x10,x5,x21 signed compare

I-Type slti rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slti x8,x9,0xF0 signed compare
12-bit signed imm

R-Type sltu rd,rs1,rs2 rd ← (rs1 <u rs2) ? 1 : 0 sltu x5,x6,x16 unsigned compare

 I-Type sltiu rd,rs1,imm rd ← (rs1 <u sext(imm)) ? 1 : 0 sltiu x7,x8,25 unsigned compare
12-bit signed imm

Table 10.9: The two forms associated with the four logic instructions.

Table 10.10 shows a code fragment that uses the slt-type instructions. The code fragment groups the two-register
compare slt-types (slt & sltu) and the register-immediate compare types (slti & sltiu) in the code for
easy comparisons for humans who may actually be reading this. Here is some extra explanation regarding the
Table 10.10 code fragment.

The code initializes from generic values on lines (02-03) to use in the code below it. We load x11 with “-1”,
which the assembler represents in x11 in 2’s complement format (0xFFFFFFFF).

 The slt instruction on line (05) compares the values in register x11 & x12. This instruction
causes the hardware to interpret the values in x11 & x12 as signed value. The RISC-V hardware
interprets the value in x11 (0xFFFFFFFF) as -1, which is less than the value in x12, which is zero.
As a result the hardware writes a ‘1’ (0x00000001) to x10. The hardware overwrites whatever
value is in x10; the values in x11 & x12 do not change.

 The sltu instruction on line (06) uses the same two source operands as the slt instruction on line
(05). The value written to x20 is different, however, because the sltu instruction directs the
hardware to interpret the values in x11 and x12 as unsigned values. This means that the value in
x11 (0xFFFFFFFF) is now a large positive number instead of -1 as it was in the previous
instruction. The result is that the value in x11 is no longer less than the value in x12, so the
hardware clears the x20 register.

 Lines (09-10) show the register-immed version of the slt-type instructions. Line (09) compares
x11 to 1; the instruction directs the hardware to treat the value in x11 as a signed number. The
result is that x10 is written with ‘1’ because -1 is less than the immediate operand of ‘2’. The sltiu
instruction on line (10) is similar but the instruction directs the hardware to interpret the value in
x11 as an unsigned number (0xFFFFFFFF). The hardware clears the value in x20 because the
value in x11 is not less than the immediate value of “2”.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)

#~~~~~~~~~~~~~~ code fragment ~~~
 #
init: li x11,-1 # load x10 with -1 (x10=0xFFFFFFFF)
 mv x12,x0 # clear x12
 #
ex1: slt x10,x11,x12 # x10 = 1 after execution (x11,x12 => no change)
ex2: sltu x20,x11,x12 # x20 = 0 after execution (x11,x12 => no change)
 #
 #
ex3: slti x10,x11,2 # x10 = 1 after execution (x11 => no change)
ex4: sltiu x20,x11,2 # x20 = 0 after execution (x11 => no change)
 #
#~~~~~~~~~~~~~~ code fragment ~~~

Table 10.10: Code fragment example using the slt-type instructions.

10.3.3 The Load Address Instruction: la

FreeRange Computer Design Chapter 10

 - 241 -

Assembly code uses labels as a way to make it easier for humans to write and understand code without needing
to know about the underlying mechanics of the instruction. Labels serve two main purposes in programs: 1) as
“no-cost” comments, and, 2) to locate specific portions of the code required by other instructions (including
pseudoinstructions). Labels used as comments make code more readable for humans without increasing the
program length, and without using actual comments (using the “#” symbol). The other use of labels is to locate
sections of code that the program requires for program flow control issues such as conditional and unconditional
branches (jumps), which includes subroutine calls.

Labels represent addresses of either data or instructions in memory. The good news is that the assembler handles
most of the underlying details on this, so we won’t go into too much detail in this section. However, for some
program flow control issues, we need to be able to manipulate the address value associated with a label. In those
situations, we use the la instruction.

The la instruction is a pseudoinstruction that the assembler translates to an auipc and lui instruction. The
mnemonic stands for “load address”, which means the instruction places the value associated with a label into a
register. The value it places into the register is an address of data in the main memory module; this data can
either be the address of true data or the address of an instruction as the same memory module holds both types of
data. Table 10.11 provides an overview of the la instruction; astute programmers can find a full description in the
associated assembly language manual.

Instruction Form Instruction RTL Example Usage Comment

la rd,label rd ← &label la x8,my_label Numerical value of
my_label copied to x8

Table 10.11: The overview of the la pseudoinstruction.

The best way to understand the operation of the la instruction is to see it in code. Figure 10.9 shows a code
fragment that uses two la instructions. This is a simple example; we’ll later use these instructions in the proper
context when we discuss look up tables (LUTs) in Section 14.5 and interrupts in Chapter 13. Here are the
important points to notice in Figure 10.9:

 The code is a fragment, which means it’s a part of some larger program. It doesn’t do anything
meaningful without seeing the other parts of the program.

 The code uses a bunch of nop instructions as placeholders for more meaningful instruction. Recall
that a nop is a pseudoinstruction that does nothing.

 The code uses five labels: each of the labels represent the numerical value of the first instruction
following it. The code provides the address of the emu label in the comment, thus the address of
the emu label in instruction memory is 0x00000040 as the comment indicates.

 The ex0 label does not have an instruction on the same line as do the other labels. This is common
in programs and is completely legal. The ex0 label takes on the address of the next instruction in
the code, which is the instruction on line (05). Thus, the numerical values associated with the ex0
and ex1 labels are equivalent.

 The la instruction on line 06 copies the value of the emu label (0x00000040) into register x20,
which is an arbitrary register.

 The la instruction on line (05) copies the value of the cow label into register x10. For this
instruction, we need to count forward in the code from address 0x00000040 to determine the
address of the cow label, which is 0x0000005C. Recall that each instruction in program memory
requires four bytes of space and main memory is byte-addressable.

FreeRange Computer Design Chapter 10

 - 242 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)

#~~~~~~~~~~~~~~ code fragment ~~
emu: nop # placeholder instruction: addr=0x00000040
 nop # placeholder instructions
 nop
ex0:
ex1: la x10,cow # place associated value of cow (0x0000005C) into x10
ex2: la x20,emu # place associated value of emu (0x00000040) into x20

 nop # placeholder instructions
 nop #
 #
cow: nop #
#~~~~~~~~~~~~~~ code fragment ~~

Figure 10.9: Code fragment example using the la instruction.

10.3.4 Other Loading-Type Instructions: auipc & lui

The RISC-V ISA contains many generic base instructions that provide the ISA with significant flexibility
without having to add more instructions. What this means is that the usefulness of some base instructions is not
readily apparent because we typically don’t use these instructions directly. Because these instructions are part of
other useful pseudoinstructions, the assembler converts those pseudoinstructions to the base instructions as part
of the assembly process.

This section describes the auipc and lui base instructions. The assembler translates the call pseudoinstruction
to auipc & jalr base instructions; the assembler also translates the la pseudoinstruction into an auipc &
addi base instructions. The assembler translates the li pseudoinstruction into a lui instruction (and possibly
an addi instruction).

10.3.4.1 Add Upper Immediate to PC Instruction: auipc

The primary purpose of the auipc instruction is to load a copy of the current program counter to a register. The
auipc instruction is primarily used indirectly by programmers because it is part of the call pseudoinstruction
(the other part of the call pseudoinstruction is a jalr instruction). Table 10.12 shows a description of the auipc
instruction along with some usage details. Here are some other fun facts about this instruction.

 The auipc instruction loads the sum of the current PC and a modified immediate value into the
destination register. The instruction sign-extends the immediate value and shifts it left 12 bit
locations before being adding it to the destination register. The instruction clears the lower 12-
bits in the destination register.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

U-Type auipc rd,imm rd ← PC + (sext(imm) << 12) auipc x7,25 Lower 12 bits are
cleared

Table 10.12: An overview of the auipc instruction.

10.3.4.2 Load Upper Immediate Instruction: lui

The lui instruction is similar to the auipc instruction. It’s once again one of those instructions that
programmers don’t use often in a direct manner, but use often in an indirect manner. The assembler translates the
li pseudoinstruction into lui instruction.

Similar to the auipc instruction, the lui instruction loads a modified immediate value into the destination
register. The difference from the auipc instruction is that the PC value is not included in value loaded into the
register. The instruction sign-extends the immediate value and shifts it left 12 bit locations before loading it into
destination register. Table 10.13 provides an RTL description of the lui instruction.

FreeRange Computer Design Chapter 10

 - 243 -

Instr
Type Instruction Form Instruction RTL Example Usage Comment

 U-Type lui rd,imm rd ← (sext(imm) << 12) lui x18,47 Lower 12 bits are
cleared

Table 10.13: An overview of the lui instruction.

10.3.5 Loading Immediate Values: li

The li pseudoinstruction provides a way to load an immediate value into a register. The assembler translates the
li pseudoinstruction to a lui instruction and possibly an addi instruction, depending on the magnitude of the
immediate value. Programmers can use either negative or positive values for the operand of this instruction. The
assembler handles the details of where the li instruction translates to one or two base instructions. Table 10.14
provides an overview of the li pseudoinstruction.

Instruction Form Instruction RTL Example Usage Comment

li rd,imm rd ← imm li x8,20 Immediate value loaded
into destination register

Table 10.14: The overview of the li pseudoinstruction.

10.4 Program Flow Control

Our original definition of a computer was a “piece of hardware that sequentially executes a stored program”. The
key word here is sequentially. Computer programs typically execute programs in sequence: one instruction after
another. Recall that program memory stores the instructions, so sequential program execution essentially means
that computers execute the instruction at one memory address location, and then the computer executes the
instruction at the next contiguous memory address, etc. Programs do not always simply execute instructions
sequentially; if they did so, the program would quickly run out of instructions to execute.

The notion of program flow control deals with instructions that have the ability to cause the computer to execute
instructions in some order other than strictly sequentially. In other words, some instructions instruct the MCU to
“jump” somewhere in program memory other than to the instruction following the current instruction being
executed. We consider sequential instruction execution as “normal operation”, while everything else falls into
the category of non-normal operation, or more aptly put, program flow control. This section covers the main type
of flow control instructions: branch instructions. Additionally, there are two types of branch instructions: 1)
unconditional branches, or jumps, and 2) conditional branches.

As you will see, there are other program flow control issues in the RISC-V MCU including subroutines and
interrupts. As it turns out, the RISC-V ISA does not have base instructions dedicated to working with
subroutines; the RISC-V MCU deals with subroutines using the two available unconditional branch instructions.
Interrupts are also part of program flow control; we cover the RISC-V interrupt architecture in another chapter.

10.4.1 Labels Revisited

We first mentioned labels in Section 8.4.1.4, but we purposely skipped over an important detail regarding the
true non-commenting aspect of labels. We revisit the notion of labels in this chapter because of labels are
critically important to the notion of jumping around in programs. In other words, it’s not a big deal to execute the
instructions stored in program memory in a sequential manner; it doe, however, require a more complicated
mechanism to have the MCU execute instruction in a non-sequential manner, which is where the notion of
branching comes in.

The truth is that labels represent numbers, and more specifically addresses of instructions in program memory.
We can omit most of the underlying details regarding labels in this programming section of the text because we
can more appropriately discuss them when describing the RISC-V MCU hardware. However, we mention a few
details here. Labels represent addresses; when you branch to some other section of instructions in your program,
you do so by loading the address value associated with a given label into a register that the hardware uses as an

FreeRange Computer Design Chapter 10

 - 244 -

index into program memory. We can mostly skip over those details for this section and deal 100% with labels
without knowing anything of the underlying details. The notion here is that all the branch instructions generally
include an operand that is an address value. We work to avoid using address values directly when dealing with
labels; we instead use only labels and allow the assembler to convert those labels into actual numbers as the
assembler translates the assembly language source code to machine code. So once again, the pure programmer
gets away without knowing the full story embedded in the underlying hardware. I’m sure glad I understand
hardware.

Example 10.3: Label Values

For the following RISC-V assembly language code fragment, if the label init has a value of
0x00000E00, provide the following information:

a) What are the numeric values (in hex) with all the labels in the fragment

b) What is the address in program memory of the j instruction?

c) What is the relative address of t_100 relative to init, c22 relative to loop1, loop1
relative to t_100, and t_100 relative to loop1.

init: mv x15,x10 # save a copy
 li x21,0x00000F00 # 100’s bit mask
 li x22,0x000000F0 # 10’s bit mask
C22: li x23,0x0000000F # 1’s bit mask
 mv x20,x0 # zero accumulator

t_100: and x15,x15,x21 # mask 100’s nibble
 srli x15,x15,8 # shift to lowest position
loop1: beqz x15,t_10 # go to tens if zero
 addi x20,x20,100 # accumulate 100s
 addi x15,x15,-1 # decrement loop count

junk: j loop1 # do it again

Solution: The key thing to recall doing problems such as this is that each RISC-V instruction requires four bytes
of program memory. The code in this example is only instructions, so the entire problem becomes an exercise in
doing math.

a) This part of the problem is simply a matter of doing the math, where each instruction advances the
address by four.

label Value comment
init 0x00000E00 Given by problem

c22 0x00000E0C 3 instrs past init

t_100 0x00000E14 5 instrs past init, 2 past c22

loop1 0x00000E1C 7 instrs past init, 2 past t_100

junk 0x00000E28 10 instrs past init, 3 past loop1

Table 10.15: Solutions to part a)

b) We already did the math for the address of the j instruction; it’s the same value that is associated with
the junk label, which is 0x00000E28.

c) The solutions with explanation to part c). Note that because we are working with instructions, all the
answer are divisible by four. Also, negative values indicate going backwards in the code (to lower
memory addresses) while positive values represent going forward in the code (to higher memory
addresses).

FreeRange Computer Design Chapter 10

 - 245 -

label Value comment

t_100 relative to init 20 Five instructions forward

c22 relative to loop1 -16 Four instructions backwards

loop1 relative to t_100 8 Two instructions forward

t_100 relative to loop1 -8 Two instructions backwards

Table 10.16: Solutions to part c)

10.4.2 Branch Instructions

Branch instructions can6 cause the MCU to execute an instruction that is not the next instruction in program
memory. There are two types of branch instructions: unconditional branches and conditional branches. The
RISC-V refers to unconditional branches as “jumps” and conditional branches as “branches”. Both types of
branch instructions potentially alter the sequence in which the MCU executes instructions from program
memory. The difference between these two types of instructions is that unconditional branches always change
the program execution sequence while conditional branches may or may not change the instruction execution
sequence depending on certain conditions in the MCU. The main thing to keep in mind is that branch
instructions have the ability to transfer program control from one instruction to another instruction that is not
necessarily the next instruction in the sequence.

10.4.2.1 Unconditional Branch Instructions

As the name implies, when the MCU executes an unconditional branch instruction, the MCU always takes the
branch. In other words, program control always transfers to another instruction in program memory that is not
the instruction following the instruction just executed7. The RISC-V instruction set contains two unconditional
branch instructions: jal & jalr. The mnemonics for these instructions roughly mean “jump and link” for jal
and “jump and link register” for jalr. Table 10.17 shows the two of the unconditional branch instructions. Here
are a few things to notice about Table 10.17:

 These instructions officially have different types, where the jal instruction is a “J-type” and the
jalr instruction is an “I-type”. The difference in the number of operands is what requires these
two instructions to have different types. The pure programmer does not need to be aware of this
level of detail; we include it here for completeness.

 There are two forms of each instruction. This means that you can use either form of each
instruction in your source code. The number of operands forms the difference in the forms, where
the forms with the most operands is the full instruction. If you don’t include all the operands, the
assembler makes some assumptions. The difference in both instructions is the inclusion of the rd
operand. In both cases, the assembler uses x1 for the rd operand if you use a form that omits it.

 From the Instruction RTL column, you can see that both forms store the current PC (program
counter) and modify the current PC. Note that the PC holds the addresses of the current instruction
that the hardware is executing, which makes it an index into program memory. The current is
(adjusted to point at the next instruction) is stored in the rd, the destination register. Both
instructions also change the PC, which underscores the major difference between these two
instructions. The new PC for the jal instruction is a function of the immediate value; the new PC
for the jalr instruction is a function of the source register (rs1) plus the immediate value.

 The difference the new PC value listed in the previous bullet is significant, sort of. As you’ll soon
see, the pure programmer can get away without knowing these details, but everyone else needs to
at one point understand these details. The functional difference is that you can use either the jal

6 We use the word “can” here because some types of branch instructions don’t always branch.
7 You can branch to the instruction following the branch instruction, but that generally means you’re not understanding the
point of the branch instruction.

FreeRange Computer Design Chapter 10

 - 246 -

or jalr instruction to call a subroutine, but you can only use the jalr instruction to return from
a subroutine. We’ll discuss these details further in a later chapter. One last thing to note here is
that the “r” in the jalr mnemonic stands for register, which refers to the new PC value is also a
function of some register.

 We opted to present these instructions using a “lab” expression, which is short for “label”, even
though the official documentation uses an “imm” expression for the thing. The expression is
eventually a value, as the “imm” implies, but it only becomes a value after the assembler makes it
into one. This means that you can’t use a raw number for the “lab” value when you use these
instructions in your source code; you have to use a label. Even if you could use an actual value,
you would not want to because it would make your code unmanageable and hard to modify.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

J-Type

jal rd,lab
X[rd] ← PC + 4

PC ← PC + lab
jal x8,label

Return address
stored in X[rd];
lab is signed

jal lab
x1 ← PC + 4

PC ← PC + lab
jal label

Return address
stored in x1
lab is signed

I-Type

jalr rd,rs1,lab
X[rd] ← PC + 4

PC ← rs1 + lab
jalr x5,x6,label

Return address
stored in X[rd];
lab is signed

jalr rs,lab x1 ← rs1 + lab jalr x7,label
Return address
stored in x1;
lab is signed

Table 10.17: Two forms of the two unconditional branch instructions.

The creators of the RISC-V instruction set designed the jal and jalr instructions for genericity and
efficiency; the designers didn’t design them for easy use or quick understanding. The two instruction also serve
to handle to well-known areas where executing the instruction other than the next instruction (jumping) is
required: calling subroutines and returning from subroutines. The other area we use unconditional branches is to
continue processing in an iterative loop. We cover iterative loops later in this chapter, and everything you want
to know about subroutines in another chapter. This stuff makes more sense when you see it used in actual
assembly language programs; we’re almost ready to do that.

Although the application of jal and jalr instructions is not intuitive, we rarely if ever are required to use
these instructions directly in our programs. We instead use one of the pseudoinstructions associated with these
instructions, which we conveniently list in Table 10.18. Here is some useful stuff to note about Table 10.18:

 You can find more details associated with each of the listed pseudoinstructions in Table 10.18 in
the assembly language manual.

 The assembler is responsible for converting every pseudoinstruction into a single or set of base
instructions.

 The programs we write typically use the j, call, and ret pseudoinstructions; we use the jr
instruction much less often. We use the j pseudoinstruction as a jump associated with iterative
loops; we use the call and ret pseudoinstructions when we access subroutines.

 Generally speaking, the assembler translates the call instruction to two instructions. Using two
instructions allows for a larger jump range. Your assembler may be smart enough to only use one
instruction, but probably not.

 Once again, despite what any other documentation says, you must use actual labels with these
instructions. The assembler then coverts those labels to actual numerical values, which as then
subsequently stored as part of the machine code associated with the base instruction.

FreeRange Computer Design Chapter 10

 - 247 -

Instruction Form
Equivalent Base
Instruction(s) Example Usage Comment

j label jal x0,label j label Jump to instruction
associated with label

jr rs1 jalr x0,0(rs1) jr x8 Jump to instruction at
address in rs1

call rd,label
auipc rd,hi(label)

jalr rd,lo(rd)
call x5,subrot

Jump to instruction
associated with label;
Store current address in rd

call label
auipc x1,hi(label)

jalr x1,lo(x1)
call subrot

Jump to instruction
associated with label;
Store current address in x1

ret jalr x0,0(x1) ret Jump to instruction at
address in x1

Table 10.18: The program flow control pseudoinstructions and their base instruction translations.

One final comment here. The primary difference between these two instructions is how they calculate where they
jump to. The jal instruction uses the immediate value as a signed offset from the current instruction, while the
jalr instruction uses a register as to hold the address to branch to. The jal instruction can thus jump as
FIXME far in instruction memory as the jalr instruction. We’ll cover the underlying details in the hardware
section of this text.

Example 10.4: Program with Unconditional Branch

Write a RISC-V assembly language program that continuously reads data from port address
0x11003000, negates that data, and outputs the result to port address 0x11005000.

Solution: Figure 10.10 shows the solution to this example. This problem has similarities to previous problems,
so we’ll only describe the new stuff:

 This program includes a header that provides a description of program on lines (00-04). Code goes
in the text segment so we use a “.text” assembler directive on line (05).

 The initialization code includes an “init” label, which the program uses to place the port addresses
into registers. Note that the choice of registers in this program is arbitrary in that we could use any
register other than x0.

 The main code in the program starts at line (10), as indicated with the “main” label. The program
inputs data on line (10) using an lw instruction. The problem did not state a data size so we opt to
use words. The program negates the input data on line (11) using a neg pseudoinstruction, and
then output on line (12) using a sw instruction. The fact that the problem stated to “negate” the
input data implies that the input data was signed data; the neg pseudoinstruction treats the data a
signed when it performs a two’s complement on the data.

 The j instruction on line (11) is the program flow instruction, which is a pseudoinstruction for that
performs an unconditional branch. . This instruction directs program execution to some other
executable instruction in the program, which is in this program, is to the instruction on the line
with the main label.

FreeRange Computer Design Chapter 10

 - 248 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#---
Program Description: The program continuously reads data from port
address 0x11003000, negates that data, and outputs the result to port
address 0x11005000.
#---
.text # code goes in the text segment

init: li x10,0x11003000 # input port address
 li x11,0x11005000 # output port address

main: lw x20,0(x10) # input data
 neg x20,x20 # take the 2’s complement of the data
 sw x20,0(x11) # output data

 j main # repeat I/O sequence

Figure 10.10: Solution for this example.

10.4.2.2 Conditional Branch Instructions

While the unconditional branch instructions don’t provide any options in terms of program flow control, the
conditional branch instructions do. Unconditional branch instructions utilize the two register values in order to
determine whether to branch or not. When certain conditions associated with those values test as true, the
instruction takes the branch; otherwise, the instruction does nothing and program flow control passes to the
instruction following the branch instruction (which is the next instruction in program memory).

There as six base conditional branch instructions in the RISC-V MCU instruction set. There are also ten other
conditional branch pseudoinstructions derived from the six based conditional branch instructions. The fact that
there are a relatively high number of base and pseudoinstructions underscores their importance in assembly
language programming. Table 10.19 lists the six conditional branch base instructions. And of course, here are a
few interesting items to note about Table 10.19.

 Most importantly, notice that conditional branches are based upon the conditions in two register
values. This is sometimes quite restrictive, but that’s what we have to work with in the RISC-V
ISA. The existence of “set if less than” instructions provide somewhat of a workaround for the
limited flexibility of conditional branch instructions, but we leave those to another section.

 We once again use the “label” notation in our instruction description. Other documentation uses
“imm” to reflect an immediate value, but the assembler actually rejects numerical value for the
immediate operand.

 We opt to use C programming language operators to show the relationship between registers in the
Comment column; we also add an external note as well.

 The instructions consider the values in the source registers to be signed values unless stated
otherwise. The bgeu and the bltu instructions are the only two instructions that treat the source
operands as unsigned values.

FreeRange Computer Design Chapter 10

 - 249 -

Instruction Form Example Usage Comment

beq rs1,rs2,label beq x10,x11,label branch if x[rs1] == x[rs2]; (equal)

bne rs1,rs2,label bne x23,x10,label branch if x[rs1] !=x [rs2]; (not equal)

bge rs1,rs2,label bge x20,x21,label branch if x[rs1] >= x[rs2]; (≥)

bgeu rs1,rs2,label bgeu x8,x9,label branch if x[rs1] >= x[rs2]; (unsigned)

blt rs1,rs2,label blt x28,x29,label branch if x[rs1] <= x[rs2]; (≤)

bltu rs1,rs2,label bltu x4,x11,label branch if x[rs1] <= x[rs2]; (unsigned)

Table 10.19: The RISC-V conditional branch base instructions.

Table 10.20 lists the ten pseudoinstructions and their base instruction equivalents. Here are a few things to note
about Table 10.20:

 You can use these instructions as listed in your source code; the assembler translates your
pseudoinstructions to base instruction.

 We once again use the “label” to mean a label in your source code. The associated documentation
often uses an immediate value instead, even the though the assembler rejects such numeric values.

Instruction Form Example Usage
Equivalent
Base Instruction Comment

beqz rs1,label beqz x7,label beq rs1,x0,label branch if x[rs1] == 0

bnez rs1,label bnez x25,label bne rs1,x0,label branch if x[rs1] != 0

bgez rs1,label bne x23,label bge rs1,x0,label branch if x[rs1] >= 0

bgt rs1,rs2,label bgt x20,x21,label blt rs2,rs1,label branch if x[rs1] > x[rs2]

bgtu rs1,rs2,label bgtu x8,x9,label bltu rs2,rs1,label branch if x[rs1] > x[rs2]; (us)

bgtz rs1,rs2,label bgtz x4,x8,label blt x0,rs2,label branch if x[rs1] > 0

ble rs1,rs2,label ble x4,x11,label bge rs2,rs1,label branch if x[rs1] <= x[rs2])

bleu rs1,rs2,label ble x14,x12,label bgeu rs2,rs1,label branch if x[rs1] <= x[rs2]; (us)

blez rs1,rs2,label blez x14,x8,label bge x0,rs2,label branch if x[rs1] <= 0

bltz rs1,label bltz x22,label blt rs1,x0,label branch if x[rs1] < 0

Table 10.20: The RISC-V conditional branch pseudoinstructions.

10.5 Standard Assembly Language Constructs

Assembly language is truly a type of programming language and thus shares same basic constructs associated
with structured programming. This basic constructs include if-else constructs and iterative loops. When
compared to higher-level languages, assembly languages differ wildly in the way they implement these basic
constructs. The ungood news is that the RISC-V ISA has a distinct approach to encoding these basic constructs.
The good news is that it’s not overly complicated once you understand it and use it a few times. Additionally, we
can view an assembly language program as a large conglomeration of these constructs fit together to make a
working program that solves the problem at hand. This section provides an overview of these constructs.

10.5.1 If-Then-else Construct

Figure 10.11(a) shows an example of a RISC-V assembly language version of an if/else construct. As the names
implies, the code does one thing (if some condition is met), or else it does some other thing (if the condition is
not met). In the case of the program in code fragment in Figure 10.11(a), bases the condition that may or may not
be met on the state of the two register operands when the MCU executes the branch instruction. The program

FreeRange Computer Design Chapter 10

 - 250 -

takes one code path if the data meets the condition and another path if the data does not meet condition. Here is a
full description of the program.

 The program starts by loading two registers with port addresses on lines (01-02). The “init” label
implies this code is some type of initialization code, which inherently means that the program only
executes the code once. In the context of this program, that means this code is outside the main
loop in the program.

 The program inputs data on line (04), then does some arbitrary task on line (05). The if/else
construct action happen starting with the condition branch instruction on line (06). If the value
input on line (04) is zero, program control continues with the instruction associated with the
“set_zero” label; we can consider this the “if” part of the if/else construct. This the “if” fails (the
beq instruction condition is not true), the branch is not taken and the program control transfers to
the next instruction following the beq instruction on line (07). The instruction on line (07) would
then be the else part of if/else construct.

 Once the instructions associated with the else clause execute, program flow control transfers to the
instruction on line (11) by way of an unconditional branch instruction on line (08). In other words,
the code jumps of over the code associated with the “if” clause. This is typical if/else operation.

 As with all RISC-V assembly language programs, the non-initialization code forms a loop. After
the if/else stuff is done happening, program control transfers to the instruction associated with the
“main” label by issuing an unconditional branch instruction on line (12).

 We’ve include a flowchart that models our program. Note circular terminal shape for the start of
the program. Most importantly, notice that we have a decision box in there also (the diamond
shaped box); be sure to notice that there are two arrows leaving the decision box where one uses a
“yes” label and the other uses a “no” label. No “maybe” arrows here.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#---
init: li x10,0x11110000 # input port address
 li x11,0x22220000 # output port address

main: lw x20,0(x10) # input switch data
 li x8,1 # set flag
 beq x20,x0,set_zero # branch if data=0
 li x20,-1 # set to all 1’s’
 j out_data # jump over set to 0’s

set_zero: mv x20,x0 # set to all 0’s
out_data: sw x20,0(x11) # write data to output
 j main # reeepeeet
#---

(a) (b)

Figure 10.11: An example of if/else construct (a) and a supporting flowchart (b).

10.5.1.1 Special if/else Coding Considerations

You’ve now seen several approaches to coding if/else constructs in assembly language. While all of these ways
are functionally equivalent, some approaches are more efficient than others. The issue here is that if/else
constructs have at least one unconditional branch instruction (a jump) that directs program flow control to
another area in the program. However, there is only one jump. The tendency in assembly language
programming, especially with programmers who are new to the assembly language, is to have two unconditional
branch statements, one jumps over the if clause, and the other jumps over the else clause. This is functionally
correct, but is not efficient. Always strive to ensure you encode your if/else constructs using only one
unconditional branch instruction.

Figure 10.12 shows an alternate but equivalent form of the if/else clause of Figure 10.11(a). We show this to
remind programmers that there truly are different and truly equivalent ways to code if/else constructs. The code

FreeRange Computer Design Chapter 10

 - 251 -

in Figure 10.12 essentially swaps the order of the if and else clauses compared to the code in Figure 10.11(a).
Comparing and contrasting these two examples may be spiritually enlightening.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#---
init: li x10,0x11110000 # input port address
 li x11,0x22220000 # output port address

main: lw x20,0(x10) # input switch data
 li x8,1 # set flag
 bnez x20,set_ones # branch if data=0
set_zero: mv x20,x0 # set to all 0’s
 j out_data # jump over set to 0’s

set_ones: li x20,-1 # set to all 1’s’
out_data: sw x20,0(x11) # write data to output
 j main # reeepeeet
#---

Figure 10.12: An alternate but equivalent form of the code in Figure 10.11(a).

Example 10.5: Program with Conditional Branch

Write a RISC-V assembly language program that continuously reads data from port address
0x1100A000; if that data is non-negative, the program multiples that data by two, then outputs that
data to port address 0x1100B000; otherwise, the program does nothing with the data.

Solution: Figure 10.13 shows the solution to this example. This problem has similarities to previous problems,
so we’ll only describe the new items:

 The main code in the program starts at line (07), as indicated with the “main” label. The program
inputs data on line (10) using an lw instruction. The problem did not state a data size so it is best
to simply use word size for the input.

 Once the data is input, the program only acts on it “if” the data is non-zero. So if the data is non-
zero, multiply it by two; “else” do nothing. In this case, doing nothing refers to doing nothing to
the data; the program conditionally branches to the input instruction on line (10) if the input data is
zero. We opted to use the beq conditional branch instruction for the if/else construct. If the input
data is zero, we branch to “main” to input more data; else, program control drops to the next
instruction on line (13).

 If program flow makes it to line (13), the input data in x20 needs to be multiplied by two. There is
no multiply instruction in the RISC-V instruction set, but we can use a shift left instruction to
accomplish the desired multiplication. We opt to use a slli instruction on line(13) with the
immediate value of ‘1’ handling the number of times to shift. Once the data is multiplied by two,
we output the data on line(14).

 The j instruction on line (16) is an unconditional branch instruction, which transfers program
control to the instruction associated with the main label on line (10). This causes the program to
repeat ad naseum.

FreeRange Computer Design Chapter 10

 - 252 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

#---
Program Description: The program continuously reads data from port
address 0x1100A000; if that data is non-zero, the data is divided by two
and output to port address 0x1100B000; otherwise the data is discarded.
#---
.text # instruction code goes in text segment

init: li x15,0x1100A000 # input port address
 li x16,0x1100B000 # output port address

main: lw x20,0(x15) # input data
 beq x20,x0,main # do nothing if data is zero

 slli x20,x20,1 # multiply by 2
 sw x20,0(x16) # output data

 j main # repeat I/O sequence

Figure 10.13: Solution for this example.

Figure 10.14 shows a flowchart modeling the operation of this program; here are a few interesting items
regarding this flowchart.

 This is our first program that contains in conditional branch instruction. This program has an
if/else construct, which the flowchart models using a decision box.

 The decision box has one entry point and two exit points. We provide a “yes” and “no” label on
the exit points indicating whether the condition in the decision box were met or not. The program
takes a different flow path based on this condition.

 Decision boxes in general alway have two exit points: a “yes” and a “no”. This never changes.
Despite the fact that the decision box in Figure 10.14 contains only one entry point, decision boxes
can have multiple entry points.

Figure 10.14: A flowchart modeling the operation of this example program.

Example 10.6: Negation and I/O Excitement

Write a RISC-V assembly language program that continuously reads data from port address
0x11003000, negates that data, and outputs the result to port address 0x11005000.

Solution: Figure 10.10 shows the solution to this example. This problem has similarities to previous problems,
so we’ll only describe the new stuff:

FreeRange Computer Design Chapter 10

 - 253 -

 This program includes a header that provides a description of program on lines (00-04). Code goes
in the text segment so we use a “.text” assembler directive on line (05).

 The j instruction on line (11) is the program flow instruction, which is a pseudoinstruction for that
performs an unconditional branch. . This instruction directs program execution to some other
executable instruction in the program, which is in this program, is to the instruction on the line
with the main label.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#---
Program Description: The program continuously reads data from port
address 0x11003000, negates that data, and outputs the result to port
address 0x11005000.
#---
.text # code goes in the text segment

init: li x10,0x11003000 # input port address
 li x11,0x11005000 # output port address

main: lw x20,0(x10) # input data
 neg x20,x20 # take the 2’s complement of the data
 sw x20,0(x11) # output data

 j main # repeat I/O sequence

Figure 10.15: Solution for this example.

10.5.2 Iterative Constructs

Probably the most common construct we use in assembly languages is the iterative construct. A significant
portion of assembly language programs apply the notion of doing something repeatedly, which we do using
some type of iterative construction. There are two types of iterative constructs; we can implement each of those
two constructs in two different ways.

In any iterative construct, we employ the conditional branch instruction in such a way as to discern whether we
need to continue iterating or not. The conditions we check for fall into two different categories: 1) we know in
advance now many times we need to iterate, or 2) we don’t know in advance how many times we need to iterate.
The conditions for the first type are based on a known count; we thus continue iterating the required amount of
times. In other words, the program knows the number of times the construct iterates before it enters the
construct. The number of times we iterate for the second type of is determined by the condition of some register
that the program is using. In this way, the program does not know how many times the construct will iterate
before it enters the construct. Another was to look at this is whether the program knows the iteration count at
assemble time or run time. If the iteration count is a constant, then the assembler knows that count (assemble
time); otherwise, the iteration count is a variable and the exact count is only known then the construct executes
(run time).

We typically refer to these constructs as loops, so we’ll do that from now on. We can implement either of these
loops in two different ways: 1) while loops, or, 2) do-while loops. The difference between these two loops is
simple and distinct: using a do-while loop ensure the loop iterates at least one time. When you use a while loop,
the loop may not be iterated even a single time depending upon the condition controlling the loop. A do-while
loop always iterates one time even if the iteration count is a variable (not known until run time).

We provide a few examples of iterative constructs in the following section, but we state this disclaimer first.
When you’re writing code, you need to make whatever comparison you need to do to make the code do what you
want it to do. Every loop necessarily contains a conditional branch instruction. Being that there are six base and
ten conditional branch pseudoinstructions, we can’t provide example of each instruction. Our approach in the
next two sections to provide one example of each type of conditional construct. It’s the form of the construct that
you should strive to understand, which allows you to use whatever conditional branch instruction you need to
make your particular construct work in such a way that it your code solves the problem at hand.

FreeRange Computer Design Chapter 10

 - 254 -

10.5.2.1 while Loops

The while loop is one type of iterative loop. The main characteristics of the while loop is that the loop condition
is checked before execution enters the body of the loop as well as after each loop iteration. While loops contain
at least one conditional and one unconditional branch instruction, where the conditional branch instruction
provides a conditional exit from the loop and the unconditional branch provides a continuation of the loop. The
unconditional branch in a while loop typically branches to the conditional branch instruction.

Figure 10.16 and Figure 10.17 show an examples of a program fragments that include a while loop that utilizes a
known number of iterations and an unknown number of iterations, respectively. For these and the other loop
examples that follow, you must pretend the body of the loop is doing something meaningful. Here is stuff to note
about Figure 10.16 and Figure 10.17:

 The only thing that makes these loops different is what the code uses for the iteration count. For the
example in Figure 10.16, the iteration count is set on line (05), and is thus constant and the iteration
loop count is known at assemble time. For the example in Figure 10.17, the code determines the
iteration count by inputting a value from the outside world, which means the loop count is variable and
is not known until run time. Another way to look at this is that the code in Figure 10.16 knows the
iteration count when the code is assembled (it is “known”) while Figure 10.17 does not know the count
until the program runs (it is unknown until runtime).

 The example initializes some registers on lines (01-03); the port addresses are arbitrary, but we do
differentiate between input and output addresses.

 The iteration count is set on line (05), which do with the li instruction in Figure 10.16 and an lw
instruction in Figure 10.17.

 The first instruction in the while loop is a conditional branch instruction which checks to see if the
iteration count is zero. If the count is zero, the program takes the branch and program flow control
exits the loop by branching to the instruction on line (15); otherwise, the program simply advances
to the next instruction on line (08).

 The body of the while loop is on lines (08-10); the code inputs data, complements that data, and
then outputs that data to some external device. Not too exciting, but a placeholder for something
else more exciting.

 The administrative part of the loop is on lines (12-13). The instruction on line (12) decrements the
iteration count; program flow is then unconditionally directed to line (07), which is effectively the
start of the loop.

 The first instruction in the loop is the conditional branch instruction; this is the check condition
that effectively allows no iterations of the loop to occur by branching out of the loop (to the
“done” label). The unconditional branch instruction unconditionally branches to the start of the
loop after the iteration count was decrement on line (12).

FreeRange Computer Design Chapter 10

 - 255 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~
init: li x10,0x11110000 # input port address 1
 li x11,0x22220000 # input port address 2
 li x12,0x33330000 # output port address

 li x3,8 # set iterative count

loop: beq x3,x0,done
 lw x20,0(x10) # input data
 xori x20,x20,0xFF # complement data
 sw x20,0(x12) # write to output port

admin: addi x3,x3,-1 # decr loop count
 j loop # do it again

done: # do something else…
~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

Figure 10.16: An example of a while loop with a known numbers of iterations.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~
init: li x10,0x11110000 # input port address 1
 li x11,0x22220000 # input port address 2
 li x12,0x33330000 # output port address

 lw x3,0(x11) # get iterative count

loop: beq x3,x0,done # branch if count=0
 lw x20,0(x10) # input switch data
 xori x20,x20,0xFF # complement data
 sw x20,0(x12) # write to output port

admin: addi x3,x3,-1 # decr loop count
 j loop # do another iteration

done: # do something else…
~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

Figure 10.17: An example of a do-while loop with an unknown numbers of iterations.

Figure 10.18 shows an alternative approach to writing the while-loops in these examples, which is to have the
conditional branch at the end of the code instead of the unconditional branch. In this case, the program would
take the branch when more iterations are necessary. This code would work fine, but the value of the iteration
variable would need to be checked before entering the loop to determine if it was zero, which we do before we
enter the while-loop on line (06). You never want to allow your code to decrement a loop count of zero before
checking to see if that count is zero. The conditional branch on line (06) prevents the code from decrementing a
zero on line (12), with the notion is the count is zero, we never want to enter the loop in the first place.

FreeRange Computer Design Chapter 10

 - 256 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~
init: li x10,0x11110000 # input port address 1
 li x11,0x22220000 # input port address 2
 li x12,0x33330000 # output port address

 lw x3,0(x11) # get iterative count
 beq x3,x0,done # quit if zero

loop: lw x20,0(x10) # input switch data
 xori x20,x20,0xFF # complement data
 sw x20,0(x12) # write to output port

admin: addi x3,x3,-1 # decr loop count
 bnez x3,x0,loop # do again if nedded

done: # do something else…
~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

Figure 10.18: An alternative approach to a while-loop with an unknown numbers of iterations.

10.5.2.2 Do-While Loops

The do-while loop is the other type of iterative loop. The main characteristic of the do-while loop is that the at
least one iteration of the loop is guaranteed to be executed. After that first execution of the loop body, the do-
while loop effectively becomes a while loop after the first iteration complete. Keep in mind that there is a
potential problem with do-while loops that have an unknown number of iterations at runtime. If you need to do
something “zero times”, and you do it once, your program could die an ugly death. For these cases, you may
want to make sure you code does the “safe thing” if this condition could potentially occur.

The fragment of code in Figure 10.20 shows an example of a do-while loop with a known number of iterations.
Even though this code does not do anything meaningful, here are a few fun facts to see in this example:

 We included an “init” label as a comment; the instruction on lines (01-04) initializes registers that
the code below it uses.

 The body of the loop is on lines (06-08). Note that the program always executes these three lines
at least once.

 The loop administration starts on line (10) and includes line (11), which we like to indicate using
the “admin” label. We first decrement the loop count and then jump back to do another loop
iteration if that count is not zero. If the loop count is zero, then the condition fails and program
execution drops through to the instructions starting at the “done” label (so pretend there are some
instructions there).

 We’ve included a charming flowchart that models the code for your viewing pleasure.

FreeRange Computer Design Chapter 10

 - 257 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~
init: li x10,0x11110000 # input port address
 li x11,0x22220000 # output port address

 li x3,0x08 # set iterative count

loop: lw x20,0(x10) # input switch data
 xori x20,x20,0xFF # complement data
 sw x20,0(x11) # write to output port

admin: addi x3,x3,-1 # decr loop count
 bnez x3,loop

done: # do something else…
~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

Figure 10.19: An example of a do-while loop with a known numbers of iterations.

Figure 10.20 shows an example of a do-while loop that iterates an unknown number of times. Because the
accumulation of the input value determines how many times the loop iterates, we don’t know what that value is.
Here are a few other things to notice about Figure 10.20.

 The code uses an accumulator, so part of initialization of this fragment is to use a mv instruction to
clear a register to use as an accumulator, which we do on line (03).

 The body of the loop is to input a value from the outside world and accumulate it, which we do
lines (05-06). These lines always execute at least one time based on the notion we’ve modeled this
code as do-while loop.

 The loop administration for this loop is on line (08); it comprises of a check to see if the
accumulated value has surpassed the arbitrary threshold we created on line (02). If the threshold
has not been exceeded, the loop does at least one more iteration (the branch is taken); otherwise,
the branch is not taken and program flow continues on to the code below the “admin” label.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~
init: li x10,0x11110000 # input port address
 li x25,0x44444444 # arbitrary max value
 mv x3,x0 # clear accumulator

loop: lw x20,0(x10) # input switch data
 add x3,x3,x20 # accumulate input

admin: bleu x3,x25,loop # branch if < threshold

done: # do something else…
~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~

(a) (b)

Figure 10.20: An example of a do-while loop with an unknown numbers of iterations.

10.5.3 Iterative Construct Off-By-One Issues

Off-by-one issues essentially means that you mean think your code executes a loop X number of times, but the
loop is actually executing either X+1 or X-1 number of times. Off-by-one errors are particularly common in
assembly language programming because coding at such low levels forces you to have a 100% understanding of

FreeRange Computer Design Chapter 10

 - 258 -

how the instruction actually work8. Once again, some loops are easy: you’ve coded a million of them, you never
make a mistake. Coding these loops is easy because understanding the loop parameters are not too complicated.
However, when you need to code a loop construct that does something somewhat special, you’re more apt to
make a mistake9.

In real life, it makes no sense to “decrement the loop count” before you started executing the loop. Often times in
computerland, you must examine something that is “zero-based”, and you’re using the iterative count as an
index. For example, you want to examine the first ten locations in main memory. The first ten locations in a start
at address zero and continue to address nine (0-9). It’s easy to exit the loop on the ninth iteration before you do
what you need to do in the loop, meaning you only iterated the loop nine times instead of ten. Keep this idea in
mind; it may save your arse someday.

Example 10.7: Iterative Construct with a Known Iteration Count

Write a RISC-V assembly language program that continuously does the following: the program
inputs a word of data from port address 0x11000004, divides that data by 64, then outputs the data
to port addresses 0x11000008.

Solution: This is a simple program that we’ll do in two different ways to show some of “the possibilities”, just
because we can program necessarily uses a loop construct; Figure 10.21 shows all the gory but interesting details
for the first approach.

 The program first inputs data on line (10). We then plan on using a do-while loop that iterates six
time and divides the input data by two each time through the loop. To do this, we load a register
with the iteration count (six) on line (12). The loop divides the input value by two each iteration
using a slri instruction that shift right one bit position.

 The administrative part of the loop include decrement the iteration count on line (14) and then
checking the condition using a conditional branch on line (15). We output the final divided value
on line (17).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

#---
Program Description: This program inputs word from port address 0x11000004
then divides the value by 64, then outputs the data to port address
0x11000008.
#---
.text # instruction code goes in text segment

init: li x15,0x11000004 # input port address
 li x16,0x11000008 # output port address

main: lw x20,0(x15) # input count data

 li x10,6 # load iteration count
loop: slri x20,x20,1 # divide by two
admin: addi x10,x10,-1 # decrement iteration count
 bne x10,x0,loop # check loop count

 sw x20,0(x16) # output data
 j main # rinse, repeat

Figure 10.21: The solution to this example problem.

8 Which is not as true for higher-level languages (or at least it requires a different sort of understanding).
9 Coding loop constructs become so second nature, that you forget why it is the loop you coded actually works properly.
Then when you have a special loop to code, meaning a loop that is not as straight-forward as all the other loops you coded,
you have to really be careful because you’ve forgotten how the loops actually work. Welcome to assembly language
programming.

FreeRange Computer Design Chapter 10

 - 259 -

Figure 10.22 shows the better solution. Note that there is no loop; we can use one slli instruction on line
(11) to complete the division. The cool thing to note here is that the RISC-V shift-type instructions can
operate as barrel shifters of any with from 1 to 32 bit locations (inclusive). The code itself contains fewer
instructions, including not configuring of the loop count for the do-while loop. Be sure to always take
advantage of such handiwork. The moral of this story is that the second solution does not requires a loop
construct, which enable the program to be run more efficiently, and thus do more inputting/outputting.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#---
Program Description: This program inputs word from port address 0x11000004
then divides the value by 64, then outputs the data to port address
0x11000008.
#---
.text # instruction code goes in text segment

init: li x15,0x11000004 # input port address
 li x16,0x11000008 # output port address

main: lw x20,0(x15) # input count data
 slri x20,x20,6 # divide by two, six time (divide by 64)
 sw x20,0(x16) # output data

 j main # rinse, repeat

Figure 10.22: The solution to this example problem.

Figure 10.23 shows two flowcharts representing the two solutions to this example problem. The flowchart in
Figure 10.23(a) shows a decision box that models the do-while loop in the first solution; the decision box is gone
in the second solution because the required shift operation completes in one instruction.

(a) (b)

Figure 10.23: Flowcharts to the first (a) and second (b) versions of the solution to this example.

FreeRange Computer Design Chapter 10

 - 260 -

Example 10.8: Iterative Loop with Unknown Count

Write a RISC-V assembly language continuously does the following: the program inputs two pieces
of data from port addresses 0x11004000 & 0x11004004, respectively. The first piece of input data is
a byte and represents a count value. The second piece of data is a halfword. The program then
outputs the input data to port address 0x11008000 for as many times as is represented by count
inputs. The output data is also work data.

Solution: This program necessarily uses a loop construct; Figure 10.24 shows all the gory but interesting details:

 The program requires an iterative loop, which we know because we needs to do something a given
number of times. We have a choice of what type of loops to use for this problem, so we must
make that decision. The guiding factor in this problem is that the iterative count, which we input,
could be zero. This means that we need to check the value before we execute the body of the loop
(meaning we can’t use a do-while loop for this problem). Note since the iteration count is input
when the program runs, we don’t know in advance (at assembly time) what that value is, thus this
construct can iterate a variable number of time.

 The initialization part of the program includes placing port addresses into registers, which we do
on lines (07-09).

 We input the count data on line (11) and the actual data on line (12). The problem stated the count
data and actual data to be in byte and halfword form, respectively, which is why we use the lb
and lh instructions.

 The loop construct (while-loop) checks the condition on line (20) before continuing with the loop.
The body of the loop is the data output instruction on line (16).

 All loop constructs require some type of “loop administration”, which we do in this loop starting
on line (18) with a decrement of the loop count. We use an addi instruction with a source register
of “-1” to handle the decrement; the instruction officially adds “-1” to the current value of the loop
count in x20. The other part of the loop administration is an unconditional branch back to the
conditional branch instruction and determines if the loop should continue or not.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---
Program Description: This program inputs a count and data; the data
is then output for as many times as is in the count. The program
does this continuously.
#---
.text # instruction code goes in text segment

init: li x15,0x11004000 # input port address
 li x16,0x11004004 # output port address
 li x17,0x11008000 # output port address

main: lb x20,0(x15) # input count data
 lh x21,0(x16) # input data to output

loop: beq x20,x0,main # Check count value; start again if zero

 sh x21,0(x17) # output data

admin: addi x20,x20,-1 # decrement iteration count
 j loop # repeat output part, not input part

Figure 10.24: The solution to this example problem.

Figure 10.25 shows a flowchart modeling this example. The important item to notice is that the flowchart reflects
a while loop in that the program checks the input count condition before it proceeds. This supports the notion
that the count condition that the program inputs could be zero.

FreeRange Computer Design Chapter 10

 - 261 -

Figure 10.25: A flowchart modeling the operation of this example program.

Example 10.9: Iterative Loop with Known Count

Write a RISC-V assembly language continuously does the following: the program inputs ten pieces
of data (unsigned data guaranteed to be non-zero) from port address 0x1100A000 and sums that
data. The program then divides the sum by two as many times as it requires to ensure the data is less
than 0x47. The program outputs the final value in to port address 0x11009800. Assume the input
data never overflows a 32-bit register.

Solution: This program necessarily uses two different loop constructs; Figure 10.26 shows the solution and the
following describes its amazing glory:

 The program has the typical initialization stuff, but now there is more. First, on line (11) we put
the value 0xr47 into a register because the conditional branch instructions work using register
values and not immediate values. Second, on line (12) we initialize the loop count to ten as the
program requires. Third, since this program keeps a running total of input values, we use a register
as an accumulator and clear that register on line (13). The ordering of these three instructions is
important; the value of 0x47 never changes, but we must “re-initialize” the iteration count (x17)
and the accumulator (x18) each time we start processing another ten pieces of data. There are a
few ways to do this, but to save two instructions somewhere else in the program, we’ll be jumping
back to the “start” label when the program completes processing of all ten pieces of data.

 We use a do-while loop to input the data since we know how many times we’ll be iterating that
loop (ten), which means there is always a first time. The “do” of the do-while loop starts on line
(15) by inputting data, then adds that data to the running total (the accumulator) on line (16). The
administrative part of the loop starts on line (21) by decrementing the iteration count and
continues with a check of the iteration count on line (19). If the loop needs to continue, program
control transfers back to line (15); otherwise it drops through to line (21).

 The code on lines (21-23) is a while-loop with an unknown iteration count. We may need to divide
the sum by two many times (line (22)), or we may not need to divide the sum at all. We use a srli
(shift right logical immediate) instruction to divide by 2. We unconditionally jump on line (23) to
check the condition after each division.

 We output the final value on line (25) and then jump back to the start label, which we previously
commented on.

FreeRange Computer Design Chapter 10

 - 262 -

 Note that we’ve simplified the reading of the program by using whitespace (blank lines) to
delineate different “sections” of the program; the instructions in a given section are all supporting
the same task and are different from the previous or next section.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

#---
Program Description: This program continuously inputs and sums ten pieces
of data (unsigned words guaranteed to be non-zero) from port address
0x1100A000. The program then divides the sum by two as many times as
it requires to ensure the data is less than 0x47. The program outputs
the final value in to port address 0x11009800.
#---
.text # instruction code goes in text segment

init: li x15,0x1100A000 # input port address
 li x16,0x11009800 # output port address
 li x18,0x47 # load threshold value
start: li x17,10 # iteration count
 mv x30,x0 # clear counter

main: lw x20,0(x15) # input data
 add x30,x30,x20 # accumulate input data

admin: addi x17,x17,-1 # decrement iteration count
 bne x17,x0,main # branch if iteration count non-zero

loop: ble x30,x18,out_val # jump to output data if less than 0x47
 srli x30,x30,1 # divide by two
 j loop # jump to check again

out_val: sw x30,0(x16) # output data
 j start # repeat entire process again

Figure 10.26: The solution to this example problem.

Figure 10.27 shows a flowchart that models the assembly language solution to this example. The program had
both a do-while loop and a while loop, which we see with the two decision boxes in Figure 10.27. Recall there is
one decision both for each the do-while and while loop.

Figure 10.27: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 10

 - 263 -

Example 10.10: Gathering Input Statistics

Write a RISC-V assembly language continuously does the following: inputs 20 unsigned word
values from port address 0x1100F000 and counts how many of those data are less than 0x58 and
less than 0xA4. After the ten values are input, the program outputs the two counts as bytes to port
address 0x1100E000 in two consecutive outputs.

Solution: This is a rather contrived program in that it does not do much and there are many approaches to
solving this problem. Our intent is to use the set-if-less-than-type instructions, so Figure 10.28 shows our choice
of solutions along with the gut-wrenching details:

 The has initialization code loads the I/O addresses into registers, and also places one of the
threshold values to check in a register also (line (10)). We don’t put both less than threshold
values into registers simply to prove a point that we’ll describe in a later comment.

 The code at the “start” label is also initialization code but differs from the previous initialization
code in that we need to execute the code on lines (12-15) each time the program does its main
task. The body of the loop changes the values in the second set of initialization code, so it needs to
be re-initialized; the program never changes the register values loaded by the first three
instructions.

 We use a do-while loop to input the data since we know how many times we’ll be iterating that
loop (20), which we’ll always enter the loop for the first time. The “do” of the do-while loop starts
on line (15) by inputting data. We then use two slt-type instructions on lines (18-19) to examine
the two less-than threshold values. We use a register-type instruction on line (18) and an
immediate-type instruction on line (19). This is somewhat arbitrary just to show we can do it. The
only useful comment here is that the sltiu instruction uses a constant value that is set at assemble-
time while the sltu instruction uses a register that the program can change at any time. This
program never changes the value but it’s good to know it’s possible.

 The algorithm works by using the register values set by the slt-type instructions as incrementing
values on lines (20-21). The values in these registers is either ‘1’ (less-than checks true) or ‘0’
(less-than checks false), so incrementing in this case is a viable approach.

 Lines (23-24) contain the loop administration code including a decrement of the loop count and a
conditional branch back to the “main” label to continue the loop.

 The program completes by outputting the two counts on lines (26-27), then unconditionally
branching to the start label to redo the entire program (except for the first three instructions).

FreeRange Computer Design Chapter 10

 - 264 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

#---
This program continuously does the following: inputs 20 words values
(unsigned) from port address 0x1100F000 and counts how many of those
data are less than 0x58 and less than 0xA4. The program outputs the two
counts to port address 0x1100E000 as bytes in two consecutive outputs.
#---
.text # instruction code goes in text segment

init: li x15,0x1100F000 # input port address
 li x16,0x1100E000 # output port address
 li x17,0x58 # load threshold value

start: li x18,20 # iteration count
 mv x30,x0 # clear iteration counter
 mv x10,x0 # clear less than 0x58 counter
 mv x11,x0 # clear less than 0xA4 counter

main: lw x20,0(x15) # input data; start of do-while
 sltu x25,x20,x17 # check < 0x58
 sltiu x26,x20,0xA4 # check < 0xA4
 add x10,x10,x25 # add to < 0x58 count
 add x11,x11,x26 # add to < 0xA4 count

admin: addi x18,x18,-1 # decrement iteration count
 bne x18,x0,main # branch if iteration count non-zero

store: sb x10,0(x16) # output less than 0x58 count
 sb x11,0(x16) # output less than 0xA4 count
 j start # jump to do all over again

Figure 10.28: The solution to this example problem.

The slt-type instructions in this program allowed us to essentially make a comparison but not branching as a
result of that comparison. An action like this is quite handy when you need it, but programs typically use it less
often than other branch-type instructions. Try not to forget about slt-type instructions.

Figure 10.29 shows one possible flowchart that models the solution. We’re getting to the point with our
flowcharts that we’re not trying to represent every action in detail; we’re now more interested in the overall form
of the flowchart. Keep in mind that the problems we’ve done so far are not overly complicated; the real
usefulness of flowcharts comes with problems that require complex algorithms to complete.

Figure 10.29: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 10

 - 265 -

10.6 Bit Manipulations for MCUs
We design MCUs, or microcontrollers as some people call them, to do exactly what their name implies: they
control things. By things, we mean external computer peripherals. In general, MCUs monitor status inputs and
send out control outputs. Recall that this functionality is similar to FSMs, but MCUs control things via software
(or firmware) while FSM are purely a hardware-oriented device. The way MCUs control things is by interpreting
input bits (status) and then send out output bits (control); thus, bit manipulations are a key element in writing
meaningful programs for MCU. This section describes some of the details regarding the finer points of bit
manipulations.

10.6.1 Tweaking Bits

Bit-tweaking, or bit banging, is a well-known assembly language trick. In this context, we use the word
“tweaking” to mean modifying individual bit values. There are only four things you can do with a bit: 1) setting,
2) clearing, 3) toggling (complementing), and, 4) holding the bit value (doing nothing). The notion of tweaking
bits is slightly misleading because MCUs such as the RISC-V MCU have instructions that typically only operate
on complete register values. More specifically, the three logic-type instructions (AND, OR, and EXOR) operate
on the entire register, which is why we refer to them as bit-wise operations. Although many modern MCUs have
instruction that can perform logic-type operations on individual bits of a register, most do not.

Having instructions that manipulate individual bits are handy but they make the instruction set larger than they
need to be and the hardware more complex than they need to be, which is why most instruction sets don’t have
such instructions. One of the unstated requirements of assembly language programming is that you need to be
clever. In other words, you need to work with the instructions you have to do what you need to do with a
reasonable amount of complexity. You won’t always have the exact instruction you need every time but the
instruction set should always have the functionality to create the operation you’re looking for (although it may
take a few instructions instead of just one instruction).

You can do four things with a bit: set it, clear it, toggle it, or hold it (do nothing with it). Table 10.21 shows the
four possible things you can do with a bit as well as the logic operations you use to do those four things. There
are many ways to “hold” bits; Table 10.21 shows three of the more common approaches.

Bit Operation How to do it

setting Logical OR with ‘1’

toggling Logical XOR with ‘1’

clearing Logical AND with ‘0’

holding
(do nothing)

Logical OR with ‘0’
Logical XOR with 0
Logical AND with ‘1’

Table 10.21: The four possible things you can do to a bit and how to do it with logic operations.

10.6.2 Bit Masking

Since we generally use MCU to control various computer peripheral devices, it would make sense that we can
use single bits to control these devices rather than entire bytes. The issue with most MCUs is that they can only
operate on large chunks of data at a time. The result is that your assembly programs typically require the use of
bit-masks in order to manipulate individual bits in a register. The bit-masks, combined with executing
conditional branch instructions, allows the microcontroller to perform different functions based on the status of
individual bits of registers rather than the entire register. As you can probably imagine, bit-masking is really
useful and common in assembly languages. Table 10.22 shows a few examples regarding bit-mask possibilities,
all of which makes more sense when you see it used in a few examples.

There are two main uses for bit masks: 1) checking individual input bits in a register, and, 2) assigning values to
individual bits in a register. Note that programs check individual bits and use those bit values in control the
program flow in programs. In most cases, your MCU is controlling some peripheral device, which means your
MCU is typically reading status inputs from external devices and assigning control outputs to external devices.

FreeRange Computer Design Chapter 10

 - 266 -

For the RISC-V MCU, we input values from the outside world into a register, where we can then “check” them;
we then output values to the outside world from a register.

Example Explanation

ori x10,x10,0x02 Sets second to right-most bit-1 in r1 (no other bits change)

ori x11,x10,0x0F Sets four LSB in x10; store result in x11 (no other bits change)

andi x12,x12,0x0F Clears all but the four LSBs in x12 (no other bits change)

andi x13,x13,0x0FF Clears all but the eight LSBS in x13 (no other bits change)

xori x14,x14,0x03 Toggles the lower two bits in x14 (no other bits change)

xori x15,x15,0x0F Toggles the lower four bits in x15 (no other bits change)

Table 10.22: Examples of bit-masking operations.

Example 10.11: Bit-Masking and Bit Setting

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs.
Write a RISC-V assembly language program that reads data from the switches. Consider the data on
the switches to represent a 16-bit unsigned number. If that number is greater than 255, then the
program sets the bottom four bits of the data before it outputs it to the LEDs. Otherwise, the
program outputs the input value. The port address of the switches is port address 0x1100C000; the
port address of the LEDs is 0x11008000.

Solution: Most of this solution is similar to the previous solution so we’ll only describe the interesting parts of
this solution. Figure 10.30 shows the full solution; the following blather could prove interesting:

 The main trick in this problem is how we check to see if the value is greater than 255. We could
simply load a register with the value 255 and use that register in a conditional branch statement,
but that approach would require that we use an extra register. Our approach is to clear the bottom
byte in the input value; if the resulting value is non-zero, than the input value had bits set above
the seventh bits from the right, which means the input value is greater than 255. Part of our
initialization code set a mask value into a register (line (09)); we use this value to clear the lower
byte of the input on line (12). The mask value is greater than 12-bits (meaning we can’t define the
mask using 12-bits) so we place the value in a register and use an andi instruction on line (12).

 We input the data on line (11), mask it on line (12), and branch to the output if the input value is
255 or less using a beq instruction on line (13).

 If the value is greater than 255, program flow drops to the ori instruction one line (14); this
instruction sets the lower 4-bits of the value to 0xF. Note that some of these values may have
already been 1’s, but that does not matter. The instruction does not know what is in the register; it
sets the lower four bits no matter what is in the register.

 The program outputs the value to the LEDs on line (16) and branches unconditionally to do it all
again on line (17).

 The main structure of this program is an if/else statement; the program repeats itself using the
unconditional branch on line (17).

FreeRange Computer Design Chapter 10

 - 267 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

#---
This program reads data from the switches; if the data is greater than
255, then the program sets the lower four bit of the value before outputting
it. Otherwise, it outputs the value to the LEDs without changing value.
The port address of the switches is 0x1100C000; the port address of
the LEDs is 0x11008000. Assume 16 switches and the same number of LEDs.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register#
 li x15,0x0000FF00 # bit mask for values > 255

main: lhu x30,0(x10) # input data
 and x31,x30,x15 # mask the lower byte
 beq x31,x0,out_val # jump to output (input greater than 255)
 ori x30,x30,0xF # set lower four bits

out_val: sh x30,0(x11) # send value to LEDs
 j main # rinse, repeat

Figure 10.30: The solution to this example problem.

Example 10.12: Parity of a Switches

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs.
Write a RISC-V assembly language program that continually reads data from the switches and
outputs the parity of the input data to the LEDs. Specifically, no LEDs on indicates the parity of the
input was even; the right-most LED on indicates od parity of the input. The port address of the
switches is port address 0x1100C000; the port address of the LEDs is 0x11008000.

Solution: Some of this solution is similar to the previous solution so we’ll only describe the new parts. This is a
classic problem that we’ll see again in a later chapter. This is our first program that sort of does something
meaningful in that parity is popular topic and we use a clever algorithm to generate our result; Figure 10.31
shows the incredibly interesting details.

 The initialization part of the program includes loading the port addresses to registers, and putting
the LEDs into a known state. We do all this on lines (06-09).

 After inputting data on line (11), we check to see if that data is zero; if it is zero, we branch to the
code that outputs to the LEDs; otherwise we continue into the code. We wrote the algorithm as
while loop because we checked the condition first. The structure of the code is an embedded loop,
where one where we essentially have a do-while loop embedded in the while loop. The while-loop
is the outer loop and starts on line (11); the do-while loop is the inner loop and is on lines (13-18).
This is a classic structure you use quite often in assembly languages.

 The algorithm masks all but the LSB of the input data (line (14)) and then adds that result to x20,
which is a register we use as a counter. Note that part of the init code we clear that counter and
then clear it again after we complete the inner loop and output the result to the LEDs on line (22).
The administrative part of the inner loop includes shifting the original input data to the right. Note
that we treat the outer while-loop as if we don’t know the iteration count; we could have used an
algorithm that used an iteration count of 16, but that would mean the inner loop would always run
16 times. The way we’ve written the algorithm, the loops ends when that value we’re using to
calculate parity runs out of 1’s.

 The final portion of the algorithm is when we break out of the inner loop. At that point we mask
1’s count on line (20) and output that value on line (21). In this way, if the count of 1’s is odd, a
‘1’ in the LSB position is output to the LEDs; otherwise the algorithm turns off all LEDs.

FreeRange Computer Design Chapter 10

 - 268 -

 In preparation of starting the outer loops again, we clear x20, which use to keep track of the set
bits in the input data.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

#--
This program inputs data from the switches, calculates the parity of
of the input data, then outputs that parity to the LEDs with no LEDs
on indicating even parity and the right-most LED on indicating odd
parity.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register#
 mv x20,x0 # clear register to use for LED state
 sh x20,0(x11) # turn off all LEDs

main: lhu x30,0(x10) # input data

loop: beq x30,x0,done # branch if zero
 andi x21,x30,1 # mask LSB
 add x20,x20,x21 # accumulate bits

admin: srli x30,x30,1 # shift right one bit
 j loop # jump to keep counting

done: andi x20,x20,1 # mask LSB
 sh x20,0(x11) # output result
 mv x20,x0 # clear counter
 j main # rinse, repeat
#--

Figure 10.31: A codespace efficient solution to this example.

Figure 10.32 shows a flowchart modeling the operation of this program. There are many ways to draw
flowcharts; we typically draw the ones in this text to save vertical space. There are sometimes better ways to
draw them, but making the flowcharts as “horizontal” as possible reduces page count issues. One issue to notice
in the flowchart of Figure 10.32 is the fact that there are two “clear accum” boxes there. We could have
structured our code to use only one such box, which would definitely have a few minor advantages.

Figure 10.32: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 10

 - 269 -

Example 10.13: Simple Bit Mask with Conditional Output

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs.
Write a RISC-V assembly language program that reads data from the switches. If the second to
right-most switch is on (on=1), then the program turns on all LEDs; otherwise the program turns off
all LEDs. The port address of the switches and LEDs is 0x1100C000 & x11008000, respectively.

Solution: The most interesting part of this example is the notion we have to act on the status of a single switch.
This is somewhat of a problem because the RISC-V MCU only operates on larger chunks of data such as bytes,
halfwords, and words. This where the notion of bit masking comes in. Figure 10.33 shows the full solution; here
are some fun facts about the solution:

 The solution contains a nice program header on lines (00-06) that describes what the program does
with a modest amount of detail. All programs should have such a header (or file banner); we
sometimes omit them to save time.

 The program first initializes stuff on lines (7-10); we use the “init” label to indicate this. The
initialization code is typically code that we execute only once in a program. We use this code to
essentially “create” constants in the code. This notion is that we set the constant values once, and
then save codespace and execution time by not setting them again in the remainder of the code.
For this initialization code, we put the two I/O addresses in registers; we also put the two chunks
of output data in registers (all 1’s and all 0’s).

 The main code consists of inputting data, and if/else construct, and a few strategically placed
unconditional branches. We’ve noted the main code using the “main” label on line (12). The
unconditional branch is on line (17). The if/else construct spans lines (12-17).

 The problems states that the hardware only has 16 switches (inputs) and 16 LEDs (outputs).
Because of this, the problem opts to use lh instructions for inputting data and sh instructions for
outputting data. We could have used lw and sw instructions and the code would have worked, but
using lh and sh is a better option because it better reflects the actual size of the data involved.
Additionally, we could have used lhu for inputting data as well.

 We first input the data on line (12). We’re only interested in the second to right-most bit, so we
mask all the other bits using the andi instruction one line (13). The mask on this instruction
(mask = 2) clears all the bits except the bit we’re interested in (recall that the assembler represents
2 as 0x002, or 0000000000102; the underlying RISC-V MCU hardware extends the instruction
length from 12 to 32 bits in order to fill the register with known values). The result from the AND
operation leaves either a zero or two in x20. If the result is two, that means the switch was on
when the program executed the lhu instruction. If the result is 0, that means the switch was off.

 The beq instruction on line (14) is part of the if/else construct. This instruction checks to see of
the result of the mask operation was zero or not, and branches accordingly. If the value in x20 is
zero (the second to right-most switch was off), the code takes the branch and the instruction on
line (19) is the next instruction to execute; otherwise, the code does not take the branch and the
following instruction (line (16)) is the next instruction to execute.

 We structured the code such that we need two unconditional branch instructions: one for the if
clause and another for the else clause. We could have done this another way that we’ll list after
this code.

FreeRange Computer Design Chapter 10

 - 270 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

#---
This program reads data from the switches; if the second to right-most
switch is on (on=1), then the program turns on all LEDs; otherwise
the program turns off all LEDs. The port address of the switches is
0x1100C000; the port address of the LEDs is 0x11008000. Assume
there are 16 switches and an equivalent number of LEDs.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register
 li x8,0xFFFF # load reg with one output value
 mv x9,x0 # load reg with other output value

main: lhu x20,0(x10) # input data
 andi x20,x20,2 # mask 2nd to right-most bit
 beq x20,x0,out_off # if not zero, branch to off

out_on: sh x8,0(x11) # turn on all LEDs
 j main # do it again

out_off: sh x9,0(x11) # turn off all LEDs
 j main # do it again

Figure 10.33: The solution to this example problem.

Figure 10.34 shows an alternative solution to this example. We include this solution because it handles the
output in a different manner. The previous solution had two different output instructions (sh); this solution only
has one output instructions. This solution assigns the output value to a generic register; both the if and else
clause assign a value to that register. The code in this alternative solution is actually longer, but this is a good
programming form to know about. This example problem only had two possible outputs; if there were 20
different possible output values, the structure of this alternative solution would be clearly more space efficient.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

#---
This program reads data from the switches; if the second to right-most
switch is on (on=1), then the program turns on all LEDs; otherwise
the program turns off all LEDs. The port address of the switches is
0x1100C000; the port address of the LEDs is 0x11008000. Assume
there are 16 switches and an equivalent number of LEDs.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register
 li x8,0xFFFF # load reg with one output value
 mv x9,x0 # load reg with other output value

main: lhu x20,0(x10) # input data
 andi x20,x20,2 # mask 2nd to right-most bit
 beq x20,x0,set_off # if not zero, branch to off

set_on: mv x30,x8 # load register with 1’s
 j out_val # do it again
set_off: mv x30,x9 # load register with 0’s

out_val: sh x30,0(x11) # turn off all LEDs
 j main # do it again

Figure 10.34: An alternative solution to this example problem.

Figure 10.35 shows the two flowcharts for the two solution to this example. The flowcharts are the same up to
the point of outputting data. The alternative solution in Figure 10.34 contains only one output instruction, which
results in one less process block for the flowchart in Figure 10.35(b) representing the alternative solution. The
two programs, however, are indeed functionally equivalent.

FreeRange Computer Design Chapter 10

 - 271 -

(a) (b)
Figure 10.35: Flowcharts modeling the two solutions to this example.

Example 10.14: Bit-Masking with Blinking LED

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs.
Write a RISC-V assembly language program that reads data from the switches. If the two right-most
switches are off (on=’1’), the program toggles the right-most LED; in all other cases, the program
does not change the state of any LED. The port address of the switches is port address 0x1100C000;
the port address of the LEDs is 0x11008000.

Solution: Most of this solution is similar to the previous solution so we’ll only describe the interesting parts of
this solution. Figure 10.36 shows the full solution; here is some pertinent commentary:

 Anytime you’re working with output such as LEDs, it’s always a good idea to put the LEDs in a
known state. We do this despite the problem statement saying nothing about it. Line (09) clears a
register; line (10) writes that value to the output port address controlling the LEDs. These two
lines effectively turn off all the LEDs as part of the initialization sequence so there no question as
to the state of the LEDs when the program exits the initialization code. We’re effectively using
register x9 to save the current state of the LEDs, which is a standard assembly language
programming approach.

 This program is going to do perform a compare to ensure the two LSBs are set. There are many
ways to do this, but we’ll do it in this problem by comparing the masked switch values to 3. This
is why on line (11) we place 3 in a register.

 The program inputs data from the switches on line (13) and masks it on line (14). We use the
value of “3” in the mask because the number 3 in binary has the two LSBs set; the result is that all
the bits in the register other than the two right-most bits are cleared; the code masks the two right-
most bits, which in this case means the andi instruction does not change them. We are able to use
an immediate type instruction for the bit-mask because the value fits nicely into a 12-bit field,
which is the upper limit for the andi instruction.

FreeRange Computer Design Chapter 10

 - 272 -

 Line (15) contains a conditional branch instruction (bne), which directs program flow back to the
instruction associated with the main label if either of the two right-most bits are set. In the case
where the two right-most bits are cleared, program flow drops to the instruction on line (17).

 If the code makes it to line (17) that means we need to toggle the right-most LED. We opted to
save the state of the LEDs in x9, so to toggle an LED, we need to exclusive OR that particular bit
with a ‘1’, which we do on line (17) using an xori instruction. The xori instruction toggles the
right-most value in the designated LED register but does not change any other bit in x9. The data
in x9 is then output to the LEDs on line (18) using a sh instruction.

 The program contains an initialization section followed by an if/else construct; the program looks
a like a big pile of code, but it only really contains these two sections of code.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---
This program reads data from the switches; if the two right-most
switches are off (off=0), then the program toggles the right-most LEDs;
otherwise the program does not change the state of the LEDs.
The port address of the switches is 0x1100C000; the port address of
the LEDs is 0x11008000. Assume 16 switches and the same number of LEDs.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register#
 mv x9,x0 # clear register to use for LED state
 sh x9,0(x11) # turn off all LEDs
 li x20,3 # load compare value (two LSBs set)

main: lhu x30,0(x10) # input data
 andi x30,x30,3 # mask two right-most bits
 bne x30,x20,main # branch if two LSBs are 1

both_off: xori x9,x9,1 # toggle right-most bit in LED register
 sh x9,0(x11) # send value to LEDs
 j main # rinse, repeat

Figure 10.36: The solution to this example problem.

Figure 10.37 shows a flowchart modeling the solution to this example. No comments here as the flowchart is
strangely similar to previous examples.

Figure 10.37: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 10

 - 273 -

FreeRange Computer Design Chapter 10

 - 274 -

10.7 Chapter Summary

 There are three types of bit-crunching instructions:

1) logic (AND, OR, XOR)

2) arithmetic (ADD, SUB)

3) shift (right & left barrel shifts)

 Program flow control instructions allow programs to execute instruction other than the “next” instruction in
program memory. The types of program flow control instructions include jumps and branches, which offer
unconditional and conditional program flow control, respectively.

 Labels in program code provides jump and branch destinations used by the assembler, but also provide
messages to human programmers without increase code space.

 There are three primary programming constructs that form the bases of structured programming; all well-
written programs can be decomposed into these three constructs.

1) sequences

2) if-then-else constructs

3) iterative constructs (while & do-while loops)

 Iterative constructs can have constant or variable iteration counts. The values of constant iteration counts are
known at assemble time while the value of variable iteration counts are only known at run time.

 There are four things you can do with a bit, 1) set it, 2) clear it, 3) toggle it, and 4) hold it. Assembly
languages set bits by ORing them with ‘1, clear bits by ANDing them with ‘0’, and toggling bits by
EXORing them with ‘1’. Assembly languages hold bits in many different ways.

 Bit-masking is the act of using logic instruction to operate on only a given set of bits (set, clear, toggle,
hold). Most MCUs must use bit-masking because the MCU’s instructions operate only on larger chunks of
data.

 The RISC-V MCU has a set of instructions that don’t fall into other standard categories. These instructions
include “set if less than” instructions, load address (la), load immediate (li), other data loading
instructions (auipc & lui).

FreeRange Computer Design Chapter 10

 - 275 -

10.8 Chapter Exercises

1) In your own words, describe what the term “program flow control” means.

2) Briefly describe why you think it is that every assembly language program has at least one unconditional
branch instruction.

3) Briefly describe why it is important to have an area in your program for “initialization code”.

4) Describe a situation where a “lesser” amount of code requires more execution time than a “greater” amount
of code. Assume these sets of code perform identical tasks.

5) What does the term “bit-wise” mean in terms such as “bit-wise AND operation”?

6) What other type of logic operations are the other than bit-wise operations?

7) Briefly describe why you feel it is that most MCUs don’t have bit-level instructions despite the fact that the
MCU typically is operating on bits rather than bytes.

8) List the two purposes of labels in assembly language programs.

9) Briefly describe why the RISC-V instruction set contains an add immediate instruction (addi) but not a
subtract immediate instruction.

10) Briefly describe the two possible classification of conditions associated with do-while and while loops.

11) Briefly describe why it is that labels in programs do not increase program size.

12) What is another name for an unconditional branch operation?

13) Describe the four things you can do with a single bit.

14) There are standard approaches to setting, clearing, and toggling bits in assembly languages; provide
examples of these approaches.

15) Name the three logic-based approaches to “holding” a bit value.

16) Briefly describe why the shift instructions in the RISC-V instruction set are actually barrel shifting
instructions.

17) Briefly describe the only use for a nop pseudoinstruction?

18) Briefly describe the main function difference between a mv pseudoinstruction and a li pseudoinstruction.

19) List five ways the RISC-V assembler could implement a nop instruction.

20) In your own words, briefly describe what the term bit masking refers to.

21) Why do MCUs have a need for bit-masking?

22) Briefly explain why it is that most MCUs don’t have instructions that operate on the bit-level.

23) Briefly describe the primary advantage of “set if less than” instructions.

24) Will a do-while loop always iterate once when the iteration count is not known at run-time? Briefly explain.

25) Briefly describe the notions of “assemble time” and “run time”.

FreeRange Computer Design Chapter 10

 - 276 -

26) For the following RISC-V assembly language code fragment, if the label init has a value of
0x0000F104, provide the following information:

a) What are the numeric values (in hex) of all the labels in the fragment

b) What is the address in program memory of the beq instruction?

c) What are the relative address of the following:

i. cf2 relative to loop,

ii. junk relative to loop,

iii. cf2 relative to B_10

iv. B_10 relative to init
init: mv x15,x10 # save a copy
 li x21,0x00000F00 # 100’s bit mask
cf2: li x22,0x000000F0 # 10’s bit mask
 li x23,0x0000000F # 1’s bit mask
 mv x20,x0 # zero accumulator

B_10: or x15,x15,x21 # mask 100’s nibble
 srli x15,x15,8 # shift to lowest position
loop: beq x15,t_10 # go to tens if zero
 addi x20,x20,100 # accumulate 100s
 sub x15,x15,-1 # decrement loop count
 slti x16,x17,0x34 # do something important

junk: j init # do it again

27) For the following RISC-V assembly language code fragment, if the label init has a value of
0x00001B08, provide the following information:

a) What are the numeric values (in hex) with all the labels in the fragment

b) What is the address in program memory of the beq instruction?

c) What are the relative address of the following:

i. init relative to loop,

ii. pig relative to init,

iii. leave relative to done

iv. loop relative to restore

v. restore relative to loop
init: mv x20,x0 # clear accumulator
 li x15,32 # number to sum
 mv x16,x10 # copy original address

loop: beq x15,x0,done # leave if finished
 lw x11,0(x10) # get value from memory
 add x20,x20,x11 # accumulate
 addi x15,x15,-1 # decrement loop count
pig: addi x10,x10,4 # advance addr to next data
 j loop # done with iteration, do again

done: srli x20,x20,5 # divide by 32
restore: mv x10,x16 # restore original x10 address

leave: ret # come on up to the house

FreeRange Computer Design Chapter 10

 - 277 -

10.9 Chapter Programming Exercises

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code

 Don’t worry about overflow issues unles the problem specifically state that you need to

1) Write a RISC-V assembly language program that continuously inputs a word of data from port address
0x11000C00, adds three to that data, then outputs the result to port address 0x11000E00. Don’t worry about
overflow issues.

2) Write a RISC-V assembly language program that continuously inputs a word of data from port address
0x11001100, divides that data by two, adds eight to the result, then outputs the final the result to port
address 0x11001200.

3) Write a RISC-V assembly language program that continuously does the following: inputs a halfword of
unsigned data from port address 0x11002200; if that data is less than 255, the data is doubled and output to
port address 0x11003300; otherwise there data is halved and output to port address 0x11004400. Don’t
worry about overflow for this problem.

4) Write a RISC-V assembly language program that continuously does the following: inputs ten words of
unsigned data from port address 0x11001110, sums those inputs, divides the result by 4, then outputs the
result to port address 0x11002220. Don’t worry about overflow for this problem.

5) Write a RISC-V assembly language program that continuously does the following: inputs a byte of data
from port address 0x11003000; this byte represents the number of unsigned data words to input from port
address 0x11004000. The input data is sum. The program then divides that input data by two enough times
to make the data less than 0xFF. The final value is output to port address 0x1100AAA0 . Don’t worry about
overflow for this problem.

6) Write a RISC-V assembly language program that continuously does the following: inputs 64 unsigned
halfwords from port address 0x11000022 and outputs the average of the value to port address 0x11000066.

7) Write a RISC-V assembly language program that continuously does the following: inputs a word from port
address 0x1100FF00, the outputs the eight nibbles in that word (one nibble at a time as a byte value) to port
address 0x1100EE00. Output the right-most nibble first and work towards the left.

8) Write a RISC-V assembly language program that continuously does the following: inputs a word from port
address 0x11002300; if more than 16 of the bits in that data are set, it outputs the number of set bits to port
address 0x11002400; otherwise it outputs zero to the same port address. Both output values are unsigned
bytes.

9) Write a RISC-V assembly language program that continuously does the following: inputs 60 unsigned
halfwords values from port address 0x11000066. The program counts the number of these values that are
greater than 255 and evenly divisible by 16. The program then outputs the count to port address
0x11000077.

10) Write a RISC-V assembly language program that continuously does the following: inputs a word from port
address 0x11000F00, sums the eight nibbles in the word, and outputs the sum to port address 0x11000E00
as an unsigned halfword.

11) Write a RISC-V assembly language program that continuously does the following: inputs a word from port
address 0x11000F00. This word should be eight valid BCD values. The program sums those values and
outputs the result as an unsigned word if every nibble is a valid BCD value. If even one nibble is not a valid
BCD value, the program outputs 0xFFFFFFFF. The output port address is s 0x11000E00.

FreeRange Computer Design Chapter 10

 - 278 -

12) Write a RISC-V assembly language program that continuously does the following: inputs 32 halfwords from
port address 0x11002300 and outputs 16 words. Each word output is comprised of the two consecutive
halfwords from the input, where the first value input is the lower 16-bits in the output word, and the next
value input becomes the upper 16-bits in the input word. Output a word after inputting two halfwords. The
port address for the output is 0x11002400.

13) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a
RISC-V assembly language program that continuously does the following: inputs a signed halfword from
the switches and adds that value to a running total. If the running total is less than or equal to zero, the
program turns all the LEDs off. Otherwise, the program outputs the lower 16-bits of the running total to eh
LEDs. The port address of the switches is port address 0x1100C000; the port address of the LEDs is
0x11008000.

14) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a
RISC-V assembly language program that inputs the switch value. If the number of switches that are on is
one, the program outputs 0xFFFF to the LEDs; otherwise the program outputs the number of bits set as a
binary number to the LEDs. The port address of the switches is port address 0x1100C000; the port address
of the LEDs is 0x11008000.

15) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a
RISC-V assembly language program that reads data from the switches and considers those switches to be an
unsigned binary number. The program then converts that binary number to stone age unary and outputs that
value to the LEDs. The value input from the switches is never greater than 16. The port address of the
switches is port address 0x1100C000; the port address of the LEDs is 0x11008000.

FreeRange Computer Design Chapter 11

 - 279 -

11 Working with Memory

11.1 Introduction

Though you have not seen it yet, most everything you with assembly language involves interfacing with memory
in some way. We’ve introduced the load and store instructions in a previous chapter, but we did not show the full
power of memory-type instructions with meaningful examples. This topic is so important that we’ve opted to
dedicate an entire chapter to it. This chapter shows the full functionality and potential of interfacing with
memory on the RISC-V MCU.

Main Chapter Topics

 ASSEMBLY ADDRESSING MODES: This chapter describes the various ways that
assembly language instructions locate the data they require from various memory
elements in the computer hardware.

 MAIN MEMORY AND REGISTER FILE DATA ACCESS AND USAGE: This chapter
provides an in-depth and intuitive description of how instructions access and
utilize main and register file memory.

Why This Chapter is Important

This chapter is important because it shows the full flexibility and functionality of
RISC-V memory-type instructions.

11.2 Overview

Our rough model of a computer was a device that uses the instructions in the underlying program to tell the
computer hardware what to do with data. Additionally, the instructions also tell the hardware where to obtain
that data they require. In solving a problem using a computer, the computer waits for the outside world to make a
request and then acts on that request when it arrives; eventually the computer outputs a result.

We write assembly language programs using a text editor to create a file that is a collection of the instructions in
our program. We then use a special program (an assembler) which translates the instructions (text) in our
program into machine code; we then use another mechanism to place that machine code into the program
memory of the computer hardware.

One of the stated benefits of using an MCU to solve our problems (as opposed to FSM controlled hardware) is
that fact that programs are much more flexible. This form of flexibility means that I can use the MCU to solve
many different problems by simply changing the program. Using digital circuits to solve problems that do not
use a MCU are not flexible in that you must make major hardware redesigns for each problem you solve. The
point here is that MCUs are flexible; the hardware in a computer is effectively non-changeable, which
underscores the major point of this diatribe: the flexibility in using MCUs to solve problems lies in the flexibility
associated with changing programs. Thus, this flexibility lies in the instructions themselves.

11.3 Flexibility in Instructions

Us human programmers essential use computer instructions to direct the computer on how we want data to move
through the computer hardware. When we speak of data, we inherently speak of two issues: where to get the data
from and what to do what that data. Some instructions are responsible for “crunching” data and other instructions

FreeRange Computer Design Chapter 11

 - 280 -

are responsible for moving data around. Both of these instruction types have the issue of where to obtain the data
from and where to place it; not all instructions actually operate on that data (such as an arithmetic operations).
The flexibility we’re interested in here is where the instructions obtain the data from and where to put it once the
instruction completes.

11.3.1 Register Addressing vs. Memory Addressing

We have two different places to obtain data from in the RISC-V MCU: the register file and the main memory.
Each of these locations are “storage” locations in that both modules are types of memory. As with all memory,
we can read from and write to these modules. When we read from them, we provide them with the address of the
data we want to read; when we write to them, we provide the address of where we want to place the data and the
actual data we want to put in the memory. The approach instructions use to address register file memory vs. main
memory is distinctively different.

11.3.1.1 Register Addressing

The RISC-V MCU contains 32 general-purpose registers, which is a relatively small number in the context of
computer memory. Because this number is relatively small, the instructions in the RISC-V ISA require that we
state directly which register we want to use. For example, the instruction “add x10,x11,x12” calls out
that we use three registers, two are source registers (x11 & x12) and one is the destination register (x10). This
type of instruction grabs from data from somewhere, crunches it, and then places the data somewhere else. This
instruction goes to the register file (memory) to obtain the two operands, crunches the data, and stores the result
back into the register file. This instruction is reading data from memory and writing some data back to memory,
which means there is some underlying addressing going on, which is not overly apparent from the instruction
text itself.

The reality is that when we specify “x10” in an instruction, the assembler forms the actual address that the
computer hardware uses to accesses the memory we specify. In other words, the assembler translates to numeric
value following the “x” in the register specification to an address that the hardware can use. Specifically, because
there are 32 register, the assembler translates the number following the “x” specification to a five-bit field and
encodes it as part of the instruction. The ramifications here is that the assembler assigns the specific memory
address at “assemble time” and makes it part of the machine code associated with that instruction. This means
that the assembler fixes the register address (memory address) at assemble time and the program can never
change that address without re-assembling the program. The fact that the assembler fixes the address at assemble
time effectively makes the instruction “lacking of flexibility” because the particular instruction is always using
data at the same address. Note here that we can change the data at that address; we simply can’t change the
address.

11.3.1.2 Main Memory Addressing

The RISC-V accesses memory using load-type and store-type instructions. Recall that load-type instructions read
data from memory and writes that data to a register address while store-type instructions read data from a
register and writes that data to main memory. As with all memory, we need to provide a memory location to
write to or read from. The RISC-V MCU load-type and store-type instructions have a special way to “form” the
memory addresses, which we show again in Table 11.1. Note that there is nothing special about this approach;
it’s simply the approach RISC-V chooses to use.

Table 11.1 shows that the memory address calculation has two parts: the offset value and the base address value;
the underlying RISC-V hardware adds the offset value to the base address value in the specified register to form
the absolute memory address. The hardware does the final address calculation at “runtime”; at assemble time, the
assembler does not know what the absolute address will be. The only thing known at assemble time is which
register the hardware uses to form the absolute address. Recall that when dealing with register values directly
such as in number crunching instructions, the assembler know the absolute address of the register (memory)
assemble time. With load and store-type instructions, the underlying hardware calculates the absolute address at
runtime. While it is true that we’re always using the same register value for a particular load or store-type
instruction, the flexibility in this approach is that we use the program to change the value in that register.

The fact that the load and store-type instructions calculate the absolute memory address at runtime provides
flexibility to the programs we write. Because the hardware calculates the absolute memory addresses at runtime

FreeRange Computer Design Chapter 11

 - 281 -

effectively means that we can access different parts of memory according to the needs of our program. As we
show in the remainder of this chapter, this approach allows us to write incredibly flexible programs, which in
turn allows us to solve more problems in an efficient manner.

Load-type instructions Store-type instructions

(a) (b)

Table 11.1: Overview of the load and store-type instructions.

11.3.2 Assembly Language and Addressing Mode

The term addressing modes refers to the ways we can use the instruction set to access data. The notion of
addressing modes are special items in the context of assembly languages because the more different number of
addressing modes you have, the more flexibility you have in the programs you write. While the notion of having
many addressing modes in the ISA quite appealing, the notion of having many addressing modes creates several
issues.

1) Having many addressing modes complicates the underlying hardware. As with the issues of the
RISC-V load and store-type instructions, the hardware does the absolute address calculation at runtime.
This means there needs to be hardware in the computer to do the actual calculation. The effect is that
more addressing modes you have, the more likely it is that your hardware is larger and/or more
complex. There are cases where you can reuse existing computer hardware to perform the required
calculation, but this is not always the case, or you’ll need to extend the execution time of the instruction
to use that hardware. Actually, the previous statement is somewhat misleading.

2) Having many addressing modes is not always helpful for humans. The addressing modes in some
computer architectures are surprisingly complex. While you can figure out how to use them if you stare
at them long enough, humans tend to stick with simple addressing modes. So why have so many
addressing modes? Having many addressing modes makes compiler writers really happy. While us
humans find it hard to wrap our brains around some of these modes, the compiler is a program that can
utilize the various modes quite readily1.

11.4 Memory Access: Solved Problems

The best way to see the flexibility of memory access instructions is to see them in actual assembly language
code. The section shows a few of these problems with extra justification of why they are so flexible.

Example 11.1: Register Data Swap

Write a fragment of code that swaps the values in registers x7 & x9.

Solution: Figure 11.1 shows the solution to this example. Here are the pertinent points to note about the solution:

 There are several ways to swap data in two registers; this is one approach. This particular
approach uses an extra register to do the register swap; the code opts to temporarily store one of
the values in another register, which we commonly refer to as a “working register”. For this code

1 Assuming of course that the people writing the compiler know what they are doing.

FreeRange Computer Design Chapter 11

 - 282 -

fragment, x20 is the working register and is going to be overwritten by the program, which may be
an issue.

 The approach the code takes is to 1) save data in one register, 2) copy data from one register to the
other, and 3) copy the originally saved register data to the other register.

(00)
(01)
(02)
(03)
(04)
(05)
(06)

#~~~~~~~~ program fragment ~~~

 mv x20,x9 # copy data in x9 to working register (x20)
 mv x9,x7 # copy data from x7 to x9
 mv x7,x20 # copy working register data to x7

#~~~~~~~~ program fragment ~~~

Figure 11.1: The solution to this example problem.

You’re probably thinking that this is not too exciting; you’re absolutely correct. But here’s the point. This code
fragment always uses data from the same place to do the swap: it’s always swapping data in the x7 & x9
registers; it never does anything different. We can change the data in those registers before we swap them, but
we always have to use the same registers. This works, but it lacks flexibility in the way it address the data it
needs to swap.

Example 11.2: Memory Data Swap

Write a code fragment that swaps the words in two different memory locations. Registers x6 & x7
provide the locations of the data to swap; specifically, these two registers hold the addresses of the
data to swap.

Solution: This is yet another version of swapping something, but this time the problem is switches between
two memory locations as opposed to two registers as we did in the previous example. Figure 12.11 shows the
solution to this example; here are some other fun facts to fill your mind:

 The code effectively embodies the previous code in that the code on lines (05-07) are
structurally identical to the previous example. But that’s not the point…

 The approach this code takes is to 1) load the data from memory into general-purpose registers,
2) swap the data, and 3) put the data back into the original storage locations, but swapped.

 The problem stated that we were working with words, so we use lw instructions (load word) to
read the data into registers and sw instructions (store word) instructions to return the data from
registers to memory.

FreeRange Computer Design Chapter 11

 - 283 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)

#~~~~~~~~ program fragment ~~~

 lw x10,0(x6) # load the data to swap
 lw x11,0(x7)

 mv x12,x10 # copy data in x10 to working register x12
 mv x10,x11 # copy data from x11 to x10
 mv x11,x12 # copy working data to x11

 sw x10,0(x6) # store the swapped data
 sw x11,0(x7)

#~~~~~~~~ program fragment ~~~

Figure 11.2: The solution to this example problem.

Once again, you’re probably thinking this is another boring problem. The point of this problem is that we are not
limited to swapping data from the same two register; now we can swap data from any address in data memory
simply by changing the data in the base addresses (x6 & x7). In other words, the addresses of the data we need to
swap are no longer fixed as they were when we used registers to swap the data. It is true that we need to use the
same two registers as base addresses, but we can change the values in those register under program control.

Example 11.3: Memory Data Swap Yet Again

Write a code fragment that swaps the halfwords in two different memory locations. Register x15
provides the memory address of the first data to swap; the other piece of data to swap directly
follows the first piece of data in memory.

Solution: This is yet another version of swapping something, but the solution is much more efficient this time.
Here are the details:

 The problem statement only provided one address, stating the data to swap was effectively
continuous in memory. The data is halfwords, so we use lh and sh instructions to account for the
halfword data size.

 The approach this code takes is to load the data from memory into general-purpose registers
then write the data back out to memory by effectively swapping the address. Note that the code
on line (03) and line (05) use the value of two as the offset value to accomplish the swap.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)

#~~~~~~~~ program fragment ~~~

 lh x10,0(x15) # load the first halfword
 lh x11,2(x15) # load the second halfword

 sh x10,2(x15) # store the swapped data
 sh x11,0(x15) #

#~~~~~~~~ program fragment ~~~

Figure 11.3: The solution to this example problem.

Not a boring problem once again. We accomplished the swap without changing any register values as we did in
the previous solution, which is generally a good thing. We can’t swap data in any two addresses in memory, but
we can swap two contiguous pieces of data at any memory location. The point here is that the code is still quite
flexible, but not as flexible as the previous problem.

FreeRange Computer Design Chapter 11

 - 284 -

Example 11.4: Modifying a Section of Memory

Write a code fragment that adds three to each contiguous byte in a section of memory starting at the
address in x25. The length of that section of memory is 32. Don’t worry about overflow for this
problem.

Solution: This is a problem where we need to go to a section of memory and modify each byte in that section
of memory. Note that the problem calls out that the section of data is bytes. Here are the details regarding the
solution in Figure 11.4:

 The problem statement only provided one address, which is the location of the first byte of data
in the section of memory. The problem also states that the data at that address and the data at the
next 31 addresses needs to have three added to it.

 The first thing we do is set the iteration count to 32, which we do on line (02). The problem
stated 32, so we put that number into a register to use as our loop counter.

 The code in the body of the loop (starting with the “loop” label) includes loaded the data (line
(04)), adding three to the data (line (05)), and storing the data at the same memory address
location we loaded the data from (line (06)). Note that the problem gave the address of the first
byte of data, which is in x25; we use that register as an address throughout this piece of code.

 The loop administration starts at the instruction associated with the “admin” label on line (08).
We first increment the register holding the memory address on line (08); we add one because
the problem states that we are working with byte data. We then decrement the loop count on line
(09). We finally check the loop count with a conditional branch on line (10). If the loop count is
zero (the value in x0), then we fall through to the next instruction (not listed); otherwise we
branch to the instruction associated with the loop label.

 We modeled this fragment as a do-while loop because we knew we had to do at least one
iteration. If we did not know how many iterations we needed to do, we would have modeled the
loop as a while loop (because the loop count may be zero).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)

#~~~~~~~~ program fragment ~~~

 li x10,32 # load iteration count

loop: lb x11,0(x25) # load a byte from memory
 addi x11,x11,3 # add 3 to data
 sb x11,0(x25) # store the swapped data

admin: addi x25,x25,1 # advance memory address
 addi x10,x10,-1 # decrement loop count
 bne x10,x0,loop # branch for next iteration

#~~~~~~~~ program fragment ~~~

Figure 11.4: The solution to this example.

Figure 11.5 shows a flowchart that models the solution to this example. In an effort to save vertical space in this
text, we used two columns in the flowchart. Using two columns required us to cross flow lines on the lower right
portion of the flowchart, which is common in more complex flowcharts. The flow lines do not intersect and
effectively remain independent of each other. We also added a note to indicate the loop administration part of the
loop.

FreeRange Computer Design Chapter 11

 - 285 -

Figure 11.5: A flowchart modeling the operation of this example program.

The point of the problem is that we went to the data in a section of memory and modified each piece of data in
that section of memory. Because we needed to modify 32 chunks of data, we could not have possibly stored that
data in registers. The approach in this example leveraged the generic nature of memory access using the built-in
flexibility of the RISC-V memory access instructions. The solution in Figure 11.4 is very space efficient being
the we used an iterative construct; the code is arguably relatively runtime efficient.

Just for the heck of it, Figure 11.6 shows the same solution using a while loop. This solution does not have a
natural feel to it as did the solution with the do-while loop; this solution feels a bit klunky.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#~~~~~~~~ program fragment ~~~

 li x10,32 # load iteration count

loop: addi x10,x10,-1 # decrement loop count
 beq x10,x0,done # branch for next iteration

 lb x11,0(x25) # load a byte from memory
 addi x11,x11,3 # add 3 to data
 sb x11,0(x25) # store the swapped data

admin: addi x25,x25,1 # advance memory address
 j loop

done: # some other part of the program
#~~~~~~~~ program fragment ~~~

Figure 11.6: An alternative solution to this example.

Example 11.5: Gathering Statistics About a Section of Memory

Write a code fragment that counts of the number zero values in a contiguous section of memory
starting at address x10. The number of values to scan is given in register x30 and is guaranteed to
be non-zero. Store the count in register x15. Consider the memory values to be halfwords.

Solution: This is yet another version of going to memory and doing something. In this problem, we are going
to memory and gather some information about the data in that particular section of memory. Figure 11.7
shows the solution to this example: here are the gory details:

FreeRange Computer Design Chapter 11

 - 286 -

 The iteration count for this problem is in a register, which means that this count may be zero
(the problem did not state that it would be non-zero). This means two things for us: first, we
must initialize the final count before we start the iteration, which we do on line (02). Second, we
must use a while loop to implement the iteration construct, which we do to account for the fact
that the count may be zero. If you performed an iteration first (as in a do-while loop), the
program would fail miserably when the iteration count is zero. We check the loop counter on
line (04).

 The body of the loop loads data on line (06) and then checks to see if it zero on line (07); we
toss in the “check” label for added commentation. If the value is non-zero, we branch to the
code that implements the loop administration on line (10); otherwise, we drop to line (11) and
increment the counter keeping track of the number of zero’s in the section of memory.

 The loop admin consist of advancing the address by two (line (10)) and decrementing the
iteration count (line (11)). An unconditional branch follows the loop administration on line (12),
which is part of the while-loop iterative structure.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#~~~~~~~~ program fragment ~~~

 mv x15,x0 # clear zero counter

loop: beq x30,x0,done # branch for next iteration

 lw x11,0(x10) # load a halfword from memory
check: bnez x11,admin # jump if value not equal to zero
 addi x15,x15,1 # increment the count

admin: addi x10,x10,2 # advance memory address (halfword length)
 addi x30,x30,-1 # decrement count
 j loop

#~~~~~~~~ program fragment ~~~

Figure 11.7: The solution to this example.

Yet once again, we could have done this problem using data in registers. First, the fact that register usage is not
generic would have stopped us. Second, we don’t know how much data we need to inspect. Once again, we can
access main memory in a generic manner, something we can’t do with register memory. Figure 11.8 shows a
flowchart modeling the solution for this example.

Figure 11.8: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 11

 - 287 -

Example 11.6: Copying a Section of Memory.

Write a code fragment that copies one section of memory (words) to another. The section to copy
starts at the address in x10; the section of memory to copy to starts at the memory address in x20.
The number of values is in x5 is always non-zero.

Solution: This is yet another version of swapping something, but the solution is much more efficient this time.
Here are the details:

 The problem does not state how many times we need to iterate, but it is at least once (as the
problem states). Because of this, we implement our solution using a do-while loop.

 The approach this code takes is to load the data from one memory location then write it to the
other location (lines (02-03). The loop administration includes advance each of the memory
addresses (copy from and copy to) by four since the problem is dealing with words (lines (05-
06)). Lastly, we decrement the loop count on line (08) and to it all again if the loop count is non-
zero (line 09).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

#~~~~~~~~ program fragment ~~~

loop: lw x11,0(x10) # load a word from memory
 sw x11,0(x20) # copy value to new location

admin: addi x10,x10,4 # advance “copy from” memory address (word)
 addi x20,x20,4 # advance “copy to” memory address (word)

 addi x5,x5,-1 # decrement iteration count
 bne x5,x0,loop # branch if iteration count not zero

#~~~~~~~~ program fragment ~~~

Figure 11.9: The solution to this example.

Yet another problem that we solved generically, thus advertising the flexibility of RISC-V memory access
instructions. We could not have done this problem using registers to hold the data we needed to mess with. It’s
true we did use registers in this problem, but we used the registers to primarily hold addresses, which gave us the
ability to access different data in memory by simply changing the address values in the registers. Figure 11.10
shows a flowchart that models this solution. Have lots of fun.

FreeRange Computer Design Chapter 11

 - 288 -

Figure 11.10: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 11

 - 289 -

11.5 Chapter Summary

 Addressing modes in assembly languages is an important topic with classical trade-offs. Simple and few
addressing modes result in smaller hardware; many and complex addressing modes make the hardware
larger.

 The two primary memory modules in the RISC-V are the register file and the main memory. Both of these
modules are memory, but the assembler effectively treats them differently. Both of these memory modules
require an address to access data in the memory, but the instructions handle the addressing of the data in
significantly different ways.

 Instructions that use data held in register include the 5-bit address of the registers as part of the underlying
instruction word, which means the address of the data being accessed by such an instruction is known at
assemble time. Instructions that access main memory use registers in the absolute address calculation, but
the absolute address is calculated at run time. The fact that the absolute address in main memory accesses
are calculated at run time make the instructions very flexible, and thus useful.

FreeRange Computer Design Chapter 11

 - 290 -

11.6 Chapter Exercises

1) List the main differences between register file memory and main memory in the RISC-V.

2) List the ways main memory and the register file memory are strangely similar and quite different from
a simple memory module.

3) Briefly describe what is meant by the terms “absolute address” and “relative address”.

4) Briefly describe the main reason why the RISC-V uses relative addressing as part of the instructions
but later converts the relative addresses to absolute addresses.

5) Briefly describe whether relative addresses are signed or unsigned values, and why they are that way.

6) Being that instructions only encode relative addresses, briefly describe whether that places any limits
on the values that can be created and used as absolute addresses.

7) If a relative address encoded with a given number of bits only needed to go in one direction, could it go
farther in that direction than if the same number of bits was used to go in both directions? Briefly
explain (sorry for the cr*ppy wording of problem).

8) Briefly describe how the absolute addresses are generated for accessing memory in the register file.

9) Briefly describe how the absolute addresses are generated for instructions that access main memory.

10) Briefly describe the differences between generating absolute addresses at run time and and at assemble
time.

11) Briefly describe why absolute addressing for register memory access is considered not flexible.

12) Briefly describe why absolute addressing for main memory access is considered flexible.

13) Does the assembler know the absolute address used by load and store-type instructions? Briefly
explain.

14) Explain the notion of “addressing modes” in the context of assembly language programming.

15) Briefly explain why it is advantageous to have many addressing modes for a given computer
architecture.

16) Briefly explain the main drawback of having many addressing modes for a given computer
architecture.

17) Briefly describe why main memory data access is considered more flexible and accessing the data in
the register file.

FreeRange Computer Design Chapter 11

 - 291 -

11.7 Chapter Programming Problems

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code

1) Write a code fragment that divides the word data by 32 in a section of memory starting at the address in x15.
The length of that section of memory is in 50 words.

2) Repeat the previous problem but round up the result after the division.

3) Write a code fragment that examines 50 contiguous words in memory. If the data at a location is odd, then
write zero to that particular memory location.

4) Repeat the previous problem but store the number of times the code was zero a value in register x25.

5) Write a code fragment that divides word data in a section of memory by two until the data is less than 256.
The each word is stored back at the same memory address. The starting address of the memory is in x22.
The length of that section of memory to operate on is given in x10.

6) Write a code fragment that copies swaps halfword data from one section in memory (signed halfwords) to
another section in memory. The section of memory to copy from starts at the address in x15; the section of
memory to copy to starts at the memory address in x25. The number of values is in x10 and may be zero.

7) Write a code fragment that examines two sections of unsigned halfwords in memory with the starting
addresses stored in x10 and x20. Store the larger of two values at the address in x20 for the number of
halfwords stored in register x30. Note that the data at some memory locations need to be swapped, but not at
all the locations.

8) Repeat the previous problem, but count the number of swaps and stores that value in x31.

9) Write a code fragment that examines three sections of contiguous signed bytes in memory with the starting
addresses stored in x10, x11, and x12. If all three of the values at the data in each location are equal, write
0xFF to each location; otherwise don’t change the data. The number of sets of three signed bytes to check is
the number in x30.

10) Write a code fragment that examines three sections of contiguous words in memory with the starting
addresses stored in x20, x21, and x21. This fragment of code counts the number of time zero appears in each
of the three sections of memory and stores the result in x15. The number of values to check in each segment
is in x30.

FreeRange Computer Design Chapter 12

 - 292 -

12 Subroutines and Supporting Structures

12.1 Introduction

Subroutines and their usage in assembly language programming represent a major issue both programming and
writing well-structured and efficiently operating programs. The proper use of subroutines allows for the creation
of understandable, maintainable, reusable, and relatively runtime efficient assembly language programs. The
only catch is that writing great programs requires programmers to understand the relatively few, but significantly
important aspects regarding subroutine. This chapter describes subroutines from primarily a programming
aspect, but it does reach into some significant hardware aspects as well.

The notion of subroutines falls into the category of program flow control because calling and returning from
subroutines necessarily changes the normal sequential execution of instructions in an assembly language
programming. You’ll soon see that there are no new instructions involved with calling subroutines and returning
from them, the jal and jalr instructions have all the required functionality.

Main Chapter Topics

 THE STACK: This chapter describes the abstract data type known as a stack, how
the assembly language program uses the stack, and some important functional
issues regarding proper stack usage.

 SUBROUTINES: This chapter describes the many issues involved in implementing
and calling subroutines in the context of the RISC-V MCU.

 PASSING VALUES: This chapter describes the concepts of passing values to and
from subroutines.

 SAVING CONTEXT: This chapter discusses the procedures for saving and restoring
operating context in subroutines.

 NESTED SUBROUTINES: This chapter describes the special issues the RISC-V
MCU has with nested subroutines.

 SUBROUTINE OVERHEAD: This chapter describes the various overhead issues
regarding subroutine implementations.

Why This Chapter is Important

This chapter is important because it describes the details involved in the design and
implementation of subroutines in assembly languages.

12.2 Subroutine Supporting Structures: The Stack

The word stack has many different meanings for the people who use the word. Some of the definitions include
haystack, smoke stack, pancake stack etc., but we won’t use these definitions here in technical-land. Here in
technical-land, there are two main definitions of a stack. In software-land, the stack is one of the classic abstract
data types, or, ADTs. In this context, the definition of an abstract data type is a data type that we describe in
terms of the operations the data type supports rather than how we actually implement the data type. In other
words, we define an ADT by its interface while placing no constraints on the implementation details.

FreeRange Computer Design Chapter 12

 - 293 -

In the context of computer architecture, the stack has less of a computer science-type definition because we can
describe the implementation of the stack in terms of simple hardware. Furthermore, the stack in standard
computer architecture is an important part of any architecture because the hardware necessarily uses the stack for
important program flow control mechanisms such as implementing subroutines and interrupts1.

The basic concept behind a stack is simple: it is nothing more than an object that stores data. The most basic
definition of the stack lies in the description of the accessibility of the things that have been stored on the stack.
The short definition of a stack is that the most recent thing that you place on the stack is the first thing that you
can remove from the stack. We refer to this functionality as Last In, First Out, of LIFO.

Before going further, let’s define a couple of terms for so we’ll be speaking the same language regarding stacks.
These terms are standard for any stack implementation; anyone dealing with stacks roughly knows what these
terms mean in the context of the particular stack implementation they are working with. You need to know all of
these terms for a hardware context, but you only need to know the first two terms if you’re strictly a
programmer. Note that none of these terms provides any actual implementation details.

 PUSH – This is the accepted term to mean that you are placing something onto the stack.

 POP – This is the accepted term meaning that you are removing something from the stack.

 Top of the Stack – We define the “top of the stack” to be the most recent object that we place, or push
onto the stack. If the stack in empty (nothing has been pushed onto the stack), the top of the stack then
has somewhat ambiguous meanings.

 Stack Pointer – We use the “stack pointer” as the “thing” we use to point to the top of the stack, where
the top of stack is the most recent thing placed on the stack.

There are two ways to demonstrate the operation of the stack. The first way is more of the computer science
approach2 while the second way is a hardware approach. The hardware approach is more of what we’re
interested in as it is how the RISC-V MCU implements the stack in hardware, but the first approach makes for a
nice introduction to the second approach. Figure 12.1 shows the first approach. Here is a description of the
changes that take place in Figure 12.1; note that in Figure 12.1 we use the word “top” to indicate the top of the
stack.

 Image 1: the stack in its empty state. For the empty stack, the top label is not well defined.

 Image 2: the stack after one item has been pushed onto the stack. The top label is associated with
the most recent item placed on the stack.

 Image 3: the stack after four items (three since image 2) have been pushed onto the stack. The
number 34 was the first number pushed onto the stack, followed in order by 29, 19, and then 17.

 Image 4: the stack after one item has been popped from the stack (the number 17 was removed).

 Image 5: the stack after three items (two since image 4) have been removed from the stack.

1 As you will see later, the RISC-V OTTER interrupt architecture does not directly use the stack.
2 Probably a better “computer science” approach would be to show a “linked list-type implementation.

FreeRange Computer Design Chapter 12

 - 294 -

Figure 12.1: Example of a software-based stack implementation.

The key feature of the stack implementation shown in Figure 12.1 is that all the stack elements move each time a
push or a pop operation executes. Note that this implementation would be inefficient for a hardware version of
the stack because each stored stack item would need to be re-written for every push and pop operation, because
each push and pop operation changes the location of all remaining data in the stack. This being the case, we can
better define the concept of a stack pointer by examining a hardware-type stack implementation.

The stack on the RISC-V MCU is nothing more than a designated area in main memory. The size of the stack, as
well as starting and ending locations are arbitrary. We’ve included the current RISC-V memory map once again
in Figure 12.2 to provide a visual representation of the “preferred” stack location. As you will see later, you can
“place” the stack anywhere in main memory except for the space dedicated to the program memory (represented
by the section marked “Code Segment” in Figure 12.2).

Figure 12.2: The RISC-V MCU memory map.

12.2.1 Pushing and Popping on the RISC-V MCU

You could say that a set of instructions common to most MCUs is some form of a push and pop instruction. But
somewhat surprisingly, the RISC-V MCU has no such instructions. While push and pop instructions are handy to
have in the instruction set, we don’t need them because push and pop operations are simply memory writes and
reads from a “special place” in memory. We refer to that special place in memory as the stack.

The first order of business is the stack pointer. The stack pointer needs to be a register that holds an address; the
MCU uses that address when doing operations on the stack. While many MCUs have a dedicated register,
typically referred to as the stack pointer, the RISC-V MCU does not have such a register. The RISC-V MCU
architecture is generic enough to use any register in the register file as a stack pointer, but it standard practice to
use register x2 as the stack pointer. It’s handy that the alternative name for register x2 is “sp”, which stands for
stack pointer. Despite the significant amount of flexibility in the RISC-V MCU’s approach to stack operations,
we’ll only deal with a basic approach in this text.

FreeRange Computer Design Chapter 12

 - 295 -

Table 12.1 shows a summary of push and pop operations on the RISC-V MCU. Here is the important
information to note about Table 12.1:

 Pushing and popping of one register requires issuing two instructions. We have to both adjust the
stack pointer, and then execute a memory access operation.

 Push operations require a memory write operation (store) while pop operations require a memory
read operation (load).

 The “Usage” columns in Table 12.1 lists the two forms of pushes and pops. Either form is
acceptable, but the left-most usage column shows the most widely used form.

 There is often a need to push or pop more than one register in a section of source code. In these
cases, it’s tempting to issue two instructions per push or pop operation, similar to the first two
rows in Table 12.1. The better approach is to adjust the stack pointer only once per set of push or
pop operation, then use the offset field of the memory access instructions (lw & sw) to form the
correct memory access address. This approach is both more time efficient and space efficient.

 In this example, are pushing and popping entire registers, which is why we use lw & sw
instructions. If you only need to save parts of the registers, you could use memory access
instruction dealing with bytes and halfwords.

Operation Usage Example Alternate Usage Comment

push
(1 reg)

addi sp,sp,-4
sw x8,0(sp)

sw x8,-4(sp)
addi sp,sp,-4

Push x8 onto stack (store/write
value in x8 into memory)

pop
(1 reg)

lw x8,0(sp)
addi sp,sp,4

addi sp,sp,4
lw x8,-4(sp)

Pop x8 off stack (load/read value
into x8)

push
(2 regs)

addi sp,sp,-8
sw x8,0(sp)
sw x9,4(sp)

sw x8,-4(sp)
sw x9,-8(sp)
addi sp,sp,-8

Push x8 then x9 onto stack
(store/write x8, x9 into memory)

pop
(2 regs)

lw x8,0(sp)
lw x9,4(sp)
addi sp,sp,8

addi sp,sp,8
lw x8,-4(sp)
lw x9,-8(s0

Pop x8 then x9 off stack
(load/read into x8, x9)

Table 12.1: Summary of RISC-V push & pop operations for one & two registers.

One of the big mistakes that programmers can sometimes make when pushing and popping is to pop registers off
the stack in a different order than was put on the stack. This is because the stack is a LIFO abstract data type, so
ordering does matter. Table 12.2 shows both a correct and incorrect popping sequence for a given example of
two pushes. The incorrect sequence does not cause the assembler to give you an error, which is why you have to
be extremely careful when popping values off the stack. The incorrect pop sequence column does actually serve
a purpose: it swaps the values in registers x8 and x9, which can sometimes be useful.

Push Operation Correct Pop Sequence Incorrect Pop Sequence

addi sp,sp,-8
sw x8,0(sp)
sw x9,4(sp)

lw x8,0(sp)
lw x9,4(sp)
addi sp,sp,8

lw x9,0(sp)
lw x8,4(sp)
addi sp,sp,8

Table 12.2: Correct and incorrect pops for two a two register push.

FreeRange Computer Design Chapter 12

 - 296 -

Example 12.1: Push and Pop Code Fragments

Write two fragments of RISC-V assembly language code; one pushes register x20, x21, & x30 on
the stack, and the corresponding code that pops those values off the stack.

Solution: Figure 12.3 shows the solution to this example. There are several particularly important things to
surprise your brain with in this solution:

 We are pushing three registers, so we need to reserve room on the stack for three registers work of
data, or, 12 bytes. We do this by adjusting the stack pointer backwards (lower address) by 12 on
line (02). We include a “save” label for human clarity.

 We next use the sw instruction to store the three registers designated by the problem on lines (3-
5). The ordering of these instructions does not matter, but the offset values for each sw instruction
do matter. We push x20 on line (03) with a zero offset because the stack pointer is currently
pointing 12 byte locations back from its original value. We need to push three registers, the order
in which we push them is arbitrary.

 The solution includes two options for restoring the registers with pops. The pop operations utilize
the lw instruction to restore the pushed 32-bit register values back into their original registers. The
two versions, labeled “restor1” and “restor2” both pop the registers before adjusting the stack
pointer last. This is not the only approach but is the best approach. We include two versions to
show that we can, and that the ordering on instructions does not matter. What does matter is that
we pop the correct data back into the correct register, which we do in both solutions.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

#~~~~~~~~ program fragment ~~~

save: addi sp,sp,-12 # adjust stack pointer (sp) to hold 3 registers
 sw x20,0(sp) # push x20
 sw x21,4(sp) # push x21
 sw x30,8(sp) # push x30

#~~~~~~~~ program fragment ~~~

restor1: lw x20,0(sp) # pop x20
 lw x21,4(sp) # pop x21
 lw x30,8(sp) # pop x30
 addi sp,sp,12 # re-adjust sp

#~~~~~~~~ alternate program fragment ~~~

Restor2: lw x21,4(sp) # pop x21
 lw x30,8(sp) # pop x30
 lw x20,0(sp) # pop x20
 addi sp,sp,12 # re-adjust sp

#~~~~~~~~ program fragment ~~~

Figure 12.3: Solution for this example.

12.3 Subroutines Overview

It is frequently necessary for a program to execute the same set of instructions at several different points in a
program. If the set of instructions is relatively short, you could simply place the code in the program wherever
your program requires it. However, if this section of code is relatively long, a more effective use of codespace to
have only one piece of the code that needs repeating. When that section of code needs to execute, the program
control transfers to the section of code that requires execution, the program executes that code, and then the
program control transfers back to the code that it originally transferred from. Thus, when the special section of
code completes execution, program control returns to where it was before the program executed that special
piece of code. The thing we are describing here is what we know in assembly language terms as a subroutine.

FreeRange Computer Design Chapter 12

 - 297 -

We refer to this same mechanism in a higher-level language a function or a method, depending on the higher-
level language you’re working with.

Subroutines have another major purpose besides saving associated with them that is extremely important to
assembly language programs: they give the programmer the ability to modularize and thus organize their
programs. In essence, there are situations where you must use subroutines as they save you program code space,
but there are also situations where you should use subroutines to keep your programs organized. The use of
subroutines is important for many reasons; the main ones we list below.

Codespace Efficiency: The section of code that needs executing multiple times appears only one
time in the source listing. This represents a significant savings in program codespace because
despite the code appearing only once, the programmer can easily execute it multiple times. The
efficiency we refer to here is program memory space efficiency, which is different from runtime
efficiency.

Program Readability and Understandability: Placing bunches of code in subroutines and giving
it an appropriate name makes the program more readable. This in turn allows the programmer to
abstract the code to higher levels, which means you don’t necessarily need to understand the
workings of code at low level (the code in the subroutine) in order to use the code. Additionally,
providing the code with a self-commenting label (or subroutine name) allows another human to
quickly understand the purpose of the code on a high level.

Maintainability: Compartmentalizing the code allows you to quickly locate and easily change
only the code you need, particularly if it later turns out that there is a problem with that code.

Reusability: Placing sections of code in meaningful blocks, namely subroutines, increases the
chances that you or some other programmer can reuse the code later, which saves time by
preventing multiple programmers from “re-inventing the wheel”. This is also why you should
always provide adequate commenting on your subroutines.

In the end, the notion of using subroutines in your programs can’t be overemphasized. Good programmers use
appropriately named and structured subroutines in order to control the complexity of their code. Conversely, you
can always detect code from beginning assembly language programmers because they tend to avoid using
subroutines and/or try to use jumps and branches instead. The concept of subroutines from a programmer’s level
is straightforward; please don’t fear the subroutine.

Figure 12.4 shows an example of software flow diagrams that justifies the use of subroutines. In Figure 12.4 (a),
program flow continues in a linear manner and executes the sections of code represented by A, B, C and X. The
code represented by X appears two times in the section of code. In Figure 12.4(b), program flow jumps from A
to X and then from X to B. Likewise, it jumps from B to X and then from X to C. In this way, the code that
represents X needs to appear in the code only one time. This represents a direct saving in code space in program
memory, though there are other negative ramifications in terms of program runt-time execution efficiencies (this
is the overhead issue; we’ll talk about this later). The notion that Figure 12.4 is attempting to convey is that using
subroutines saves program code space.

(a) (b)

Figure 12.4: A diagram showing program flow both with and without subroutines.

Subroutines are a form of program control not unlike the unconditional branch instruction. When the program
executes subroutines, the program temporarily transfers program control to some other place in the program (or

FreeRange Computer Design Chapter 12

 - 298 -

more precisely, some other address in program memory). When the subroutine completes it execution, the
program transfers program control back to the instruction that follows the instruction that invoked the subroutine
(the calling instruction).

At the end of the subroutine code, there is usually some type of return instruction; we’ll deal with the official
syntax and underlying details later. This instruction indicates that the program completed execution of the code
associated with the subroutine and program control should now return to the instruction immediately following
the after the instruction that initiated the subroutine (a call or unconditional branch instruction).

Note that there is an important relationship between the instructions that initiate a subroutine and the instructions
that initiate a return from subroutines. Roughly speaking, you must return from every subroutine you initiate in
the order you initiate them in. If you violate this universal constant, your programs won’t execute properly.

12.4 Subroutines on the RISC-V MCU

Let’s start this discussion by showing some examples of subroutines and providing detailed descriptions of those
examples. You’ll surely see that subroutines are generally not a big deal, but there are some special issues that
programmers need to know so they can write working programs.

Example 12.2

Write a subroutine that swaps the values in register x8 & x9.

Solution: Figure 12.5 shows an example of our first subroutine. There a many good subroutine formatting
examples in this solution; you should strive to adopt them in your code. Here are the pertinent points to note
about the solution:

 We nicely delineate the subroutine from other parts of the code with comments. The delineating
comments include an informative file banner and a line of dashes to indicate the end of the
subroutine.

 The subroutine has a banner that includes important information about the use of the subroutine.
This includes the subroutine names on line (01) and a description of what the subroutines does on
line (03). The banner also includes a list of registers that the program changes. You would expect
a subroutine to change the values in the registers being swapped, but the subroutine also changes
another register.

 The name of the subroutine is a label, no different from other labels we’ve been using up to this
point. Line (07) has the name of the label. Line (08) also has another label name, which we use for
clarity. Most subroutines have some type of initialization code; even the subroutine in this
example does not have such code, we use “init” label for consistency. The “init” label is optional,
but it’s always good to use.

 The main function of the code is to swap data in the two registers. There are many ways to do this;
the code opts to temporarily store one of the values in another register, which we commonly refer
to as a “working register”. This means that the program overwrites the value in x10, which may be
an issue. We’ll deal with this issue in a later section.

 The code ends with a ret instruction on line (12). This is actually a pseudoinstruction; we’ll deal
with the details in another section.

FreeRange Computer Design Chapter 12

 - 299 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#--
Subroutine name: Swap_reg

This subroutine swaps the values in x8 & x9.

Tweaked Registers: x8,x9,x10
#---
Swap_reg:
init: mv x10,x9 # copy data in x9 to working register
 mv x9,x8 # copy data from x8 to x9
 mv x8,x10 # copy working data to x8

 ret # transfer program control back
#---

Figure 12.5: The solution to this example problem.

Figure 12.6 shows a flowchart modeling the solution to this example. This flowchart is the first flowchart where
we use two terminal symbols. Subroutines, unlike programs, have the notion of “ending”, which is why we
include an ending type terminal symbol (the one with the “return” text) in the diagram. Keep in mind that
subroutines have one entry point (so one start-type terminal symbol), but can have multiple exit points, so there
is no limit to the number of ending-type terminal symbols we can use to represent a subroutine. You’ll see that in
later examples.

Figure 12.6: A flowchart modeling the operation of this example program.

Example 12.3

Write a subroutine that swaps the values in register x8 & x9. Don’t change any register values
other than x8, x9, and sp.

Solution: This is the same example, but now with a constraint that we can’t change any register values other
than two registers to swap and sp. The mentioning of sp is a hint that we’ll do this swap using the stack. Figure
12.7 shows the solution to this example. Here a few other good things to note about the solution:

 The subroutine uses comments to delineate and provide the human reader with information about
the subroutine.

FreeRange Computer Design Chapter 12

 - 300 -

 We first made room for the two register values on line (08); we followed that with what are
effectively two pushes onto the stack (x8 & x9). We then purposely pop the two registers off the
stack in a different order to implement the required swap. The out-of-order popping of data is
generally a mistake, but we use it accomplish the goals of the problem.

 Even though the code in this example is functionally equivalent to the code in the previous
example in that the subroutines do the exact same things, there are important differences. There is
always a tradeoff when programming, the tradeoff in this example is that the previous example
requires less time to run (because it has less instructions), but it uses one more register (x10) than
the current example. Then again, the code in this example changes memory (in the stack), which
is generally much less of a deal than changing the code in a register as the first example did. The
stack exists for such operations and there is a lot of memory there as opposed to registers, where
there are only 31 of them (at most) that we can use for general-purpose storage.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

#--
Subroutine name: Swap_reg_stk

This subroutine swaps the values in x8 & x9.

Tweaked Registers: x8,x9
#---
Swap_reg_stk:
init: addi sp,sp,-8 # create room on stack
 sw x8,0(sp) # save value on stack in order
 sw x9,4(sp)

 lw x8,4(sp) # remove values off stack out of order
 lw x9,0(sp)

 addi sp,sp,8 # return sp to original value

 ret # transfer program control back
#---

Figure 12.7: The solution to this example problem.

Figure 12.8 show a flowchart modeling the solution. The interesting thing to note about this flowchart is that we
go out of our way to keep the flowchart independent of the computer the associated code will be implemented
on. Thus, the process boxes in Figure 12.8 have relatively high-level descriptions of the code.

Figure 12.8: A flowchart modeling the operation of this example program.

12.4.1 Calling Subroutines and Returning from Subroutines

FreeRange Computer Design Chapter 12

 - 301 -

Calling subroutines and returning from subroutines is a topic we first mentioned in section 10.4.2.1; we’ll fill in
more information in this section. Similar to pushing and popping operations, there are no base instructions
dedicated to calling and returning from subroutines. However, lucky for us, we don’t need to deal with the low-
level details because there are pseudoinstructions dedicated to the use of subroutines. Because of the general
usefulness of these pseudoinstructions, we’ll direct most of this discussion to the pseudoinstructions.

We prefer to use the call and ret pseudoinstructions to call and return from subroutines, respectively. The
assembler translates these pseudoinstructions to the jal and jalr base instructions, which is a detail that pure
programmers do not need to know. We’ll discuss the underlying hardware implementation details in the RISC-V
hardware portion of this text.

Table 12.3 lists the call and ret pseudoinstructions along with some other information. The information in
Table 12.3 that is most useful to us the “Example Usage” column. We as programmers don’t need to know that
underlying base instructions that the assembler uses to implement the pseudoinstructions.

Instruction Form
Equivalent Base
Instruction(s) Example Usage Comment

call rd,lab
auipc rd,hi{lab}

jalr rd,lo{lab}(rd)
call x5,subrut

Jump to instruction
associated with label;
Store current address in rd

call lab
auipc x1,hi(lab)

jalr x1,lo(x1)
call subrut

Jump to instruction
associated with label;
Store current address in x1

ret jalr x0,0(x1) ret Jump to instruction at
address in x1

Table 12.3: The program flow control pseudoinstructions and their base instruction translations.

Figure 12.9 shows an example of the both the use of the call and ret pseudoinstructions. Here are some extra
important details:

 There is a fragment from the calling code on lines (00-04); this fragment does not show the code
that places meaningful values in the x8 & x9. Line (02) shows the actual call instruction.

 When the program executes the call instruction on line (02), program control transfers to the
instruction associated with the “Swap_reg” label; that instruction is on line (14). Because there is
no instruction on the same line as the “Swap_reg” label, the label takes the value of the address of
the next instruction, which is on line (14), which has the “init” label. In this way, the numeric
values associated with the “Swap_reg” and “init” labels are equivalent (a detail the pure
programmers don’t need to know).

 When the program executes the ret pseudoinstruction on line (18), program control transfers
back to the instruction following the call instruction. No, there is no such instruction in the
fragment in the calling code of this example. The important thing to note here is that the ret
instructions transfers program control to the instruction following the call instruction.

FreeRange Computer Design Chapter 12

 - 302 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---------- a fragment from the calling code

 call Swap_reg # perform register swap

#---------- a fragment from the calling code

#--
Subroutine name: Swap_reg

This subroutine swaps the values in x8 & x9.

Tweaked Registers: x8,x9,x10
#---
Swap_reg:
init: mv x10,x9 # copy data in x9 to working register
 mv x9,x8 # copy data from x8 to x9
 mv x8,x10 # copy working data to x8

 ret # transfer program control back
#---

Figure 12.9: Example usage of the call & ret pseudoinstructions.

12.4.2 Passing Values to Subroutines

The notion of “passing values” comes up quite often when programming computers. This is simply a matter of
“what you send and how you send something” and “what and how that thing sends something back”. In higher-
level languages, this primarily means the stuff you send to functions (formal parameters) and the stuff the
function sends back (return values). For the RISC-V MCU, it simply means what data the subroutine requires
and how the calling code sends data to the subroutines that the subroutine expects, and what data and how the
subroutines returns data from the subroutine. As it turns out, this problem is not complex with the RISC-V
MCU; it’s primarily a notion of learning the standard terminology when working the subroutines.

There are generally only two ways to pass data to subroutines in the RISC-V MCU: via registers or via main
memory. Note that both of these items are types of storage on the RISC-V MCU. The truth is that there is only
one way, which is registers, but we refer to this as two approaches depending on the meaning of the data in a
register. Sometimes the data is pure data, which means we are passing data to the subroutine in registers. Other
times the data in the registers is a memory address; in this case, we refer to this as passing addresses to
subroutines using main memory.

Figure 12.10 shows the solution to a previous example. This subroutine swaps data between two register: x8 &
x9. The calling code (the code that calls this subroutine) effectively passes data to the subroutine in register,
namely x8 & x9. The subroutine thus expects to find data in those registers, so it’s up the programmer to put the
correct data in those registers before code calls the subroutine.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#--
Subroutine name: Swap_reg

This subroutine swaps the values in x8 & x9.

Tweaked Registers: x8,x9,x10
#---
Swap_reg:
init: mv x10,x9 # copy data in x9 to working register
 mv x9,x8 # copy data from x8 to x9
 mv x8,x10 # copy working data to x8

 ret # transfer program control back
#---

Figure 12.10: A subroutine that uses data passed by register.

FreeRange Computer Design Chapter 12

 - 303 -

Example 12.4

Write a subroutine that swaps the words in two different memory locations. The locations of the
data to swap are provided in registers x6 & x7.

Solution: This is yet another version of swapping something, which seems to work rather well for these
introductory examples. Figure 12.11 shows the solution to this example; here are some other fun facts to fill
your head:

 First, this is a bad solution. We present it because it does a great job of illustrating a point in the
following section.

 The subroutine must be passed to values in x6 & x7. Because these two registers hold address
information, we are passing data to the subroutine via memory. Sort of a fine line with that
definition, but it works.

 The problem with the solution is the code on lines (12-14). This code is not actually necessary
because all we need to do is use the sw instructions to save the registers at different address
locations, meaning we would swap the base register values for the instructions on lines (16-17).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

#--
Subroutine name: Swap_mem_w

This subroutine swaps two word values in memory. The address of the
values to swap is found in register x6 & x7.

Tweaked Registers: x10,x11,x12
#---
Swap_mem_w:
init: lw x10,0(x6) # load the data to swap
 lw x11,0(x7)

 mv x12,x10 # copy data in x10 to working register
 mv x10,x11 # copy data from x11 to x10
 mv x11,x12 # copy working data to x11

 sw x10,0(x6) # store the swapped data
 sw x11,0(x7)

 ret # transfer program control back
#---

Figure 12.11: A subroutine that uses data passed by address.

Example 12.5:

Write a RISC-V assembly language subroutine that swaps the data in two registers. Do not
change any memory other than the values in those two registers. Consider the registers with
the data to be X10 and X11.

Solution: The solution to this problem is a well-known digital “trick”. The solution is hard to understand (but
easy to apply), so plan on putting this in your bag of digital tricks because swapping data in two registers is a
common occurrence in assembly language programming. Here is some fun stuff embedded in the solution:

 The Swap_in_place label on line (12) is the name of the subroutine, which of course provides an
idea to human readers what the subroutine is doing.

FreeRange Computer Design Chapter 12

 - 304 -

 The xor instruction has three operands: it performs a bitwise exclusive OR on the data in the
registers specified by the two right-most (x10 & x11), and stores that data in the register
associated with the left-most operand. There is nothing magic about this; this is the way the
register operands are accessed by the instructions. Note that someone needs to tell you this (or you
need to read the spec); you would not know otherwise.

 Yes, great interview question. The XOR function is somewhat magical; the magic displayed in
this problem is how RAID arrays work (look it up).

 The selection of x10 and x11 registers is arbitrary; recall these are all “general purpose” registers.

 The code nicely aligns all the instructions and comments and in the subroutine banner.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16))

#--
Subroutine name: Swap_in_place

This subroutine swaps the values in x10 & x11 but does not change
any other register or memory values.

Tweaked Registers: x10,x11
#---
#---
#- Code Fragment: does “in-place” swap of data in two registers
#---

Swap_in_place: xor x10,x10,x11 # three xors; get used to it
 xor x11,x11,x10 # well-known trick
 xor x10,x10,x11

done: ret # take it on home

Figure 12.12: Solution to this example problem.

12.4.3 Saving Context in Subroutines

The subroutine represents a different piece of code from the calling code. This being the case, the subroutine
may inadvertently modify a register that the calling code is currently using, which would mean a slow death for
your program3. To make subroutines more useful to programmers, we typically write subroutines to be
independent of the calling code, which we do by saving the operating context of the MCU before we start
executing the subroutine. What we mean by this is that we want to write subroutines that we can call and not
worry about the subroutine altering a register currently being used by the calling code.

The notion of “saving context” is quite popular in low-level programming. You probably don’t’ realize it, but
your higher-level language compiler is responsible for saving “various contexts” when the call functions4.
However, because we’re dealing with programming at a low level (the assembly language level), the
programmer must be aware of and handle such details. This is actually not a large undertaking, as we don’t have
to save the entire operating context of the MCU; we only need to save and restore the registers changed (not
used) by the subroutine as the calling code may be using these registers.

We’ve sort of provided warnings regarding this subject in our past subroutines. Note that the subroutines plainly
state which registers the subroutine changes in the subroutine header. This is good practice, for sure. Better
practice is to simply save the registers the subroutines uses at the beginning of the subroutine (referred to as
saving context) and then restoring those registers values before the subroutines returns control to the calling code
(referred to as restoring context. By far the most straightforward way for subroutines to save the context is to
push the registers that the subroutines modifies in the body of the subroutine onto the stack at the beginning of
the subroutine, then popping them off the stack back into the original registers before the subroutine returns
control to the calling code.

3 Dead programs, or any programs that do not work, are bad things.
4 This is a deep but important subject; this text does not delve into the details.

FreeRange Computer Design Chapter 12

 - 305 -

Example 12.6

Write a subroutine that swaps the words in two different memory locations. The locations of the
data to swap are provided by the addresses registers x6 & x7. Make sure the subroutine does not
permanently change any register value.

Solution: This solution once again uses the bad code from the previous solution, but with a good reason. The
code in the previous version of this subroutine changed three register values, which means the programmer must
make sure that those three registers are not currently being used by the calling program. This is a lot to ask,
particularly when programs become complicated. The better solution is to know that you can call the subroutine
without affecting the calling program in a detrimental way. Good programmers generally write subroutines in
this way; we refer to this approach as the subroutine saves context before it does what it needs to do, then
restores context afterwards. I personally like referring to this as making the subroutines “bulletproof”5. Here is
some other stuff to note about the solution in Figure 12.13:

 We changed the subroutine name so that it is different from the previous similar solution. We also
changed the “Tweaked Registers” comment on line (06) to indicate that the subroutine does not
permanently change any register.

 We save context by pushing each register the subroutine uses at the start of the subroutine. We
need to push three registers, so we make space on the stack by reducing the stack pointer by 12 on
line (09). We follow that operation with three sw instructions, which serve to store the three
registers on the stack. The overall approach is to first subtract 12 from the sp; the sp then points at
an unused memory address. We push the three pieces of data starting at that address as indicated
by the “0” in the offset box in the sw instruction on line (10). We do the same for the following
two pushes, but we advance the pointer by four using the offset value in the following two sw
instructions.

 The body of the code is similar to previous examples so we won’t describe it again here.

 Once the subroutine completes the main part of the work, we must restore the context, which we
do by popping data off the stack and back into the registers from which that data originated (where
we pushed it at the beginning of the program); We do this on lines (24-26). Note that we use a
“restore” label on line (24), which alerts the astute human reader as to what the code is doing in an
abbreviated format.

 After restoring the data by popping it off the stack, we then adjust the stack pointer back to where
it was before we stored context. Thus, line (27) undoes the instruction on line (09). For that matter,
lines (24-26) undo the instructions on lines (10-12).

5 There are other things programmers do to make their subroutines bulletproof; we’ll discuss those things in a later section.

FreeRange Computer Design Chapter 12

 - 306 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

#--
Subroutine name: Swap_mem_ws

This subroutine swaps two word values in memory. The address of the
values to swap is found in register x6 & x7.

Tweaked Registers: none
#---
Swap_mem_ws:
init: addi sp,sp,-12 # make room on stack for storage
 sw x10,0(sp) # push 3 items on stack
 sw x11,4(sp)
 sw x12,8(sp)

 lw x10,0(x6) # get data to swap
 lw x11,0(x7)

 mv x12,x10 # copy data in x10 to working register
 mv x10,x11 # copy data from x11 to x10
 mv x11,x12 # copy working data to x11

 sw x10,0(x6) # store swapped values
 sw x11,0(x7)

restore: lw x10,0(sp) # pop data into register
 lw x11,4(sp)
 lw x12,8(sp)
 addi sp,sp,12 # unadjust the stack pointer

 ret # transfer program control back
#---

Figure 12.13: A subroutine that uses data passed by address.

12.4.4 RISC-V and Nested Subroutines

The underlying mechanism in the approach the RISC-V MCU uses to call subroutines has some special issues
that pure programmer needs to be aware of. Many of these details are associated with the underlying hardware,
but we present a working overview here so that programmers can write viable code.

The issue is simple: when you call a subroutine that in turn calls another subroutine, you have to do some special
things to make your program work properly. We refer to a subroutine that calls another subroutine as a “nested”
subroutine, a topic we’ll discuss further in a later section. This section presents the relatively simple mechanism
of making nested subroutines work on the RISC-V MCU.

When the program calls a subroutine, the underlying hardware needs to store the address of the instruction
following the subroutine call “somewhere”, because this is the instruction that executes after the return from
subroutine instruction (ret). The mechanism employed by the RISC-V MCU is to store that address in a
specific register, which is somewhat arbitrarily, x1. This being the case, the x1 register has an alternate name of
“ra”, which conveniently stands for “return address”. When a subroutine is called, the underlying hardware
places the address of the instruction after the call instruction into ra. When the subroutines completes, it transfers
program control back to the calling program by making the instruction stored in ra to be the next instruction
executed6.

The problem with nested subroutines exists because it is most convenient to use the same register (ra) for all
return addressed. The true issue is that when a subroutine calls another subroutine, the hardware automatically
overwrites the ra with the return address of the newly called subroutine. This means that if you structure your
code to nest subroutines, you first must save the return address of the calling subroutine before that subroutine
calls another subroutine. The way to save the return address is to push that address on the stack before the nested
subroutine call and then pop it off the stack back into ra after the nested subroutine returns. This is not a big deal
to implement in your code, which is good because you must do this to make your code work properly.

6 Don’t worry: the specific actions of the underlying hardware is much more interesting than this written description.

FreeRange Computer Design Chapter 12

 - 307 -

Example 12.7

Modify the previous subroutine that swaps data in two memory locations such that the actually
register swapping portion of the code is done with a nested subroutine. Make sure the subroutines
don’t permanently change any register values.

Solution: This is the bad solution that won’t go away. What makes this solution bad now is that we call a three-
instruction subroutine; the overhead associated with such a short subroutine indicates that we should probably
put the code inline rather than call a subroutine. However, for this problem, efficiency does not matter, as our
intent is to show the special issues involved with using nested subroutines. Figure 12.14 shows the solution to
this example; most of the stuff is similar to where we earlier described this solution, so we won’t describe that
stuff again here. However, there is still some other fun stuff to take note of:

 The problem stated to not permanently change any register, so we push two registers on the stack
as part of the initialization code on lines (09-11). This code looks a bit strange because we
reserve space for three registers when we adjust the stack pointer on line (09), but we only save
two registers. This will make more sense later in the code.

 The “Swap_mem_wsx” subroutine calls another subroutine so we list the nested subroutine at the
end of the listing. We named the new subroutine “R_swap” because it swaps the data in two
registers. The subroutine implements the swap using the infamous XOR in-place register swap;
you can find a complete description of this algorithm and subroutine in the chapter with solved
problems. This subroutine has a nice banner describing listing the subroutine name, describing
what the subroutine does, and lists which registers the subroutine changes.

 The call to the nested subroutine appears on line (17). Before we make that call, we need to save
ra. The current value in ra is the return address associated with the call to the “Swap_mem_wsx”
subroutine. When we call the “R_swap” subroutine using the call pseudoinstruction, ra is written
with a new return address, which is the address of the instruction on line (18). We save ra on line
(16) by pushing it on the stack; recall that we already saved space on the stack with the
instruction on line (12). When we return from the nested subroutine, we then pop that original
value off the stack back into ra on line (18). We can actually do the pop that restores ra any time
before the ret instruction, but we choose to do it after the call so we don’t forget and then create
an ugly bug in our program.

 Placement of the ra saving and restoring mechanism is always an issue. If your subroutine only
contained one nested subroutine, it would make sense to place storing ra in the initialization
section of the code, and restoring the original ra somewhere near the end of the code (both of
these items would fit nicely into the context saving and storing code). The issue is what happens
if a subroutine calls contains two different nested calls? In this case, it would make sense to place
the ra saving/restoring mechanism near the actual nested calls.

 Though it may seem a bit strange, this solution works. There are other approaches to protecting
the return address when nesting subroutines, but this is the most straightforward approach,
particularly for people new to assembly language programming.

FreeRange Computer Design Chapter 12

 - 308 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#--
Subroutine name: Swap_mem_wsx

This subroutine swaps two word values in memory. The address of the
values to swap is found in register x6 & x7.

Tweaked Registers: none
#---
Swap_mem_wsx:
init: addi sp,sp,-12 # make room on stack for storage
 sw x10,0(sp) # push 3 items on stack
 sw x11,4(sp)

 lw x10,0(x6) # get data to swap
 lw x11,0(x7)

 sw ra,8(sp) # push current ra on stack
 call R_swap # do the register swap
 lw ra,8(sp) # pop old ra back into ra

 sw x10,0(x6) # store swapped values
 sw x11,0(x7)

restore: lw x10,0(sp) # pop data into register
 lw x11,4(sp)
 addi sp,sp,12 # unadjust the stack pointer

 ret # transfer program control back
#---

#---
Subroutine: R_swap:

This subroutines swaps the values in x10 & x11 (in-place reg swap)

Tweaked Registers: x10, x11
#---
R_swap: xor x10,x10,x11 # three xors; get used to it
 xor x11,x11,x10
 xor x10,x10,x11
 ret # pass flow control back
#---

Figure 12.14: A subroutine that calls a subroutine (nested subroutine call).

Figure 12.15 shows the flowchart that models this solution. This solution is new in that this subroutine contains a
nested subroutine call. We indicate the subroutine call in the flowchart with the “predefined process symbol”,
which is essentially a process box with extra vertical lines on the sides. The vertical lines make it painfully
obvious that this is not the normal process box. We also opted to include a flowchart for the nested subroutine as
part of this flowchart.

FreeRange Computer Design Chapter 12

 - 309 -

Figure 12.15: A flowchart modeling the operation of this example program.

Example 12.8

Write a RISC-V MCU assembly language subroutine that divides a 2-digit BCD value by 2. The
value is sent to the subroutine in x20, where the lower two nibbles form the 2-digit BCD value. The
halved value is returned to the subroutine in x20. Be sure to round up the value in x20 it needs it
(round up when the pre-shifted value in x20 is odd).

Hint: you need to deal with the LSB of each BCD value.

Solution: This solution does not require nested subroutines, but it does give an example of using the slt-type
instructions as well as implementing an algorithm. When we divide a binary number by two, we simply shift it
right one bit position. The right shift effectively truncates the result, so we sometime want to round the result
upwards. The general rounding operation is done when the least significant digit of a number is five or greater.
For this problem, when the pre-shifted LSB of the 1’s digit is ‘1’, then we need to add a 1 back to the final result
for the rounding operation.

It turns out that a similar thing happens for the 10’s digit: when the LSB of the 10’s digit is ‘1’, that means we
lose that value in truncation. To account for this, we add back 5 to the final result, which is of course half of ten.
In other words, if we shift off the LSB of the 10’s digit, it changes the value of the final result.

Yes, sort of an ugly algorithm. This works great for two digits, but you may consider doing another algorithm if
you had to divide a 16 digit number by 2. In that case, you may first want to convert the number from BCD to
binary, shift it right one position, add back the LSB, and convert the number back to BCD.

Figure 12.16 shows a solution this problem; below is some verbose description.

 The subroutine header has all the pertinent information for the subroutine including a rough
description of the algorithm the subroutine uses. This is good programming practice.

 The subroutine first clears off any data that maybe in the top six nibbles of x20 with the mask
operation on line (14). The subroutine then makes two copies of the value for use later in the
subroutine. Note that I did not know I needed these registers until I started coding the algorithm; I
put the code on lines (15-16) later in the solution process.

FreeRange Computer Design Chapter 12

 - 310 -

 I want to perform the divide by a shift right, but I need to modify the data first by clearing the LSB
of each digit with the mask operation on line (18). The value is ready to divide, which I do on line
(22). I then mask and save the LSBs of each digit on line (19-20) for use later in the subroutine.

 Line (24) checks to see if the LSB of the 10’s digit was zero; if it was, then it adds 5 (which is half
of ten) to the result on line (26). The program then adds the 1’s LSB, which is effectively the
round up value (which could be zero, no big deal).

 We potentially added two values to the shift result, which means the lower nibble could be greater
than nine. If it is, we need to increment the 10’s digit (line (43)) and subtract ten from the 1’s digit
(line (42)). Note that on line (30), we use a slti instruction to determine if the value is less than
ten or not. This instruction is handy because it allows us to compare a register with an immediate
value, which saves up initially placing the value to compare into a register.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

#--
Subroutine name: Half_BCD2

This subroutine divides a two digit BCD number passed to the subroutine
in x20 by 2. This subroutine rounds the rounds up when fractional part
of result is 0.5 or greater. The algorithm uses a shift right instruction
to do the division, which means a 1 shifted out of the LSB location of
the 10’s digit causes a 5 to be added to the lower digit.

Passed values: x20 (data to half)
Returned values: x20 (result)
Tweaked Registers: x10,x11,x30
#---
Half_BCD2:
init: andi x20,x20,0xFF # ensure it’s only two nibbles
 mv x10,x20 # make local copy
 mv x11,x20 # make local copy

prepare: andi x20,x20,0xEE # mask two low nibbles & LSBs
 andi x10,x10,0x1 # mask LSB of low nibble
 andi x11,x11,0x10 # mask LSB of hi nibble

 srli x20,x20,1 # divide by 2

 beq x11,x0,round # jump over 1’s adjust (+5)

 addi x20,x20,0x5 # add five: half of 10’s LSB
round: add x20,x20,x10 # add roundup bit

chk_1: andi x30,x20,0xF # mask 1’s digit
 slti x30,x30,0xA # set if no adjust needed

adjust: bne x30,x0,done # branch if no LSB
 addi x20,x20,-10 # adjust lower LSB by 5
 addi x20,x20,0x10 # increment 10’s digit

done: ret # take it home leroy

Figure 12.16: A subroutine that calls a subroutine (nested subroutine call).

Figure 12.17 shows a flowchart modeling this solution. This could possibly be too much fun stuff for one
problem where the code and the comments included in the code still don’t describe the algorithm in enough
detail to understand completely. In this case, the flowchart is particularly helpful.

FreeRange Computer Design Chapter 12

 - 311 -

Figure 12.17: A flowchart modeling the operation of this example program.

12.5 Special Subroutine Issues
There are a few other issues regarding subroutine vernacular and usage that programmers need to be aware of.
Subroutines are great when used properly, but can be a source of intermittent errors if programmers use them
improperly. We all know that intermittent errors are typically the hardest errors to find.

12.5.1 Recursive Subroutines

When we think of subroutines, we generally think of the calling code and the subroutine itself as separate
entities, but this is not always the case. There is no reason a subroutine cannot call itself. When a subroutine calls
itself, we refer to it as a recursive subroutine call, or simply recursion. We consider recursion a special type of
nested subroutine. Recursion is a special animal in that it’s somewhat hard to comprehend and is even trickier to
actually use properly in a program. Although we don’t generally use recursion, there are times when it’s the most
straightforward approach to implementing algorithms7.

You can better understand recursion if you understand the underlying hardware implements subroutines, namely
how the RISC-V hardware handles call and ret instructions. We don’t go there in this chapter because we are
purposely excluding hardware details in order to deal with details pure programmers need to know. My personal
thoughts about recursion are that you should avoid it at all costs. If you can’t avoid it, make sure you understand
it well enough to ensure it works properly in your code. There are two issues to be aware of when using
recursive subroutines.

1) There are generally limits to the levels of recursion you can have based on the notion of
subroutines saving the operating context. In addition, because recursive subroutines are inherently
nested, programmers need to save the return address (ra) on each level recursive level. In other
words, use of recursion can bring up stack integrity issues, which if not properly handled, can
doom your program.

2) Recursion must have stop conditions. The issue here is that stop conditions in recursive
subroutines are more “tricky” than stop conditions in other items such as iterative loop. This
means you really have to know what you’re doing to properly use recursion.

7 Once such situation is implementing factorial algorithms.

FreeRange Computer Design Chapter 12

 - 312 -

12.5.2 Stack Overflow

The description of stacks implemented with a structured memory device such as a RAM leaves open the option
for improper stack operations. The general rule when working with stacks is to keep the pushes “synchronized”
with the pops. This means that if your subroutine saves operating context by pushing five items on the stack, it
needs to pop five items off the stack before it returns. This also means when you nest subroutines, you must
properly un-nest them as well.

When you follow the proper stack protocol, you should attempt to write anything outside of the bounds of the
stack segment. Another way to state this is that the stack pointer should always point to a location in the memory
area designated for the stack8. If you don’t follow this protocol, you then have a stack overflow problem, which
typically means a slow if not immediate death for your program. Programmers can avoid stack overflow
problems by ensuring their code follows these two rules: 1) never push so many items onto the stack such that
the stack pointer exceeds the designated stack area in memory, and 2) ensure that they write their code such that
the push and pops are equally paired. Another way of saying the previous item is that for every push in your
program, there needs to be a corresponding pop. Keep in mind the issues of pushing and popping primarily have
to do with nested subroutine calls, and saving/restoring context associated with making subroutines safe. Recall,
this stack is located in memory and that we can model the stack pointer as a counter that increments and
decrements.

The stack implementation in the RISC-V MCU has issues programmers need to be properly handl. Because the
RISC-V does not have actual push and pop instructions, we rely on adjusting the stack pointer under program
control, which means by issuing an add-type instruction to manually adjust the stack pointer. We subtract from
the stack pointer with pushes (to support the notion that the stack grows in the negative direction) and add to the
stack pointer with pops. This being the case, we have to ensure we eventually match the two directional
adjustments to the stack pointer.

Messing up the stack in one of these ways is typically an error that is hard to find, particularly since the problems
it causes can be intermittent. As with any error in your code, the most likely time it fails during a customer
demo. It is possible to set up checks in software to ensure the integrity of the stack, but these approaches take up
codespace and reduce overall runtime efficiency. The better solution is to write good code that naturally supports
stack integrity.

The stack can overflow in one of two directions, which brings up the notion of stack overflow and stack
underflow. The truth is that whether a stack is overflowing or underflowing is a semantic issue, which we bypass
by including both overflow and underflow in the definition of stack overflow.

12.5.2.1 Subroutines and Stack Overflow

Subroutines are a major part of writing modular and reusable assembly language code. When programmers use
subroutines, they are responsible for retaining integrity of the stack. When programmers nest subroutines, the
must save the return address before calling the nested subroutine; the customary approach to saving the return
address is by pushing it on the stack before the subroutine call and popping if off the stack back into the return
address register after returning from the nested subroutine. A stack overflow problem exists when the stack
operations associated with calling and returning from nested subroutines are not “paired”, which is another way
of saying there is not a pop for every push associated with the nested subroutines. This same condition is
associated with recursive subroutines.

The stack overflows in the direction of larger magnitude memory addresses when the number of returns from
subroutines are greater than the number of subroutine calls. The stack overflows in the other direction when the
number of subroutine call is greater than the number of subroutine returns. You may be thinking how such a
situation may arise; the answer is that is happens in three situations, all of which are common with nubile
assembly language programmers.

1) Stack overflow happens is when programmers branch or jump to a subroutine rather than calling
that subroutine. This results in the MCU executing a return instruction without a corresponding
call instruction. In this case, there is not a valid number in the return address.

8 Actually, when the stack is empty, it’s customary to point at an address outside of the stack because the the stack pointer
needs to be adjusted (made to be a smaller value) before the program pushes a value onto the stack.

FreeRange Computer Design Chapter 12

 - 313 -

2) Stack overflow happens is when a programmer calls a subroutine only to later exit that subroutine
with a branch or jump instruction rather than a corresponding return instruction.

3) Stacks can overflow when the subroutines nest too deeply, which includes recursive subroutine
calls. Another way to say this is that the program issues too many subroutine calls without issuing
and return from subroutines. Note that it is possible to overflow the stack with too many
subroutine calls and still have your program work. This is possible if the stack pointer wanders
into memory space that other parts of the program are not currently using. This issue of course
depends upon how the programmer structures their code and initially configures the stack pointer.

12.5.2.2 Context Saving and Stack Overflow

The other common use of the stack is to save operating context upon entering a subroutine or interrupt service
routine9 and restoring context upon learning those sections of code. Programmers typically save context as part
of the initialization code of a subroutine, which obviously is at the start of the subroutine. This context saving
code typically saves every register that the subroutine changes in order to make the call to that subroutine “safe”
for the code that calls the subroutine. The subroutine then restores the saved registers before the subroutine
returns, an operation that is typically the final task before the subroutine executes the return instruction. The key
to ensuring the context saving mechanism never causes overflow (or any other problems) is to ensure the same
registers that are pushed as part of context saving are later popped as part of context restoration. Note that not
ensuring each push has a corresponding pop and each pop has a corresponding push will eventually cause stack
overflow if your program does not die immediately.

One nice thing about the RISC-V ISA not having dedicated push and pop instructions is that the pushing and
popping operations in context saving/restoring done have to be “in order”. Because the RISC-V implements
pushes and pops with store-type and load-type instructions (with corresponding stack pointer adjustment under
direct program control) respectively, pushes and pops in the RISC-V can be out of order and use the offset
portion of the memory access instruction to target a specific address on the stack. Very handy.

12.5.3 Subroutine Overhead

The underlying problem with subroutine calls is that they also have “overhead” associated with them. The notion
of “overhead” in this context is having the MCU execute an instruction that does not actually do anything useful
for the given task. While we all know that we can use subroutines to keep our code well organized and efficient
in terms of program memory, we can also abuse them. There are potentially two other forms of overheads
associated with subroutines.

1) Subroutines typically save and later restore the operating context

2) Nested subroutines needing to protect return addresses

The issue of subroutine overhead is always something programmers need to consider. We cover this topic in
greater detail in section 14.4.2.

12.5.4 Stack Initialization

All programs, particular programs associated with embedded systems, typically have some type of initialization
code at the start of the program. We consider this code to be initialization code partially because we only need to
run it once. This code is typically associated with placing external peripheral devices into a known operating
state.

Another part of the initialization code is to put the MCU into a known state and to get the MCU ready to execute
your program. You’ve seen this in many of the examples we’ve done up to this point. However, another thing
you really must do: write a value to the stack pointer. Keep in mind that the RISC-V MCU is versatile enough to
use most any register as the sp, but the best approach is to use x2 as the sp, and write a value to as part of your
initialization code. When you write a value to sp (or x2), you’re officially declaring the top of the stack. The key
here is to understand the memory map associated with your system, because knowing where the different parts
of your program are located (such as the code and the stack) helps you optimize your system and avoid
problems.

9 Interrupt service routins and the RISC-V OTTER’s interrupt architecture is the topic of Chapter 13.

FreeRange Computer Design Chapter 12

 - 314 -

12.6 Intelligent Subroutine Usage

Because there are not official constraints or rules regarding the use of subroutines, you should strive to follow a
few basic guidelines when you use them.

 Subroutines should contain a piece of code that has some specific purpose. If each subroutine
has a specific purpose, there is a greater chance you can reuse that code in another program. In
addition, subroutines with specific purposes are easier to document and understand.

 All subroutines should be clearly delineated from other parts of the code by using an
appropriate amount of comments. This promotes neatness and readability of your source code,
which subsequently support humans striving to understand your code.

 Your subroutines should save the operating context at the start of the subroutine and of course
restore it at the end of the subroutine.

 It’s generally a good idea to put all your subroutines at the end of your source code as opposed
to the beginning of our source code. Code with subroutines intermixed throughout the code
makes the code hard for humans to read.

 All subroutines should contain a banner that provides the name of the subroutine, a description
of what the subroutine does, a list of register arguments sent to the subroutine, and a list of
what registers the subroutine modifies permanently modifies

 All subroutines banners should clearly list how the calling program sends data to the
subroutine and how the subroutine returns data back to the calling code. This text doesn’t
always use this rule in an effort to save space and reading time. .

 Your subroutines should not be too short or too long. If your subroutines are too long, consider
breaking them up into smaller subroutines that use nested subroutine calls. If your subroutines
are too short, you stand the chance of having the overhead issues with your subroutine that
make your code runtime inefficient (which is partially dependent on how often you call the
subroutine). A general rule is that short subroutines are OK if they are called many different
times from many different parts of the program.

 If you nest subroutines, you must protect the integrity of the ra register.

Example 12.9

Write a subroutine that multiples the unsigned halfword in x8 with the unsigned half-word in x9
and stores the result in x10. Don’t permanently change any register other than x10. Make sure your
subroutine works in all cases. Write the subroutine with the thought the at least one of the operands
will often be zero.

Solution: You’ll quickly note that the RISC-V MCU instruction set does not include a multiply instruction.
The solution therefore entails implementing multiplication by repeated addition algorithm. We’ve put every
effort into making this solution as efficient and bulletproof as possible. Figure 12.18 show the solutions to this
example; here are some other cools things to note about the description.

 We included more information in the subroutine banner that we did not include in our other
solutions. For this solution, we’ve included what values the subroutines expects to be sent by
the calling code, which we do on line (06).

 Our first task is to save context, which we do with stack operations on lines (10-12). We need to
save these registers first because the next thing we do is mask them.

 We’ve opted to mask the two operands in order to clear the top two bytes of the registers. The
problem stated that they were halfwords, but we want to make sure by clearing whatever value
may reside in the top two bytes. We do this on lines (14-16).

FreeRange Computer Design Chapter 12

 - 315 -

 We clear the accumulator on line (17); the subroutine is now ready for an early exit. Because the
program description stated that one of the operands will often be zero, we start the subroutine by
checking those values for zero. If either value is a zero, we can then quickly exit the subroutine.
We do this with the two conditional branch instructions on lines (19-20).

 The algorithm works by continually adding of the operands the number of times of the number
in the other operand. At this point, we know that both operands are non-zero, so it does not
matter how we use the operands in the solution. We encode this algorithm as a while loop,
which is safe because before entering the while loop, we know both operands are non-zero. The
entire body of the algorithm is on line (22). Loop administration include decrementing the
operand we’re using as an iterative count line (25), followed by a conditional branch to possibly
exit the loop on line (26).

 When the code exits the loop, the answer is in x10. Our last task is then to restore context,
which we do on lines (27-29).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

#--
Subroutine: Mult_regs

This subroutine multiples the unsigned halfword values x8 & x9 with
each other and stores the results in x10.

Passed values: x8 & x9
Tweaked Registers: x10
#---
Mult_regs:
init: addi sp,sp,-8 # make room on stack for storage
 sw x8,0(sp) # push 2 items on stack
 sw x9,4(sp) # push 2 items on stack

mask: li x10,0x0000FFFF # mask value
 and x8,x8,x10 # ensure values are halfwords
 and x9,x9,x10
clr_acc: mv x10,x0 # clear accumulator

chk_0: beq x8,x0,restore # return if either operand is 0
 beq x9,x0,restore

loop: add x10,x10,x8 # add value (accumulate)

admin: addi x9,x9,-1 # decrement other value
 bnez x9,loop # branch if count non-zero

restore: lw x8,0(sp) # pop data into register
 lw x9,4(sp)
 addi sp,sp,8 # unadjust the stack pointer

done: ret # transfer program control back
#---

Figure 12.18: A solution for this example.

Figure 12.19 shows a flowchart modeling this solution. This is a classic problem where the code and the
comments included in the code still don’t describe the algorithm in enough detail to understand completely. In
this case, the flowchart is particularly helpful.

FreeRange Computer Design Chapter 12

 - 316 -

Figure 12.19: A flowchart modeling the operation of this example program.

Example 12.10: Gathering Statistics from Memory

Write a RISC-V assembly language subroutine that counts the number of non-zero values in a span
of memory. The memory span is a contiguous set of unsigned bytes starting at the address x10, and
checking the number of locations given by value in x15. The subroutine returns the final count in
register x15. Don’t allow the subroutine to permanently change any registers other than x15.

Solution: A classic subroutine that requires you go to memory and do something; in this case, we go to
memory and collect statistics. Note that nothing in the problem states that we should change any value in
memory, so we won’t be doing that. here are some other cools things to note about the description.

 We included more information in the subroutine banner that we did not include in our other
solutions. For this solution, we’ve included what values the subroutines expects to be sent by
the calling code, what the subroutine returns, and the registers that the subroutine alters.

 Our first task is to save context, which we do with stack operations on lines (12-15). We don’t
know in advance that we need to save these registers; we actually write the context saving and
restoring code when we complete writing all the other parts of the subroutine.

 Part of the initialization code is clearing a register for use to use as a counter, which we do on
line (17). Because the count could be zero, we check the count first on line (19), which officially
makes the loop in this subroutine a while-loop. Checking a count that could be zero in a
subroutine is necessary because the value could be zero; subtracting one from zero would create
tragic results in the subroutine.

 The body of the whole loop loads a byte of data from memory (20), then checks that value to
see if it is zero on line (21) by using a classic if/else construct. It the value is zero, it branches
over the counter increment instruction on line (22). Either way, the code makes it to the loop
administration code on lines (24-25). The loop admin code include incrementing the address
value by one on line (24); we use one because the problem is dealing with bytes. We then
decrement the loop count on line (25).

FreeRange Computer Design Chapter 12

 - 317 -

 When the loop count runs to zero, the code exits the loop and drops to the instruction on line
(28). This instruction transfers the count value to a register that the program uses to send the
subroutine loop count value. We essentially reuse this register so that we don’t need to include
saving this register in the context storage/restoration parts of the subroutine.

 We restore context on lines (30-33). Note that we needed to save three registers, so we need to
restore three registers as well (the same registers). Note that the ordering of register
saving/restoring does not matter; the only two things that matter are that 1) the subroutine saves
the proper registers, and 2) the offset part of the load-type and store-type instruction are the
same per register. When you’re writing code, the best approach is to cut-and-paste the context
savings code to use as context restoring code, but be sure to change store-type instructions to
load-type instruction and to change the sign on the instruction that adjusts the stack pointer.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

#--
Subroutine: Count_zeros

This subroutine counts the number of non-zero values appearing in a
contiguous chunk of memory (interpreted as bytes) starting at the
address stored in x10 and checking the number of bytes stores in x15.

Passed values: x10 & x15
Returned values: x15
Tweaked Registers: x15
#---
Count_zeros:
init: addi sp,sp,-12 # make room on stack for storage
 sw x16,0(sp) # push altered registers on stack
 sw x20,4(sp) # push 2 items on stack
 sw x10,8(sp)

 mv x16,x0 # clear register for non-zero counter

loop: beq x15,x0,done # branch if count is zero
 lbu x20,0(x10) # get unsigned byte from memory
 beq x20,x0,admin # skip count if zero
 addi x16,x16,1 # increment non-zero count

admin: addi x10,x10,1 # increment address
 addi x15,x15,-1 # decrement loop count
 j loop # branch if count non-zero

done: mv x15,x16 # copy count to returned reg

restore: lw x16,0(sp) # pop data into registers
 lw x20,4(sp)
 lw x10,8(sp)
 addi sp,sp,12 # unadjust the stack pointer

end: ret # transfer program control back
#---

Figure 12.20: A solution for this example.

Figure 12.21 shows a flowchart modeling this solution. This flowchart is fairly low level, but the text in the
boxes could have been expanded to be more descriptive. Then again, there is nothing too exciting about this
algorithm.

FreeRange Computer Design Chapter 12

 - 318 -

Figure 12.21: A flowchart modeling the operation of this example program.

Example 12.11: Memory Span Characteristic Checker

Write a RISC-V assembly language subroutine does the following: verifies that a contiguous
section of memory has data (halfwords) that comes in pairs. This if the first piece of data equals the
second piece of data for all the pairs in the span, then the subroutine returns a non-zero value in
x10; otherwise, the subroutine returns a zero in x10. The subroutine check 32 pieces of data to
verify if they are in contiguous pairs or not. The starting address of the first piece of data in
memory is passed to the subroutine in x20. Don’t allow the subroutine to permanently change any
registers other than x10.

Solution: Another subroutine that goes to main memory and tries to do something meaningful. The challenge
in some of these problems is to understand the program statement; this is one of these problems. Here are the
fun issues worth mentioning regarding the solution in Figure 12.22:

 Part of the initialization sequence is to store context by pushing three registers onto the stack.
We do this last when we’re writing the subroutine because we don’t know in advance which
registers we’ll use in our solution.

 The other part of the initialization code is to set the loop counter to 16, which is half the stated
count of 32; recall that we’re checking pairs which is why we divide the original count by 32.

 We know the count is not zero, so we can use a do-while loop, which we start on line (18-19) by
loading two halfwords of data. We then check to see if the two halfwords are equal or not. Life
is good if they are equal, and we branch to checking the loop condition and other administrative
tasks if they are equal. If the values are not equal, we don’t take the branch and drop down to
line (22), which loads x10 with a zero indicating a mismatched pair. From there we jump to
restoring context and exiting the subroutine. If all is good, the loop eventually fails, which

FreeRange Computer Design Chapter 12

 - 319 -

means all the halfwords are in equivalent pairs. In this case, we load x10 with a non-zero value
before restoring context.

 The subroutine restores context on line (31-34). We ended up using three registers.

 We did somewhat of a trick here. We used x10 as the loop counter even though we knew it was
acting as a flag variable. We did the so that we did not need to use another register, which
would had required us to push it and later pop it as part of context saving/restoring. In the end,
taking this approach saves us two instructions and allowed the subroutine to always run using
two less instructions. Pretty dang clever. This is a typical trick we always seek out and use in
assembly language programming.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

#--
Subroutine: Chk_mem_pairs

This subroutine verifies the 32 halfwords of data in contiguous memory
starting at the address in x20 arrives in pairs with equivalent values.
If they do, x10 is assigned a non-zero value; otherwise x10=0.

Passed values: x20
Tweaked Registers: x10
#---
Chk_mem_pairs:
init: addi sp,sp,-12 # make room on stack for storage
 sw x20,0(sp) # push altered registers on stack
 sw x21,4(sp) # push 2 items on stack
 sw x22,8(sp)

 li x10,16 # load half total count into register

loop: lhu x21,0(x20) # get first halfword
 lhu x22,2(x20) # get second halfword

 beq x21,x22,admin # jump if OK
 mv x10,x0 # bad... clear flag, exit subroutine
 j restore # jump to restore context

admin: addi x20,x20,2 # advance address by halfword
 addi x10,x10,-1 # decrement loop count
 bne x16,x0,loop # loop

all_good: li x10,1 # all good: put non-zero value in x10

restore: lw x20,0(sp) # pop data into registers
 lw x21,4(sp)
 lw x22,8(sp)
 addi sp,sp,12 # unadjust the stack pointer

end: ret # transfer program control back
#---

Figure 12.22: A solution for this example.

Figure 12.23 shows yet another flowchart supporting yet another example problem. The details may amaze you
if you blink your eyes at just the right speed.

FreeRange Computer Design Chapter 12

 - 320 -

Figure 12.23: A flowchart modeling the operation of this example program.

FreeRange Computer Design Chapter 12

 - 321 -

12.7 Chapter Summary

 Stacks are abstract data types typically used by computer architectures for special types of storage and
special program flow control mechanisms such as subroutine implementation.

 The stack abstract data type is known as a LIFO, which in terms of data management, stands for “last in,
first out”. The basic operations of a stack include pushing and popping. Basic stack definitions include top
of stack and stack pointer.

 The RISC-V MCU instruction set does not include dedicated push and pop instructions; it instead
implements push operations with store-type instructions and pop operations load-type instructions. Both
push and pop implementations required two instructions: one for the actual memory access, and a second
instruction to adjust the stack pointer according to the push or pop operation.

 Using subroutines to structure your assembly language programs has many advantages such as increased
readability, understandability, maintainability, code reuse, program space efficiency. The use of subroutines
typically decrease runtime efficiency.

 Subroutines appearing in programs should be well-delineated from other source code, include banners
describing the subroutine name, description, and registers the subroutine permanently changes.

 There are three main methods to “pass” value to and from subroutines: 1) registers, and, 2) memory. No
matter how you do it, you should document it in the subroutine header.

 Well-written subroutines typically save context upon entry to the subroutine, and restore context upon
exiting the subroutine. In other words, the subroutine stores the values of the registers that the subroutines
changes and restores those values once before exiting the subroutine. Saving context means to push the
registers the subroutine tweaks onto the stack; restoring context means that to pop the values off the stack
back into the original registers before exiting the subroutine.

 Subroutine calls in the RISC-V architecture automatically use one of the registers in the register file (x1) to
store the subroutine “return address”. In this context, the return address is the address of the instruction
following the call instruction. For nested subroutines, the value in ra needs to be saved before the nested
subroutine is called; the best way to save ra is to push it on the stack before the nested subroutine call and
pop if off the stack back into ra after the nested subroutine returns. The same mechanism holds true for
recursive subroutine calls, which are subroutines that call themselves.

 In addition to protecting the ra with nested subroutine calls, subroutines calls and returns must be done in
the proper order to ensure the integrity of the stack. If a subroutine call does not have an associated
subroutine return, or if a subroutine return is not paired with a subroutine call, the stack can either overflow
or underflow. In either case, the program dies a slow death if not immediate death because the stack either
overwrites important data, or it may provide random data as a return address from the subroutine.

 All subroutines have overhead associated with them. At the very minimum, this includes the calling of the
subroutine and returning from the subroutine, both of which are program flow control actions that
effectively don’t do anything useful. Additionally, nested subroutines much expend instruction saving and
restoring ra. Finally, subroutines generally save and restore context. Saving and restoring context and the ra
don’t do anything in the big scheme of things. In general, subroutines make programs more space efficient
but less runtime efficient.

 Any assembly language program that uses a stack should place the stack pointer at a known at the beginning
of the program. Initializing the stack pointer should thus be part of the programs initialization code.

 There are specific rules you should follow to make subroutines as useful and meaningful as possible. These
are simple rules that every good programmer inherently knows.

FreeRange Computer Design Chapter 12

 - 322 -

12.8 Chapter Exercises

1) Briefly describe what is meant by the term abstract data type?

2) Briefly describe why abstract datatypes definitions don’t include low-level implementation details.

3) Briefly describe the term last in first out in terms of data storage in the RISC-V MCU.

4) Briefly describe the meaning of the terms push and pop.

5) Briefly describe the relation between the top of the stack and the stack pointer.

6) Briefly describe why the RISC-V MCU requires at least two instructions to perform push and pop
operations.

7) Briefly describe if you could use lh and sh instructions as part of pushing and popping. If this is possible,
describe the constraints involved.

8) What is the minimum number of instruction required to push ten word values onto the stack. Fully describe
and explain your answer.

9) What is the minimum number of instruction required to pop ten values onto the stack. Fully describe and
explain your answer.

10) Briefly describe why subroutine banners are a great idea.

11) Briefly describe the three main items that should appear in subroutine banners.

12) Describe the two ways you can pass data to and from subroutines in the RISC-V MCU.

13) Briefly describe the main difference between nested and non-nested subroutine calls in terms of the
underlying RISC-V hardware.

14) Briefly describe why call pseudoinstructions are converted into two rather than one base instruction?

15) Describe a situation where a “lesser” amount of code in a subroutine requires more execution time than a
“greater” amount of code in a similar subroutine. Assume these subroutines perform identical tasks.

16) Briefly describe the maximum depth you can nest subroutines with the RISC-V MCU.

17) Briefly describe what recursion means in the context of computer programming.

18) Briefly describe what is meant by the “depth of recursion”.

19) Briefly describe the maximum depth of recursion possible on the RISC-V.

20) Briefly describe why subroutines are considered to be more code space efficient but less run-time efficient
than not using subroutines.

21) Briefly describe the three types of overhead typically associated with subroutine calls.

22) Briefly describe why initializing the stack is not required, but is considered a really good idea in any
assembly language program.

23) Briefly discuss if “the stack” is initialized at the beginning of programs written in higher-level languages.

24) Briefly describe the advantages of not have a dedicated “stack pointer” for any given computer architecture.

25) What is the maximum number of stacks a RISC-V assembly language program could easily control.

26) List a few drawbacks associated with writing long subroutines.

27) List a few reasons why for a given subroutine that you may not want/need to save and restore context.

28) What would be the major drawback of writing an assembly language program that uses many short
subroutines?

FreeRange Computer Design Chapter 12

 - 323 -

29) Briefly describe if saving the context directly before and restoring the context directly after a nested
subroutine call is a good idea or not.

30) Briefly describe why it is a good idea to provide a subroutine banner for all the subroutines in your program.

31) Briefly describe why it is a good idea to include a list registers modified by a subroutine in a subroutine
banner.

32) Briefly explain why the names of subroutines are nothing more than simple labels.

33) List the basic cause of stack overflow.

34) Brielfy explain the fact that stack overlow can happen in two different directions.

35) Briefly describe the three common ways misusing subroutines can cause stack overflow.

36) Briefly describe whether it is possible to overflow the stack with subroutine calls and not have your program
fail miserably.

37) Briefly describe why it is bad to branch or jump to a subroutine rather than calling the subroutine.

38) Briefly describe why it is bad to branch or jump out of a subroutine rather than returning from a subroutine
using a jalr instruction or ret pseudoinstruction.

39) I decided I did not need to use subroutine calls and returns; I decided to branch or jump to the subroutine
and branch or return back from it. Briefly describe what’s wrong with this notion.

FreeRange Computer Design Chapter 12

 - 324 -

12.9 Chapter Programming Problems

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code

 Make sure each subroutine has a proper banner

1) Write a RISC-V assembly language subroutine that rewrites the data in x10 to be a horizontal nibble-level
mirror image of itself. Don’t permanently change any registers other than x10.

2) Repeat the previous problem such that it reflects on a bit level rather than a nibble level.

3) Write a RISC-V assembly language subroutine that determines if the data in x20 is a valid stoneage unary
value. If it is, the subroutine returns a non-zero value in x30; otherwise it clears x30. Don’t permanently
change any registers other than x30.

4) Write a RISC-V assembly language subroutine that determines if the data in x20 represents eigth valied
BCD values. If it does, the subroutine returns a non-zero value in x10; otherwise it clears x10. Don’t
permanently change any registers other than x10.

5) Repeat the previous problem but also return the number of valid BCD values in the word in register x31.

6) Write a RISC-V assembly language that converts a halfword representing a 4-digit decimal number
(meaning the half word represents four BCD values) into a binary number. The value to convert is passed to
the subroutine in x10 and also returned to the calling routine in the same register. Don’t permanently change
any registers other than x10. Assume all BCD values are valid.

7) Repeat the previous problem, but return 0 in x10 if any BCD value is not valid.

8) Write a RISC-V assembly language subroutine that packs all the set bits in register x20 to the right-most
positions in the resgister. Don’t permanently change any registers other than x20.

9) Write a RISC-V assembly language subroutine writes a monotonically increasing value to a span of
unsigned halfwords in memory. The addresses of the first piece of data is passed to the subroutine in register
x20; the number of pieces of data to inspect is a byte in register x21; the starting value of the count is passed
to the subroutine in x22. Don’t worry that the counter may overflow. Don’t allow the subroutine to
permanently change any register values.

10) Write a RISC-V assembly language subroutine that looks at a span of contiguous signed words in memory,
multiplies every negative value it finds by -1. The addresses of the first piece of data is passed to the
subroutine in register x20; the number of pieces of data to inspect is a byte in register x21. Don’t allow the
subroutine to permanently change any register values.

11) Repeat the previous problem, but return the number of values the subroutine changes in x30.

12) Write a RISC-V assembly language subroutine that looks at a span of contiguous unsigned words in
memory, and determines if the values in that span are always increasing in value. If the values are always
increasing, load a non-zero value to register x31; otherwise load zero to x31. The addresses of the first piece
of data is passed to the subroutine in register x15; the number of pieces of data to inspect is a byte in register
x16. Return zero in x31 if the number of values to check is less than two. Don’t allow the subroutine to
permanently change any register values.

13) Write a RISC-V assembly language subroutine that looks at a span of contiguous unsigned words in
memory, finds the largest word in that span, and clears that word. The addresses of the first piece of data is
passed to the subroutine in register x10; the number of pieces of data to inspect is a byte in register x15. If

FreeRange Computer Design Chapter 12

 - 325 -

the largest is repeated, only clear the first large value encountered. Don’t allow the subroutine to
permanently change any register values.

14) Write two RISC-V assembly language subroutines: Push_31 & Pop_31. These two subroutines use x31 as a
stack pointer and allow for the pushing and popping of data to those two subroutines. These two subroutines
pass data to and from the subroutines using x30. Do not allow the subroutine tp permanently change any
other registers other than x31.

15) Write a RISC-V assembly language subroutine that copys the unsigned halfword data from one span of
memory into another span. The addresses of the memory spans are passed to the subroutine in x10 & x11,
where there data at the x10 address is the data to be copied. The number of data to copy is passed to the
subroutine in x15. Don’t allow the subroutine to permanently change any registers.

16) Write a RISC-V assembly language subroutine that looks at two spans of contiguous unsigned words in
memory. If a value at one location is zero, the subroutine makes the values at both memory locations zero.
The addresses of the first piece of data in the memory spans is passed to the subroutine in register x20 and
x21; the subroutine compares 32 pieces of data. Assume the spans in memory do not overlap. Don’t allow
the subroutine to permanently change any registers.

17) Write a RISC-V assembly language subroutine that determines if a given span of signed word values in
memory are always increasing. If it is, the subroutine returns a non-zero value in x31; otherwise it returns a
zero in x31. The addresses of the first piece of data is passed to the subroutine in register x20; the number of
pieces of data to inspect is a byte in register x26. Don’t allow the subroutine to permanently change any
register values.

18) Repeat the previous problem, but ensure the values read from memory are monotonically increasing.

19) Write two RISC-V assembly language subroutines that looks at a span of contiguous signed words in
memory, changes each word into a reverse image (LSB becomes MSB, etc.). The addresses of the first piece
of data is passed to the subroutine in register x30; the number of pieces of data to reverse is in x31. You
must use a nested subroutine for this problem. Don’t allow the subroutine to permanently change any
registers.

FreeRange Computer Design Chapter 13

 - 326 -

13 RISC-V MCU Interrupt Architecture (Firmware)

13.1 Introduction

We often base the viability of any MCU-based system on the ability of the system to respond to stimulus from
the external world. In order to support these “response-time” issues, MCUs typically have the ability to utilize
“interrupts”. In this context, interrupts are essentially a method to allow external hardware (external peripherals)
to alter instruction-based program flow control. We consider the notion of interrupts as a type of I/O, but it’s
slightly different from I/O as we know it from memory-mapped I/O.

The use of interrupts forms the basis real-time programming as it provides a mechanism for programmers to
reduce response time and write programs that operate more efficiently. The approach we take in this text is to
introduce the basic concepts of interrupts in the context of the RISC-V OTTER. The issue we need to work
around is the fact that the current implementation of the RISC-V OTTER only contains one interrupt input.
While this one interrupt is sufficient to introduce the basic concepts involved, one interrupt is not enough to
introduce concepts with MCU-based systems that have many interrupts. We leave such concepts to more
advanced digital design/embedded systems textbooks.

Main Chapter Topics

 THE RISC-V INTERRUPT ARCHITECTURE: This chapter describes interrupt
architecture on the RISC-V, which it the hardware and software characteristics to
implement real-time programming on the RISC-V.

 THE SO-CALLED INTERRUPTS: This chapter describes the basic the basic theory on
interrupts on the RISC-V MCU from a programmer’s standpoint. Interrupts are a
mechanism that allows hardware to effectively “call” subroutines.

 REAL-TIME PROGRAMMING: This chapter describes some of the theory behind
real-time programming in the context of MCUs, using several programming
examples.

Why This Chapter is Important

This chapter is important because it describes the RISC-V interrupt architecture from
the standpoint of an assembly language programmer.

13.2 Interrupt Overview

The concept of interrupts is relatively simple. Essentially, an interrupt is a subroutine call that some device
external to the MCU initiates. Recall that a normal subroutine call happens as a result of issuing a program flow
control instruction such as jal, jalr, or call; these instructions are necessarily under program control. The
execution of the “subroutine” associated with interrupts is not under program control, meaning we can’t issue an
instruction that directly causes an interrupt.

The notion of generating an interrupt causes specific actions to happen in the underlying hardware. Because
we’re discussing the programming side of the MCU, we save the details of interrupt processing on the hardware
level to Chapter 18 in this text. This current chapter primarily describes interrupts and general and the
programmer’s responsibilities to using interrupts on the MCU.

FreeRange Computer Design Chapter 13

 - 327 -

There are generally three types of interrupts, which we briefly describe below. For better or worse, the RISC-V
MCU currently only has the capability of handling one external interrupt. Although this could be somewhat
limiting, the operational characteristics of the RISC-V’s interrupt reflects how other MCUs deal with interrupts.
We label the notion of how a particular MCU handles an interrupt as that MCU’s “interrupt architecture”1.

1) External Interrupts: Some device external to the MCU generates this type of interrupt. We
generally refer to these devices as peripherals and include such things as analog-to-digital
converters, digital-to-analog converter, real-time clock (RTC) modules, and many other
communication-type devices. The thing that makes these devices external is that they physically
connect to an interrupt pin on the MCU (as opposed to connecting internally), which is a special
pin in that it has the ability to generate interrupts in the MCU itself.

2) Internal Interrupts: Some device internal to the MCU generates this type of interrupts. We also
refer to these devices peripherals and include the same devices as listed above. In other words,
some MCUs contain these peripherals as part of the MCU itself in that these devices live on the
interior of the IC. The RISC-V OTTER MCU does not currently have internal peripherals2 but
most MCUs do. Once you start adding internal peripheral devices, you’re necessarily dealing
with a microcontroller as opposed to a microprocessor, as microprocessors are primarily CPUs
with extremely limited memory and/or I/O capabilities.

3) Software-based Interrupts: We typically use these types of interrupts for debug functions and/or
to handle “special” conditions that may appear on the MCU and require special handling3. We
don’t generally see software-based interrupts often as the other two types of interrupts. This text
does not discuss software-based interrupts.

13.3 The Theory of Interrupts

If you’re like most humans, you societal norms occasionally cause you to think that you need a haircut. It would
be a strange world if the person who cuts your hair called you every five minutes and asked you if your hair
needs cutting. Naturally, a better approach (more efficient? Less annoying?) would be that when you needed a
haircut, you simply call the person who cuts your hair and schedule an appointment. Requesting some type of
service is the general approach humans take in most facets of their lives (unless you work in the sales where
you’re required to continually ask others if they want service). Phone solicitors therefore are not human.

Not surprisingly, an analogous situation exists in computerland. Programs you write generally do something, i.e.,
they execute some finite number of relatively useful tasks to solve some problem. Additionally, programs are
waiting for some indication that they need to do something; this indication is often times input from the outside
world. The clearest example of this is your phone. When you don’t interact with the display for a given amount
of time, the device is smart enough to turn off the display as a power-saving measure. Yet, when you touch the
display, it turns back on. More likely than not, the touching of the display told the device to wake up; the device
was probably not actively checking to see if you touched the display. The thing to note here is that actively
checking to see if someone touched the display is a waste of clock cycles if the MCU could be performing more
important tasks or saving power by doing nothing if there was truly nothing to do.

The two approaches to knowing when a task should “take action” in embedded systems (such as a system
controlled by a RISC-V MCU) are analogous to the example above: you either constantly check to see if a
particular task needs attention from the MCU and act if it does, or you can give those tasks attention only when
the tasks tell you they require attention. The notion here is that the task only seeks attention (meaning the
execution of instructions) when they actually need attention. Microcontroller lingo refers to the act of constantly
asking if a task needs attention as polling. MCUs implement polling by placing the program into a “polling
loop”, which is also appropriately referred to as a “dumb loop4”.

Polling is a relatively simple concept but it has one large drawback: it’s inefficient to continually ask a device if
it needs something when the device has nothing that needs doing. In terms of MCU processing, if the MCU is

1 If you haven’t figured out by now, the word “architecture” gets a lot of use in computerland.
2 But there is nothing stopping you from adding them if you’re working with an FPGA…
3 We often label these types of situations as “exceptions” and/or “traps”.
4 No offense meant here to academic administrators.

FreeRange Computer Design Chapter 13

 - 328 -

polling, it is not doing something else that could be potentially more important (as in something time critical
such as restarting some dude’s heart). The result is that you lower the overall throughput of your system if you’re
wasting clock cycles in a polling loop. Once again, a more efficient approach in terms of MCU processing is to
allow individual circuit elements that occasionally need attention from the MCU to have those circuit elements
directly request processing, or “service” from the MCU. The notion of a hardware interrupt on MCUs provides a
mechanism for such a request; the “interrupt architecture” on an MCU is simply a description of that mechanism.

We must be fair here and note that it’s comfortable to say polling is bad, but in reality, it’s only bad if the
processor has something more important to do. In real life, your MCU may be idle sometimes when nothing
needs doing; during those times, you can consider polling acceptable. The only possible problem here is that
your program can be “stuck” in a polling loop and never be aware that peripherals in the circuit need the MCU’s
attention. Thus, there are gray areas in this discussion. But if you’re processor is idle most of the time, you may
want to choose a “less powerful” MCU or certainly an MCU with a low-power mode.

The term interrupt comes from the fact the normal operation of the microcontroller is temporarily interrupted to
handle some other task. Once microcontroller handles the other task, the microcontroller returns to the task it
was executing when it received the interrupt. Though microcontrollers in general use three types of interrupts
(internal interrupts, external interrupts, and software interrupts), the RISC-V OTTER MCU currently only
handles a single external interrupt. Keep in mind that there is no single method used by all microcontrollers to
handle interrupts, so examining the interrupt architecture is one of the first things you typically do when working
with a new microcontroller. We refer to “handling” these tasks only when the task requests service as interrupt
driven, or “real-time”, and thus require the use of the MCU’s interrupts.

13.3.1 Using Polling for Inputting Data

Most of the RISC-V MCU programs we’ve written thus far used some form of polling. In this context, the
“something useful” statement refers to the notion that most programs interface with the outside world in one way
or another, which requires them to input data from that outside world. The MCU typically reacts to that input and
then outputs something to the outside world. When the MCU requires something (such as a specific condition)
from an external device, one approach to obtain that information is to constantly ask the device if it’s ready to
provide that information, which is the classic definition of polling. An example of such a system would be an
MCU that receives input from an external sensor at a set frequency.

Figure 13.1 shows an example of this basic program procedure that uses polling. The program needs to do
something when a certain switch is turned on; because the program does not know when the switch will turn on,
it must constantly monitor the switch, which it does in Figure 13.1 using a polling loop. The polling loop is on
lines (12-14); the program inputs data, masks that data to isolate the switch in question, and then reacts to the
state of the switch. If the switch is not on, the program turns off all LEDs and then continues in the polling loop
by branching back to the input instruction on line (12). If the switch is on, then the condition associated with the
branch instruction evaluates as false and the program does not branch, and instead exits the loop and drops down
in the code to do other things, which in this example is turn all the LEDs on.

Although this program works great and everything seems fine, there is a problem. The polling loop in Figure
13.1 is not problematic according to our definition because the program has no other tasks it needs to attend to.
Another way of saying this (the official embedded systems way of saying it) is that there are no other pending
tasks that require the attention of the MCU. The problem arises when there are other tasks. In this case, the other
tasks may need attention also, but they won’t receive it as long as the MCU is stuck in a polling loop such as the
one on lines (12-14). More than likely, the switch does not require as much attention as this program is giving it,
which can be an issue in an actual problem.

Keep in mind we designed these examples and definitions to be simple. In real life embedded systems
applications, these situations can become exponentially complicated as the number of tasks that the program
needs to monitor increases. In this context, the number of tasks refers to the number of items (such as inputs and
outputs) that require the MCUs attention. The notion of interrupts is important because any meaningful
embedded system (an embedded system with many tasks) probably would not work properly, if at all, if it relied
solely in polling. The solution is to utilize real-time programming, particularly by taking advantage of the
MCU’s interrupt architecture.

FreeRange Computer Design Chapter 13

 - 329 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

#---
This program reads data from the switches; if the second to right-most
switch is on (on=1), then the program turns on all LEDs; otherwise
the program turns off all LEDs. The port address of the switches is
0x1100C000; the port address of the LEDs is 0x11008000. Assume
there are 16 switches and an equivalent number of LEDs.
#--
init: li x10,0x1100C000 # put switch address (input) to register
 li x11,0x11008000 # put LED address (output) in register
 li x8,0xFFFF # load reg with one output value
 mv x9,x0 # load reg with other output value

main: lhu x20,0(x10) # input data
 andi x20,x20,2 # mask 2nd to right-most bit
 beq x20,x0,out_off # if not zero, branch to off

out_on: sh x8,0(x11) # turn on all LEDs
 j main # do it again

out_off: sh x9,0(x11) # turn off all LEDs
 j main # do it again

Figure 13.1: The solution to this example problem.

13.3.2 Moving Towards Real-Time Programming

Interrupts are an extremely important part of any computer system. Thus, understanding the interrupt
architecture is vital to writing good programs that drive efficient systems. The notion of interrupts becomes more
important with working with embedded systems and particularly at the assembly language level. In order to
successfully work with interrupts, you must understand the low-level details of the interrupt architecture
associated with the computer you’re working with. Being that there is no one method used by all MCUs to
handle interrupts, you’ll soon discover that one of the first things you must do when working with a new MCU is
to examine the interrupt architecture. First, you look at the architecture, then you look at the instruction set, then
the I/O architecture, and finally, you look at the interrupt architecture. You’ll need to establish the flavor and
number of interrupts the microcontroller handles and how exactly the MCU handles the interrupts, since the use
of polling rather than interrupts is an indication of a nooby programmer.

The term interrupt comes from the fact the normal operation of the microcontroller is briefly interrupted to take
care of some other special task (by special, we inherently mean more important). Once the MCU handles the
task, the MCU returns to the processing it was doing when the interrupt arrived. The basic model is that some
peripheral device can request service from the MCU. We do this by allowing the external device to directly
connect to MCU by way of a dedicated signal. We refer to this input on the RISC-V MCU as the interrupt input.

Figure 13.2 shows the top-level diagram for the RISC-V MCU; the input with the “INTR” label is the dedicated
interrupt input. Because the design of the overall system including how the hardware is set up is not a
programming concept, we’ll leave those details for the hardware section of this text. What we’ll say now is that
when MCU hardware detects the signal connected to the INTR input at a ‘1’ state, the RISC-V MCU executes a
special subroutine. We usually refer to this special subroutine as the “interrupt service routine”, or “ISR”, but
other people refer to it as the “interrupt handler”. We’ll deal with some of these specifics in this chapter when we
discuss the required real-time programming details.

Figure 13.2: The RISC-V MCU schematic symbol.

FreeRange Computer Design Chapter 13

 - 330 -

13.3.2.1 The Advantage of Real-Time Programming

There are essentially an infinite number of approaches you can take using an MCU to solve a problem. In this
context, solving the problem using a MCU requires two separate approaches. First, someone needs to design the
hardware for the system; we consider the MCU to be an important part of that hardware. Second, we need
someone to write the firmware for the system. There are many options and trade-offs in designing both hardware
and firmware. Additionally, there is no “set of rules” that exist such if you follow the rules, you magically have a
well-designed and well-functioning system.

The first step in any MCU-based design is to know the system requirements before you start. We tend to try to
design stuff to run fast so we can impress out friends, but that’s not always the most important design issue.
Recall that possibly the biggest design issue faced by modern embedded system designers and programmers is
not only making your system work, but make it work efficiently. In this context, the notion of efficiently allows
the program to be run at low power, thus making battery powered applications happy. The point of this
paragraph is that you’ll find in all meaningful applications that, designers and programmers use real-time
programming to meet their goals5.

In the general case, writing real-time programs has two basic advantages over systems that rely exclusively on
polling. What this means is that most of the time, using interrupts in your design is going to make your design a
better. Here are the two major advantages, or maybe “potential” advantages of implementing a real-time design.

1) Increases System Throughput: In this context, we define the term throughput as the amount of
meaningful things an MCU does over a given amount of time that it’s active6. The problem with a
polling loop is that although the processor is executing instructions at high rate, we can view the
instructions as not really doing anything until the condition the loop is polling for materializes. In other
words, polling represents a relatively high percentage of useless instructions. The throughput is low in
this situation because the MCU is executing instructions, but it is doing no meaningful work. Once
again, if there are no other tasks that need the MCU’s attention, you can argue that this approach is OK.
In general, querying an I/O device that probably does not provide useful information most all of the
time, lowers the overall through put of the MCU.

2) Response Time: The notion of the interrupt is that the code that the MCU is processing is “interrupted”
so that the MCU can execute a special subroutine. This means that the code in the special subroutine
executes with what we consider a higher priority than the code not in that special subroutine. Having
code run at different priorities such as this is a way to reduce the “response time” of your system. If
your system relies 100% on polling, the response time of your system and/or the system complexity
increases exponentially as you add more tasks that your MCU needs to handle.

Imagine a complex digital system that contains many I/O devices. In such a system, polling each of these
devices would usually be a bad option because it may take a long time for a given device to get the service it
needs. The better option would be for all the devices to request service from the microcontroller only when
they need it. Real-time systems become quite interesting as the systems become more complex as such
issues of interrupt priority, interrupt latency, specialized interrupt hardware, and other real-time concepts
become more important. Don’t worry, most of these concepts are beyond the scope of this text. We’ll cover
the more important issues later in this text.

13.4 RISC-V Interrupt Architecture for Programmers

The overall notion of interrupts is relatively simple due to their similarity with subroutines. Stated as simply as
possible, an interrupt is basically a subroutine call that is initiated by the hardware. In contrast, executing a call
instruction initiates a subroutine in a program. We describe the mechanism that the hardware uses to initiate the
special subroutine in a later chapter. For now, all the hardware the pure programmer needs to know is that the

5 Low power hardware and subsequent firmware design are indescribably important. This text leaves those issues for another
course. You’ll find that off-the-shelf MCUs have many ways to adapt to your particular design such that you can lower the
overall power and processing needs of your design.
6 The notion here is that if the processor truly has nothing to do, it can turn itself off and wait for a signal to turn itself back
on. This is a classic low-power mode that most off-the-shelf MCUs have. In other words, the MCU does not always need to
be running if there is no hope that it will need to do anything for a while.

FreeRange Computer Design Chapter 13

 - 331 -

hardware designers of the system that contains the MCU they are programming set up the system such that an
extern device can cause the hardware to initiate the execution of the special subroutine. In short, when the RISC-
V MCU hardware detects a request from service from an external device, the underlying hardware initiates a
sequence of events to switch to the execution of the special subroutine.

13.4.1 Real-Time Programmer Responsibilities

Although the interrupt architecture on the hardware level is somewhat complex, the pure programmer only has a
few responsibilities when writing interrupt-driven programs. We list these responsibilities below with a brief
description, then delve into them deeper in later subsections.

1) The Overall Program Structure: Real-time programs have a special structure that is different from non-
real-time programming. You’ll learn in later discussions that there are things our programs need to do
and special places in the code where they do those things. We divide the code into three sections: 1)
initialization (both of interrupts and the program in general), 2) the background task, and, 3) the
interrupt service routine.

2) Interrupt Initialization: There is special hardware in the RISC-V MCU that is dedicated to interrupt
implementation. This hardware requires programmers to initialize it in various ways in order to make
the program work properly. This initialization is generally part of the overall program initialization.

3) The Interrupt Service Routine: The special subroutine that we previously mentioned as a specific name:
the interrupt service routing, or (ISR). It’s truly a subroutine, but there are several approaches to using
the ISR in an optimal manner.

13.4.1.1 Real-Time Program Structure

Figure 13.3 shows a basic interrupt-driven assembly language program. This code actually does something if you
can image that the MCU can control a single LED. This code does in fact contain the three items listed in the
previous section. Some of these items are not apparent, so we provide a few pertinent comments below. Note
that the code below depends on the fact that some external device has a pin that connected to the RISC-V
MCU’s interrupt input, and is occasionally generating interrupts.

 The initialization code spans lines (09-19), and comprises of interrupt-related and general
initializations. Line (09) stores the output port address. Line (14) initializes a register to use as a
flag. Lines (15-16) put the output LED into a known state. The code on lines (11-12) and lines
(18-19) are part of the interrupt initialization code that we’ll discuss later.

 The main code, or what we’ll often refer to as the background task, is on lines (21-22). This code
is always running, waiting for an interrupt to happen. This code is a polling loop, but that’s OK for
this example as the code only has one task to perform, which is blinking an LED. We use the
name main code and background task interchangeably; we sometimes refer to the code as the task
code.

 The interrupt service routine is on lines (39-40), after we introduce it with a nice descriptive
banner. The ISR represents the foreground task. Program execution exits the background task each
time the MCU acts on an interrupt and commences executing the foreground task.

FreeRange Computer Design Chapter 13

 - 332 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#--
Example Interrupt Driven Program.

Description: The program blinks an LED. Each time the program
receives an interrupt the code changes the state of the LED. We
assume some external device has configured the hardware such that
the MCU can receive an interrupt signal from an external device.
#--
My_Prog:
init: li x15,0x1100C004 # put output address into register

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 mv x8,x0 # clear x8; use as flag
 mv x20,x0 # keep track of current output value
 sw x20,0(x15) # put LEDs in known state

 li x10,1 # set value in x10
 csrrw x0,mie,x10 # enable interrupts

main: nop # do nothing (easier to see in simulator)
 beq x8,x0,main # wait for interrupt

 xori x20,x20,1 # toggle current LED value
 sw x20,0(x15) # output LED value

 mv x8,x0 # clear flag
 csrrw x0,mie,x10 # enable interrupt
 j loop # return to loopville
#--

#--
The ISR:

Description: This ISR puts a non-zero value into x8.

Tweaked Registers: x8
#--
ISR: li x8,1 # set flag to non-zero
 mret # return from interrupt
#---

Figure 13.3: An example interrupt-driven program.

13.4.1.2 Interrupt Initialization

Interrupt driven programs requires two forms of initialization programs, which are items programmers must be
aware of: the vector address and the interrupt enable. Both of these items are values that the RISC-V MCU
hardware stores in special register, thus there are instructions in the RISC-V ISA that access these registers.

Recalling that the ISR is a subroutine “called” by hardware. Acting on an interrupt causes the transfer of
program control to the ISR. In a subroutine call, the assembler encodes the information to know where to jump
to (the address of the first instruction in the subroutine) as part of the instruction. Because ISRs don’t have a
program-related calling mechanism, the address of the ISR must be stored as part of the interrupt initialization
code. Typical MCU vernacular refers to the mechanism as the vector address, with the idea that program
execution “vectors” to that address when the MCU acts on an interrupt.

The vector address is stored in the mtvec register, which is one of three registers involved in interrupt
processing. The vector address is stored with a csrrw instruction. Table 13.1 gives details of the csrrw
instruction. Here are the important items to know about this instruction.

 The instruction mnemonic states for “control and state register read write”. There are three CSR
registers that programmers can write to; one of them is the mtvec register. This instruction allows
you to simultaneously read the current contents of CSR[mtvec] and store that value in a register,

FreeRange Computer Design Chapter 13

 - 333 -

and write a new value to CSR[mtvec]. The CSR[mtvec] register is one that we typically only
write to once in a given program.

 The RISC-V MCU stores the interrupt vector address in CSR[mtvec]. To do this, programmers
need to first issue a la (load address) instruction to obtain the value of the ISR label (it’s an
address), then use the csrrw instruction to save that address in CSR[mtvec]. Thus, CSR[mtvec]
contains the address of the first instruction in the ISR. When the MCU acts on an ISR, the
underlying hardware ensures that the instruction at this address is the next one executed.

 We typically don’t need to know what the CSR[mtvec] value is, so we use x0 as the destination
register in the csrrw instruction.

 The mtvec value in the instruction assumes the assembler knows a value for mtvec to use for
mtvec. The mtvec value is actually an address of a particular register in the hardware, so csrrw
is simply a number.

 csrrw is a base instruction. Its underlying bit format is unique so we don’t consider it as having
an instruction “type”.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

none csrrw rd,csr,rs1 rd ← CSR[csr]
CSR[csr] ←∙rs1

csrrw x0,mtvec,x8
Simultaneous read
and write of the
mtvec CSR register

Table 13.1: The csrrw instruction with other information.

The other form of initialization that programmers must do for all interrupt driven programs is to “enable
interrupts”. Programmers can enable or disable interrupt under program control using the csrrw instruction by
writing to the CSR[mie] register. Note that the “ie” in mie stands for “interrupt enable”, which is a comment
acronym in MCU-related lingo. This register is only one-bit wide. Writing a ‘1’ to this register enables the
interrupts; writing a ‘0’ to this register disables the interrupts. When the interrupts are disabled, the MCU
effectively ignores any pending interrupts; when interrupts are enables and an external device connected to the
RISC-V MCU generates an interrupt, the MCU processes that interrupt, which include calling the ISR. Table
13.2 shows instruction usage to disable/enable interrupts by writing CSR[mie].

Instruction Usage Comment

mv x5,x0 # clear x5
csrrw x0,mie,x5 # write CSR[mie] Disable interrupts (prevent interrupt processing)

li x5,1 # set LSB in x5
csrrw x0,mie,x5 # write CSR[mie] Enable interrupts (allow interrupt processing)

Table 13.2: The csrrw instruction usage for enabling/disabling interrupts.

When working with interrupts, MCUs typically use a special vernacular to indicate whether interrupts are
enabled or not. If interrupts are disabled, we can say that they are masked. Conversely, if interrupts are
unmasked, we know that interrupts are enabled. The act of masking the interrupt means that we are disabling it,
which is a term we use quite often. In addition, if we unmask an interrupt, we are enabling it. We sometimes
refer to bits such as CSR[mie] as the interrupt mask bit.

Unlike working with the vector address where we generally on need to write it once during the initialization part
of our program, we typically need to write CSR[mie] more often. The reason is that when the RISC-V MCU acts
on an interrupt, part of the interrupt architecture dictates that the hardware automatically disables future
interrupts. The hardware disables the interrupts so that the MCU can execute instructions without risking

FreeRange Computer Design Chapter 13

 - 334 -

receiving another interrupt and having the MCU act on it. If the hardware did not automatically disable the
interrupts, the first instruction in the ISR would cause another interrupt to be processed, even if that instruction
attempted to disable the interrupts. xxxxAs we’ll discuss later, although an ISR is similar to a subroutine, it’s
different because the RISC-V OTTER hardware does not currently have the capability to nest interrupts.

Automatically disabling the disabling interrupts has two ramifications to the program. First, the program has
time do whatever processing required in the ISR (or associated with the interrupt) without risking acting on
another interrupt. Second, the programmer must re-enable the interrupts under program control using the csrrw
instruction outlined in Table 13.2. Where exactly to place the instruction can be tricky. Don’t try to put the code
at the end of the ISR because if there is a pending interrupt, the MCU will act on the interrupt before the program
can exit the ISR, which would represent the deadly “nested interrupt”.

Good programmers always know the state of the interrupts relative to the code they’re writing. You always must
ensure the interrupts are masked if you’re program is executing important code. The most important code for us
now is the initialization code. We hope that hardware designer provided a way to ensure that our interrupts
powered-up in the disabled state, but we generally don’t take chances. In all embedded systems programming,
it’s better to do what you can as a programmer to ensure the integrity of your system. In this case, that means
probably the first instructions in any program you write should be to mask the interrupts.

13.4.1.3 The Interrupt Service Routine

Implementing Interrupt service routines have the same guidelines are implementing subroutines. The only major
difference is that they have use different instructions to transfer program control (the return statement). We’ll
discuss returning from ISRs in another section. Similar to subroutines, ISRs should save the operating context of
the MCU when it received the interrupt.

There is one other obvious difference between ISRs and subroutines. The code in the ISR necessarily runs with a
higher priority than the code in any subroutine, which is because the external event (the interrupt) causes the
program from to switch from whatever it may be doing to the ISR code. When writing ISRs, you should keep in
this in mind. There is one important ISR guideline here as a result of the higher running priority of the ISR code.
When you’re executing ISR code, the interrupts are disabled, which means the program may be missing some
important event while processing the interrupt. You can’t get around this issue by simply re-enabling the
interrupts in the ISR, which would cause the interrupts to nest, and your program to die. The general approach
solution here is to strive to keep you interrupts are short as possible. Notice we say, “you should” as a general
approach, but this is not always desirable and/or feasible.

13.4.1.4 Saving the Context

Various MCUs out there have many different context saving mechanisms, which is yet another reason why
examining the interrupt architecture is always one of the first things you do when working with a new MCU. The
notion of saving the context is important because by definition, when we act on an interrupt, we’re temporarily
suspending the part of code we’re currently executing and then start executing the ISR. This implies that we may
be using registers in the background task, so we want to ensure that the ISR does not permanently change those
registers. What you ideally want the MCU to do is stop the code that it is currently executing, execute the ISR
code to completion, and then go back to the code that the MCU was executing when the MCU received the
interrupt. The idea here is that if you must can “save the state” of the MCU before you execute the ISR, then you
can “restore” that state once the ISR completes execution and before you start executing the code you were
executing when MCU received the interrupt.

Many MCUs store the context automatically in hardware, but the RISC-V MCU has no such mechanism. All
context saving in the RISC-V MCU is done in firmware and uses the same approach as saving the context when
you call a subroutine. Recall that we saved context by pushing the registers used in that subroutine onto the stack
at the beginning of the subroutine and popping them off the stack before the subroutine terminates. Recall that
ISRs are essentially subroutines that the hardware can “call”, so it’s no surprise subroutines and ISRs share the
same characteristics. To summarize, the RISC-V MCU has no automatic context saving mechanism; context
saving in ISRs is done by the programmer in firmware in the same way the program saves context in subroutine
calls.

FreeRange Computer Design Chapter 13

 - 335 -

One could argue that the RISC-V does have some type of automatic context saving mechanism. Usually, when
we speak of context, we primarily refer to register values (from the register file). We could easily stretch this
definition to include other registers, such as the program counter. In truth, part of the automatic context saving
mechanism in the RISC-V MCU is to save the address of the instruction following the instruction that was
executing when the MCU received the interrupt to a CSR register, mepc. Because the hardware automatically
does this, we won’t delve deeply into the subject until the hardware portion of this text.

13.4.1.5 Returning From ISRs

As you probably would guess, returning from ISRs is similar to returning from subroutines. When a subroutine is
called (when a program executes a call instruction), the RISC-V hardware automatically saves the return
address (the address of the instruction after the call instruction) in a register (typically x1, or ra). When the
subroutine exits (the MCU executes a ret instruction), it loads the value in that register into the PC, which
makes it the next instruction executed after the ret instruction.

Returning from an interrupt is similar, except that it loads the return address from another CSR register rather
than from the ra register. When the MCU acts on an interrupt, the MCU’s hardware places the address of the
instruction after the instruction that was being executed when it received the interrupt into CSR[mepc], which is
one of the three registers in the CSR. The hardware automatically controls the loading of this hardware so the
programmer does not need to do anything. Additionally, the programmer would rarely have a reason to ever load
a value into CSR[mepc], though they could do so with the csrrw instruction.

Because the hardware uses a different return address when returning from a subroutine, programmers must use a
different instruction. The instruction in this case is mret. Table 13.3 shows various helpful information
associated the mret instruction. Similar to ret, mret has no operands. Additionally, mret is a base
instruction.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

none mret PC ← CSR[mepc] mret Return instruction for
returning form ISR

Table 13.3: The csrrw instruction with other information.

13.4.2 Basic Interrupt Example Program

We initially presented an interrupt driven example problem but provided very little information describing the
operation of the program. We’ll once again show this program, but this time explain it in a painful amount of
detail. The disclaimer for this section is this: this is a simple example that shows the basic structure/requirements
of an interrupt driven RISC-V interrupt driven program. This is not necessarily a good example, because a
“good” interrupt driven program example would be more complex, which would allow programmers to do things
“more intelligently”. The point is that there are many approaches to writing real-time programs; if you learn the
basics associated with simple programs such as the one in this section, you’ll have no trouble writing your own
“good” interrupt driven programs. Figure 13.4 shows the same program we previously provided; here’s all the
good stuff to realize about this program:

 The program assumes that some external device attached to the RISC-V MCU generates interrupts.
Each time the MCU receives an interrupt, the code changes the state of an external peripheral, which in
this case is an LED. Someone has generously provided you the programmer with the correct output port
address associated with the LED.

 The first part of the program is initialization, as indicated with “init” label. The first instruction places
the output port address into a register for later use.

 The instructions on lines (11-12) is initialization of the interrupts. The instruction on line (11) loads the
address of the subroutine into a register; this value is the address of the first instruction of the ISR,
which is the interrupt vector address. The following instruction stores that address value in
CSR[mtvec]; the underlying hardware loads this value into the PC when the MCU acts on an interrupt.

FreeRange Computer Design Chapter 13

 - 336 -

 We use a register as a “flag”, which is the assembly language approach of using a Boolean value. The
program places either a ‘1’ or ‘0’ into the flag register; the program interprets these two values as
positive logic where ‘1’ means something happened and ‘0’ means otherwise. The code on line (14)
uses x8 as the flag register and sets the flag to an initial value of zero.

 The program blinks an LED; we use a register to hold the current LED value. We initialize that register
to zero (LED initially off) on line (15). We follow that line with an instruction to write that register
value to the output on line (16).

 The second portion of the interrupt initialization code resides on lines (18-19). At this point in the code,
we’ve completed all the other required initializations; we purposely saved this code until last. The
purpose of this code is to enable (unmask) the interrupts, which we do by writing a ‘1’ to the CSR[mie]
register using the csrrw instruction on line (19).

 The background task is the loop on lines (21-22). The program gets stuck in this code for what seems
like forever, because this code keeps monitoring (yes, this is a polling loop) the state of x8, which we
are using as a flag. We initialized this flag to zero, and we keep loop so long as it remains zero. The
only way x8 can become a non-zero value is when the MCU receives an interrupt and executes the
interrupt service routine.

 When the program receives an interrupt, the program transfers control to the ISR, which starts on line
(39). Be sure to note the nice banner for the subroutine, very similar to standard subroutine banners.
The ISR comprises of two instructions: line (39) change the value of the flag to be non-zero, and line
(40) returns from the subroutine. Note that we use an mret instruction rather than a ret instruction
because we are returning from an interrupt and not a normal subroutine.

 The program was executing the instruction on line (21) or line (22) when it received the interrupt.
Interrupts are external to the MCU and can thus happen at any time. When the ISR exits, it returns to
one of these instructions. The difference now is that x8 is no longer zero, which causes the conditional
branch on line (22) to fail and program control to drop through to the instruction on line (24).

 The program has one task to do as part of the main code: toggle the LED. It does this by first toggling a
bit in the register storing the LED value on line (24), then outputting that value to the LED on line (25).
This code effectively makes the LED blink.

 Once the LED blinking completes, we need to prepare for the next interrupt. We first clear the flag
register (x8), which allows us to stay in the polling loop on lines (21-22). We must use this approach
based on the way we structured our code. We then need to unmask the interrupts, which we do by write
a ‘0’ to the CSR[mie] register on lines (27-28).

 The final part of the code is to jump back to the main loop, which we do on line (29).

FreeRange Computer Design Chapter 13

 - 337 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#--
Example Interrupt Driven Program.

Description: The program blinks an LED. Each time the program
receives an interrupt the code changes the state of the LED. We
assume some external device has configured the hardware such that
the MCU can receive an interrupt signal from an external device.
#--
My_Prog:
init: li x15,0x1100C000 # put output address into register

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 mv x8,x0 # clear x8; use as flag
 mv x20,x0 # keep track of current output value
 sw x20,0(x15) # put LEDs in known state

 li x10,1 # set value in x10
 csrrw x0,mie,x10 # enable interrupts

main: nop # do nothing (easier to see in simulator)
 beq x8,x0,main # wait for interrupt

 xori x20,x20,1 # toggle current LED value
 sw x20,0(x15) # output LED value

admin: mv x8,x0 # clear flag
 csrrw x0,mie,x10 # enable interrupt
 j main # return to loopville
#--

#--
The ISR:

Description: This ISR puts a non-zero value into x8.

Tweaked Registers: x8
#--
ISR: li x8,1 # set flag to non-zero
 mret # return from interrupt
#---

Figure 13.4: An example interrupt-driven program.

13.4.3 Real-Time Programming Considerations

Real-time programming is an art form. There are so many issues involved with even relatively simple real-time
problem that any rules as associated with designing and programming such systems become questionable. If
there were a set of rules to follow to ensure that any real-time program you wrote was going to solve the given
problem 100% of the time, then people would not be paying you the big bucks to be embedded systems
designers and programmers. There are a few guidelines you should consider following, particularly if you’re new
at real-time programming. Here they are:

Keep your ISR as short as possible: The issue here is that we want to keep the response time as short as
possible. The problem is that the hardware automatically masks the interrupts the MCU acts on an
interrupt, and can only be unmasked under program control. This generally means that if your ISRs are
long, that may cause you to delay or completely miss another interrupt. They delayed interrupt may
cause an obnoxious delay that would make people think less likely to purchase your product (or hire
you); missing the interrupt altogether could never good outcome.

Nested ISRs: The current interrupt architecture does not allow for nested interrupts. Because there is
currently only one register to store the return address (CSR[mepc]) when the MCU acts on an interrupt,
your code would return to the incorrect place in the code if you acted on a second interrupt. Note that
the only way you could get a nested interrupt is if you re-enable interrupts while you are in an ISR. This
being the case, nested interrupts are easily avoidable.

FreeRange Computer Design Chapter 13

 - 338 -

Calling subroutines from ISRs: There is nothing inherently wrong with calling subroutines from
interrupts. Your code can even nest subroutine calls if there is a need if you follow the standard rules
for writing and nesting subroutines. In truth, the only two special things about your interrupt code the
fact that 1) the ISR uses a different return instruction from subroutines, and, 2) the interrupts are
probably disable while executing the ISR code. The one possible drawback of calling subroutines in the
ISR code is the fact that it extends the amount of time interrupts are disabled, which may cause
problems with response time issues with acting on other pending interrupts.

13.5 Real-Time Programming Example Problems

This section provides a few interrupt-driven example problems. These problems are similar to the example
presented earlier in this chapter, but do show a few more tricks and expose a few more issues.

Example 13.1: Another Blinking LED

Write a RISC-V assembly language program that counts the number of interrupts the MCU receives.
The count range is [0,255] and rolls over from 255 to 0. When the count is less than 128, the
program turns on the right-most LED; otherwise it leaves it off. The LED address is 0x1100C000.

Solution: The first thing to note about the solution is that it is very similar to the first interrupt driven program
we worked with. That being the case, we essentially copied much of that code. As you’ll see, the interrupt
initialization is always the same; the program initialization, not so much so. Here are the other cool things to note
about this solution.

 The program places the LED address into a register for later use by output instructions on line
(09).

 The program writes the address of the ISR to the CSR[mtvec] register on lines (11-12); this is
where program flow vectors to when the MCU acts on an interrupt.

 This program uses x8 as a flag, so we clear it on line (14). We use this to have the ISR signal that
the MCU received an interrupt.

 We also clear our LED counter value and write that value to the outputs on lines (15-16). We
always want to put external items in a known state as part of the initialization sequence.

 We enable (unmask) the interrupts on lines (18-19) by using the csrrw instruction to write to the
CSR[mie] register.

 The main code (background task) starts on line (21) with a polling loop. The loop is checking the
value if the flag register x8; the code stays in this loop until x8 contains a non-zero value.

 When the MCU receives an interrupt, program control transfers to the foreground task, which is
the first instruction in the ISR on line (42); this instruction places a non-zero value into x8 before
returning program flow control to the background code.

 The first thing we do outside of the polling loop is to increment the counter on line (23). We then
massage the counter by clearing all but the lower byte, which we do because the problem states
that our count range is [0,255].

 At this point, we could do some type of compare operation, but we instead take advantage of the
fact that if the 8th bit from the left is set, then the count is greater than 127, and we thus want to
turn off the LED. We first mask the count on line (25) to isolate the eighth bit, then shift it right to
the LSB position on line (26). This bit does not have the correct logic level, so we toggle it on line
(27) before outputting it to the LEDs on line (28).

 Once we complete handling the stuff the problem description wanted, we need to recover from the
interrupt and prepare to receive another interrupt, which we do starting at the line with the admin

FreeRange Computer Design Chapter 13

 - 339 -

label. We first clear the flag register x8 on line (30), which was made non-zero in the ISR. We
then use a csrrw instruction on line (31) to set CSR[mie], which unmasks the interrupts. Recall
that when we receive an interrupt, the RISC-V hardware automatically masks the interrupts.

 We are now ready to receive another interrupt, so we transfer program control back to the main
loop on line (32).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(38)
(40)
(41)
(42)
(43)
(44)

#--
Example Interrupt Driven Program.

Description: The program counts the number of interrupts using the
count range of [0,255]. When the count is less than 128, the program
turns on LED. Assume some external device configured the hardware so
the MCU can receive an interrupt signal from an external device.
#--
My_program:
init: li x15,0x1100C000 # put output address into register

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 mv x8,x0 # clear x8; use as flag
 mv x20,x0 # keep track of current count
 sw x20,0(x15) # put LED in known state

 li x10,1 # set value in x10
 csrrw x0,mie,x10 # enable interrupts

main: beq x8,x0,main # wait for interrupt

 addi x20,x20,1 # increment counter
 andi x20,x20,0xFF # clear all but lower byte
 andi x21,x20,0x80 # mask the 2^7 bit (8th from right)
 srli x21,x21,7 # shift to LSB position
 xori x21,x21,1 # toggle LSB to agree with problem
 sw x21,0(x15) # output LED value

admin: mv x8,x0 # clear flag
 csrrw x0,mie,x10 # enable interrupt
 j loop # return to loopville
#--

#--
The ISR:

Description: This ISR puts a non-zero value into x8.

Tweaked Registers: x8
#---
ISR: li x8,1 # set flag to non-zero
 mret # return from interrupt
#---

Figure 13.5: An example interrupt-driven program.

Example 13.2

Modify the code in example problem solution shown in Figure 13.4 such that the ISR handles all the
LED blinking activity.

FreeRange Computer Design Chapter 13

 - 340 -

Solution: The previous example used a register as a flag, which allowed the foreground task (the ISR) to signal
to the background task (the main code) that an interrupt had occurred. There was nothing special about this
approach other than to show that we often use registers (and sometime memory locations) as flags. The previous
solution actually made the code slightly more complicated. Here are some items to note about the solution to this
example in Figure 13.6.

 The first thing to note is that the code is shorter than the previous solution, so this solution is more
space efficient.

 The code is first initializing all the registers it uses on lines (09-10), then writes the interrupt
vector on line (12-13), the puts the LEDs in a known state (off) on line (15-16).

 The main code consists of unmasking the interrupts. The issue here is that we continually unmask
the interrupts, but this is the only way we can do this in a simple problem such as this one. The
tendency is to unmask the interrupts before leaving the ISR, but that’s a horrible idea because a
pending interrupt will cause the interrupts to nest.

 This solution does all the blinking work in the ISR, which comprises of toggling the state of the
LED using an XOR instruction on line (29), and then outputting the result on line (30).

 Overall, this program is functionally equivalent to the previous solution; the only notable
difference is that this solution does more in the ISR, which means the interrupts are disabled for
longer compared to the previous solution.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

#--
Example Interrupt Driven Program.

Description: The program blinks an LED. Each time the program
receives an interrupt the code changes the state of the LED. We
assume some external device has configured the hardware such that
the MCU can receive an interrupt signal from an external device.
#--
My_Prog:
init: li x15,0x1100C004 # put output address into register
 li x10,1 # set value in x10

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 mv x20,x0 # keep track of current output value
 sw x20,0(x15) # put LEDs in known state

main: csrrw x0,mie,x10 # enable interrupt
 j main # return to main loop
#--

#--
The ISR:

Description: This ISR toggle the LSB of x20 and outputs it

Tweaked Registers: x20
#--
ISR: xori x20,x20,1 # toggle current LED value (LSB)
 sw x20,0(x15) # output LED value
 mret # return from interrupt
#---

Figure 13.6: An example interrupt-driven program.

FreeRange Computer Design Chapter 13

 - 341 -

Example 13.3

Write a RISC-V MCU interrupt-driven assembly language program that blinks a single LED. The
LED is in the LSB position of the output port with the address 0x1100C004. The LED toggles each
time the system receives an interrupt; assume the hardware is configured such that an external
peripheral can generate an interrupt on the RISC-V MCU. The blinking action only occurs if the
switch in the LSB position is on; otherwise, the LED turns off and does not blink. The port address
of the switch input is 0x11008000. Keep the ISR as short as possible.

Solution: The example seems similar to the previous example, but this example has an extra control input that
partially determines the how the LED operates. Because much of the code in this example is similar to the
previous example, we’ll only describe the main differences. Figure 13.7 shows the solution to this example along
with this other fun stuff to note:

 There are many possible solutions to this example; Figure 13.7 show just one of them, and not
necessarily the best solution, but certainly a working solution.

 The main difference with this solution is in the structure of the code. The previous example
unconditionally blinked the LED when the program received an interrupt. This program now
blinks the interrupt conditionally based on the value of a switch. Additionally, the program must
ensure the LED is off if the switch is not actuated. These differences make the program structure
quite different.

 There is a polling loops starting on line (25). The interrupts were never masked, so the this polling
loop checks to see if the switch is on. If the switch is on, the code drops out of the polling loop;
otherwise the program continues to poll the switch.

 With the switch activated, the code exits the polling loop and first enables the interrupts on line
(29). The program checks the status of the flag on line (30), and toggles the LED if the flag is set
starting with the code on line (32). Note that if program needs toggle the LED, it also needs to
unmask the interrupt, which the program does on line (35).

 If the interrupt-received flag is not set, the program checks for to see if the switch is still on lines
(38-40). This code is a repeat of the polling loop on line (25), but the code on lines (38-40) has an
if/else structure. If the switch is off, we jump to line (20) to turn off the LED and disable the
interrupts. If the switch is on, the program branches to check the status of the interrupt-received
flag on line (30).

FreeRange Computer Design Chapter 13

 - 342 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)

#--
Example Interrupt Driven Program LED Blinking Program.

Description: The program blinks an LED only when a given switch is off
The LED address port is 0x1100C004; the switch input port address is
0x1100800. If the right-most switch is one, the program toggles the LED
each time it receives an interrupt. Assume the hardware is configured
such that some external device that the MCU can receive an interrupt
signal from device
#--
My_Prog:
init: li x15,0x1100C004 # LED port address (output)
 li x16,0x11008000 # switch port address (input)

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 mv x8,x0 # clear x8; use as flag
 li x10,1 # set value in x10

sw_off: mv x20,x0 # clear LED
 csrrw x0,mie,x0 # disable interrupts
 sw x20,0(x15) # put LEDs in known state

sw_off_loop:
main: lw x25,0(x16) # input switch data
 andi x25,x25,1 # mask lsb
 beq x25,x25,main # branch if switch off

 csrrw x0,mie,x10 # enable interrupts
sw_on: beq x8,x0,chk_sw # check for flag

togl: xori x20,x20,1 # toggle current LED value
 sw x20,0(x15) # output LED value
 mv x8,x0 # clear flag
 csrrw x0,mie,x10 # enable interrupts

sw_on_loop:
chk_sw: lw x25,0(x16) # input switch data
 andi x25,x25,1 # mask lsb
 beq x25,x25,sw_off # branch if switch off

 j sw_on # return to loopville
#--

#--
The ISR:

Description: This ISR places a non-zero value into x8.

Tweaked Registers: x8
#--
ISR: li x8,1 # set flag to non-zero
 mret # return from interrupt
#---

Figure 13.7: An example interrupt-driven program.

FreeRange Computer Design Chapter 13

 - 343 -

Example 13.4

Write a RISC-V MCU interrupt-driven assembly language program that blinks a single LED. The
LED is in the LSB position of the output port with the address 0x1100C004. The LED toggles each
time the system receives an interrupt; assume the hardware is configured such that an external
peripheral can generate an interrupt on the RISC-V MCU. The LED can blink at two different
frequencies based on the state of the switch in the LSB position. If the switch is on, then the LED
toggles every two received interrupt; otherwise the LED toggles on every received interrupt. The
port address of the switch in put is 0x11008000. Keep the ISR as short as possible.

Solution: The example is somewhat similar to the previous examples, but with some slight twists. Once again,
we’ll only describe the significant differences, particularly the structural differences in the program, because
there are many similarities with previous solutions. Figure 13.8 shows the solution to this example: here is the
description of fun stuff contained within:

 Lines (11-12) include initialization instructions for both the interrupts and other standard items.

 The code next falls into a one-line polling loop on line (25). When the program breaks out of this
polling loop, it then increments a counter. Using a counter is a standard was of track on/off event.
In this program we’re sometimes interested when things happen, and other times, when things
happen every other time. When something happens and the LSB of the counter is ‘1’, we know
something has happened every other time. In this program, we always toggle the LED if the
switch is on; otherwise we toggle the LED if the switch is off and the LSB of the counter is ‘1’.
Somewhat tricky, but hey, it’s assembly language.

 After the program increments the interrupt counter on line (26), we input the switch data to
determine the LED blink frequency, which we do on lines (28-30). Note that is structure is an
if/else construct. The if part of the construct jumps over the code that toggles the LED to the code
at the “done” label. The if code essentially jumps over the else code. The else code is the code that
toggles the LED and resides on lines (35-36). The else code is on lines (32-33).

 The code at the “done” label does tasks that always need to be done including resetting the flag
and unmasking the interrupt on line (38-39). The program then transfer control back to the loop
that polls for the interrupt flag on line (25).

FreeRange Computer Design Chapter 13

 - 344 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)

#--
Example Interrupt Driven Program LED Blinking Program.

Description: The program blinks an LED only when a given switch is off
The LED address port is 0x1100C004; the switch input port address is
0x1100800. If the right-most switch is one, the program toggles the LED
each time it receives an interrupt. Assume the hardware is configured
such that some external device that the MCU can receive an interrupt
signal from device
#--
My_Prog:
init: li x15,0x1100C004 # LED port address (output)
 li x16,0x11008000 # switch port address (input)

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store as interrupt vector CSR[mtvec]

 mv x8,x0 # clear x8; use as flag
 mv x9,x0 # use as interrupt counter
 li x10,1 # set value in x10

sw_off: mv x20,x0 # clear LED - 344 -ource- 344 -y
 sw x20,0(x15) # put LEDs in known state
 csrrw x0,mie,x10 # unmask interrupts

main: beq x8,x0,main # branch if switch off
 addi x9,x9,1 # increment interrupt counter

get_sw: lw x15,0(x16) # get switch data
 andi x15,x15,1 # mask LSB of counter
 beq x15,x0,togl

slow: andi x15,x9,1 # mask LSB
 beq x15,x15,done # branch to done if zero

togl: xori x20,x20,1 # toggle current LED value
 sw x20,0(x15) # output LED value

done: mv x8,x0 # clear flag
 csrrw x0,mie,x10 # enable interrupts
 j main # return to loopville
#--

#--
ISR Description: This ISR places a non-zero value into x8.

Tweaked Registers: x8
#--
ISR: li x8,1 # set flag to non-zero
 mret # return from interrupt
#---

Figure 13.8: An example interrupt-driven program.

FreeRange Computer Design Chapter 13

 - 345 -

13.6 Chapter Summary

 Interrupts are a signal from the world outside of the MCU connected to a dedicated pin on the MCU.

 Interrupts provide a method for external hardware to execute a special subroutine typically referred to as the
interrupt service routine (ISR). Much of the functionality associated with interrupts is the responsibility of
the underlying hardware. Interrupt driven programs form the basis of embedded systems programming.

 The interrupt architecture is a term we use to describe all the hardware and hardware-induced operations
associated with the processing interrupts. The interrupt architecture is one of the first things you should
examine when dealing with a new MCU or CPU, as interrupt driven programs have many distinct
advantages over programs that are not interrupt driven.

 There are three main types of interrupts: 1) internal, 2) external, and, 3) software-based. These types are
based upon which device and the location of that device in the system.

 If some device requires service, there are two ways to make this need known to the MCU: 1) polling, or 2)
interrupt driven. Polling refers to the MCU expending instructions to see if a device requires service.
Interrupt driven systems allow the particular device to tell the MCU when and if it requires service.

 The main problem with polling is that it is done under program control, which means it takes time, and can
effectively prevent your MCU from processing doing any other processing. Polling a device typically
creates low throughput because the act of asking a device if it needs service wastes time in the case where
the device does not require service. While polling in itself sounds bad, it is actually only bad if the act of
polling prevents the MCU from performing a more meaningful task. Often time in MCU-based digital
design, there are times when there is “nothing” that the MCU needs to do; these times are ideal for polling
because polling is most often “nothing”.

 Programmers have several responsibilities when writing interrupt-driven programs. First, they must write an
Interrupt Service Routine (ISR), which is similar to a subroutine. Second, they must store the interrupt
vector address (the address of the first instruction in the ISR) in the CSR[mtvec] register. Third, they must
control the interrupt enable (CSR[mie]), which controls whether the MCU acts on interrupts or not.
Interrupts must be enabled (unmasked) before the MCU can act on an interrupt, and must also be unmasked
after the MCU receives an interrupt because the interrupt architecture automatically disables interrupts as
part of initial interrupt processing.

 Programmers should strive to keep ISRs as short a possible because we typically process ISRs with the
interrupts masked. Any time the interrupts are masked, the system could experience a delay because the
MCU is not able to react to an interrupt. Making and unmaking of interrupts is done under program control,
though interrupts are masked in hardware after an interrupt is acted on by the MCU.

 The current RISC-V architecture does not have the capability to nest interrupts, so programmers must be
careful to not enable interrupts within the ISR if there is any chance of receiving another interrupt.

FreeRange Computer Design Chapter 13

 - 346 -

13.7 Chapter Exercises

1) List and briefly describe the three main types of interrupts.

2) Briefly describe why does the current approach to the RISC-V MCU interrupt architecture somewhat
limited?

3) In your own words, describe the notion of polling.

4) Briefly describe in your own words why is polling usually a bad idea.

5) Briefly describe in your own words when polling is not a totally bad idea.

6) Briefly describe what we mean by an interrupt service routine

7) Briefly describe what is exactly is being interrupted in the context of interrupts.

8) Briefly describe why it is important to always examine the interrupt architecture for each new MCU you
work with.

9) List and briefly describe the two main reasons to use a real-time system to solve your given problem.

10) List and briefly describe the two forms of initialization require by an interrupt driven program.

11) Masking interrupts sounds very much like bit masking. Briefly comment if there any meaningful relation.

12) Briefly describe the two ramifications that automatically disabling interrupts in hardware has for
programmers.

13) Briefly describe what we mean by “foreground” and “background” tasks in the context of RISC-V MCU
assembly language programs.

14) Briefly explain why the code in an interrupt service routine is considered “higher priority code” compared to
code that is not part of an interrupt service routine.

15) Briefly describe why masking interrupts should be one of the first tasks in any assembly language program.

16) Briefly describe the general use of a “flag” variable or register.

17) Briefly describe the functional differences (not the RTL) between mret and ret type instructions.

18) Briefly describe why it is not possible to nest interrupts on the RISC-V OTTER MCU.

19) Briefly describe whether programmers can call subroutines from ISRs.

20) Briefly describe whether programmers can call subroutines that call other subroutines from ISRs.

21) Briefly describe how it would be possible to receive an interrupt while in the interrupt service routine
knowing that the hardware automatically masks the interrupts upon entry to the ISR.

22) Briefly describe whether it would possible to act on another interrupt while in the interrupt service routine.

23) Briefly describe why it is a good idea to keep ISRs are short as possible.

24) Briefly describe the ramifications of jumping out of an ISR rather than returning from it with an mret
instruction.

25) Briefly describe what would happen if you returned from an interrupt using a ret pseudoinstruction rather
than a mret instruction.

26) I designed my interrupt service routine such that it called one subroutine. Briefly explain whether I need to
save the return address register (ra) before I call the subroutine in the ISR.

27) Briefly describe whether it is possible to nest subroutine calls in an interrupt service routine.

FreeRange Computer Design Chapter 13

 - 347 -

13.8 Chapter Programming Problems

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code

 Provide a banner for all subroutines

 Keep ISRs are short as possible

 Assume there are 16 switches (port address = 0x11008000) and 16 LEDs (port address = 0x1100C004).

1) Write a RISC-V OTTER interrupt driven assembly language program that does the following. Assume that
some external hardware can assert a signal connected to the RISC-V MCU interrupt input. Each time the
MCU receives an interrupt, the program inputs a value from the switches and outputs that value to the
LEDs. After receiving ten interrupts, the program stops acting on interrupts until it detects that only the
right-most button is pressed (active high), at which point, the program continues processing interrupts in the
ten interrupt sequence. The MCU continues doing this process-wait pattern for an eternity.

2) Write a RISC-V MCU interrupt-driven assembly language program that outputs a 16-bit binary count to port
address 0x11003008. Each time the program receives an interrupt, the program outputs advances the count
value then outputs it. If the switch in the LSB position in on (on=1), then the program adds two to the count;
otherwise the program adds three to the count before outputting. For this problem, don’t worry about
overflow in the counter. Don’t perform any I/O in the ISR.

3) Write a RISC-V MCU interrupt-driven assembly language program that does the following each time it
receives an interrupt. The interrupt indicates that the program must transfer data starting at the address in
x20 to the output port address 0x11005500, one byte at a time. The number of bytes of data to output is
given by the switch data, which forms a binary value that is never greater than 255. Don’t Don’t perform
any I/O in the ISR.

4) Write a RISC-V MCU interrupt-driven assembly language program that does the following: it keeps a
decimal count of the number of interrupts. The count starts at zero; the 1’s, 10’s, and 100’s digits are stored
in registers, x10,x11,x12, respectively. Each time the count changes, the three values are output to port
address 0x11009990, 0x11009991, and 0x11009992, respectively. The count should roll over from 9999 to
000. Don’t Don’t perform any I/O in the ISR.

5) Repeat the previous problem with the following modifications. When the program will increment or
decrement depending upon the value input from port address 0x110000F0; it the input value is zero, the
count increment; otherwise it decrements. Don’t allow the count value to exceed 999 of go below 000,
meaning with it hits those values, the count does not increment for 999 and does not decrement for 000.

6) Write a RISC-V MCU interrupt-driven assembly language program that does the following: each time it
receives an interrupt, it reads a unsigned byte from port address 0x11002200. This value can be in the range
[0,32], and is used to light the same number of LEDs in a stoneage unary type manner (light LEDs starting
from right and filling to the left). The value is output to the LED port address of 0x1100C000. Don’t Don’t
perform any I/O in the ISR. This is an example of a digital level meter.

FreeRange Computer Design Chapter 14

 - 348 -

14 Important Supporting Topics

14.1 Introduction

There are a few topics regarding the programming side of the RISC-V MCU that didn’t fit into other chapters.
These topics are important so we group them all into this chapter before we go onto other amazing stuff.

Main Chapter Topics

 MEMORY SEGMENTATION: This chapter provides a description of the RISC-V
MCU’s segmented memory model including an overview of the utilized segments.

 RISC-V MCU ASSEMBLERS: This chapter provides an overview of the currently
available RISC-V assemblers and the basic functionality such as assembler
directives.

 PROGRAMMING EFFICIENCY ISSUES: This chapter provides an overview of
concepts and terminology dealing with programming efficiency in the context of
standard programming constructs.

Why This Chapter is Important

This chapter is important because it describes many important support topics associated
with programming the RISC-V MCU.

14.2 Memory Segmentation

The RISC-V MCU has one memory, which we commonly refer to as main memory. This memory provides
storage for both the program and data. We further divide the data portion of memory into special areas for
particular uses such as the stack. We typically refer to the various areas of memory by the notion of “segments”.
Segmenting memory is a common term when working with MCUs, which is why the memory map associated
with the MCU is so important. Figure 14.1 once again shows the memory map for the RISC-V MCU, which
clearly shows the various segments in main memory.

Keep in mind that the notion of segmenting memory is an approach to help humans better understand and work
with system resources. In the end, it’s all just memory; but particular portions of that memory serve different
purposes so we give those portions special names associated with the word “segment”. The astute programmer
can change many but not necessarily all of the segment boundaries and addresses because they are most likely
arbitrary. Figure 14.1 essentially represents a set of starting guidelines. Keep in mind that physical memory on
the RISC-V Otter consists of bytes in the range [0x00000000,0x0000FFFF].

FreeRange Computer Design Chapter 14

 - 349 -

Figure 14.1: The RISC-V MCU memory map.

14.2.1 Memory Address Space

The term memory address space is a common term in computerland. As you can probably see by now, the notion
of memory in a computer system is very important, as even simple computers base their operation on accessing
different types of memory in the system. This being the case, the instructions in the computer’s instruction set
have a heavy focus on “addressing” in order to efficiently work with that memory. The result of this is that we
need to become familiar with exactly how much memory the computer can access.

The notion of accessing memory can be misleading. People who design generic computers must deal with a
trade-off regarding the overall physical size of the computer and the basic functionality of the computer. This
notion becomes obvious with the notion of memory accessing. Every computer has a maximum amount of
memory it can directly address; the value is based on the width of the bundle that the system uses to address
memory. We refer to the amount of memory a CPU can address as the memory address space, which is based on
the physical size (data width) of the address lines. The trade-off computer designers must deal with is that the
wider the larger the address space, the larger the computer is going to be. The problem is that some applications
won’t need all that memory space. The best example of this is with the RISC-V Otter MCU. The address space is
32 bits, but the current OTTER implementation only uses 16-bits of that. While we could redesign the RISC-V
hardware to limit the address space to 16 bits, this would require extra time and effort, and it may not be what we
want somewhere down the line.

The point here is that the address lines in the RISC-V can sometime address physical memory and sometimes it
addresses “other things” such as input and output ports. The physical memory in the RISC-V Otter MCU is
[0x00000000,0x0000FFFF]. Note that the amount of memory is constant, but the address of the memory, or the
placement of this memory in the memory map of Figure 14.1 is arbitrary; we placed it starting at address zero for
convenience. In the same way, most of the memory map is arbitrary; but someone needs to map this stuff out. If
you’re simply a programmer, someone needs to provide these details for you; but if you’re the system designer,
you’ll need to provide these details for the people working on and/or programming your system.

14.2.2 Code Segment

As the name implies, the RISC-V MCU uses the code segment to store programs. That being the case, we often
refer to the code segment part of memory as program memory. Typical MCU lingo uses different and often
confusing names for the code segment, and the RISC-V MCU is no different. The RISC-V MCU often refers to
the code segment as the “text segment” for some unknown reason.

When you write an assembly language program, the assembler translates your assembly code into machine code
and stores it in the designated code segment portion of memory. Programmers should always specify that their
code goes into the code segment using the “.text” assembler directive, which we’ll discuss in the next section.
We’ve used this quite often in our programming examples up to now; it becomes more important when we
discuss look-up-tables in another chapter. The assembler actually assumes your instructions go into the code

FreeRange Computer Design Chapter 14

 - 350 -

segment if your program does not specify a data segment (we cover data segments in the following section), but
you should always use the .text assembler directive in order to provide clarity for humans reading your code.

14.2.3 Data Segment

The data segment is where the RISC-V MCU stores intermediate data. The notion here is that the RISC-V only
has 32 general-purpose registers, which is simply not enough data storage for many applications. The solution is
to store intermediate values in main memory to free up registers to use in general data crunching. Additionally,
the designers of the RISC-V created instructions that easily and efficiently access data memory for look-up-
tables.

We’ve previously dealt with this topic when discussing load and store instructions and various issues regarding
the stack. Both the stack segment and the data segment represent area for generic data storage, but they differ by
how they are accessed. In general, programmers access the data segment using load and store instructions, but do
so in two different ways. The two ways differ in how the program provides the physical address. For generic data
access, the physical address can be anything; for stack operations, program stores the main part (base address) of
the address in a register we refer to as the stack pointer. Generic data memory accesses specify the memory
address of interest using an address specified in the associated load and store instruction, while access to the
stack uses a reference to the stack pointer to access data.

Not all programs need to specify a data segment. We generally only specify a data segment when we need to
reserve specific places for memory, such as a look-up-table. Data accesses such as stack operations rely on the
notion of stack pointer stored in a register. Other data operations access area of memory that fall into two
categories: memory with pre-initialized values and memory that is simply reserved but not initialized. In cases
where our programs need special access to memory (reserved memory) or pre-initialized memory (look-up-
tables), we need to explicitly specify a data segment, which we do with a “.data” assembler directive, a topic we
cover in the next section with a greater amount of detail.

14.2.4 Stack

The stack segment is another area of data memory. Because the access to the stack segment is conceptually
different from access to the data segment, we consider the stack and code segment to be separate independent
areas of main memory. We extensively described stack operations in a previous section, so we’ll not describe it
again here. There are a few items to keep in mind regarding the stack segment.

 There is no assembler directive specifying the stack as there was for the data segment.

 We don’t need to use an assembler directive to specify memory dedicated to the stack; we just
know the location of the top of the stack and know that the stack grows in the negative direction
regarding memory addressing.

 There is no magic uncrossable boundary between any parts of main memory including the data
and stack segment. It is once again up to the programmer to write code that respects these
boundaries, as it would be easy for stack operations to corrupt the data segment and data access to
corrupt the stack segment with stack overflow/underflow.

14.2.5 Memory Mapped I/O Segment

The memory mapped I/O segment is not actually a physical segment in the RISC-V MCU as were the code, data,
and stack segments. We include the memory mapped I/O in the memory map because it provides useful
information to programmers regarding I/O operations. What programmers need to know is that the underlying
hardware considers a memory access instruction to be an I/O instruction based on the value of the memory
address specified by the load or store instruction.

As the memory map in Figure 14.1 indicates, the hardware interprets all memory accesses with addresses above
a certain value (as specified in Figure 14.1) as I/O. The underlying hardware handles all the required details, so
programmers don’t need to worry too much about this. Recall that the person who designed/configured the
hardware must inform potential programmers of the “memory address” associated with I/O. The memory
mapped I/O segment does not require any special assembler directives because memory mapped I/O is based in
the associated hardware configuration.

FreeRange Computer Design Chapter 14

 - 351 -

14.3 The RISC-V Assemblers

As of this writing, where are three RISC-V assemblers that you can use to assemble your programs. They each
have their pro & cons, which we list in Table 14.1. Note that all assemblers are available at no cost.

Assembler
Brief
Description Pros Cons

Venus Web-based very simple
 includes graphical-based

simulator/debugger
 includes error message

reporting

 does not recognize interrupt-
based instructions

 does not simulate interrupts
 fixed data segment address

RARS Downloadable
Java-based

 simple
 includes graphical-based

simulator/debugger
 better error message reporting

 fixed data segment address
 does not simulate interrupts

gcc gcc-based very complete
 very versatile
 various debuggers available

 requires Unix-based
environment

 steeper learning curve

Table 14.1: Description of various RISC-V assemblers.

All three assemblers have the ability to act as simulators/debuggers. Not only can the assembler assemble your
programs (convert your programs to machine code), they also allow you to debug/simulate your code. This
means that you can step through your code one instruction at a time and watch the various RISC-V memory
elements change including register, memory, and program counter. The act of stepping through your assembly
code line-by-line in this manner and watch the changes occur in the various RISC-V MCU memory elements
makes the software a simulator. When your code does something incorrectly, you can fix your code, thus making
the software a debugger.

For the current form of this course, we’ll be using both the Venus and RARS assemblers. The gcc assembler and
associated development tools are by far the best tools available. The problem with gcc-based tools are that they
require a Unix-based environment, which has a steeper learning curve based on the notion that most people
taking this course have little experience working in a Unix-based environment. We intend to switch to the gcc
assembler in future offerings of the course, which will happen once we make the switch to presenting this course
using a complete Unix-based environment. Your particular instructor may have you work with gcc, but most
instructors do not.

14.3.1 Assembler Directives

Recall that assembler directives are messages from the human programmer to the assembler. In general, the use
of assembler directives in your program allows you some level of control as to how the assembler handles your
program. The RISC-V assembler has many available directives in order to provide the programmer with more
versatility in overall program design. We only cover the more commonly used directives in this section, as some
of the directives as typically associated with advanced assembly language topics and large programs.

We can classify the directives as being one of two types: required by the program, or, 2) helpful to make your
programs more readable to humans. Table 14.2 show the list of directives we’ll use in the program presented in
this text; the following sections show usage information for these directives. As you’ll see in the following code
examples, all directives begin with a period and we place them in the left-most column of text in your source
code.

FreeRange Computer Design Chapter 14

 - 352 -

Directive Short Description Comment

.text Indicates following information is in text segment
Required if using .data
directive

.data Indicates following information is in data segment
Required if initializing or
reserving data

.space Allocates a given number of bytes of memory (data segment) Not required

.byte Allocates and assigns 1 byte of memory (data segment) Required if initializing data

.half Allocates and assigns 2 bytes of memory (data segment) Required if initializing data

.word Allocates and assigns 4 bytes of memory (data segment) Required if initializing data

.equ Substitutes a label for a value
Not required, but potentially
helpful

Table 14.2: The short list of RISC-V assembler directives.

14.3.1.1 Instruction-Related Directives

Table 14.3 shows a summary of the two code-related directives. Probably the best way to present these two
directives is with simple programs. Up to this point, the code we’ve written looked like the code in Figure 14.2.
While is this code is OK, we prefer to use the code in Figure 14.3, which is 100% equivalent, though it does
appear different.

Directive Usage Comments

.text .text Takes no arguments; only instructions can follow directive

.equ .equ lab,new_lab Takes two comma-separated arguments, assembler replaces
all instances of lab with new_lab

Table 14.3: The summary of code-type directives.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)

#--
init: li x10,0x11008000 # switch input port address
 li x11,0x1100C000 # LED output port address

main:
in_data: lw x20,0(x10) # input switch data
out_data: sw x20,0(x11) # write data to LEDS
 j main # rinse, repeat
#--

Figure 14.2: A simple example problem.

There are several advantages to writing the program using the style in Figure 14.3. Here is the happy bulleted list
of those advantages.

 We use the .equ directive on lines (01-02) to specify the input and output port address. These
values are essentially constants, which is why we specify them using all capital letters. This is a
common programming practice that all good programmers follow, so you should too.

 We put all the .equ directive in one area of the program and delineate nicely with the long dashed
commenting style. You can spread these directives throughout your program is you choose, but
that is really bad programming practice.

 Using the .equ directives is good for a few reasons. First, it makes the code somewhat self-
commenting. Second, if makes the program more generic. The I/O addresses are generally fixed
for a given hardware platform, but if they change, we want to have the changes in one spot only,

FreeRange Computer Design Chapter 14

 - 353 -

which allows us to only change the directive rather than values that may be spread through the
program.

 The code also uses a .text directive. The program does not require this directive because the
program is not defining a data segment, but we include it in order to provide more information to
the human reader of the code.

 Although the .equ and .text directives increase the file size of your source code, they do not
increase the size of program memory. And because they make the program more readable to
humans, you should strive to use these.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

#--
.equ SWITCHES,0x11008000 # port address of switches
.equ LEDS,0x1100C000 # port address of LEDs
#--

.text # specify code segment

init: li x10,SWITCHES # switch input port address
 li x11,LEDS # LED output port address

main:
in_data: lw x20,0(x10) # input switch data
out_data: sw x20,0(x11) # write data to LEDs
 j main # rinse, repeat
#--

Figure 14.3: An clearer alternative to the simple example problem.

NOTE: for some unknown reason, the RARS assembler uses “.eqv” instead of “.equ” for that directive.

14.3.1.2 Data-Type Directives

We use data-type directives exclusively in the data segment. We use the .data directive to signify all that
follows that directive is associated with the data segment. We use the data segment for intermediate storage of
data and we typically want control of exactly how much data we are using and where in the data segment we are
placing that data. Table 14.4 shows the list of data-type directives and an example of their usage. As with the
code-type directives, the usage makes more sense when you see them in actual code. What is missing from Table
14.4 and the Venus and RARS assemblers in general is a directive to control where the assembler places the data
in the data segment. This means we need to have various work-arounds to ascertain where exactly the data
resides.

The .space directive allow programmers to ‘”reserve” a specified number of “uninitialized” bytes of data. The
other three directives allow programmers to both reserve and initialize that data in three different sizes: bytes,
halfwords, and words, using the .byte, .half, and .word directives. Note: for some unknown reason, the Venus
assembler does not recognize the .half directive.

FreeRange Computer Design Chapter 14

 - 354 -

Directive Usage Comments

.data .data no arguments; only data-type directives can follow directive

.space .space 10 Reserve space for 10 bytes (uninitialized)

.byte .byte 4,-1,0xFA Defines and initializes the list of data in 1 byte format

.half .half 0xFF00,0xFa,-5 Defines and initializes the list of data in 2 byte format

.word .word 0xFA780001,-1 Defines and initializes the list of data in 4 byte format

Table 14.4: The summary of code-type directives.

Figure 14.4 shows an example using the .data and .text directives. Recall that using the .text directive is optional
when the program does not need to specify a data segment. Here is the useful information regarding the code
fragment in Figure 14.4:

 By convention, we list the data segment at the top of the program and before the code segment.
We can break up the data and code segment as long as we correctly identify them using the .data
and .text directives, but that is not good programming practice. We use delineation comments to
clearly show the different segments.

 We reserve 20 bytes of “space” in memory using the .space directive on line (02). We don’t
initialize the data in this area. The .space directive specifically reserves the number of bytes
specified by the argument to the directive, but programmers can use data in this area to store byte,
halfwords, or words of data.

 The .space directive on line (02) is not in the first column because we prefaced it with a label.
The number associated with the “empty” label is thus the address of the first byte of 20 bytes of
storage. We don’t at this point know where the assembler places that data in memory, but we’ll
figure that out later and be able to work with the data at this location.

 We specify three bytes using the .byte directive on line (04). We use the “my_bytes” label so we
can later access the location of the first byte of the three bytes of data. This data is initialized to the
provided comma-separated values. The assembler stores negative values in an 8-bit 2’s
complement format.

 We specify three halfwords using the .half directive on line (05). We use the “my_halfs” label to
locate the data for future reference of all data specified by this directive. The assembler initializes
the memory associated with the provided comma-separated values. The assembler stores negative
values in a 16-bit 2’s complement format.

 We specify four words using the .word directive on line (06). The “my_words” label locates the
data for future reference. The assembler initializes the memory associated with the provided
comma-separated values. The assembler stores negative values in a 32-bit 2’s complement format.

 Because this program uses a data segment, we must explicitly specify a code segment using
the .text directive on line (10). Only instructions and directive can follow the .text directive.

 We use the la pseudoinstruction on line (12) to retrieve the address of the data starting at the
“empty” label. We then can store data at that address; we store a byte of data at that address using
the sb instruction online (14). The byte that we store is 0xB7, which is the data we loaded into x11
on line (13). We could have also stored halfwords or words in this memory location.

 We get the first byte in memory starting at the data associated with the “my_bytes” label using the
lbu instruction on line (17). Note that we use “4” in the address offset for the lbu instruction,
which points the address to the third halfword. We load the value “34” into x11.

FreeRange Computer Design Chapter 14

 - 355 -

 We get the third halfword in memory using the lbu instruction on line (20). Note that we use “4”
in the address offset for the lbu instruction, which points the address to the third halfword. We
load the value “0xFFE9” into x11.

 We get the fourth word in memory using the lw instruction on line (23). In this case, we use an
address offset of “12” to point at the fourth word specified at this location. We load the value
“0x00002355” into x11.

 We still have the address of the word data in x10, so we use that address to clear the first word at
that address using the sw instruction on line (25).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

#---
.data # data segment
empty: .space 20

my_bytes: .byte 34,-1,0xFA
my_halfs: .half -4,0x4FAD,-0x23
my_words: .word 0x1100C000, -2, 0x34F, 9045
#---

#---
.text # code segment

main: la x10,empty # load address of empty
 li x11,0xB7 # place value in x11
 sb x11,0(x10) # store value in memory

get_b: la x10,my_bytes # load address of my_bytes
 lbu x11,0(x10) # get data from memory

get_h: la x10,my_halfs # load address of my_halfs
 lhu x11,4(x10) # get third half from address

get_w: la x10,my_words # load data of my_words
 lw x11,12(x10) # get fourth word from address

stor_w: sw x0,0(x10) # clear data at addr my_words

 j main # repeat pointless program
#---

Figure 14.4: A program using code and data-type directives.

FreeRange Computer Design Chapter 14

 - 356 -

Example 14.1: Address of Data

Answer the following questions using the code fragment that follows. For this problem, assume the
value of my_words is 0x50.

a) Value of my_bytes d) Address of 6 g) Value in x11

b) Value of my_halfs e) Address of -24 h) Value in x12

c) Value of my_extra f) Address of 89 i) Value in x13

.data # data segment directive
my_words: .word 4,5,6,7,9
my_bytes: .byte 0x23,-24,46,-33
my_halfs: .half 88,99,456
my_extra: .word 988, 89

.text # text segment directive
 la x11,my_bytes
 la x12,my_halfs
 la x13,my_extra

stop: j stop

Solution: This is a classic problem type, which has somewhat of an issue. What this problem requires you to do
in order to solve it is count in 1’s, 2’s, or 4’s based on the whether you’re counting byte, halfword, or word data
respectively. The issue with this is that it is tedious and error prone. The reason it is error prone that you never
need to do it in real life; you instead allow the assembler to handle the details.

The first thing to note in this problem that there are four labels associated with 12 pieces of data. There is
nothing preventing programmers from using a unique label for each piece of data; doing so would not make the
program any less space efficient (meaning it would require the same amount of data memory). Generally, you
group data on the same line if you have some easier way to access the data on that line, which is the case for
look-up tables, which we discuss later in this chapter. The other issue is that when we’re programming and
require data from the data segment, we generally don’t know the actual address of that data, we only know how
to easily access that data. Being able to access data is almost always more important than knowing exactly where
that data lives.

a) my_bytes is five words past the my_words label the precedes it. We only know the value of the
my_words label (from the program description), so we work from there. The value of my_words is
0x50; the value of my_bytes is 5 (number of words on my_words line) * 4 (size of a word) greater than
my_words, which is 0x64 (0x50 + 0x14).

b) The value of my_halfs is four bytes of space beyond my_bytes, which is 0x64 + 0x4, or 0x68.

c) The value of my_extra is three halfwords of space beyond my_halfs, which is 0x68 + 0x6, or
0x6E.

d) The address of 6 is two words greater (because it’s the third value on the word list) than the value of
my_words, which is 0x58.

e) The address of -24 is one byte greater (because it’s the second on the byte list) than the value of
my_bytes, which is 0x65.

f) The address of 89 is one word greater (because it’s the second on the word list) than the value of
my_extra, which is 0x72.

g) The code loads the value associated with my_bytes into x11, so x11 contains 0x64.

h) The code loads the value associated with my_halfs into x12, so x12 contains 0x68.

i) The code loads the value associated with my_extra into x13, so x13 contains 0x6E.

FreeRange Computer Design Chapter 14

 - 357 -

Example 14.2

Write a RISC-V assembly language program that counts the number of set bits in a range of words
in memory. The starting point of the range and the quantity of numbers in the range are passed to
the subroutine x8 & x10 respectively. The result is passed back to the calling routine in x25.

Solution: This solution is somewhat special because we include some test code for the solution. Anytime you
write code, you should do your very best to test it before you “show it to anyone”, which mostly means before
you submit it as part of an assignment. This example accesses memory, which means you have to be able to set
values in memory to test the code, a task that is not always easy based on the assembler you’re working with.
We’ll describe the problem in more detail once we’re done describing the solution.

First thing we need to do in all problems like this is to devise the steps that will lead us to the glory of a solution.
There are two tasks in the problem: 1) grab words from memory, and 2) count the number of bits that are set in
that word. The number of words to grab from memory is given, which could be zero, so we’ll control that with a
while loop. The number of bits set in the word from memory can also be zero, so we’ll put that in a while loop
also. This problem thus has two loops, one is on the interior of the other loop, which is a common situation we
run into in all programming. Thus, the outer loop is the “get words from memory” and the inner loop is “count
the number of bits in a word”. Check for that in the code below. Figure 14.5 shows the solution for this example
including the test code, and lots of other stuff to check for.

 The subroutine has a header describing what the subroutine does, what values are sent to and
returned from the subroutine, what registers the subroutine changes. Always do this.

 We clear the accumulator, which is our return value on line (22).

 The outer while loop starts on (24), where we check the count variable and exit the loop if it is
zero.

 We then load a word of data from memory on line (25); x20 now has the data we want to count the
bits in.

 The inner while loop starts on line (27) where we count the data, which we do by masking the
LSB on line (28), and adding the result of the making operation to the accumulator on line (29).

 The inner loop admin is on line (30) which is to shift the value loaded from memory to the right
one bit position, and then jump to “in_loop” to repeat the inner loop. If the value is zero, we’re
done. Recall that the shift right operation inserts a ‘0’ into the left-most bit position when it does a
right shift.

 The outer loop administration starts on line (33), where we first decrement the counter, then
advance the address pointer on line (34), before jumping to another iteration of the outer loop on
line (35).

 The test code is on lines (13-18). The problem is that RISC-V assemblers to funny things with
declared data, meaning the programmer has little control were the assembler places the data
segment. To work around this peculiarity, we provide the data with a label on line (14); “junk”
may not be the best label ever, but it works. We then use the la pseudoinstruction on line (18) to
load the number associated with “junk” into x8, which effectively put the address of the first piece
of data into x8. The code on line (17) places a 2 in x10, which is the quantity of data in the test
code. The subroutine is now ready to test.

 Recall that if we don’t include a data segment, anything you write in the program defaults to the
text segment. If our program needs to declare data, we must do so in the data segment, which we

FreeRange Computer Design Chapter 14

 - 358 -

do on line (13). Once we do this, everything we write is in the data segment until we declare a text
segment, which we do on line (16).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

#--
Subroutine: Count_bits:

This subroutine counts the number of set bits in a range of words in
memory passed to the subroutine in x10 an starting at address passed to
the subroutine in x8. The result is passed back to the calling code in
x25.

Passed values: x8 & x10
Returned values: x25
Tweaked Registers: x8,x10,x20,x21
#---
---- test code ---------------------------------------
.data
junk: .word 0xF,0x3 # assign some data

.text
 li x10,2 # assign a count
 la x8,junk # assign an address
---- test code ---------------------------------------

Count_bits:
init: mv x25,x0 # clear counter

out_loop: beq x10,x0,done # check loop count
 lw x20,0(x8) # get data

in_loop: beq x20,x0,admin # exit inner loop
 andi x21,x20,1 # mask LSB of data
 add x25,x25,x21 # add LSB to counter
 srli x20,x20,1 # shift right one position
 j in_loop # do it again

admin: addi x10,x10,-1 # decrement loop count
 addi x8,x8,4 # increment address pointer
 j out_loop # do it again

done: ret # take it home jimmie

Figure 14.5: A solution for this example.

14.4 Programming Efficiency Issues

Out there in computerland, there are always many different approaches to performing the same task. This is also
true for assembly language programming. Although there are many different ways to do the same thing and
obtain the same result, there are generally underlying differences in the code that affect how the code executes.
This section describes a few of the more obvious issues, which we group into the notion of “programming
efficiency”.

The term “programming efficiency” certainly sounds good. Suppose you tell your boss that the code you wrote is
very efficient. If your boss is actually not just sitting there taking up space, she will ask you, “What makes your
code efficient?”. The issue here is that there are different forms of efficiency. The two forms we discuss in this
section are run-time efficiency and program memory space efficiency, which are generally the two most
important issues in assembly language programming.

I always think of the example of knowing an algorithm that I can use to save the world. Sounds good, right?
What if the algorithm requires too much program memory space to actually implement? What if you could
implement the algorithm in a reasonable amount of code space, but it takes 5000 years to run the code? In these
cases, your algorithm is useless, no matter how good it sounds. Conversely, if I had a program that ran “pretty
fast” but required a bajillionquadrillion lines of code (thus too much memory to actually store somewhere), the

FreeRange Computer Design Chapter 14

 - 359 -

algorithm would be equally as useless. While these are extreme examples, they nicely describe issues that good
programmers face make every time they write code.

14.4.1 Iterative Construct Overhead

The underlying problem with iterative constructs is that they have associated “overhead”, which we refer to as
loop overhead. This means that loop constructs contain instructions that don’t do anything useful other than
maintain the iterative operational integrity of the construct. The instructions we refer to are the loop
administration instructions (such as incrementing loop counts) and program flow instructions associated with the
loop. This creates a well-known trade-off in coding: fast code vs. less code.

The idea behind fast code is that the code gets the task done faster; the idea behind less code is that the code
itself takes up less space in the program memory. These two issues are always of great concern when writing
programs, particularly in environments such as embedded systems, which are generally resource constrained.
While we all want our programs to run super-fast, we can’t always do that if we’re writing code for an
environment that has limited program memory. The best way to see this is in an example.

Example 14.3: Byte-Based Parity Generation

Write a RISC-V assembly language subroutine that calculates the parity of a byte in register
x20. If x20 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’

Solution: There are a few ways to calculate parity using firmware; the approach in this problem the notion of
counting the individual bits by masking, accumulating, and shifting. We won’t go over the programming details
in this solution as we are more interested in the runtime and space efficiencies of the solutions.

Figure 14.6 and Figure 14.7 show two subroutines that solve the given program; these solutions are functionally
equivalent but perform the task in different ways. The code in Figure 14.7 uses an iterative construct while the
code in Figure 14.6 doesn’t use an iterative construct. The solution Figure 14.7 obviously has fewer instructions,
but it must execute more instructions to arrive at the answer compared to Figure 14.6.

Your first look at these subroutines shows that there are fewer instructions for the code that uses an iterative
construct (10 instructions vs. 27 instructions). This means that the code for the iterative construct requires less
space in program memory. The execution of these programs tells another store. While the non-iterative
subroutine requires 27 instructions to complete, the iterative subroutine requires 46 instructions. Thus, the
subroutine with less about 1/3 less instructions requires almost twice as much time to execute.

The moral of the store is that the non-iterative version of the subroutines requires about twice as much program
memory space, but runs twice as fast as the iterative version. This trade-off is something you always need to
think about while programming in assembly language. The most easily applied issue associated with this is that
you should never use an iterative construct that you know will iterate less than three times1. Keep in mind that
this is only a suggestion, and you should always have your brain engaged when programming. For example, if
you had to iterate twice, don’t use a loop. However, if the code associated with the task you need to do twice
requires 100 instructions, use a loop construct2. One thing to consider here is that it is generally a good ideas to
keep your iterative constructs as “single purpose” as possible.

1 If you need to do a lot of work in your iterative construct, iteration counts of two are acceptable as it does save program
memory space.
2 Obviously, it’s really hard to make a black/white rule on this. Using your brain is always a better option than looking for
rules to follow.

FreeRange Computer Design Chapter 14

 - 360 -

Subroutine
Number of
instructions

Number of executed
instructions

Get_par1 27 27

Get_par2 10 46

Table 14.5: A summary of efficiency statistics for both subroutines.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#--
Subroutine: Get_par1

This subroutine determines the parity of the byte in x20. Parity
is returned in x20 where 1 and 0 equal odd and even parity, respectively.
The byte question is in the lower 8-bits of x20.

Passed values: x20

Tweaked registers: x20,x10,x11
#---
Get_par1:
init: mv x10,x0 # clear accumulator

one: andi x11,x20,1 # mask LSB
 add x10,x10,x11 # accumulate bit
 srli x20,x20,1 # shift value
two: andi x11,x20,1 # do 7 more times
 add x10,x10,x11
 srli x20,x20,1
thr: andi x11,x20,1 # 3
 add x10,x10,x11
 srli x20,x20,1
for: andi x11,x20,1 # 4
 add x10,x10,x11
 srli x20,x20,1
fiv: andi x11,x20,1 # 5
 add x10,x10,x11
 srli x20,x20,1
six: andi x11,x20,1 # 6
 add x10,x10,x11
 srli x20,x20,1
sev: andi x11,x20,1 # 7
 add x10,x10,x11
 srli x20,x20,1
eig: andi x11,x20,1 # 8
 add x10,x10,x11

done: andi x10,x10,1 # mask LSB
 mv x20,x10 # transfer to x20
 ret # bring it on home
#--

Figure 14.6: A runtime efficient solution to this example.

FreeRange Computer Design Chapter 14

 - 361 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

#--
Subroutine: Get_par2

This subroutine determines the parity of the byte in x20. Parity
is returned in x20 where 1 and 0 equal odd and even parity, respectively.
The byte question is in the lower 8-bits of x20.

Passed values: x20

Tweaked registers: x20,x10,x8
#---
Get_par2:
init: mv x10,x0 # clear accumulator
 li x8,8 # load iterative count

loop: andi x20,x10,1 # mask LSB
 add x10,x10,x20 # accumulate

admin: srli x10,x10,1 # shift right one bit
 addi x8,x8,-1 # decrement loop count
 j loop # rinse, repeat

done: andi x10,x10,1 # mask LSB
 mv x20,x10 # transfer to x20
 ret # bring it on home
%--

Figure 14.7: A codespace efficient solution to this example.

14.4.2 Subroutine Overhead Issues

We consider subroutines to have “overhead”, which means there are instructions associated with subroutines that
we consider as doing “nothing useful”. In this case, the call and ret instructions essentially do nothing except
handle the administrative tasks of the program flow control associated with calling and returning from
subroutines. This means that anytime you call a subroutine, there are at two instructions worth of “doing nothing
useful”. But wait, it gets worse. There are potentially two other forms of overheads associated with subroutines.

1) Subroutines typically save the operating context upon entering the subroutine, which generally
comprises of pushing registers onto the stack. Additionally, once you push registers on the stack, you
then need to pop them off the stack. Both pushing and popping operations are essentially instructions
that don’t do anything useful but take time to execute in the process.

2) If you’re particular subroutine calls another subroutine, you need to push the return address onto the
stack before the nested subroutine call and then pop it off afterwards. Yet more instructions that don’t
do anything.

The issue of subroutine overhead is always something programmers need to consider. While we typically push
programmers to write modular code, if your subroutines have a lot of overhead and don’t do that much “work”,
your modular code won’t have runtime efficiency3. There’s an art to writing good subroutines that are part of a
carefully architected program. We mention few items at the end of this chapter, but it primarily something that
comes with experience and a lot of conscientious coding. Here is a somewhat meaningful example.

Figure 14.8 and Figure 14.9 show two code fragments that perform the exact same task. The code in Figure 14.8
adds a number to a register four times. The code in Figure 14.9 performs the same task, but does so by using a
subroutine call. Yes, this is an overly simplified example, but it proves the point.

The code in Figure 14.8 performs the given task in using four instructions. The code in Figure 14.9 performs the
same task, but requires a total of 12 instructions, thus requiring three times as much time to perform the same
task. The difference in running times of these code fragments has to do with the subroutine call/return overhead.
Specifically, each add operation has an associated call and ret instruction. These are the instructions that
don’t do anything except perform administrative issues for the subroutine. Additionally, the code in Figure 14.8

3 This is a nerdy way of saying your program will be relatively slow.

FreeRange Computer Design Chapter 14

 - 362 -

requires less program memory space; it requires four instructions compared to the six instructions of Figure 14.9.
The moral of the story is that you should strive to prevent the structure of your program from adding extra
running time to your programs.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)

#~~~~~~~~ program fragment ~~

 addi x8,x8,0x4 # add some value
 addi x8,x8,0x4 # etc.
 addi x8,x8,0x4 #
 addi x8,x8,0x4 #
 ;
#~~~~~~~~ program fragment ~~

Figure 14.8: Program fragment of some meaningless task.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

#~~~~~~~~ program fragment ~~

 call Add_four # do something
 call Add_four
 call Add_four
 ca;; Add_four
 ;
#~~~~~~~~ program fragment ~~

#--
#- Subroutine: Add_four –

Near meaningless subroutine, but serving as an excellent example.
#-
Passed value: x8

Tweaked registers: x8
#---
Add_four:
 addi x8,x8,0x4 # change x8
 ret # bring it on home
;--

Figure 14.9: A functionally equivalent fragment.

Example 14.4

What percentage of the code in Figure 14.10 would we classy as overhead?

Solution: This code is the declared bad code from a previous solution, but we’ll continue working with it. Here’s
the big summary:

 The code has a total of 16 instructions. We’ll call it 17 instructions because we’ll in the call
instruction from the calling code.

 The four instructions on lines (09-12) represent saving the current context; these instructions do
nothing useful because we have to undo them later.

 The four instructions on lines (24-27) restore the context after the body of the subroutine executes.
These instructions undo the context saving, so they do nothing useful either.

 The subroutine also has a ret instruction that does nothing useful.

In the end10 out of the subroutine’s 17 instructions (approximately 59%) do nothing. That means that over 50%
of the time associated with the execution of this subroutine is dedicated to subroutine overhead. The

FreeRange Computer Design Chapter 14

 - 363 -

ramifications of these are that if your program only rarely calls this subroutine, you might as well not make it
into a subroutine. What this means is that to recoup your losses from subroutine overhead, your program must
call this subroutine often and particularly from different parts of the code. Note that if your program called this
subroutine often but from inside the same loop, it would probably once again be better to not use a subroutine.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

#--
Subroutine name: Swap_mem_ws

This subroutine swaps two word values in memory. The address of the
values to swap is found in register x6 & x7.

Tweaked Registers: none
#---
Swap_mem_ws:
init: addi sp,sp,-12 # make room on stack for storage
 sw x10,0(sp) # push 3 items on stack
 sw x11,4(sp)
 sw x12,8(sp)

 lw x10,0(x6) # get data to swap
 lw x11,0(x7)

 mv x12,x10 # copy data in x10 to working register
 mv x10,x11 # copy data from x11 to x10
 mv x11,x12 # copy working data to x11

 sw x10,0(x6) # store swapped values
 sw x11,0(x7)

restore: lw x10,0(sp) # pop data into register
 lw x11,4(sp)
 lw x12,8(sp)
 addi sp,sp,12 # unadjust the stack pointer

 ret # transfer program control back
#---

Figure 14.10: A subroutine that uses data passed by address.

14.4.3 Program Space vs. Bullet-Proof Code Issues

As you have probably figured out by now, there are always many approaches to performing the same task when
programming computers. You the programmer always face many subtle but important design decisions when
writing your code. This section examines another subtle issue, yet clever opportunity for you to write
“appropriate” code.

Example 14.5

Write a subroutine that multiplies the two halfword values stored in x10 & x10 together, and stores
the result in x15.

Solution: We provide two different solutions to this example. The first solution in Figure 14.11 shows the
barebones dumb-dood solution, while we refer to the solution in Figure 14.12 as “bullet proof”. If we’re
speaking roughly, we can refer to these two subroutines as functionally equivalent, but only speaking roughly.

The solution in Figure 14.11 obviously has few instructions than the solution in Figure 14.12, but we don’t want
to think that fewer instructions is somehow better. The truth is that the code in Figure 14.11 probably works
“most” of the time and runs faster than the code in Figure 14.12 based on the number of instructions alone. But
are you as a programmer satisfied with your code working most of the time. If you answered “yes”, then there
are many job openings for academic administrators with your name on them. The problem with the code in
Figure 14.11 is that it fails horribly in some common cases.

FreeRange Computer Design Chapter 14

 - 364 -

The code in Figure 14.11 has one initialization instruction followed by a do-while loop and its associated loop
administration stuff. This code fails (does not provide the proper result) in two main areas. First, if the multiplier
value is zero, the do-while performs one calculation including decrementing the multiplier. If the multiplier is 0,
it becomes -1 (32 1’s) after the decrement on line (15), and thus stay in the loop for a long time. Second, sending
values other than halfwords to the subroutine also causes the subroutine to fail, as there may be values in the two
upper bytes of x10 and x11, which is probably not what we want. Additionally, this subroutine changes several
register values, which makes using this subroutine “troublesome” to use and reuse.

The code Figure 14.12 solves the problematic issues present in the previous solution. Here are the ways we
resolve those issues:

1) We save the operating context by pushing the registers the subroutine uses on lines (14-17).

2) We check to see if the values are greater than 0x0000FFFF on lines (19-22), which indicates
passed values are not halfwords. If we detect a non-valid value, we exit out of the subroutine,
which is an arbitrary choice. In this case, it may be better to indicate an error condition in another
register or memory location, which represents an even greater level of error detection that we
don’t want to deal with in this example.

3) We then check both operands for zero on lines (24-25), which serves two purposes. First, it
ensures our do-while loop is valid in that there is no chance of decrementing a zero count. Second,
it allows the subroutine to end faster in the case that one of the operand is zero, taking advantage
of the fact if one of the operands is zero, the result is zero. If you know for sure that neither
operand would ever be zero, you could not include this code.

The moral of this story is that there is a trade-off here. We wrote the code in Figure 14.12 so that it would
always work and always work as efficiently as possible. The cost of doing this was that the subroutine
required more code space and required more time to run. In all honesty, as the number of times the loop
iterates becomes larger, the overhead associated with the extra code becomes less significant. So what is
the best approach? Only you, the astute and knowledgeable programmer knows for sure. Note that you
have to be knowledgeable of basic programming techniques and the system you’re writing the code for.

FreeRange Computer Design Chapter 14

 - 365 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---
Subroutine: Mult_nums

This subroutines multiples the two halfword values x10 & x11 and
stores the result in x15. The result is limited to 32 bits.

Passed values: x10, x11

Tweaked registers: x11, x15
#---
Mult_nums:
init: mv x15,x0 # clear accumulator

loop: add x15,x15,x10 # accumulate result

admin: addi x11,x11,-1 # decrement multiplier
 beq x11,x0,loop # branch if not done

done: ret # homeward bound
;---

Figure 14.11: A runtime efficient version of the Mult_nums subroutine.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

#---
Subroutine: Mult_nums

This subroutines multiples the two halfword values x10 & x11 and
stores the result in x15. The result is limited to 32 bits.

Passed values: x10, x11

Tweaked registers: x15
#---
Mult_nums:
init: mv x15,x0 # clear accumulator
 li x20,0xFFFF0000 # upper half mask value

store: addi sp,sp,-12 # adjust stack pointer
 sw x11,0(sp) # push: store context
 sw x12,4(sp)
 sw x20,8(sp)

chk_size: and x12,x10,x20 # mask multiplicand: verify half
 bne x12,x0,done # error condition
 and x12,x11,x20 # mask multiplier: verify half
 bne x12,x0,done # error condition

chk_zero: beq x10,x0,restore # check multiplicand for zero
 beq x11,x0,restore # check multiplier for zero

loop: add x15,x15,x10 # accumulate result

admin: addi x11,x11,-1 # decrement multiplier
 beq x11,x0,loop # branch if not done

restore: lw x11,0(sp) # pop: restore context
 lw x12,4(sp)
 lw x20,8(sp)
 addi sp,sp,-12 # adjust stack pointer

done: ret # homeward bound
#---

Figure 14.12: A “bullet-proof” version of the Mult_nums subroutine.

FreeRange Computer Design Chapter 14

 - 366 -

14.5 Look-Up Tables (LUTs)

Generally speaking, anytime you can use a LUT in your hardware or software, you do so. In hardware, we can
use LUTs to implement Boolean functions, which is really handy when the equations become knarly. In
software/firmware, we can use LUTs to reduce the size of programs (and thus they run faster) by not repeating
calculations or by not having to conduct long if/else clause (or case statements) in our code.

LUTs should be nothing new to you at this point, or at least the concepts behind LUTs. This is because LUTs are
analogous to arrays in higher-level programming languages4. An array is a structure that holds data; we access
this data using the base address of the array (the address of the first piece of data in the array) plus some offset.
We refer to the offset we provide the array as the “index”; when we retrieve data from the array, we say we are
indexing into the array.

LUTs in assembly language are a true mix of software and firmware techniques. We need to store the data in
memory to make it accessible to the program. The assembler provides instruction so place data into the array
using assembler directives. The associated ISA provides instructions to access that data as needed. We store the
LUT somewhere in the data segment; we access the LUT using the standard set of load and store instructions.

There are many advantages to using a LUT, particularly in firmware applications such as display multiplexing.
The use of LUTs in computer programming is typically well supported by the underlying assembly languages,
which certainly underscores their usefulness. The RISC-V MCU ISA supports LUTs without any type of special
instructions; the use of assembler directives and the load & store instructions are adequate.

Using a LUT on the RISC-V MCU requires three steps. 1) generate the data that goes into the LUT, 2) store the
data in an accessible area of the data segment, and 3) access the LUT using the RISC-V MCU’s instruction set.
The best way to present this information is with an example.

Example 14.6: LUT-Based Parity Subroutine 4-Bit Version

Write a RISC-V assembly language subroutine that determines the parity of the value in
x10. If x10 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’

Solution: There are a few ways to calculate parity using firmware; the approach in this problem uses a LUT
because it runs faster than other version. Then again, it requires more data memory than other versions, which is
a tradeoff that we’ll discuss later. This solution uses the LUT to determine the parity of a nibble; to complete
solution requires that we determine the parity of each of the eight nibbles in the 32-bit register. The algorithm
accumulates the number of set bits; the LSB of the accumulated value is then the parity. Figure 14.13 shows the
complete solution; here are the details with an emphasis on the LUT portions of the program:

 We are defining a LUT, which is a section in data memory, so we start off by working in the data
segment as noted by our use of the .data assembler directive on line (01).

 The first step in using a LUT is to define the data that goes into the LUT. We sort of did this in our
heads for this program, but make sure you understand what the data means before you continue on
in this solution.

 The second step in using a LUT is to put the data into memory. The two .byte directives tell the
assembler to place the data into memory; we don’t know where exactly the assembler is putting
the data, but we’ll be able to access it because we included the “par_val” label. The two .byte
directives define 16 values; these values correspond to the number of bits that are set in a 4-bit
number ranging from [0,15]; 0 through 15 are the decimal equivalents of each possible 4-bit value.
For example, the eighth value in the line on (04) is “3”, which corresponds to the fact that the
eighth value in the [0,15] is “7”, or “0111”. Because the value “7” has three bits set, we placed a
“3” at this data location.

4 Where there is a possibility that you have not used a real LUT in your previous programming experience, you absolutely
should have used an array of some type. Or at least I hope you did. Consider having a talk with your programming instructor
is you did not use a LUT or especially an array.

FreeRange Computer Design Chapter 14

 - 367 -

 We used two .byte directives for clarity and neatness; we could have used only one.

 The initialization sequence of the subroutine includes loading the iteration count with 8 (for 8
nibbles) on line (24), clearing an accumulator register on line (25), and most importantly, loaded
the address of the LUT into a register using the la pseudoinstruction on line (26). x30 now
contains an address, which is the address of the first piece of data in the LUT.

 We used a while loop for the body of the code and check the loop variable on line (28).

 The next task is step 3) in using a LUT: accessing the LUT data. We then need to mask all but the
right-most nibble to use as an index into the LUT, which we do on line (29). We don’t know what
that nibble value is, but we use that value as an index into the LUT, which we do by adding the
nibble (offset) the base address of the LUT to form the absolute address of the data we’re looking
for in the LUT. We do the calculation on line (30) and the actual LUT access (look-up) on line
(31). We accumulate the value we “looked up” on line (32).

 The administrative part of the loop is to shirt right the data by a nibble on line (34) and then
decrement the loop counter on line (35).

 When the code breaks out of the while loop, the value in x15 contains the number of bits that were
set in x10. We can use the LSB as the parity, but first we must mask all but the LSB, which we do
on line (39).

FreeRange Computer Design Chapter 14

 - 368 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#---
.data # define data segment
num of bits set in each nibble (range: [0,15])

par_val: .byte 0,1,1,2,1,2,2,3 # values 0 -> 7
 .byte 1,2,2,3,2,3,3,4 # values 8 -> 15
#---

#---
Subroutine name: Par_32b

This subroutine uses a LUT-based approach to calculate parity of x10
by adding the parity values of the 8 underlying nibbles. The LUT
thus holds the parity values for each of the 16 possible number that
the nibble can represent. The 8 look-ups are added and the LSB is
the parity value.

Passed values: x10

Tweaked values: x10, x15, x20, x30, x21, x22
#---
.text

Par_32b:
init: li x20,8 # loop count
 mv x15,x0 # bit count
 la x30,par_val # get address of LUT

loop: beq x20,x0,done # done yet?
 andi x21,x10,0xF # calc table offset
 add x22,x30,x21 # calc index
 lbu x22,0(x22) # table look-up
 add x15,x15,x22 # accumulate

admin: srli x10,x10,4 # shift right one nibble
 addi x20,x20,-1 # decr loop count
 j loop # rinse, repeat

done: mv x10,x15 # load count to x10
 andi x10,x10,1 # mask LSB
 ret # take it on home
#--

Figure 14.13: A program using code and data-type directives.

The beauty of this approach for accessing data maybe can only be appreciated by those people who have written
functionally equivalent code not using a LUT. The cool thing about this code is that we never had to figure out
what the value of the nibble was (meaning we did not have to use a bunch of if/else constructs to figure it out);
we instead simply used that value as an index, or offset, into the LUT. The moral of this story is that with any
program you write, you should always ask yourself: “How am I going to use a LUT to make this program easier
to write and more efficient?” Seriously, asking this question of yourself should be automatic in any program you
write5.

Example 14.7: LUT-based Parity Subroutine 8-Bit Version

Don’t actually do it, but describe how you would repeat the previous problem using a LUT
with 256 entries. Discuss the obvious space and run time efficiencies involved.

5 Similarly, when you’re designing digital hardware, you should always be asking yourself how you can use a generic
decoder to simplify your circuit.

FreeRange Computer Design Chapter 14

 - 369 -

Solution: It’s the same problem, but this time we’ll use a LUT with 256 entries, which would represent the
number of set bits for each of the 256 unique values that an 8-bit number can represent. For a problem such as
this, you’d for sure want to use some other software to write a program that generated the LUT code for you; you
certainly would not want to count all the bits and type it all in. The while-loop in the code would now only need
to be iterated four times. The main result here is that the subroutine runs about twice as fast, but the required data
memory increased from 16 bytes to 256 bytes. You, the astute programmer, would need to decide if that was
worth it.

14.5.1 LUTs Revisited

LUT implementations are a tradeoff between space and run-time efficiencies. The underlying details are that it is
computationally more efficient to “look something up” than it is to search for or calculate it. LUTs can make
code run faster, but it comes at the prices of requiring extra space in memory to store the LUT. While LUTs can
be quite helpful, the larger they are, the more memory space they consume. In both cases, you must make sure
your computational savings of using a LUT justifies the memory space required to represent that LUT in
memory.

 The act of searching for something in this context means that you’re iteratively searching for a
particular value associated with a given value, which typically implies you encode this search with
an if/else or case structure. If the given value could be one of many different values, then the
supporting search structure could be very large and subsequently very slow.

 The act of calculating a result associated with a value can require a significant amount of
computing resources. In this case, it would make sense to use a LUT under the condition that you
have to perform the calculation relatively often in your code.

FreeRange Computer Design Chapter 14

 - 370 -

14.6 Chapter Summary

 Memory is important to computers, which is why instructions set generally have different ways of
addressing memory. The term address space refers to the total amount of memory an instruction set can
access, but not all of this memory is physical memory; it includes other memory space items such as I/O
port addresses.

 Computer memory is typically divided into segments; the segments used in the RISC-V include:

o Code segment: stores program memory (physical memory)

o Data segment: stores LUTs and other data (physical memory)

o Stack Segment: store data used by program (physical memory)

o Memory mapped I/O: used to differentiate different computer peripherals (not physical memory)

 There are currently three RISC-V assemblers available: Venus, RARS, and gcc. Each of them has their good
and bad points as listed in this chapter.

 Different assemblers have a different set of assembler directives, which allow programmers to control
certain aspects of the assembler. Assembler directive as essentially messages from the programmer to the
assembler. It’s good to know which directives an assembler supports before using that assembler.

 There are two main types of directives: 1) those that support instructions, and 2) those that support code.

 Writing efficient assembly language programs is more of an art form than a science. Many aspects of
assembly language programs have efficiency issues including. The is always a tradeoff between runtime and
program space efficiencies, for example, larger programs (more program memory) often run faster than
functionally equivalent smaller programs. Areas where programming efficiencies are an issues include

o Iterative loops: instructions that check loop conditions and/or handle program flow control
(branching) don’t do meaningful work

o Subroutines: calling/returning from subroutines are program flow control instructions that don’t do
meaningful work. Saving context and saving return addresses (for nested subroutines) also do not
do anything.

 We can write “bullet proof” subroutines that work no matter when and where you call them, which includes
checking all iteration counts and saving/restoring context.

 There are two main efficiency issues in assembly language programming: run-type efficiencies and program
memory space efficiencies. The programmer needs to be aware of this trade-off and program their computer
appropriately.

FreeRange Computer Design Chapter 14

 - 371 -

14.7 Chapter Exercises

1) Briefly describe the difference between address space and the physical address space of a memory access
instruction.

2) Briefly describe what or who decides how much physical address space is available in a given system.

3) Briefly describe what or who delineates the boundaries between the code and data segments in the RISC-V
OTTER MCU.

4) Briefly describe how stack segment can encroach on other segments.

5) Briefly describe if there is actually a physical boundary between any segments in physical memory space.

6) Briefly describe whether it would be possible for a programmer to write programs without understanding
and being familiar with the memory map.

7) Where do you typically find most errors in assembly language programs?

8) What is the question that programmers should always be asking themselves when they’re writing source
code?

9) What are the three steps required in order to use a LUT on the RISC-V MCU?

10) Describe how LUTs can help programmers create efficient code.

11) What’s the general rule to using an iterative construct or not in programming?

12) Briefly describe the overhead associated with iterative loops.

13) Briefly describe the two types of overhead associated with subroutines.

14) Describe the difference between accessing a LUT located at address 0xF0000010 and a LUT located at
0xF00000020. For this problem, assume each LUT has ten locations.

15) Describe the two types of programming efficiencies in the RISC-V MCU assembly language.

16) Describe why assembly code that has more instructions can have a shorter running time than code that has
fewer instructions.

17) Briefly describe the relationship between the number of times a loop iterates, the amount of non-overhead
code in the loop, and the overall efficiency of the loop.

18) Answer the following questions using the code fragment that follows. For this problem, assume the value of
xwords is 0x00000F00.

d) Value of xbytes g) Address of -33 j) Value in x21

e) Value of xwords2 h) Address of 459 k) Value in x22

f) Value of xmore i) Address of 0xDD0 l) Value in x23

.data # data segment directive
xwords: .word 0xAF0,0xBF0,0xCF0,0xDD0,0xFF0, 0x3E0
xbytes: .byte 0xAA,-0x32,58, 23,-33,-121
xwords2: .word 88,99,459
xmore: .half 344,456

.text # text segment directive
 la x21,xbytes
 la x22,xwords2
 la x23,xmore

stop: j stop

FreeRange Computer Design Chapter 14

 - 372 -

19) Answer the following questions using the code fragment that follows. For this problem, assume the value of
bwords is 0x000010F0.

g) Value of chalfs j) Address of 0xFFCC m) Value in x7

h) Value of dbytes k) Address of 48 n) Value in x8

i) Value of ewords l) Address of 34605 o) Value in x9

.data # data segment directive
bwords: .word 0xFF03,0xAB30,0xFDD0,0xEEE0,0xF3DE
chalfs: .half 0xFFFE,0xFFCC,0xFFAA,0xFF11
dbytes: .byte 0x4,-0x6,48, 123,-93,128
ewords: .word 0x4555,34605,-0x8958

.text # text segment directive
 la x7,chalfs
 la x8,dbytes
 la x9,ewords
 addi x7,x7,3
 addi x8,x8,4
 addi x9,x9,5

kill: j kill

20) The following two subroutines generates are described by their hearders.

a) What percent of instruction in the subroutine are considered subroutine overhead?
b) What percentage of the instructions executed by the subroutine are subroutine overhead?
#---
Subroutine: bcd_to_bin

Converts a 3-digit decimal number represented in the lowest three nibbles
of x10 to the equivalent unsigned binary value and places the result in x20.

Tweaked Registers: x20
#---
bcd_to_bin:
init:
store: addi sp,sp,-12 # adjust sp to save 3 regs
 sw x21,0(sp) # save x21
 sw x15,4(sp) # save x15
 sw x10,8(sp) # save x10

 li x21,0x00000F00 # 100’s bit mask
 mv x20,x0 # zero accumulator

t_100: and x15,x15,x21 # mask 100’s nibble
 srli x15,x15,8 # shift to lowest position
loop1: beqz x15,t_10 # go to tens if zero
 addi x20,x20,100 # accumulate 100s
 addi x15,x15,-1 # decrement loop count
 j loop1 # do it again

t_10: lw x15,8(sp) # load original value
 srli x21,x21,4 # shift the mask value to next nibble
 and x15,x15,x21 # mask 10’s nibble
 srli x15,x15,4 # shift left to right-most position
loop2: beqz x15,t_1 # move on if it’s zero
 addi x20,x20,10 # accumulate 10 values
 addi x15,x15,-1 # decrement loop count
 j loop2 # do it again

t_1: mv x15,8(sp) # load original value
 srli x21,x21,4 # shift the mask value to next nibble
 and x15,x15,x21 # mask bits
 add x20,x20,x15 # add value to accumulator

FreeRange Computer Design Chapter 14

 - 373 -

restore: lw x21,0(sp) # restore x20
 lw x15,4(sp) # restore x20
 lw x10,8(sp) # restore x20
 addi sp,sp,12 # adjust sp after restoring 3 regs

done: ret # take it on home

#---
Subroutine: gen_fib_16

Generates the first 16 Fibonacci numbers (starting with 1,1,...) and
stores the numbers as halfwords starting at address stored in x25.

Tweaked registers: none
#--
gen_fib_16:
store: addi sp,sp,-20 # adjust sp to save 5 regs
 sw x20,0(sp) # save x20
 sw x21,4(sp) # save x21
 sw x25,8(sp) # save x25
 sw x15,12(sp) # save x15
 sw x16,16(sp) # save x16

init: li x20,14 # load loop count
 li x21,1 # load initial fib number

 sh x21,0(x25) # store first two fib numbers
 sh x21,2(x25)
 addi x25,x25,4 # adjust the pointer forward

loop: beq x20,x0,done # done yet?
 lhu x15,-4(x25) # get two previous values
 lhu x16,-2(x25)
 add x15,x15,x16 # add two previous value
 sh x15,0(x25) # store result of addition
 addi x20,x20,-1 # loop admin: decrement loop count
 addi x25,x25,2 # increment pointer forward
 j loop # repeat, rinse

restore: lw x20,0(sp) # restore x20
 lw x21,4(sp) # restore x21
 lw x25,8(sp) # restore x25
 lw x15,12(sp) # restore x15
 lw x16,16(sp) # restore x16
 addi sp,sp,20 # adjust sp to back to original value

done: ret

21) Rewrite the following to subroutines and make them “bullet proof”, in other words, safe to call in all
circumstances.

#---
Subroutine: parity

Determines the parity of the value in x10; returns ‘0’ in x20 if parity
is even, otherwise returns ‘1’.

Tweaked Registers: x10, x15, x20
#---
parity:

init: mv x15,x0 # clear an accumulator

loop: beq x10,x0,done # check to see if were done
 andi x15,x10,1 # mask LSB
 add x20,x20,x15 # increment bit count

FreeRange Computer Design Chapter 14

 - 374 -

 srli x10,x10,1 # shift value right 1 bit
 j loop # rinse, repeat

done: andi x20,x20,1 # clear all but LSB
 ret # take it home jimmie

22) Briefly describe under what condition will the following subroutine work as described?

#---
Subroutine: abs_mem

This subroutine multiplies takes the absolute value of signed bytes
in memory starting at the address in x10, and does this for the number
of values represented by the count in x11.

Tweaked registers: none
#--

abs_mem:
store: addi sp,sp,-12 # room on stack
 lw x10,0(sp) # push regs
 lw x11,4(sp)
 lw x12,8(sp)
init: # nothing to init

loop: lb x20,0(x10) # load value
 bge x20,x0,write # br if > 0

 neg x20,x20 # change sign
write: sb x20,0(x10) # store value

admin: addi x10,x10,1 # incr addr
 addi x11,x11,-1 # decr loop count
 j loop # do again

done:
rstore: lw x10,0(sp) # pop regs
 lw x11,4(sp)
 lw x12,8(sp)
 addi sp,sp,12 # adjust sp

 ret # bring it home

FreeRange Computer Design Chapter 14

 - 375 -

14.8 Chapter Programming Exercises

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code, including proper headers for subroutines

1) Write a RISC-V assembly language subroutine that determines how many if all eight nibbles of register x8
have the same parity. The subroutine returns a non-zero value in x8 if all the nibbles have the same parity;
otherwise the subroutine returns zero in x8. Use a LUT for this subroutine. Don’t permanently change any
registers other than x8.

2) Write a RISC-V assembly language subroutine that determines if all eight nibbles of register x8 the same
number of bits that are set. The subroutine returns a non-zero value in x8 if all the nibbles have the same
number of bits set; otherwise the subroutine returns zero in x8. Use a LUT for this subroutine. Don’t
permanently change any registers other than x8.

3) Write a RISC-V assembly language subroutine that determines if all eight nibbles of register x8 the same
number of bits that are set and have even parity. The subroutine returns a non-zero value in x8 if all the
nibbles have the same number of bits set and are even parity; otherwise the subroutine returns zero in x8.
Use a LUT for this subroutine. Don’t permanently change any registers other than x8.

4) Write a RISC-V assembly language subroutine that determines whether the value in x10 is a prime number
or not. The value in x10 always falls into the following range: [2,25]. If the number in x10 is prime, the
subroutine returns a non-zero value in x10; otherwise it returns zero in x10. Use a LUT for this subroutine.
Don’t permanently change any registers other than x8.

5)

FreeRange Computer Design Chapter 15

 - 376 -

15 RISC-V Solved Programming Problems

15.1 Introduction

The only way to learn about assembly language programming is to actually do some assembly language
programming. The previous chapters spoke about the basic mechanics of assembly language programs, but only
provided a few basic examples. This chapter presents nothing new, but presents all of the older assembly
language programming ideas in the context of example problems. The problems start out easy and become more
challenging as the chapter progresses. The idea here is that if you understand all the example programs in this
chapter, then you’ll know about all the tricks associated with assembly language program.

Keep in mind that one of my theories of assembly language programming that if you see and understand a trick
once, you can put that trick in your bag of tricks and then be prepared to whip it out whenever you need it.
Remember, assembly language programming is the same instructions and constructs arranged in different orders
such that your program solves the problem at hand.

Main Chapter Topics

 NO NEW TOPICS: This chapter presents all previously presented stuff in the context
of actual example assembly language programs.

 C PROGRAMMING CONVERSIONS: This chapter show how common C
programming constructes translate into RISC-V assembly language code.

Why This Chapter is Important

This chapter is important because it shows how to solve a wide set of problems by
writing RISC-V assembly language programs.

15.2 Introductory RISC-V Programming Problems

Here are a few introductory RISC-V programming problems. Each solution contains pertinent highlights as
well as the well-commented source code.

Example 15.1: Continuous I/O

Write a RISC-V OTTER assembly language program that continually reads data from the
input port associated with the switches, complements that data, and outputs the data to the
port associated with the LEDs. Consider the address of the switches and LEDs to be
0xC000_0004 and 0xC000_000A, respectively.

Solution: This program tries to do something meaningful in that we’re reading in data from the outside world,
tweaking it, and then writing back out to the outside world. The actual topic of I/O is really important, but
relatively simple on the programming level. We’ll get into more details later, but for now, just go with it.

Here’s the quick I/O overview. The RISC-V MCU uses “memory-mapped” I/O, which is one of several
common approaches to performing I/O on a computer system. The notion here is that I/O and reading/writing
memory use the same instructions. Recall that the RISC-V MCU has a memory that programmers can use to

FreeRange Computer Design Chapter 15

 - 377 -

store intermediate values. What makes this work is that the computers configure the hardware such that when
it sees a particular address, it knows that it needs to perform I/O rather than performing a memory read or
write. This being the case, when we load a value from that particular address in memory (using a load
instruction), the instruction accesses the data from the outside world and places it in the specified source
register. When we store a value at a that particular address in memory (using a store instruction), the
instruction takes the data from a general purpose register and makes it available to the outside world to do
something with. Lots more on this later; for now: input = load; output = store.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#---
Read in data from the port connected to the switches, compliment
the data, then output the data to the port connected to the LEDs.
The port addresses for the I/O is listed in the code.
#---
.text # we’re in the text segment

init: li x10,0xC0000004 # input port for switches
 li x11,0xC000000A # output port for LEDs

main: lw x15,0(x10) # input data from switches port to x15
 xori x15,x15,-1 # compliment data
 sw x15,0(x11) # output data to LED port
 j main # do it again

Figure 15.1: Solution to this example problem.

Solution Notes: Fun stuff embedded in the solution.

 The first five lines provide a nice explanation of what is going on. All good programs
include a very neat header such as this.

 Line (05) uses an assembler directive to specify that we’re in the “text” segment. All code
goes in the text segment; this will make more sense later when we talk more about memory
segmentation in the MCU.

 The most straight forward way to get data from the outside world is to place the address
associated with the switches and LEDs into a register. The li instruction stands for “load
immediate”; it loads the immediate data specified in the instructions in lines (07-08) into the
listed registers. The x10 & x11 registers are arbitrary. Note that someone needs to give you
the programmer these addresses. Some hardware person configured them; that person needs
to state how to access I/O in the hardware.

 The actual input instruction is the lw instruction on line (10). The first operand specifies
which register is written with the external data; the second operand is the address. The
“0(x10)” notation specifies the port address, which is officially zero added to the value in
x10. A previous instruction put the address value into x10.

 The input data is then complimented using an xori instruction, which stands for “exclusive
OR immediate”. The instruction reads the value from the source operand (the right-most
x15), does a bit-wise exclusive OR with -1, and stores the value into x15. The assembler
represents negative numbers using 2’s compliment notation, so -1 is encoded as all 1’s
(0xFFFFFFFF). The instruction takes the data from x15, operates on it, then stores the data
back into x15.

 Line (12) is the output operation. Note that it uses a “sw” instruction, which stands for
“store word”. The sw instruction takes the data from register x15 and makes it available to
the outside world.

 The problem specified to do this operation over and over again, so line (13) directs program
control back to the line (10), which is the instruction that performs an input. Note that we
don’t go back to line (07) because that data is already in the registers and no instruction
changed it.

FreeRange Computer Design Chapter 15

 - 378 -

 All the instructions and comments are nicely aligned.

 All labels start in the left-most column.

 All assembler directives start in the left-most column

 We used two pseudoinstructions in this code: li & j. We could have used the not
pseudoinstruction in place of the xor instruction. The code in below shows the equivalent
pseudoinstruction.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)

#---
Read in data from the port connected to the switches, compliment
the data, then output the data to the port connected to the LEDs.
The port addresses for the I/O is listed in the code.
#---
.text # we’re in the text segment

init: li x10,0xC0000004 # input port for switches
 li x11,0xC000000A # output port for LEDs

main: lw x15,0(x10) # input data from switches port to x15
 not x15,x15 # compliment data
 sw x15,0(x11) # output data to LED port
 j main # do it again

Figure 15.2: An alternate solution to this example problem.

Example 15.2: Continuous Output Sequence

Write a RISC-V OTTER assembly language program that continually outputs the following
sequence to the output port specified by address 0xC000_00D0. Don’t use more than two
registers in your design.

{…0x1, 0x2, 0x4, 0x8, 0x4, 0x2, 0x1, 0x2…}

Solution Notes: Fun stuff embedded in the solution. There are definitely better approaches to this problem, but
you don’t have those items in your toolset as of yet.

 The first five lines provide a nice looking header. Nice a judgment call, but I’m practicing to
be an administrator so I consider all my work in the nice to great range.

 The first thing to note when doing this problem is that the sequence is a single bit in the LSB
of a number that moves to the left and back to the right until you want to hurl. This reminds
us of a shifting left and shifting right operations that we loved so much from our days
working with shift registers. Lucky for us programmers there are instructions in the RISC-V
instruction set that shift left and right. These instructions are the slli and srli
instructions, which are mnemonics for “shift left logical immediate” and “shift right logical
immediate”.

 There is always an issue of what the processor stuffs in the right side of that data when it
shifts left (and vice-versa with the shift right). Does it stick in a ‘1’ or a ‘0’? There is no
magic to this, you need to check the RISC-V spec to find out. After you do that, you’ll be
relieved to know that the instructions shove in ‘0’s’, so the instructions are perfect for this
problem.

 There is also plain shift left and shift right instructions (sll & srl), which use the lowest
five bits of a register location as the number of bits to shift. We can’t use these for this

FreeRange Computer Design Chapter 15

 - 379 -

problem because the problem nefariously stated we could only change two registers. Be sure
to enhance your excitement by checking out these instructions in the RISC-V spec.

 The set of shift lefts and rights synthesize the required values; the values are then output to
the specified output port.

 To repeat the sequence forever, jump back to the instruction associated with the main label
to allow the fun to continue.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

#---
Outputs the following sequence to output port 0xC00000D0:

{…0x1, 0x2, 0x4, 0x8, 0x4, 0x2, 0x1, 0x2…}
#--
.text

init: li x10,0xC00000D0 # store address in register
 li x20,0x01 # initial value of sequence

main: sw x20,0(x10) # output first value in sequence (1)
 slli x20,x20,1 # shift left 1 spot
 sw x20,0(x10) # output second value in sequence (2)
 slli x20,x20,1 # shift left 1 spot
 sw x20,0(x10) # output second value in sequence (4)
 slli x20,x20,1 # shift left 1 spot
 sw x20,0(x10) # output second value in sequence (8)

 srli x20,x20,1 # shift right 1 spot
 sw x20,0(x10) # output second value in sequence (4)
 srli x20,x20,1 # shift right 1 spot
 sw x20,0(x10) # output second value in sequence (2)
 srli x20,x20,1 # shift right 1 spot
 j main # jump to first output ad nasuem

Figure 15.3: Solution to this example problem.

Example 15.3: Half Swap

Write a RISC-V assembly language subroutine that swaps the upper two bytes in x10 with
the lower two bytes in x10.

Solution Notes: Fun stuff embedded in the solution. There are arguably better ways to do to this problem; we’ll
take the most straightforward approach.

 This is a subroutine, so we give it a nice header. The header includes the name of the
subroutine, a brief description of the subroutine, and a list of what registers the subroutine
changes. All this information is massively important to anyone who may want to your
subroutine. The notion here is that the registers are shared by all the code, so if the subroutine
changes a register that the calling code is working with, that is really ungood. There are ways
to prevent this, but that is a “stack” issue; we’ll deal with that later.

 The subroutine name is on line (08); it is a simple label, which means there is a value
associated with it, and that value is the location in program memory of the first instruction in
the subroutine. For what it’s worth, the labels “init” and “Big_swap” have the same numerical
value; we include both so as not to confuse the human readers of the code.

 The code has three initialization related instructions on lines (10-12). The two li instructions
are to place the mask values into registers. We need to do that because the andi instruction has
a limited amount of space for mask values, so we opt to put the mask value in a register and

FreeRange Computer Design Chapter 15

 - 380 -

use the and instruction for the masking operations. The code on line (12) makes a copy of the
register with the data we need to swap.

 The swapping action is this: we clear the upper two bytes of one register and shift the result
left 16 places, clear the lower two byte of the other register and shift the result right by 16
placed, then combine the results. The slli and srli instructions handle the shifting
operations.

 The results of the two shifting operations are combined using an OR instruction on line (20).
We could have combined them with an add instruction or an or instruction; the choice is
arbitrary.

 We conclude the subroutine with a ret instruction, which stands for “return”. This is a
pseudoinstruction, but it works rather nicely if we’ve called the instruction using the call
pseudoinstruction (more on that later).

 The “done” label is never called; it serves as a comment to human readers of the code.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

#---
Subroutine: Big_swap

This subroutine swaps the upper two bytes with the lower two bytes
in register x20.

Tweaked Registers: x10, x15, x20, x21
#--
Big_swap:

init: li x20,0x0000FFFF # lower bit mask
 li x21,0xFFFF0000 # upper bit mask
 mv x15,x10 # make a copy

upper: slli x15,x15,16 # move lower 2 bytes 16 bits to left
 and x15,x15,x21 # clear lower 16 bits

lower: srli x10,x10,16 # move upper 2 bits 16 bits to right
 and x10,x10,x20 # clear upper 16 bits

glue: or x10,x15,x10 # tack two results together

done: ret # take it on home

Figure 15.4: The solution to this example.

But of course, there is a better approach. We presented the previous solution to show an example of bit
masking. The reality is that the shift left and shift right instructions stuff in 0’s to the register when they
shift (the spec describes this characteristic). That means we do not need to use masks in this problem.
This problem also provides an alternate solution to this example. Here are some comments.

 The code is shorter because we removed the instructions that initialized the masks, and the
instructions that do the actual masking.

 We kept the labels, as they are forms of commenting: the make the code easier to understand
but do not increase the code length.

 There is less code in this subroutine so it executes faster than the previous code, but provide
the exact same result.

FreeRange Computer Design Chapter 15

 - 381 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

#---
Subroutine: Big_swap

This subroutine swaps the upper two bytes with the lower two bytes
in register x20.

Tweaked Registers: x10, x15
#--
Big_swap:

init: mv x15,x10 # make a copy

upper: slli x15,x15,16 # move lower 2 bytes 16 bits to left

lower: srli x10,x10,16 # move upper 2 bits 16 bits to right

glue: or x10,x15,x10 # tack two results together

done: ret # take it on home

Figure 15.5: An alternative solution to this example.

Example 15.4: Conditional Operations

Write a RISC-V assembly language subroutine that does the following based on the value in
x20.

 If the value in x20 = 64

o Divide value in x20 by 8

 If the value in x20 = 128

o Divide the value in x20 by 32

 Otherwise, make x20=0

Solution Notes: Fun stuff embedded in the solution. This demonstrates a classic case construct, which of course
if a special form of an if/else construct.

 The subroutine has a header that include pertinent information that other programmers who are
reading the code can learn from, particularly the list of registers that the subroutine changes.

 The subroutine name is on a line by itself, which makes it clear to human readers; the
subroutine name is a label that the assembler uses to transfer program control to the subroutine
when it is called from another section of the program.

 Line (13) loads one of the values to compare into a register. The comparison is done on the
next line. If the value in x20 is not equal to 64, the branch on line (14) sends the code to the
next test, which is on line (18). If the value is equal to 64, the value is divided by 8 by shifting
the value right by 3 using the srli instruction. Because the code found a match in the values,
it’s not going to find another match, so the program flow control jumps to the ret instruction.

 The same general approach is taken looking for the second match starting at the check_128
label. Note that the code shifts right 5 places to divide by 32.

 The check_64 and check_128 labels and the default label for the cases for the case statement
that this code uses. It smells like C code to me; maybe it’s the same in less useful languages.

FreeRange Computer Design Chapter 15

 - 382 -

 The two blocks of code at starting at check_64 and check_128 labels are very similar. Quite
often when you’re writing code, you repeat the same functionality. This sort of means you can
do it more generically, but it for sure means you can copy your code. Don’t try this if you’re a
computer science major, because copying your own code is plagiarism and could get you
expelled, killed, or worse.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

#---
Subroutine: case_construct

This subroutine is an example of a case statement. If the value in x20
is equal to 64, then the value is divided by 8. If the value in x20 is
equal to 128, then the value is divided by 32. If neither of those
tests are true, then the subroutine sets the value of x20 to 0. The
does the same for the other test.

Tweaked Registers: x10, x20
#--
case_construct:

check_64: li x10,64 # load value to compare
 bne x10,x20,check_128 # check to see if equal
 srli x20,x20,3 # divide by 8 (2^3)
 j done # done

check_128: li x10,128 # load value to compare
 bne x10,x20,default # check to see if equal
 srli x20,x20,5 # divide by 32 (2^5)
 j done # done

default: mv x20,x0 # clear register
done: ret

Figure 15.6: A solution to this example problem.

15.3 More Advanced RISC-V Programming Problems

This section continues with more advanced programming problems. The previous sections provided a basis for
many of the standard RISC-V MCU programming structures. We sincerely hope that after staring at these
problems, you did not find them too complicated. Recall that the nice thing about assembly language
programming is that nothing can really become too complicated based on the inherently simplistic nature of the
assembly language programming.

Example 15.5: BCD to Binary Conversion

Write a RISC-V assembly language subroutine that converts a BCD to binary conversion on
x10. Consider the three least significant nibbles in x10 to represent a 3-digit decimal
number. Place converted binary number in x20. Note that a nibble is half a byte, or 4-bits.
Recall that we use BCD to represent decimal numbers, which requires a minimum of 4 bits

Solution Notes: Fun stuff embedded in the solution. This is a very common and useful conversion. There are
cleaner ways to do this, but this is good enough for now. This is the most meaningful and useful program up
until now, but it is still “missing” some stuff; we’ll talk about the missing stuff later.

 Once again, nice header providing useful information regarding the subroutine.

 This is a non-trivial subroutine, so we need to do some initialization. We use the init label to note the
code that falls into the category of initialization.

FreeRange Computer Design Chapter 15

 - 383 -

 We first need to save a copy of the data we need to convert, which we do with the mv pseudoinstruction
on line (11). We often refer to this as making a “working copy” of the data. This subroutine is going to
tweak the data, so we need to ensure that we don’t lose the original data before we’re done with it.

 We stuff our nibble masks in registers starting at line (12). Yes, definitely better ways to do this in case
you’re thinking this is klunky. We’ll definitely become cleverer with our coding once we get more
assembly language programming skills in our bag of tricks.

 This is a classic “accumulator” problem. As with most accumulator problems, we need to start the
accumulator at 0, which is what the mv instruction on line (15) does.

 The BCD values provide the count of the number of 100’s, 10’s, and 1’s. The general approach of this
code is to keep adding one of those values for each value in the nibble location. This means there is a
loop to accumulate 100’s, followed by a loop to calculate 10’s, and then we simply add the 1’s as the
1’s has no associated weighting as the 100’s and 10’s does.

 The 100’s loop starts at line (17) where we see a label which is there for commenting purposes (no code
ever jumps to it. We first mask the bits we’re interested in with the and instruction on line (17). We then
shift the resulting 100’s nibble to the four LSB positions of the register. At that point, the code on lines
(19-22) form a while loop that adds 100 to the accumulator each iteration. The BCD value is effectively
the loop count, so we must decrement it each iteration. We then jump to the comparison instruction on
line (19). In this case, we do use the loop1 label as the place to j instruction on line (22) passes program
control to.

 The code for the 10’s loop is similar to the code for the 100’s loop, so we’ll skip the painful detail. The
one interesting thing to note is that the first thing we need to do is restore the original value on line (24),
which we originally saved on line (11).

 The 100’s and 10’s BCD nibbles have weights associated with the counts, but the 1’s nibble does not.
This being the case, we don’t require a loop as we did with the 100’s and 10’s, we simply add the 1’s
nibble to the accumulator. We do have to mask the higher-order nibble before we accumulate the 1’s,
which we do on line (33).

FreeRange Computer Design Chapter 15

 - 384 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

#---
Subroutine: bcd_to_bin

Converts a 3-digit decimal number represented in the lowest three nibbles
of x10 to the equivalent unsigned binary value and places the result
in x20.

Tweaked Registers: x15, x20, x21, x22, x23
#---
bcd_to_bin:

init: mv x15,x10 # save a copy
 li x21,0x00000F00 # 100’s bit mask
 li x22,0x000000F0 # 10’s bit mask
 li x23,0x0000000F # 1’s bit mask
 mv x20,x0 # zero accumulator

t_100: and x15,x15,x21 # mask 100’s nibble
 srli x15,x15,8 # shift to lowest position
loop1: beqz x15,t_10 # go to tens if zero
 addi x20,x20,100 # accumulate 100s
 addi x15,x15,-1 # decrement loop count
 j loop1 # do it again

t_10: mv x15,x10 # restore original value
 and x15,x15,x22 # mask 10’s nibble
 srli x15,x15,4 # shift left to right-most position
loop2: beqz x15,t_1 # move on if it’s zero
 addi x20,x20,10 # accumulate 10 values
 addi x15,x15,-1 # decrement loop count
 j loop2 # do it again

t_1: mv x15,x10 # get original value
 and x15,x15,x23 # mask bits
 add x20,x20,x15 # add value to accumulator

done: ret # take it on home

Figure 15.7: A solution to this example problem.

Figure 15.8 provides an alternate solution for this example. What we did was use one register for the mask value
rather than three registers. The length of the code is the same and it has the same running time, but the subroutine
is more “space efficient” because it uses less registers. This becomes a more important issue when we start
writing our subroutines “more better”. More on that later.

 Lines (23) and (32) shift the single mask right by four bits. This creates the same mask as before but it
uses less registers. Pretty clever. I wish I had thought of that the first time.

FreeRange Computer Design Chapter 15

 - 385 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

#---
Subroutine: bcd_to_bin

Converts a 3-digit decimal number represented in the lowest three nibbles
of x10 to the equivalent unsigned binary value and places the result
in x20.

Tweaked Registers: x15, x20, x21
#---
bcd_to_bin:

init: mv x15,x10 # save a copy
 li x21,0x00000F00 # 100’s bit mask
 mv x20,x0 # zero accumulator

t_100: and x15,x15,x21 # mask 100’s nibble
 srli x15,x15,8 # shift to lowest position
loop1: beqz x15,t_10 # go to tens if zero
 addi x20,x20,100 # accumulate 100s
 addi x15,x15,-1 # decrement loop count
 j loop1 # do it again

t_10: mv x15,x10 # restore original value
 srli x21,x21,4 # shift the mask value to next nibble
 and x15,x15,x21 # mask 10’s nibble
 srli x15,x15,4 # shift left to right-most position
loop2: beqz x15,t_1 # move on if it’s zero
 addi x20,x20,10 # accumulate 10 values
 addi x15,x15,-1 # decrement loop count
 j loop2 # do it again

t_1: mv x15,x10 # get original value
 srli x21,x21,4 # shift the mask value to next nibble
 and x15,x15,x21 # mask bits
 add x20,x20,x15 # add value to accumulator

done: ret # take it on home

Figure 15.8: An alternate solution to this example problem.

Example 15.6: Parity Determination

Write a RISC-V assembly language subroutine that determines the parity of the value in
x10. If x10 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’.

Solution Notes: Fun stuff embedded in the solution. This is another handy function.

The overall algorithm is this: mask LSB, increment count with LSB, shift right original value until the original
value is zero. The value in the LSB of the count is the desired parity value returned to the calling code. There are
many approaches to calculating parity, this is one of the easier.

 Subroutine initialization is only a matter of clearing a register that the subroutine uses as
an accumulator, which occurs on line (10).

 The main body of the loop is a while loop. The while loop counts the number of bits that
are set in x10. We implement the while loop as a loop with an unknown number of
iterations; the idea here is that we’ll keep counting bits in x10 so long are x10 is non-zero.
We could have modeled this as a loop with a known count (namely, 32), but the way we
modeled it ensures it will run faster in the average case. Note that this approach only
works because we know the RISC-V shifting operations shift ‘0’s into the register that is
being shifted.

FreeRange Computer Design Chapter 15

 - 386 -

 Line (13) masks the LSB of x10 and stores the result in x15. Line (14) uses the result of
the masking operation to increment a count variable stored in x20.

 Line (15) adjust the original value by shifting it to the right by one bit, then jumps to the
check instruction on line (12).

 The done label on line (18) clears the upper 31 bits, thus leaving the required parity bit in
x20.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---
Subroutine: parity

Determines the parity of the value in x10; returns ‘0’ in x20 if parity
is even, otherwise returns ‘1’.

Tweaked Registers: x10, x15, x20
#---
parity:

init: mv x15,x0 # clear an accumulator

loop: beq x10,x0,done # check to see if were done
 andi x15,x10,1 # mask LSB
 add x20,x20,x15 # increment bit count
 srli x10,x10,1 # shift value right 1 bit
 j loop # rinse, repeat

done: andi x20,x20,1 # clear all but LSB
 ret # take it home jimmie

Figure 15.9: A solution to this example problem.

Example 15.7: Rotate Left Implementation

Write a RISC-V assembly language subroutine that rotates the value in x10 left by the value
in x11. Assume the value in x11 is going to be [0,32].

Solution Notes: Fun stuff embedded in the solution. This is another handy function. The RISC-V ISA currently
does not include a rotate instruction. To combat this injustice, we need to implement a rotate in code. Yes, very
clever algorithm. It seems to work despite its admitted cleverness.

 The general approach of the subroutine is to use a shift left to do most of the rotate, but to
catch the bits that we normally shift off into a register that we later add back at the other end of
the original data.

 The instruction on line (10) places the length of the RISC-V registers into a register. We’ll use
this value to find out how many bits we need to shift in the right direction. The actual
calculation is done on line (11). The result of this subtraction essentially finds the complement
of the value to shift based on 32. The result is the number of bits to shift in the other direction.

 We need to operate on two different registers, for we make a working copy on line (12).

 Line (14) left shifts off the number of bits in the register passed to the subroutine (x12). We
already saved the original number in x30, so we shift the value that number in the other
direction, leaving the bits that were shifted off in line (14) in the lower x11 bits of x30.

 We have both the values remaining in the sent value after the shift (x10) and the bits we shifted
off at the lower end of x30. We then complete the subroutine by gluing these values together
with the or instruction on line (17).

FreeRange Computer Design Chapter 15

 - 387 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#---
Subroutine: rot_left

This routine performs a rotate left on the value in x10 by rotating
x10 by the value provided x11. The value in x11 must be [0,32].

Tweaked Registers: x25, x30, x10
#---
rot_left:

init: li x25,32 # 32 is the length of registers
 sub x25,x25,x11 # get the complement of 32
 mv x30,x10 # copy x10 to working register

 sll x10,x10,x11 # shift the lower bits left
 srl x30,x30,x25 # shift the upper bits right

 or x10,x30,x10 # glue the results together

done: ret # go home, all the way home

Figure 15.10: A solution to this example problem.

Example 15.8: Classic LED Bouncer

Write a RISC-V assembly language program lights one LED at a time. The program makes
it appear as if the lighted LED moves left through 16 LEDs, the back to the right, then back
to the left, etc. Assume there are 16 LEDs and the output port address of those 16 LEDs is
0xC0000080.

Solution Notes: Fun stuff embedded in the solution. This is a fun problem: it’s the bouncing LED problem,
which has some classic programming constructs. Many approaches to doing this problem. Be sure to check out
the solution on the simulator of your choice.

 On lines (08) – (10), we place the output port address in a register so we can later use a store
instruction for output of data to the LEDs. We output 32 bits to 16 LEDs, for all but one of the
LEDs is off. We use x10 for the one LED that is one so we initialize it to ‘1’ (only right-most
LED on). We finish up with initializing register x15 to 15, which we later use to discern when
we’re done with one left-to-right or right-to-left cycle. Note that we use the init label to
indicate that chunk of code is initialization code.

 The algorithm officially starts on line (12) where we initialize a local loop count to 0. This is
truly an initialization, but we place the code near one of the loops because we jump back to
this instruction after we finish a right-to-left and a left-to-right cycle.

 Line (13) shows the first output; we output using a sw (store word) instruction. The data we
output is the LED value; we output it to the output port address.

 After the output, we do some administrative tasks. We first shift the register holding the LED
value to the left on line (14). We then increment the loop count on line (15). The final loop
administration operation is to jump if the count is not equal to the maximum shift value, which
we do on line (16).

 If the branch on line 16 is not taken, then we drop through to the other block of code, which
shifts the lit LED from the left to the right. We start this process on line (18) by resetting the
loop counter.

FreeRange Computer Design Chapter 15

 - 388 -

 The second loop is similar to the first loop except we are shift right one bit at a time. When
program controls falls through the second loop on line (22), we jump back to initialize the first
loop.

 Note that the overall form of the program is an initialization followed by two do-while loops.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

#---
Program: led bouncer

The program moves a single LED back and forth on an assumed 16 LED
display. The LED output port is 0xC0000080

Tweaked Registers: x10, x15, x16, x30
#---
init: li x30,0xc0000080 # put output port address in register
 li x10,1 # initialize LED bounce register
 li x15,15 # x15 used as counter register

loop: mv x16,x0 # clear counter register
left: sw x10,0(x30) # output current LED value
 slli x10,x10,1 # shift LED left one bit position
 addi x16,x16,1 # increment bounce count
 bne x16,x15,left # check loop (goes 15) times

 mv x16,x0 # init bounce count
right: sw x10,0(x30) # output current LED value
 srli x10,x10,1 # shift right one bit position
 addi x16,x16,1 # increment loop count
 bne x16,x15,right # branch to inner loop if loop not 15
 j loop # done with right, go to left

Figure 15.11: A solution to this example problem.

Example 15.9: Conditional LED Display

Write a RISC-V assembly language program lights monitors the 16 switches connected to
the RISC-V MCU, such as the ones on the development board. Consider the 5 right-most
switches to form a 5-bit digital number. The program outputs to the LEDs continuously
according to the following:

 Switches = 0: turn on right-most four LEDs

 Switches = 1: turn on the second to right-most four LEDs

 Switches = 2: turn on the second to left-most four LEDs

 Switches = 3: turn on left-most four LEDs

 Otherwise, turn off all LEDs

Consider the address of the switch input port and LED output port to be 0xC0000040 and
0xC000008, respectively.

Solution Notes: Fun stuff embedded in the solution. This is a classic case statement problem, that does not do
too much exciting as do some of the previous problems up to this point.

 On lines (12) – (15), we do a bunch of initialization. First we place the port addresses registers.
Then we initialize a mask for input data, which clears all but the first three bits. Lastly, we
clear x20, which we later use as a count register.

FreeRange Computer Design Chapter 15

 - 389 -

 The code starting at main is essentially more initialization code, but it inits each iteration,
which means it reinitializes items that were first initialized in the init code, but the values were
changed by the body of the program.

 Line (20-21) inputs the data and masks all but the three LSBs. Recall that we only need to look
for 0-3 for this case statement.

 The chk_x labels delineate the separate parts of the program where we’re looking for values 0-
3. These sections of code form the cases we’re looking for. The output instruction (sw) on line
(43) represents the default condition were we turn off all LEDS.

 We use bne instructions to compare the input to the desired value. We compare the input to a
counter that we increment in each ch_x checking section of code.

 We need to output a 4-bit chunk of LEDs that are on, so we keep a register with the desired
output value. With each checking section, we use the slli instruction to shift that chunk of
data to the correct position for outputting.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)

#---
Program: switch input monitor

The program moves monitors the switches associated with the system. There
are 16 switches, which the program reads and then outs a value to the LEDs
according to: value 0, 1, 2, 3, none; the corresponding outputs are
a set of four LEDs starting from the right and moving to the left. The c
default value is all LEDs off.

Tweaked Registers: x15, x16, x20, x30, x31
#---

init: li x30,0xc0000040 # put switch input port address in reg
 li x31,0xc0000080 # put LED output port address in reg
 li x15,0x00000007 # mask for switches
 mv x20,x0 # clear counter register for input compares

main: li x16,0x0000000F # start value to output
 mv x20,x0 # clear counter register for input compares
 lw x10,0(x30) # get input data
 and x10,x10,x15 # mask off lower 3 bits

chk_0: bne x10,x20,chk_1 # check input for 0
 sw x16,0(x31) # output to LEDS
 j main

chk_1: addi x20,x20,1 # increment check count
 bne x10,x20,chk_2 # check input for 1
 slli x16,x16,4 # value to output
 sw x16,0(x31) # output to LEDS
 j main

chk_2: addi x20,x20,1 # increment check count
 bne x10,x20,chk_3 # check input for 2
 slli x16,x16,8 # value to output
 sw x16,0(x31) # output to LEDS
 j main

chk_3: addi x20,x20,1 # increment check count
 bne x10,x20,default # check input for 3
 slli x16,x16,12 # value to output
 sw x16,0(x31) # output to LEDS
 j main

default: sw x0,0(x31)
 j main

Figure 15.12: A solution to this example problem.

FreeRange Computer Design Chapter 15

 - 390 -

As with all code you write, there’s probably a “better” way to write the code. Keep in mind that the notion of
“better” has many definitions. The thing to note for this solution is that the various case clauses look very
similar. Anytime you see this in the code, you can often time structure you code to use loop constructs rather
than the straight through code in the original solution. The code in Figure 15.13 is an attempt to structure the
code to be more space efficient. This solution obviously requires less instructions, but… it requires more register
(one more). The funny thing in programming is that there are always tradeoffs. The other trade off in the solution
of Figure 15.13 is that it runs a bit slower than the first solution, which is because there is always some overhead
associated with loops, which means there are more instructions that say: “go somewhere” rather than say: “do
something”.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

#---
Program: switch input monitor

The program moves monitors the switches associated with the system. There
are 16 switches, which the program reads and then outs a value to the LEDs
according to: value 0, 1, 2, 3, none; the corresponding outputs are
a set of four LEDs starting from the right and moving to the left. The c
default value is all LEDs off.

Tweaked Registers: x15, x16, x20, x21, x30, x31
#---

init: li x30,0xc0000040 # put switch output port address in register
 li x31,0xc0000080 # put LED output port address in register
 li x15,0x00000007 # mask for switches
 mv x20,x0 # clear counter register for input compares
 li x21,4 # the end count

main: li x16,0x0000000F # start value to output
 mv x20,x0 # clear counter register for input compares
 lw x10,0(x30) # get input data
 and x10,x10,x15 # mask off lower 3 bits

check: bne x10,x20,not_eq # check input for 0
 sw x16,0(x31) # output to LEDS
 j main

not_eq: addi x20,x20,1 # increment compare count
 beq x20,x21,default # do default if count is 4
 slli x16,x16,4 # count != 4, shift output val
 j check # look for next number

default: sw x0,0(x31)
 j main

Figure 15.13: A solution to this example problem.

Example 15.10: Memory Data Swap

Write a RISC-V assembly language subroutine that swaps the data in two memory
locations. Consider the data to be words (4-bytes) that reside at the addresses given by the
values in x20 and x21.

Solution Notes: Fun stuff embedded in the solution. Note that this is a classic case of using what intelligent &
useful higher-level languages such a C refer to as pointers. This provides classic genericity when work with data
sets that you can’t obtain from working with registers alone.

FreeRange Computer Design Chapter 15

 - 391 -

 After the great subroutine banner, we include an init label in the program. We do this mostly
out of habit, as you could argue that we really don’t need to initialize anything.

 Lines (11-12) show the loading of data from the addresses given in the x20 and x21 registers
into two working registers x30 & x31.

 Lines (14-16) show the classic XOR in-place swap trick, showcasing the magic of the XOR
function.

 Lines (18-19) uses the address still store in x20 & x21 to store the data back in memory.

Post Mortem: note that the general structure of the program was to transfer something from memory to
registers, tweak with the value in registers, then transfer the values back to memory. The idea here is
that we the only operations we can do with memory is loading and storing; all the interesting bit
crunching takes place using registers.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

#---
Subroutine: mem_word_swap

Swap data in the memory location specified by the contents of
registers x20 & x21 (x20 & x21 thus contain memory address values).

Tweaked registers: x30,x31
#--
.text

mem_word_swap:
init: lw x30,0(x20) # get data from memory
 lw x31,0(x21)

 xor x30,x30,x31 # the classic xor in-place data swap
 xor x31,x31,x30
 xor x30,x30,x31

 sw x30,0(x20) # store the data back at the addresses
 sw x31,0(x21) # the data was obtained from

 ret # take on home

Figure 15.14: Solution to this example problem.

Example 15.11: Memory Data Averaging

Write a RISC-V assembly language subroutine that calculates the average of 32 values
(words, so 4 bytes) in memory. The starting address of the data is passed to the subroutine
in register x10; pass the average back to the calling routine by placing the calculated
average in x20.

Solution Notes: Fun stuff embedded in the solution. All we know about this problem is the starting address of
the data to average, and the number of items to average. Sending data to the subroutine is often referred to as
passing data to the subroutine; returning data from the subroutine is often referred to as returning data from the
subroutine. Exciting stuff.

 This is a subroutine that requires accumulating values, which means we first must clear the
accumulator. We use x20 as the accumulator and clear it on line (09).

 This is a problem where we iterate a given number of times (32), so we use x15 to hold that
count and initialize x15 on line (10).

FreeRange Computer Design Chapter 15

 - 392 -

 Although the problem does not state it, we’ve decided to save the first address value in x10 by
copying it to another register, which we do on line (11).

 The main loop starts on line (13) with a conditional branch (beq). We’re modeling this
solution using a while loop; since we know we’ll always be adding 32 items; we could have
easily used a do-while loop for this solution.

 We first get the data from memory using a lw instruction on line (14), we then accumulate the
loaded value on line (15). These two lines form the body of the loop; all the other stuff in the
loop is what we refer to as loop administration.

 For loop administration, we first decrement the loop count on line (16), then advance the
address of data we’re loading from memory on line (17). The next line of loop admin is the
unconditional branch on line (18). The final line of loop admin is the conditional branch on
line (13).

 When the branch condition evaluates are true, we branch to the instruction associated with the
done label. This srli instruction performs the divide by 32. Very handy; we must be thankful
that the person who created this problem made the divide easy, as a divide by 32 is simply a
barrel shift right five bit locations.

 The restore label is used to indicate we’re restoring some registers to the values they had when
the subroutine started. There are better ways to do this, but this works for now. Please don’t
tell Jeffrey.

 Note that since we “restored” the original value of x10, we don’t include it in the tweaked
register list.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

#---
Subroutine: avg_32

Averages 32 words in memory starting at the address in x10. The
result is stored in x20.

Tweaked registers: x20,x15,x16,x11
#--
avg_32:
init: mv x20,x0 # clear accumulator
 li x15,32 # number to sum
 mv x16,x10 # copy original address

loop: beq x15,x0,done # leave if finished
 lw x11,0(x10) # get value from memory
 add x20,x20,x11 # accumulate
 addi x15,x15,-1 # decrement loop count
 addi x10,x10,4 # advance addr to next data
 j loop # done with iteration, do again

done: srli x20,x20,5 # divide by 32
restore: mv x10,x16 # restore original x10 address

 ret # come on up to the house

Figure 15.15: Solution to this example problem.

FreeRange Computer Design Chapter 15

 - 393 -

Example 15.12: Fibonacci Sequence Generator

Write a RISC-V assembly language subroutine that generates the first 16 Fibonacci
numbers (starting with 1,1) and stores those values as unsigned halfwords starting at address
x25 in memory. Don’t allow this subroutine to permanently change any register value.

Solution Notes: Fun stuff embedded in the solution. We all know how much students love solving problems
having to do with Fibonacci numbers. So here’s the solution in RISC-V assembly language.

 I’ve of course plopped the solution down; the truth is that I first generated a flowchart before I
wrote the code. After that, I wrote the code in two main phases. I first wrote code to solve the
problem. I then added the code I that saved the context of the MCU when the subroutine was
called. This is essentially a fancy way of saying the subroutine saved all the register that are
changed in the body of the subroutine on the stack before executing doing anything having to
do with the Fibonacci sequence. Moreover, once we completed what the problem was asking
for, we restored the registers we used in the subroutine back to their original values.

 The first part of any subroutine is the initialization, which we casually label with “init”. For
most of these problems, initialization includes several phases. First we save any registers we’re
using in the subroutine. Then we save the return address ra (x1) if the subroutine calls other
subroutines. Then we initialize important things in the code such as loop counters,
accumulators, etc. This subroutine doesn’t call another subroutine so we don’t have to save the
ra register.

 The subroutine uses five registers, so we make room on the stack so we can safely add these
registers to the stack. We back the sp up 20 bytes so that we can store 5 registers (recall that
each register comprises of four bytes) on line (10). We then proceed to save the five registers
(in no particular order) onto the stack, which we do on lines (11-15).

 The next part of the initialization is to put the loop count into a register, which we do on line
(17). We only place the count at 14 even though we intend to generate of Fibonacci sequence
comprising of 16 values because we hardcode the first two values in the sequence.

 The first two numbers in the Fibonacci sequence are one, so we opt to place ‘1’ in a register for
easy later access. This makes sense because we need the value we want to write to memory to
be in a register.

 We store the first two values in the Fibonacci sequence on lines (20-21). We follow that by
adjusting the address pointer x25 by 4, which represents to halfwords We could have done
these three instructions in different orders using different offsets; there’s nothing magical about
the approach I took in these lines.

 After we’ve initialized the first two values in the Fibonacci sequence, we’re ready to enter the
“algorithmic” portion of the subroutine. This is because unlike the first two values in the
sequence that we assigned, we’re not ready to calculate the remaining Fibonacci values from
previous Fibonacci values. We of course do this all this in a loop, and we find it easiest to use a
while loop. We first check to see if we’re done with the loop starting on line (24).

 The first part of the algorithm requires up to get the last two values in the sequence from
memory, which we do on lines (25-26) we grab unsigned halfwords (lhu) as the problem
specifies. The address was already updated, so we use the offset of these two instructions to
reach back before the current value of the address (we use negative offsets to reach back).

 Once we have the two previous values in the Fibonacci sequence, we then add these values to
form the next value in the sequence on line (27) and store the result in memory on line (28)
using the sh instruction.

 At this point, we’re done with the body of the loop and we need to perform some loop
administration, which include decrementing the loop count on line (29) and then advancing the

FreeRange Computer Design Chapter 15

 - 394 -

address value we’re keeping in x25 by two. Note that we add two because we’re working with
halfwords.

 After we’ve complete the loop administration we branch unconditionally back to the start of
the loop.

 When we eventually complete the loop, we must restore the registers we’re using in the
subroutine to the values they were at before the subroutine changed them. We do this with five
lw instructions starting on line (34). Once we’ve restored all the registers, we then adjust the
stack point by 20, which essentially undoes the operation on line (10).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#---
Subroutine: gen_fib_16

Generates the first 16 Fibonacci numbers (starting with 1,1,...) and
stores the numbers as halfwords in memory starting at the address
stored in x25.

Tweaked registers: none
#--
gen_fib_16:
store: addi sp,sp,-20 # adjust sp to save 5 regs
 sw x20,0(sp) # save x20
 sw x21,4(sp) # save x21
 sw x25,8(sp) # save x25
 sw x15,12(sp) # save x15
 sw x16,16(sp) # save x16

init: li x20,14 # load loop count
 li x21,1 # load initial fib number

 sh x21,0(x25) # store first two fib numbers
 sh x21,2(x25)
 addi x25,x25,4 # adjust the pointer forward

loop: beq x20,x0,done # done yet?
 lhu x15,-4(x25) # get two previous values
 lhu x16,-2(x25)
 add x15,x15,x16 # add two previous value
 sh x15,0(x25) # store result of addition
 addi x20,x20,-1 # loop admin: decrement loop count
 addi x25,x25,2 # increment pointer forward
 j loop # repeat, rinse

restore:
 lw x20,0(sp) # restore x20
 lw x21,4(sp) # restore x21
 lw x25,8(sp) # restore x25
 lw x15,12(sp) # restore x15
 lw x16,16(sp) # restore x16
 addi sp,sp,20 # adjust sp to back to original value

done: ret

Figure 15.16: Solution to this example problem.

FreeRange Computer Design Chapter 15

 - 395 -

Example 15.13: Largest Value Finder

Write a RISC-V assembly language subroutine that finds the largest value in the five
unsigned bytes starting at the address stored in x10. Return the largest value to the calling
code in x10. Don’t allow the subroutine to permanently change any registers other than
x10.

Solution Notes: Fun stuff embedded in the solution. Yet another problem that involves generic access to
memory. There are many ways structure problems such as this one; we always choose the most generic
approach. For this problem, that means that we want to make the algorithm in one phase rather than two. For
problems such as this, it’s always tempting to compare the first two values, then compare all the result to that
first result. Yep, it works, but it’s easier to keep in simple by making it one phase only.

 Keep in mind, I first wrote the body of this loop, then went back and saved/restored context.
This is of course because I don’t’ know what registers need saving until I’m done doing the
required work.

 Saving/restoring context only included registers; since this subroutine did not call other
subroutines, there was no reason to include ra in context saving/restoring. This subroutine
used three registers, so we saved 12 bytes of space on the stack on line (10). We then stored
the registers in no specific order and at no specific addresses.

 The code starting at the init label was for the loop. We need to check five value so we
initialized a register on line (15). We then wanted to keep our algorithm generic so we
initialized a register with zero on line (16). Note that zero is the smallest possible value, so the
MCU stores any value greater than that as the largest value in the loop’s iterations.

 The body of the loop first loads some data from memory on line (18); the problem stated
unsigned bytes so we use the lbu instruction. We then compare the loaded data with our
current largest value on line (19). If we find a new large value, we replace the current larger
value on line (21).

 Whether the branch is taken on line (19) or not, we always perform loop administration. For
this algorithm, that include incrementing the address value on line (23) and decrementing the
loop counter on line (24). Note that we only increase the address by one because in this
problem we are dealing with bytes.

 We model this loop as a do-while loop because we know that we’ll always have to go through
the loop five times, which of course means we’ll always have to do it once. There are many
ways to do this but this is probably the most efficient.

 When we drop out of the loop, we know that x20 has the largest value. We then need to put
that value in x10 as requested by the original problem, which we do on line (27).

 Context restoration is performed on lines (29-31). We adjust the stack pointer (sp) on line (32).
Note that the amount we adjust the stack pointer on line (32) is the opposite of how much we
adjusted the stack pointer on line (10).

FreeRange Computer Design Chapter 15

 - 396 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

#---
Subroutine: find_big_5

This subroutine finds the largest of 5 continuous unsigned bytes in
memory starting at the address store in x10.

Tweaked registers: x10
#--
find_big_5:
store: addi sp,sp,-12 # room for 3 regs
 sw x15,0(sp) # push regs
 sw x20,4(sp)
 sw x21,8(sp)

init: li x15,5
 mv x20,x0 # smallest possible

loop: lbu x21,0(x10) # get data
 blt x21,x20,Admin # jump if x16>x17

 mv x20,x21 # store new large

Admin: addi x10,x10,1 # incr addr
 addi x15,x15,-1 # decr loop count
 bne x15,x0,loop # do it again

xfer: mv x10,x20 # x15 is largest

restore: lw x15,0(sp) # pop regs
 lw x20,4(sp)
 lw x21,8(sp)
 addi sp,sp,12 # readjust stack pointer

done: ret # bring it home

Figure 15.17: Solution to this example problem.

When I write these problems, I always test them first on one of the RISC-V simulators. To test problems that
include memory, I have to first put the data in memory. I do this by using the .byte directive in the data segment.
In general, we put data in the data segment and code in the .text segment. This means that you have to use
the .data and .text directives to have the data placed in the correct places. I included the full program using both
segments in the following figure. Here is some stuff to chew on.

 Line (09) has the .data segment directive. From there we can now specify some dat.

 Line (10) has some data, which is conveniently give pieces of data. We specify this data as
being bytes by using the .byte directive, which means the data we specify is stored as bytes in
memory.

 We gave the data a label on line (10) also. The issue here is that the assembler can place the
data anywhere in data memory, we don’t yet have easy control of that. We use a label here
because we can figure out where that data actually is by using the la instruction on line (13).
This instruction stands for “load address” and is one of our load instructions that don’t actually
have anything to do with memory. What this instruction does is put the value associated with
the “junk” label into register x10. The key to understanding this is the value associated with
the junk label is the address in memory where the “2” is stored. The value of 45 is one byte
beyond where the “2” is stored.

 Before we start writing actual code, we first must change from the data segment to the text
segment. We do that by using the .text directive on line (12). If we did not do this, the
assembler would grumble, and no one likes a grumbling assembler.

 The remainder of the algorithm does not change so we’ll not bore you again with the details.

FreeRange Computer Design Chapter 15

 - 397 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)

#---
Subroutine: find_big_5

This subroutine finds the largest of 5 continuous unsigned bytes in
memory starting at the address store in x10.

Tweaked registers: x10
#--
.data # declare data segment
junk: .byte 2,45,4,5,6 # make up some data

.text
 la x10,junk # load address of data

Find_Big_5:
store: addi sp,sp,-12 # room for 3 regs
 sw x15,0(sp) # push regs
 sw x20,4(sp)
 sw x21,8(sp)

init: li x15,5
 mv x20,x0 # smallest possible

loop: lbu x21,0(x10) # get data
 blt x21,x20,Admin # jump if we don’t find new large

 mv x20,x21 # store new large

Admin: addi x10,x10,1 # incr addr
 addi x15,x15,-1 # decr loop count
 bne x15,x0,loop # do it again

xfer: mv x10,x20 # x15 is largest

restore: lw x15,0(sp) # pop regs
 lw x20,4(sp)
 lw x21,8(sp)
 addi sp,sp,12 # readjust stack pointer

done: ret # bring it home

Figure 15.18: Solution to this example problem.

Example 15.14: Largest Value Finder

Write a RISC-V assembly language subroutine that finds the largest value in a set of
unsigned halfwords. The starting address of the data is passed to the subroutine in x10; the
length of the data is passed to the subroutine in x11. Return the largest value to the calling
code in x15. Don’t allow the subroutine to permanently change any registers other than
x15.

Solution Notes: Fun stuff embedded in the solution. This problem is similar to the previous problem, so we
won’t include another painful description. The issue with the previous problem was that it was not generic;
although the subroutine could check data anywhere, it was hardcoded to inspecting five pieces of data. The
subroutine in this problem differs in that the calling code passes the number of values to check. You’ll be sure to
note that there are not big changes from the previous problem.

FreeRange Computer Design Chapter 15

 - 398 -

 Since we’re passing a new value to the subroutine, which is the count value in a register, we
need to save that register on the stack. We make room for four register pushes on line (11), and
save the registers on the four following lines (12-15)

 We don’t’ need to initialize the loop count since that value is passed to the subroutine in x11.
We do decrement the loop count as part of loop administration on line (25).

 Part of loop administration is incrementing the address of the data. Since we’re working with
halfwords in this subroutine, we increment the address by two each loop iteration; see line (24).

 Note that this subroutine uses eight labels. Only three of the labels (find_big_uhalf, loop, and
Admin) are actually required by the code. The unused labels make the code more readable to
humans but does not increase the storage space requirements of the program.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

#---
Subroutine: find_big_uhalf

This subroutine finds the largest of continuous unsigned halfwords
starting at the data memory address in x10. The number of halfwords
the subroutine inspects is passed in x11. The largest value is
passed back to the subroutine in x15.

Tweaked registers: x15
#--
find_big_uhalf:
store: addi sp,sp,-16 # room for 4 regs
 sw x15,0(sp) # push 4 regs
 sw x20,4(sp)
 sw x21,8(sp)
 sw x11,12(sp)

init: mv x20,x0 # smallest possible

loop: lbu x21,0(x10) # get data
 blt x21,x20,Admin # jump if we don’t find new large

 mv x20,x21 # store new large

Admin: addi x10,x10,2 # incr addr by halfword #bytes
 addi x11,x11,-1 # decr loop count
 bne x15,x0,loop # do it again

xfer: mv x10,x20 # x15 is largest

restore: lw x15,0(sp) # pop four pushed regs
 lw x20,4(sp)
 lw x21,8(sp)
 lw x11,12(sp)
 addi sp,sp,16 # readjust stack pointer

done: ret # bring it home

Figure 15.19: Solution to this example problem.

Example 15.15: Memory Data Size Conversion

Write a RISC-V assembly language subroutine that reads unsigned bytes of data starting at
the address in x10, and stores that data as equivalent values in words starting at the address
in x20. Register x11 holds the number of data pieces to translate. Don’t allow the subroutine
to permanently change any register.

FreeRange Computer Design Chapter 15

 - 399 -

Solution Notes: Fun stuff embedded in the solution. This is another generic subroutine that translates data at one
address in memory to another address in memory. Note that it is specific to what size of the data it translates to
and from. This lack of genericity is the inspiration for a later problem.

 The body of the subroutine uses three register, so we make room to save those three registers by
adjusting the stack on line (10), and pushing the registers on lines (11-14).

 We don’t’ need to initialize the anything in this program because all the values of interest are
passed to the subroutine by the code that calls the subroutine. We do leave in a “init” label on
line (16) as good programming practice; the comment says why the label has no associated code.

 We increment the byte data source pointer by one and the word data destination pointer by two as
part of loop administration on line (23) and line (24), respectively.

 We use a do-while loop in the code. This is relatively bullet-proof because we know the number
of values to translate that is passed to the program is non zero. We’ll redo this solution with
another approach to show the possibilities.

 We restore the context on lines (28-32) by popping values off the stack and adjusting the stack
pointer.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

#---
Subroutine: byte_to_word

This subroutine finds translates contiguous unsigned byte data
starting at the value in x10 to word data starting at the address in
x20. Register x11 holds the number if values to translate.

Tweaked registers: none
#--
byte_to_word:
store: addi sp,sp,-16 # room for 4 regs
 sw x11,0(sp) # push 4 regs
 sw x20,4(sp)
 sw x21,8(sp)
 sw x10,12(sp)

init: # nothing to init

check: beq x11,x0,restore # quit if loop count is zero

loop: lbu x21,0(x10) # get hald data at x10
 sw x21,0(x20) # store data as word x20

admin: addi x10,x10,1 # incr addr by number of bytes
 addi x20,x20,4 # incr addr by word number of byte
 addi x11,x11,-1 # decr loop count
 bne x11,x0,loop # do it again

restore: lw x11,0(sp) # pop 4 pushed regs
 lw x20,4(sp)
 lw x21,8(sp)
 lw x10,12(sp)
 addi sp,sp,16 # readjust stack pointer

done: ret # come on up to the house

Figure 15.20: Solution to this example problem.

Figure 15.21 shows an alternative solution to this example. The solution below is arguably better. The difference
in this solution is that we modeled the main part of the algorithm as a while loop rather than a do while loop.
This means that the check for zero loop iterations was part of the body of the loop that than actually checking for
that condition in the previous solution (recall we used a do-while loop in that solution).

FreeRange Computer Design Chapter 15

 - 400 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

#---
Subroutine: byte_to_word

This subroutine finds translates contiguous unsigned byte data
starting at the value in x10 to word data starting at the address in
x20. Register x11 holds the number if values to translate.

Tweaked registers: none
#--
byte_to_word:
store: addi sp,sp,-16 # room for 4 regs
 sw x11,0(sp) # push 4 regs
 sw x20,4(sp)
 sw x21,8(sp)
 sw x10,12(sp)

init: # nothing to init

loop: beq x11,x0,restore # quit if loop count is zero
 lbu x21,0(x10) # get hald data at x10
 sw x21,0(x20) # store data as word x20

admin: addi x10,x10,1 # incr addr by number of bytes
 addi x20,x20,4 # incr addr by word number of byte
 addi x11,x11,-1 # decr loop count
 j loop # do it again

restore: lw x11,0(sp) # pop 4 pushed regs
 lw x20,4(sp)
 lw x21,8(sp)
 lw x10,12(sp)
 addi sp,sp,16 # readjust stack pointer

done: ret # come on up to the house

Figure 15.21: An alternative solution to this problem.

Example 15.16: Two-Digit BCD Number Doubler

Write a RISC-V MCU assembly language subroutine that doubles a two digit BCD number
contained x20. The result is passed back to the calling routine in x10.

Solution Notes: Yet even more fun stuff in assembly language programming land. This problem can be done in
two distinct ways. The most understandable way would be to translate the code from BCD to binary, double the
value, then translate the value back to BCD. This would be generally straightforward as there are many such
translation routines out there. But since this problem only deals with a 2-digit decimal value, and we don’t have
the support translation subroutines already coded, we’ll take a different approach.

The algorithm we’ll use is to double the 1’s digit; if the result is greater than 10, it exceeds the decimal digit
range, so we then need to subtract 10 and later increment the 10’s digit. We roughly do the same thing for the
10’s digit, but in that case, we need to increment the 100’s digit. We’re adding two 2-digit decimal number (max
= 99), the result will be between zero and 198 ([0,198]). You’ll see this happen in the algorithm. Here are some
other cool things to note about the solution.

 We cleverly forgot to say “don’t permanently change any registers”, which means we don’t need to
push the registers at the beginning of the routine and pop them later. We of course should do this in real
life, but not doing so here makes the solution shorter.

FreeRange Computer Design Chapter 15

 - 401 -

 We initialize three values starting on line (09). This includes copying the original value on line (10),
clearing an accumulator register on line (09), and keeping around a “carry value” on line (11), which
we’ll use for the possible carry from the 1’s to 10’s digit.

 The processing of the 1’s data starts at line (13) where we first mask off all but the 1’s nibble. We then
double that value on line (14). We need to check to see if that value is greater than 10, and if it is, we
need to decrease it by 10 and add carry value to our carry register x15. We use the slti instruction on
line (15) because it works well with immediate values (which is not true of branch instructions). We set
the x25 register to indicated the value is less than 10, which means we don’t have to do anything. If the
value is not less than 10, we need to subtract 10 from the value, which we do on line (19), and then set
the carry value in x15. When we’re done processing the 10’s digit, we’ll add the value in x15 without
checking to see what it is.

 We added 0x10 to “increment” the 10’s digit. We do this because we don’t want to have to shift the
10’s digit to the 1’s position. This is a common trick when working with BCD values. Expect to see that
again when we process the 10’s digit.

 We accumulate the resulting 1’s value on line (21) whether we’ve modified it or not.

 We then process the 10’s digit starting on line (23). We start by retrieving the original value. Recall that
we were using a copy when we processed the 1’s digit. The remainder of the algorithm is similar to the
1’s processing so we’ll not bore you to death with more verbose description. The only difference is that
we need to add 0x100 when there is a carry out from the 10’s processing, which we do on line (31).
Note on line (32), the assembler is smart enough to handle negative hexadecimal numbers.

 We do the final accumulation on line (33).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)

#---
Subroutine: bcd_2x

This subroutine multiplies the two digit BCD value in x10 by two and
stores the result in x10.

Tweaked registers: x10, x21, x15, x25
#--
bcd_2x:
init: mv x10,x0 # clear x10
 mv x21,x20 # copy x 20
 mv x15,x0 # clear carry value

ones: andi x21,x21,0xF # mask low nib
 add x21,x21,x21 # 2x low nib
 slti x25,x21,0x0A # check is < 10
 beq x25,x0,fix_1s # branch if not
 j done_1 # jump if < 10

fix_1s: addi x21,x21,-10 # adjust 1’s sum
 addi x15,x15,0x10 # store carry
done_1: add x10,x10,x21 # accumulate 1’s value

tens: mv x21,x20 # get copy
 andi x21,x21, 0xF0 # mask
 add x21,x21,x21 # 2x tens
 add x21,x21,x15 # add carry
 slti x25,x21,0xA0 # see if > 0xA0
 beq x25,x0,fix_10s # branch to fix
 j done_10 # jump to not fix

fix_10s: addi x10,x10,0x100 # increment 100’s digit
 addi x21,x21,-0x0A0 # decrement 10’s value
done_10: add x10,x10,x21 # accumulate 10’s res

restore: ret # take it home

Figure 15.22: The solution to this example.

FreeRange Computer Design Chapter 15

 - 402 -

Example 15.17: Memory-Based Absolute Value Conversion

Write a RISC-V MCU assembly language subroutine that replaced signed bytes in
contiguous memory with their absolute values. The address of the first value is passed to the
subroutine in x10; the number of value to operate on is stored in register x11. The
subroutine should not permanently change and register values.

Solution Notes: More fun stuff in solutionland. This is a relatively straightforward solution, though it does use
an instruction that we’ve not used before. Here are some cool things to note about the solution.

 We left in some test code for this solution on lines (09-16). If you use these in the simulator, you’ll be
able to see the results develop in memory starting at the junk label.

 The subroutine uses three registers, so we need to make room for those registers on the stack by
adjusting the stack pointer on line (19) and then copying the three registers used in the algorithm to
memory on lines (20-22). We need to adjust the stack pointer in the direction of lower memory, which
we do subtracting 12 from the stack pointer value, which represents 4 bytes for each of the three
registers that the subroutines changes. We of course don’t know which registers we use until we finish
coding the algorithm.

 We choose a while loop for this algorithm because it has an initial check for the loop value, which we
do on line (25). There are many possible ways to structure this algorithm, this is the way that makes the
most sense for us.

 We load a byte value on line (26) using the lb instruction, which loads signed bytes into a registers. We
then use an if-else construct to determine if the value is negative or not. If the value is negative, we
must negate it, which we do with the neg instruction on line (29). The neg instruction is a
pseudoinstruction, but who really cares? If the value is positive, we do not change it.

 Line (32) has the loop administration, which include decrement the loop counter on line (33) and
incrementing the address value on line (32). Pretty exciting stuff.

 When we complete all required iterations, we restore the registers the subroutine uses on lines (37-39).
We follow that with an adjustment of the stack pointer on line (40).

FreeRange Computer Design Chapter 15

 - 403 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#---
Subroutine: abs_mem

This subroutine multiplies takes the absolute value of signed bytes
in memory starting at the address in x10, and does this for the number
of values represented by the count in x11.

Tweaked registers: none
#--
#----------- test code ------------------------
#.data
#junk: .byte -3,-5,4,8,-11

#.text
li x11,5
la x10,junk
#----------- test code ------------------------

abs_mem:
store: addi sp,sp,-12 # room on stack
 lw x10,0(sp) # push regs
 lw x11,4(sp)
 lw x12,8(sp)
init: # nothing to init

loop: beq x11,x0,done # check if zero
 lb x20,0(x10) # load value
 bge x20,x0,write # br if > 0

 neg x20,x20 # change sign
write: sb x20,0(x10) # store value

admin: addi x10,x10,1 # incr addr
 addi x11,x11,-1 # decr loop count
 j loop # do again

done:
rstore: lw x10,0(sp) # pop regs
 lw x11,4(sp)
 lw x12,8(sp)
 addi sp,sp,12 # adjust sp
 ret # bring it home

Figure 15.23: The solution to this example.

Example 15.18: Sorting Values

Write a RISC-V MCU assembly language subroutine that sorts ten words in descending
order. The ten words are contiguous in memory and start at the address stored in register
x10. The subroutine should not permanently change and register values.

Solution Notes: More fun stuff in solutionland. The most straightforward sort is bubble sort. While this solution
is straightforward, it not efficient computationally speaking. My vote goes for the straightforwardness of the
solution. There are many ways to structure this code; I’ve opted to do that way that divides the complexity of the
code into subroutines. The bubble sort is a classic “loop inside of a loop” algorithm, so we use the notion of the
“inside loop” and the “outside loop” throughout the solution description. Here are other lowlights of the solution.

 I left in some test code so you can give it a try in the simulator; this code is on lines (08-11).

 The algorithm uses six registers, so we push them all. The subroutine also calls a subroutine, which
means we also must push the return address register, which we do on line (20).

FreeRange Computer Design Chapter 15

 - 404 -

 The init code starts on line (23) and includes initializing both the inside and outside loops to 9. The
significance of 9 is that it is one less than 10, which is the number of values we want to sort. We’ll be
tweaking with the address, so we also make a working copy of the original address in x10 on line (25).

 The inner-loop basically calls the swap subroutine. All the swapping work is done in the swap routine,
which we intentionally did to simplify the calling code in the bbl_sort subroutine.

 The calling code passes the address of the first word to consider; the subroutine leverages the fact that
the second word is 4 beyond (bytes or one word) the first word. The swap routine does not save
registers; we save the registers the swap routine uses in the store and restore sections of the bbl_sort
subroutine.

 The swap_q loads the two words to compare into registers. If the two values need to be swapped, the
subroutine swaps them by storing them in opposite addresses from which they were loaded. Otherwise,
the subroutine simply returns

 The inner loop administration consists of advancing the address and decrementing the loop count,
which is done on lines (31-32).

 The outer loop administration consists of resetting the inner loop counter on line (36), decrementing the
outer loop counter on line (35), and resetting the address value back to the start of the numbers to be
sorted on line (37).

 Lines (41-48) restore context, including the return address, which we needed to save because we called
the swap_q subroutine.

 We had to adjust our labels in this program. I like to use labels such as “done”, but there are several
contexts in which I needed to say “done”. The solution I went with is to use “done_1” and “done_2”.
Not too exciting, but it works.

 This solution included two subroutines, both with nice looking (if I do say so myself) headers with all
the pertinent information included.

FreeRange Computer Design Chapter 15

 - 405 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)

#---
Subroutine: bbl_sort

This subroutine sorts (bubble sort) 10 words in memory
starting at the address passed in x10.

Tweaked regsiters: none
#---
#.data # test code for simulator
#arr: .word 10,3,5,4,3,8,3,4,7,1
#.text
la x10,arr

bbl_sort:
store: addi sp,sp,-28 # adjust stack pointer
 sw x10,0(sp) # save context
 sw x11,4(sp)
 sw x12,8(sp)
 sw x25,12(sp)
 sw x26,16(sp)
 sw x30,20(sp)
 sw ra,24(sp) # push return address

init: li x25,9 # inside count
 li x26,9 # outside count
 mv x30,x10 # array start address

loop_out: beq x26,x0,done_out # outer while loop

loop_in: beq x25,x0,done_in # inner while loop
 call swap_q # do swap
 addi x25,x25,-1 # decr inner loop count
 addi x10,x10,4 # advance address
 j loop_in # keep doing it

done_in: addi x26,x26,-1 # decr outer loop count
 li x25,9 # reload inner loop count
 mv x10,x30 # reload starting address
 j loop_out # jump to outer loop

done_out:
restore: lw x10,0(sp) # restore context
 lw x11,4(sp)
 lw x12,8(sp)
 lw x25,12(sp)
 lw x26,16(sp)
 lw x30,20(sp)
 lw ra,24(sp) # restore return address
 addi sp,sp,28 # adjust stack
done_1: ret # take it on home
#---

#---
Subroutine: swap_q

This subroutine sorts two words in memory starting at the
address passed in x10.

Tweaked registers: x11,x12
#---
swap_q:
 lw x11,0(x10)
 lw x12,4(x10)
 bge x11,x12,done_2
 sw x11,4(x10)
 sw x12,0(x10)
done_2: ret
#--

Figure 15.24: Yet another meaning-packed solution.

FreeRange Computer Design Chapter 15

 - 406 -

Example 15.19: Increasing Number Determination

Write a RISC-V assembly language subroutine that determines if all the data in contiguous
memory locations is non-zero and always increasing. Consider the data to be signed
halfwords. X15 contains the address of the first halfword; continue checking until two
contiguous pieces of data are equivalent. Return the number of increasing data in x12.
Assume the data terminates the algorithm in a reasonable amount of time.

Solution Notes: This is a classic hardware problem done many times in your introductory digital design course.
This is another one of those problems that has a special starting initialization that we want to use in order to
make the algorithm more generic and thus easier to encode. For this problem, it means starting the algorithm by
loading the first piece of data.

 This problem has a special and exciting exit condition from the loop; we iterated many of our
past loops a known number of time; this problem iterates a conditional number of times. Note
that the ending condition is when we find two pieces of contiguous data that are equivalent.

 For this problem, we are only reading data, so there is no need for a sb instruction.

 We left in the test code for the subroutine on lines (10-14).

 The initialization comprised of a few things in order to make the algorithm more generic. Line
(17) clears a counter register to hold the number of pieces of data in a row. We then need to get
the first piece of data on line (18), which we check to see if it’s zero (and quit if it is). We then
need to increment our counter and address value. The fact that we increment the counter is
arbitrary. This means there is one at least one piece of non-zero data increasing data in the way
we did this.

 The body of the algorithm gets another piece of data on line (24). If the data is zero, we quit by
branching to the end (line 25). We also check to see if the current data is less than or equal to
the old data; we quit if it is (line 26).

 The loop administration for this algorithm includes three items. First, we copy the new data to
the old data on line (28). Second, we increment the memory address on line (29). Third, we
increment our counter on line (30).

 We opted not to save context on this problem simply to save space. Once you do it a few
times, it’s the same stuff over and over again. Not too exciting after you do it a few times.

FreeRange Computer Design Chapter 15

 - 407 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

#---
Subroutine: Cnt_incr

This subroutine goes to a specific address in memory and counts
how many pieces of data are both non-zero and increasing. The count
is returned in x12.

Tweaked registers: x10,x11,x12,x15
#--
#.data
#junk: .byte -6, -2, 1, 1, 3, 8, 8

#.text
la x15,junk

Cnt_incr:
init: mv x12,x0 # counter reg
 lb x10,0(x15) # get first piece of data
 beq x10,x0,done # quit if data=0
 addi x15,x15,1 # increment address
 addi x12,x12,1 # increment counter

loop: lb x11,0(x15) # get more data
 beq x11,x0,done # quit if data=0
 ble x11,x10,done # quit if not greater than

admin: mv x10,x11 # store last data
 addi x15,x15,1 # incr address
 addi x12,x12,1 # incr counter
 j loop # do it again

done: ret # take it home

Figure 15.25: Solution to this example problem.

Example 15.20: Increasing Number Determination Yet Again

Write a RISC-V assembly language subroutine that determines if all the data in contiguous
memory locations is non-zero and always increasing. Any zero value does not count toward
the average. The final result should be rounded up and returned to the calling code in
register x25.

Solution Notes: This problem is similar to other problems, but with two new items. First, we add (and count that
add) only if the value is non-zero. Second, when we do that math to take the average, we round up instead of
truncating. Note that when we right-shift a number, we lose those bits as part of the number, so we are by
definition truncating the value. This is easy to do with the shift-right instructions, but not always what we want
to do. Here is some other fun stuff in the solution. A.

 The init routine clears the accumulator and set the loop count on lines (20-21).

 We model the body of this algorithm with a while loop, which starts on line (23).

 The body of the algorithm is to get data (line (24)) and use that data in the calculation it is not
zero. That means we first examine the data to see if it’s a candidate for adding on line (25). If
we include the data, we then branch to our admin line, though we branch to only part of the
admin (the part that advances the counter). When the value is non-zero, we advance the
counter but we also decrement the loop count on the line before the admin label (line (28)).

FreeRange Computer Design Chapter 15

 - 408 -

 When we exit the loop, we must process the sum, which means a divide by 6 using a shift-right
instruction on line (34).

 In order to round the result up, we are going to isolate the 6th bit from the right and add it to the
final value. We first shift the sum right by five bits on line (32), then mask all but the LSB on
line (33). We don’t know if this value is a 1 or a 0, but we don’t care; we simply add this value
to the sum that right-shifted by 6 places on line (35). Wow. Too much excitement for one
problem.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

#---
Subroutine: nz_avg_64

This subroutine finds the average of 64 non-zero unsigned words in
memory. The first piece of data must be located at the address in x10;
all other data is contiguous. Any zero value does not add to the
overall number of value being averaged. The final answer is rounded up
as opposed to being truncated.

Tweaked registers: x25, x20, x11, x10
#--

#-- test code -----------------------------
.data
junk: .word 1,2,4,8,16,0,32,64,128

.text
 la x10,junk
#--
nz_avg_64:
init: mv x25,x0 # clear accum
 li x11,64 # set count (8 for test code)

loop: beq x11,x0,done # see if done
 lw x20,0(x10) # get data
 beq x20,x0,admin # skip if zero
more: add x25,x25,x20 # accumulate

 addi x11,x11,-1 # decr loop count
admin: addi x10,x10,4 # advance addr
 j loop # rinse, repeat

done: srli x11,x25,5 # save lsb
 andi x11,x11,1 # mask lsb
 srli x25,x25,6 # take avg
 add x25,x25,x11 # add 2^-1 bit

 ret # take it home

Figure 15.26: Solution to this example problem.

Example 15.21: Register-Based Parity Determination

Write a RISC-V assembly language subroutine that determines the parity of the value in
register x10. The parity is passed back to the calling program in x10, where x10=1 indicates
odd parity and x10=0 is even parity.

Solution Notes: This is a popular operation, but also a great opportunity to use a LUT in a solution. We’ve
probably done this solution previously not using a LUT, but we’ll include that solution here as well. Here is
some fun stuff to note about the solution in Figure 15.27

FreeRange Computer Design Chapter 15

 - 409 -

 The first part of the solution is to define the LUT, which we do on lines (11-12). We of course
need to put the LUT in the data segment, which we declare using the .data directive on line
(10).

 The LUT defines 16 bytes of data, which represents the number of bits set in the set of 4-bits
(nibble). For example, the 0, 1, 1, 2 (the first four values in the LUT) represent the number of
bits set in 0000, 0001, 0010, and 0011. We provide a value for each possible combination of
four bits.

 We’ll look up nibbles in the table, which means we have to perform eight table look-ups. This
means we need a loop that iterates eight times, which we initialize on line (15).

 We’ll be counting bits, or accumulating them, so we’ll need to clear a register to use as a
counter, which we do on line (16).

 We then need to store the base address of the LUT, which is the value associated with the
“par_val” label. We use the la instruction to do this on line (17).

 The body of the loop is a while loop, so it starts with checking if there is more work to do,
which we do on line (19).

 The first step in the algorithm is to mask the lower nibble of the data of interest (x10), which
we do on line (20). This gives us the offset into the LUT. We add this offset to the base address
of the LUT, which we previously stored in x30; this is on line (21). The value in x22 is now
the address of the value we’re looking for in the table, a value we grab with the load byte
unsigned instruction on lien (22). The data we load is the number of bit set in the nibble we got
by masking on line (21). We accumulate the number on line (23).

 The loop admin first needs to shift the original value right by four places, which we do one line
(25). We then need to decrement the loop count, which we do on line (26).

 Once we complete the loop, we need to mask the result (mask the LSB) and then store the
result in x10; we do both of these tasks with one instruction on line (30).

FreeRange Computer Design Chapter 15

 - 410 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

#---
Subroutine: Par_32b

This subroutine finds parity of the value in x10 and returns the
result in x10 where x10=1 = odd and x10=0 is even parity.

Tweaked registers: x20, x10, x21, x22, x15
#--

num of bits set in each nibble (range: [0,15])
.data
par_val: .byte 0,1,1,2,1,2,2,3 # values 0 -> 7
 .byte 1,2,2,3,2,3,3,4 # values 8 -> 15
.text
Par_32b:
init: li x20,8 # loop count
 mv x15,x0 # bit count
 la x30,par_val # get address of LUT

loop: beq x20,x0,done # done yet?
 Andi x21,x10,0xF # calc table offset
 add x22,x30,x21 # calc index
 lbu x22,0(x22) # table look-up
 add x15,x15,x22 # accumulate

admin: srli x10,x10,4 # shift right one nibble
 addi x20,x20,-1 # decr loop count
 j loop # rinse, repeat

done: mv x10,x15 # load count to x10
 andi x10,x10,1 # mask LSB
 ret # take it on home

Figure 15.27: Solution to this example problem.

This above solution requires about 150 clock cycles to execute. We redo this problem (without verbose
description) in Figure 15.28. This solution uses a different algorithm that does not use a LUT. Although
the code is noticeably shorter, the runtime is significantly greater, as the algorithm in Figure 15.28
requires almost 400 clock cycles to execute. The final word here is that the LUT solution ran faster, but
it required more code space and more data space. It’s a common tradeoff in computerland.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

#---
Subroutine: Par_32b

This subroutine finds parity of the value in x10 and returns the
result in x10 where x10=1 = odd and x10=0 is even parity.

Tweaked registers: x15, x20, x11, x10
#--

.text
Par_32b:
init: li x20,32 # loop count
 mv x15,x0 # bit count

loop: beq x20,x0,done # done yet?
 Andi x21,x10,0x1 # mask bit
 add x15,x15,x21 # accumulate
 srli x10,x10,1 # shift
admin: addi x20,x20,-1 # decr loop count
 j loop # rinse, repeat

done: andi x10,x15,1 # mask LSB
 ret # take it on home

Figure 15.28: Solution to this example problem.

FreeRange Computer Design Chapter 15

 - 411 -

Example 15.22: Interrupt Paced I/O

Write a RISC-V OTTER interrupt-driven assembly language program that does the
following. Each time the MCU receives an interrupt, the program inputs a value from port
address 0x11002222 and adds this value to a running total. Once the program receives ten
interrupts, the program outputs the sum to address 0x11003333. The program then waits for
a button press (LSB of port address 0x11005555) to happen, to start accumulation again
from zero.

 Don’t worry about button debouncing for this button.

 Don’t do any I/O from the ISR

Solution Notes: This is our first interrupt driven program. This follows a standard format of interrupt driven
programs in that it’s not too exciting (contrived problems) but it does show the correctly architected interrupt
driven program. Here’s some stuff to note in the solution.

 We first place the I/O addressed called out in the problem into registers, which we do on lines (11-13).
Putting the addresses in registers saves instructions later in the program.

 Because this is an interrupt driven program, we need to load the interrupt vector (the address of the first
instruction in the ISR) into CSR[mtvec]. We do this on lines (15-16).

 We need to continually re-enable the interrupts after we receive in interrupt, for we place a 1 in x9 on
line (18). Once again, this saves instructions later in the program.

 We then do some more initialization stuff including clearing the accumulator and setting the iterative
count value on lines (20-21).

 Lastly for the initialization stuff, we turn on the interrupts on line (24). We use x8 as a flag register, so
we clear that value on line (23).

 The program then goes into a polling loop waiting for an interrupt. This loop constantly checks the x8
register, which we use as a flag. This register is initially cleared, and is then only set when the program
receives an interrupt. The entire ISR is thus to set that x8 value to non-zero and return from the ISR
(lines (46-47)).

 When the program receives an interrupt we first input a value and add that value to our running total,
which we do on lines (28-29).

 Next the program does admin stuff that first include decrementing the loop count on line (31). If the
loop count is non-zero, we’re done with admin stuff and we get ready for the next interrupt by jumping
back to somewhere near the start of the program. We arranged the init code such that we could do this
and thus saved a few instructions. If there are still more values to add, we only need to turn the
interrupts back on, which we do by jumping to the redo_2 label.

 If the loop count has run out, we need to first output the accumulated value, which we do on line (34).
We then need to go into a polling loop waiting for a button press. The polling loop on lines (36-38)
consists of inputting the buttons, masking the LSB, and checking to see if it is set or not. If it is not set,
the button of interest is not pressed and we keep looking/waiting. If the bit is set, there was a button
press and we branch to our complete initialization routine starting on the line associated with the redo_1
label.

FreeRange Computer Design Chapter 15

 - 412 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)

#---
This program that does the following: Each time the MCU receives
an interrupt, the program inputs a value from port address 0x11002222
and adds this value to a running total. Once the program receives
ten interrupts, the program output the sum to address 0x11003333. The
program then waits for a button press (LSB of port address 0x11005555)
to happen, to start accumulation again from zero. Don’t worry about
button debouncing for this button.
#---

.text
.init: li x10,0x11002222 # input port address
 li x11,0x11003333 # output port address
 li x12,0x11005555 # button port address

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 li x9,1 # store 1 for interrupt enable

redo_1: mv x20,x0 # accumulation value
 li x25,10 # iteration count

redo_2: mv x8,x0 # clear flag value
 csrrw x0,mie,x9 # enable interrupts

wait: beq x8,x0,wait # wait for interrupt

body: lw x15,0(x10) # input data
 add x20,x20,x15 # accumulate

admin: addi x25,x25,-1 # decrement loop count
 bnez x25,redo_2 # jump to reset stuff

done: sw x20,0(x11) # output accumulated value

poll: lw x20,0(x12) # input buttons
 andi x20,x20,1 # mask LSB
 beq x20,x0,poll # keep looking for button press

 j redo_1 # rinse, repeat
#---

#---
#- The ISR: sets bit x8 to flag task code
#---
ISR: mv x8,x9
 mret
#---

Figure 15.29: The solution to this example.

FreeRange Computer Design Chapter 15

 - 413 -

Example 15.23: Interrupt-Driven Programming

Write a RISC-V OTTER interrupt-driven assembly language program that does the
following. When a button is pressed (LSB of port address 0x11008888), the program waits
for interrupts. Each time it receives an interrupt, the program stores the average of the
current value it read from port address 0x11009999 with the previous value it read from that
port in contiguous memory addresses 0x0000FF00. After 100 values are written to memory
(101 interrupts), the program then waits for another button press. Don’t write a value until
after the MCU receives the second interrupt.

 Don’t worry about button debouncing for this button.

 Don’t do any I/O from the ISR

 Assume additions never overflow 32 bits.

Solution Notes: This is another interrupt driven program. This has the standard format of an interrupt driven
program. Here’s some stuff to note in the solution.

 We first place the I/O addressed called out in the problem into registers, which we do on lines (12-
13).

 We next store the address of the interrupt service routine in the CSR register (16).

 We need to do many stores of data to memory starting at the given memory location, so we put that
value in a register also on line (18).

 We’ll need to enable interrupts quite often, so we leave a ‘1’ in x9 on line (19).

 We then do a bunch of administrative work starting at the instruction with the “restart” label. As
you’ll see later in this solution, we’ve arranged this solution such that we can reuse the three
instructions at this label, lines (21-23), later in the program. This program does the same thing over
and over again, so it makes sense to reuse as much code as possible.

 The next this to do is wait for a button press, which is essentially the dreaded poll line lines (25-
27). We first load some data, mask it, and check for the right-most button being pressed.

 If program execution falls through the poll, it is then that we enable interrupts on line (29). We
generally keep interrupts disabled until we truly need them (or are ready for them). In this program,
we don’t need to deal with interrupts until the button has been pressed.

 After the interrupts are enable, we go into a second poll that is waiting for interrupts, which is on
line (31). Once we receive an interrupt, we drop out of the poll and start doing more meaningful
stuff. We first load some real data on line 33. This represents the first piece of data, so we don’t do
anything with it because we’re going to store an average of two pieces of data in memory. We clear
the flag on line (34), and enable the interrupts again on line (35).

 We enter a third poll on line (31), waiting for more interrupts. The functionality is similar to the
previous poll in that we first load some data on line (39). We next need to add the new data to the
previous value on line (40) and average the two pieces of data using a shift right on line (41). This
is the value we want to store, which we do one line (42). The last part of the body of this algorithm
is to make the more recent data into the older data in preparation for receiving more interrupts.

 The loop admin includes clearing the x8 flag on line (45), advancing the address on line (46), and
decrementing the loop count one line (17). At this point, if the loop count is less than zero, we
leave the algorithm by jumping to the restart label. The code at the restart label prepares the
algorithm to happen again after yet another button press. If there are still more counts left in the
loop count, we enable interrupts on line (51) and jump back to the third poll, which is associated
with the “wait3” label.

FreeRange Computer Design Chapter 15

 - 414 -

 The ISR is relatively simple; it comprises of signaling the background task by putting a non-zero
value in x8.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

#--
This program that does the following: When a button is pressed
(LSB of port address 0x11008888), the program waits for interrupts.
Each time it receives an interrupt, the program stores the average of
the current value it read from port address 0x11009999 with the
previous value it read from that port in contiguous memory addresses
starting at 0x0000FF00. After 100 values are written to memory
(101 interrupts), the program then waits for another button press
and repeats the same functionality. The buttons are not debounced.
#--

.text
.init: li x10,0x11008888 # button port address
 li x11,0x11009999 # input port address

 la x6,ISR # load address of ISR into x6
 csrrw x0,mtvec,x6 # store address as interrupt vector CSR[mtvec]

 li x29,0x0000FF00 # establish memory address
 li x9,1 # store 1 for interrupt enable

restart: mv x8,x0 # clear flag value
 li x17,100 # set loop count
 mv x30,x29 # make working copy of memory address

wait1: lw x20,0(x10) # get button data
 andi x20,x20,1 # mask button data
 beq x20,x0,wait1 # keep waiting

 csrrw x0,mie,x9 # enable interrupts

wait2: beq x8,x0,wait2 # wait for first interrupt

 lw x25,0(x11) # get first piece of data
 mv x8,x0 # clear flag value
 csrrw x0,mie,x9 # enable interrupts

wait3: beq x8,x0,wait3 # wait for more interrupts

 lw x26,0(x11) # get first piece of data
 add x25,x25,x26 # add to previous input
 srli x25,x25,1 # divide by 2
 sw x25,0(x30) # store avg in memory
 mv x25,x26 # save previous input

admin: mv x8,x0 # clear flag value
 addi x30,x30,4 # advance address
 addi x17,x17,-1 # decrement loop count

 bltz x17,restart # start over if done

 csrrw x0,mie,x9 # enable interrupts
 j wait3 # wait for next interrupt
#---

#---
#- The ISR: sets bit x8 to flag task code
#---
ISR: mv x8,x9
 mret
#---

Figure 15.30: The solution to this example.

FreeRange Computer Design Chapter 15

 - 415 -

Example 15.24: Digital Averaging Filter

Write a RISC-V assembly language subroutine that implements a digital averaging filter.
This subroutine averages four memory locations of unsigned halfwords starting at
mem[x10], and replaces the halfword at address x10 in memory with the average of the four
contiguous values. The subroutine replaces the number of values passed to the subroutine in
register x11. The average rounds up before written.

Solution Notes: This is a classic subroutine that implements a digital filter. This is actually a potentially useful
subroutine; you’ll probably see other filters in later subroutines because that’s all I can think of at this point in
time.

 First thing to note is the great header. We once again did not push/pop registers simply to save space on
the paper. All good subroutines protect the registers they use.

 We start the algorithm by loading four chunks of data (halfwords) into four registers, which we do on
lines (17-20).

 Starting as line (22), we add the four previous values we loaded. This takes three lines.

 After we add the four values, we shift the values right one time (divide by two). We need to divide by
four, but we divide by two because we need to round up the average we’re calculating. The first divide
is on line (25). We mask that result (the LSB) on line (26), we later add that value to the calculation
after we divide it another time, which we do on line (27). We add the roundup bit on line (28).

 We have two forms of admin to do in the subroutine; we have both data admin and normal admin. We
start the data admin on line (30), where we first store our calculated result. After that we shift the data
in our data registers (x20-x23) on lines (31-33).

 The normal admin includes advancing the memory address on line (35), loading some new data on line
(36), and decrementing the loop count on line (38). After we decrement the loop count, we check the
loop count and branch necessary.

FreeRange Computer Design Chapter 15

 - 416 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

#---
Subroutine: Dig_smoothing_filt_4x

This subroutine implements a digital smoothing filter, AKA a smoothing
filter, AKA, a low-pass filter. This subroutines replaces the 16-bit
value as mem[x] with the average of memory locations mem[x], mem[x+1],
mem[x+2] and mem[x+3]. The data is stored starting at the address
passed to the subroutine in x10. The number of values to filter is
passed to the subroutine in register x11. This subroutines assumes
there is enough data to generate valid averages for all data, which
means there needs to be more data than the count in x11.

Tweaked registers: x10,x11,x20,x21,x22,x23,x24
#---

Dig_smoothing_filt_4x:

preload: lhu x20,0(x10) # get first piece of data
 lhu x21,4(x10) # get 3 more half words
 lhu x22,8(x10)
 lhu x23,12(x10)

loop: add x20,x20,x21 # add first two locations
 add x20,x20,x22 # accumulate third value
 add x20,x20,x23 # accumulate fourth value
 srli x20,x20,1 # divide by 2
 andi x24,x20,1 # mask LSB
 srli x20,x20,1 # divide by 2 (again)
 add x20,x20,x24 # round up

d_admin: sh x20,0(x10) # store result in memory
 mv x20,x21 # shift data around
 mv x21,x22
 mv x22,x23

admin: addi x10,x10,2 # advance data pointer
 lhu x23,12(x10) # get new data

 addi x11,x11,-1 # decrement loop count
 bgez x11,loop # jump if more data to process

 ret # take it home jimmie

Figure 15.31: The solution to this example.

Example 15.25: Digital Median Filter

Write a RISC-V assembly language subroutine that implements a digital median filter. This
subroutine examines three contiguous memory locations of unsigned halfwords starting at
mem[x10], and transfers the median value to the address passed to the subroutine in register
x8. The subroutine thus does not change any of the original values in memory; it transfers
the median of the original data to another area in memory.

Solution Notes: This is a classic subroutine that implements yet another type of digital filter. This too is actually
a potentially useful subroutine, and one of several filters you’ll see in this set of problems. Here are the details
for this example:

 The subroutine has both a meaningful description in the provided header, and also some test code
that has been left in the text but commented out on lines (11-17).

FreeRange Computer Design Chapter 15

 - 417 -

 We generally stopped writing subroutines that protect the data by pushing it onto the stack at the
start of the subroutine (to save space), but we do need to do something different in this subroutine.
Because this subroutine calls another subroutine, we need to save the return address associated with
this subroutine before we call the nested subroutine. We do this by pushing it on the stack on lines
(21-22).

 The algorithm then structured such that we’re ready to start, which we do by loading three
halfwords into registers on lines (24-26). Using registers for the data is horrifically non-generic,
which causes us to write a one-off sort algorithm. We call the sort algorithm on line (28).

 The sort algorithm is on lines (43-69). Note the subroutine has a nice descriptive header that
includes which registers are tweaked (we once again don’t bother saving/restoring registers). The
algorithm is a hardcoded bubble sort, which hardcodes the inner loop, but does allow the outer loop
to be parameterized. The sort uses the XOR register swapping trick to sort individual registers; fun
stuff.

 Once we’ve sorted the data, the data in the middle of the three register value-wise is the data we
choose to store at the new memory location, which we do on line (30). The data “in the middle” is
thus the median value, as the filter name implies, and becomes the “new” value.

 The next part of the algorithm is the loop administrative tasks that include advancing the address
pointer on line (32), decrementing the loop count on line (34), and checking to see if we need to do
more iterations or not on line (35). We modeled this loop as a do-while loop, and we opted to make
the subroutine less safe by not verify the loop count passed to the algorithm in x11 was non-zero.
Once again, we did this to save space on the page.

 When we run out of iterations, the algorithm is done and we prepare to exit by popping the return
address off the stack on lines (37-38). Recall that we had to do this because we used nested
subroutines in our approach.

 We return from the subroutine on line (40); we opted to include a “done” label for clarity, even
though the code itself never actually uses the done label (it’s there to make human readers happy).

FreeRange Computer Design Chapter 15

 - 418 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)

#---
Subroutine: Dig_median_filter_3x

This subroutine implements a digital median filter. The values from
three contiguous memory locations are sorted; the median value of these
three values are stored at a different memory location. The data to filter
is stored as unsigned halfwords starting at the address in x10. This
subroutine stores the filtered data starting at the address in x8.
The number of times to # filter these sets of data is stored in x11

Tweaked registers: x8,x10,x20,x21,x22, and ra (x1)
#--------------- test code ----------------------------
.data
junk: .half 23,26,25,28,29,30,32
.text
la x10,junk
li sp,0x6120
#--
.text
Dig_median_filter_3x:

init: addi sp,sp,-4 # make space on stack
 sw ra,0(sp) # push return address

load: lhu x20,0(x10) # get first piece of data
 lhu x21,2(x10) # get 2 more half words
 lhu x22,4(x10)

 call Median # sort three input values

loop: sh x21,0(x8) # sore median value

admin: addi x10,x10,2 # advance data pointer

 addi x11,x11,-1 # decrement loop count
 bgez x11,load # jump if more data to process

 lw ra,0(sp) # restore return address
 addi sp,sp,4 # pop from stack

done: ret # take it home jimmie
#---

#---
#- Subroutine: Median

This subroutine sorts the values in three register: x20,x21, & x22.
The sorting order does not matter because we are interested in
the median value, which will be in x21 at end of subroutine

Tweaked - 418 -ource- 418 -y: x30,x20,x21,x22
#---
Median: li x30,2 # load loop count

loop_m: beq x30,x0,sorted # check loop count
 bge x20,x21,nswp_1 # compare regs
 xor x20,x20,x21 # swap if needed
 xor x21,x21,x20
 xor x20,x20,x21

nswp_1: bge x21,x22,lp_admin # compare regs
 xor x21,x21,x22 # swap if needed
 xor x22,x22,x21
 xor x21,x21,x22

lp_admin: addi x30,x30,-1 # decrement loop count
 j loop_m # rinse, repeat

sorted: ret # done
#---

Figure 15.32: The solution to this example.

FreeRange Computer Design Chapter 15

 - 419 -

Example 15.26: Odd-Even Value Check

Write a RISC-V assembly language subroutine that counts the number of odd, even, and
zero values in a section of memory. The memory starts at the address in x10, and x11 holds
the number of memory locations to analyze. The results of odd, even, and zero counts are
stored contiguous words starting at the address passed to the subroutine in register x20. The
input data to inspect is word values.

Solution Notes: This is a classic subroutine that implements yet another type of digital filter. This too is actually
a potentially useful subroutine, and one of several filters you’ll see in this set of problems. Here are the details
for this example:

 Once again, meaningful subroutine description including a list of tweaked registers and some test
code that you can use to verify the subroutine actually works: lines (0-18).

 Once again, we do not store context with pushes/pops of registers.

 The initialization code for this subroutine consists of clearing three register that the subroutine uses
as accumulators for the odd, even, and zero counts. The code starts at the “init” label on lines (22-
24).

 We model this algorithm using a while loop, so we first check to see if we have more values to
count on line (26).

 The heart of the algorithm starts on line (26), where we grab some data. We then check to see if the
date is zero on line (28); if the data is zero, we increment our zero count on line (29). If the data is
non-zero, we need to examine the LSB to determine if it is odd or even, which we want to do in
such a way as to increment the odd and even counters without looking at the value. We first mask
the LSB of the original data on line (31), and then add the result to the odd counter on line (32). We
then toggle that LSB on line (33) and add it to the even counter on line (34). Somewhat of a tricky
algorithm, but it works with doing extra conditional statements.

 Loop admin consists of advancing data address and decrementing the loop counter on lines (36-37).

 When the loop count is zero, we save the three counts in three contiguous addresses on lines (40-
42).

 We return from the subroutine on line (44); note that we include a “leave” label which brings
comfort to human viewers of the code.

FreeRange Computer Design Chapter 15

 - 420 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

#---
Subroutine: Count_vals:

This subroutine counts the number of odd, even, and zero values for words
starting at address x10 in memory. The subroutine uses x11 to hold the
count of the number of values to examine. The counts are stored at three
contiguous words starting at the address in x20. The subroutine considers
zero to be an even value.

Tweaked register: x10,x11,x25,x26,x27,x30
#---

#--------------- test code ----------------------------
.data
junk: .word 23,26,25,0,0,0,34,23
.text
la x10,junk
li x11,8
#--
#.text
Count_vals:

init: mv x25,x0 # odd count
 mv x26,x0 # even count
 mv x27,x0 # zero count

loop: beq x11,x0,done # see if we’re done
 lw x30,0(x10) # get data
 bne x30,x0,not_z # check for zero
 addi x27,x27,1 # increment zero counter

not_z: andi x30,x30,1 # mask LSB
 add x25,x25,x30 # increment odd count
 xori x30,x30,1 # toggle
 add x26,x26,x30 # increment even count

admin: addi x10,x10,4 # advance address counter
 addi x11,x11,-1 # decrement loop count
 j loop # rinse, repeat (if necessary)

done: sw x25,0(x20) # store odd count
 sw x26,4(x20) # store even count
 sw x27,8(x20) # store zero count

leave: ret # come on up to the house
#---

Figure 15.33: The solution to this example.

FreeRange Computer Design Chapter 15

 - 421 -

Example 15.27: RGB Data Compressor

Write a RISC-V assembly language subroutine that converts a register containing three
bytes of RGB data (red, green, blue) into a register containing two bytes of RGB data. The
subroutine removes the lower bits of data in each color byte according to the diagram below.
The calling program places the data in x25; the subroutine returns the data in that same
register. Don’t allow the subroutine to permanently change any register other than x25.

Solution Notes: This is actually a useful algorithm that I’ve actually used on the job. This represents an instant
compression of an image (compression means reduction in storage size) by 33.3%. You probably would not
notice the chance in image quality on anything but a high-quality display. Here are the details for this example:

 Yet another meaningful subroutine description including a list of tweaked registers and some test code
that you can use to verify.

 We first make copies of the passed data on lines (15-17). There are many approaches to performing the
required tasks in this subroutine; we’ll take what we feel is the easiest.

 We process data one color at a time starting with the red byte on line (19). We first shift the data right
by as many bit locations as we need to clear the two other color bytes and the lower three bits of the red
data on line (19). We then shift the data left into the location we need it to be, which is a 11 bit locations
to the left.

 We take a similar approach on the green data by first shifting is left by two bytes on line (22). We then
shift it right by 21 bit locations to get the left-most bit into its final position on line (23). If you’re
reading this, be the first person to mention it to me and I’ll give you a Starbucks gift certificate. We still
have data on the right side that we don’t want, so we clear that data with a mask on line (25) after
loading the mask value on line (24).

 We next process the blue byte by shifting it right to lose the lower-end bits on line (27), then masking
all but the good blue bits with an immediate mask on line (28).

 Our final task is to combine the three colors which we have left in x10 (reg), x21 (green), and x22
(blue) using two OR instructions on lines (30-31).

FreeRange Computer Design Chapter 15

 - 422 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

#---
Subroutine: Pack_rgb_24_16:

This subroutine translates 24-bit color data (RGB) to 16-bits by making the
the red data (left most byte)to 5-bits, the green data (middle byte) to
6 bits, and the blue byte (right-most byte) to 5-bits. These of total to
16 bits. This approach uses truncation to reduce color values. Data is
passed to and returned from this subroutine in x10.

Tweaked register: x10,x20,x21,x22
#---
Pack_rgb_24_16:

test data li x10,0x00FFFFFF

init: mv x20,x10 # red: make working copies
 mv x21,x10 # green
 mv x22,x10 # blue

 srli x20,x20,19 # RED: clear right zeros
 slli x10,x20,11 # shift back left

 slli x21,x21,16 # GREEN: clear left zeros
 srli x21,x21,21 # shift into place
 li x20,0x000007E0
 and x21,x21,x20 # clear bottom bits

 srli x22,x22,3 # BLUE: shift off bottom 3 bits
 li x20,0x0000001F # mask bottom bits

 or x10,x20,x10 # combind red & blue
 or x10,x10,x21 # include green

 ret # bring it on home

Figure 15.34: The solution to this example.

Example 15.28: N Factorial

Write a RISC-V assembly language subroutine that converts a calculates N!, where N is
passed to the subroutine in x20. The result is returned in x30. Assume the value in x20 never
will never be so large that the result exceeds the capacity of x30. Use the Mult: subroutine
listed below in your solution (there is no header to save space). Don’t use recursion in your
solution.

Mult: mv x15,x0

loop2: beq x11,x0,done1
 add x15,x15,x10
 addi x11,x11,-1
 j loop2

done1: ret

Solution Notes: What would an assembly language programming course be without doing some version of a
factorial program. The classic solution uses recursion, but this solution does not. We’ll save the recursive
solution for another day.

 The subroutine should be saving context, but we did not in order to save space.

FreeRange Computer Design Chapter 15

 - 423 -

 Since is subroutine makes a nested call to the Mult subroutine, we need to save ra, which we do by
pushing it on the stack on lines (11-12).

 The subroutine first clears the result register, which we do on line (14). We do this because we want to
exit the subroutine if the passed value in x20 is zero, which we check for on line (15).

 If the code makes it to line (17), then the passed value of N must be at least 1. At this point, we’re
prepare to do the multiplication. If the N value is a 1, then we exit the subroutine on line (19) because
that conditional fails because we subtracted 1 from N on line (18). If the original N value was ‘1’, the
subroutine returns ‘1’ as it is now in x30. This approach provides checks for the N=1 and N=0 cases,
which are special cases. If the subroutine continues, we know N was at least 2, and the generic code that
follows actually works.

 We prepare the values to send to the Mult subroutine on line (21) and line (23). We use a decremented
N value on line (22) to give us the value to multiply by the result. Keep in mind that the value in x30 is
the accumulated multiplication result that we eventually return from the subroutine.

 Context is restored by popping ra off the stack on lines (29-30).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)

#---
Subroutine: N_fact:

This subroutine calculates N-factorial. The value of N is passed to the
subroutine in x20; the subroutine passes the result back in x30.

Passed values: x20

Tweaked register: x20,x30,x31,x10
#---
N_fact:
init: addi sp,sp,-1 # store return address on stack
 sw ra,0(sp)

 mv x30,x0 # clear register for final result
 beq x30,x20, done # check to see if passed val = 0

 mv x30,x20 # move current N value to x30
loop: addi x31,x20,-1 # move N-1 to x31
 beq x31,x0,done # quit if N-1 is zero

 mv x10,x30 # prepare to call subroutine
 addi x20,x20,-1 # decrement other subroutine operand
 mv x11,x20 # put in proper register
 call Mult # so the multiple

 mv x30,x15 # transfer result to accumulator
 j loop # go back, check condition

done: lw ra,0(sp) # restore context
 addi sp,sp,4

 ret # bring it on home
#---

#------ header not included to save space ----------------------------
Mult: mv x15,x0

loop2: beq x11,x0,done1
 add x15,x15,x10
 addi x11,x11,-1
 j loop2

done1: ret

Figure 15.35: The solution to this example.

FreeRange Computer Design Chapter 15

 - 424 -

And to show that it can be done, and that it’s a cool exercise to do so, we can also solve this problem using a
recursive algorithm. Figure 15.36 show a recursive solution to this example with the following highlights. This
program runs; you should step it through the simulator to see the stack pointer decrement as the recursion
becomes deeper and increment as the algorithm exits the recursion. :

 There are three subroutines listed; we only provided a decent header for one of them in an effort
to save space.

 The program include checks for N=0 and N=1, where the answer is 0 and 1, respectively. If the
sent value is neither of these numbers, then the algorithm does the recursion thing.

 We must save the return address at all levels, which we do on lines (16-17), and then again on
lines (28-20. The associated restorations are done on lines (22-23) and lines (38-39).

 Nf_rec is the recursive subroutine. After saving context, the subroutine sets up for the call to the
Multiply subroutine on lines (31-32), which it does by sending the current result and one less
than the current N value to the subroutine. The algorithm exits if the decremented N value is zero
on line (33).

 After the Multiply subroutine call, the algorithm makes a recursive call on line (36). The key to
making recursion work the fact that the N value is decremented at each level of recursion. At
some point, N becomes zero and allows the algorithm to break out of the recursion.

 The Multiply subroutine is dangerous because it does no checks before it operated; we did this to
save space.

FreeRange Computer Design Chapter 15

 - 425 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

#---
Subroutine: N_fact:

This subroutine calculates N-factorial recursively. The value of N is passed
to the subroutine in x10.

Passed values: x10
Returned values: x20
Tweaked register: x21,x30,x10
#---
N_fact_recursive:
 mv x20,x0 # clear result register
 beq x10,x0,done # quit if N=0
 li x20,1
 beq x10,x20,done # quit if N=1

 addi sp,sp,-4 # push return address
 sw x1,0(sp)
 mv x20,x10 # move N to x20

 call Nf_rec # call N! recursive

 lw x1,0(sp) # restore ra
 addi sp,sp,4
done: ret # take it on home
#--

#--
Nf_rec: addi sp,sp,-4 # push return address
 sw x1,0(sp)

 addi x10,x10,-1 # decrement N
 mv x21,x10 # put new N in x21
 beq x21,x0,exit # quit if new N=0

 call Multiply # do multiply
 call Nf_rec # recursive subroutine dall

 lw x1,0(sp) # restore return address (pop)
 addi sp,sp,4

exit: ret # take it to the home
#---

#---
Multiply: mv x30,x0 # dangerous multiply routine
loop: add x30,x30,x20 # accumulate
 addi x21,x21,-1 # loop admin
 bne x21,x0,loop
 mv x20,x30 # move result to x20
 ret # go back
#--

Figure 15.36: The solution to this example.

Example 15.29: Finding Largest Value in Memory

Write a RISC-V assembly language subroutines that finds the largest value in a given span
of memory. The values in the memory start at the address in x10; the number of values to
check is given in x20. Store the largest unary value in x25 in binary format. The values in
memory are words in stoneage unary format.

FreeRange Computer Design Chapter 15

 - 426 -

Solution Notes: This problem mixes two types of quite popular assembly language programs. First, the program
must access memory in a generic manner. Second, the program does some type of number conversion, which is
this case is the conversion of stoneage unary to binary. Exciting stuff indeed.

 This problem is ideally suited to a subroutine call for the conversion part of the program. For both
subroutines, we provide information-packed headers that make it easy for programmers to safely
use the code. We also provide some test code so you can run the test yourself in case you are so
inclined.

 The program is structured to have the main subroutine use a while-loop to handle the memory
access. The subroutine then uses a nested subroutine Calc_unary to convert a stoneage unary
value in a register to a binary value. Note that because we use a nested subroutine call, we must
save the return address (ra) on the stack before the nested call (lines (22-23)), and then pop it off
the stack once the main subroutine is done calling the nested subroutine (lines (34-35)).

 Saving the return address is part of the initialialization, the other part is to set up for the algorithm.
We want to keep the algorithm generic, so we start the code with the smallest possible value in the
x25, which we do on line (21). There are many ways to do this problem; this is probably the most
straight-forward, which sounds good to me.

 We then get the data from memory on line (26), send it to the subroutine on line (27), and then
conditionally branch based on the result on line (28). If the newly converted value is less or equal
to the current largest value, the we continue the loop. Otherwise, we make the currently input value
as the new largest value, which we do on line (29).

 The loop administration is for all iterations regardless of whether it was a new large value or not;
this includes advancing the address pointer by four because we’re using words on line (30), and
decrementing the loop count on line (31).

 The Calc_unary counts the number of set bits in a register by masking the LSB and
accumulating it, an algorithm we’ve used way too many times up to this point.

 Note that we used labels such as “done1” and “done2” rather than just “done” because we can’t
reuse the same label in an assembly language program.

FreeRange Computer Design Chapter 15

 - 427 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(52)
(54)

#---
Subroutine: Big_unary:

This subroutine finds the largest stonage unary value in a given span of
memory. The memory starts at the value passed to the subroutine in x10 and
checks the number of values (words) store in x20. The result is passed back
to the calling routine x25.

Passed values: x10,x20

Tweaked register: x25, x30, x10
#---
#---- test code ---
.data # data segment
junk: .word 0x3, 0x7 # dummy data
.text # text segment
 la x10,junk # load address of junk
 li x20,2 # load count of data
#---- test code ---

Big_unary:
init1: mv x25,x0 # designated large value
 addi sp,sp,-4 # make space for ra
 sw ra,0(sp) # store return address

loop1: beq x20,x0,done1 # quit if count is zero
 lw x30,0(x10) # get value
 call Calc_unary # find unary equivalent
 ble x31,x25,admin # jump if less than
 mv x25,x31 # set new greater value
admin: addi x10,x10,4 # advance address
 addi x20,x20,-1 # decrement count
 j loop1 # repeat

done1: lw ra,0(sp) # pop return address
 addi sp,sp,4 # adjust sp
 ret # going home, all the time

#---
Subroutine: Calc_unary:

This subroutine converts the unary value in x30 and returns result in x31.

Passed values: x30

Tweaked register: x25, x31, x29
#---
Calc_unary:
init2: mv x31,x0 # init count
loop2: beq x30,x0,done2 # see if no more ones
 andi x29,x30,1 # mask LSB
 add x31,x31,x29 # accumulate count
 srli x30,x30,1 # shift value 1 to right
 j loop2 # do it again
done2: ret # bring it home

Figure 15.37: The solution to this example.

15.4 C Code-Based RISC-V Programming Problems

This section contains problems that relate to basic C coding principles and constructs. While this is not an
exhaustive list, it does contain some of the more basic and important C constructs and subsequently shows their
relation to the underlying RISC-V assembly language.

FreeRange Computer Design Chapter 15

 - 428 -

Example 15.30: for Loop

Write a RISC-V assembly language code that implements the following C programming
construct. Assume that x10 holds the “A” value, and x13 holds the “B” value.

#define VAL 48

for (i = 0; i < VAL; i++) {
 A += B;

 }

Solution Notes: The code in the example is not a complete program, so the solution is not a complete program
either. Both sets of code are examples of code fragments of C code (for the original problem) and assembly code
(for the solution). Here are a few items of interest:

 We use a .equ assembler directive in an attempt to match the #define preprocessor directive in
the problem description.

 We modeled the solution as a do-while loop because we knew based on the constant iteration
count that we always need to execute the loop at least one time.

 There are many ways we could model this C code, this is one of them. Please be receptive to other
solutions.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

;---
;- Assembler Directives (somewhere in the program)
;---
.equ VAL,0x30 # constant definition
;---
#~~~~~~~~ program fragment ~~~
init: li x31,VAL # initialize iterative count

loop: add x10,x10,x13 # do addition: A = A + B

admin: addi x31,x31,-1 # decrement loop count
 bne x31,x0,loop # branch if loop count !=0
 j loop # jump to attempt new iteration

done: # code breaks out of loop
#~~~~~~~~ program fragment ~~~

Figure 15.38: The solution to this example.

Example 15.31: for Loop again

Write some RISC-V assembly language code that implements the following C programming
construct. Assume x8 holds the “c_cnt” value, x10 holds the “A” value, and x13 holds the
“B” value.

#define VAL 48

for (i = c_cnt; i < VAL; i+=2) {
 A += B;
}

FreeRange Computer Design Chapter 15

 - 429 -

Solution: The code is similar to a previous example; both sets of code are examples of code fragments of C code
(for the original problem) and assembly code (for the solution). This problem is eerily similar to the previous
problem, so it is important you realize the differences, as they are rather special and somewhat tricky.

 The previous example was a simple iterative loop, where we needed to do something a constant
number of times. The loop in this example is not as simple. First, we’re not starting the loop count
at zero; in this problem, we start it at what we could consider a variable value. Because we do not
know what this value could be, we must model this loop as a while loop to ensure that it does not
execute the body of the loop not even one time when the conditions are correct. Line (09) in the
solution check the loop conditions before it can enter the body of the loop.

 We also need to initialize the loop count in this problem, which we did not do in the previous
problem based on the constant and known loop count. We initialize the loop count according to
the program description on line (07). The previous problem knew at assemble time how many
times the loop would iterate; the code in this problem does not know the iteration count until
runtime.

 This program adds two to the loop count each time through the loop, which is also different from
the previous problem. We account for that on line (13) in the solution by advancing the count by
two.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

;---
;- Assembler Directives (somewhere in the program)
;---
.equ VAL,0x30 # constant definition
;---
#~~~~~~~~ program fragment ~~~
init: li x31,VAL # initialize iterative count
 mv x29,x8 # copy loop start count

loop: bge x29,x31,done # jump when loop is completed

 add x10,x10,x13 # addition: A = A + B (body of loop)

admin: addi x29,x29,2 # advance loop count count
 j loop # jump to attempt new iteration

done: # code breaks out of loop
#~~~~~~~~ program fragment ~~~

Figure 15.39: The solution to this example.

FreeRange Computer Design Chapter 15

 - 430 -

Example 15.32: if/else Statement

Write RISC-V assembly language code that implements the following C programming
construct. Assume x18 holds “a_val” and x25 holds “sensor_01”.

#define C_DUB 192
#define RESET_VAL 65
#define INIT_VAL 80
#define INC_VAL 3

if (a_val == C_DUB) {
 sensor_01 = RESET_VAL;
}
else {
 sensor_01 = INIT_VAL + INC_VAL;
}

Solution: As you can see from the problem statement, this is a classic if/else construct. Recall that we have
many ways to write if/else constructs, we always do so such that they contain one conditional branch and one
unconditional branch. The code in Figure 15.40 shows that as well as some other interesting stuff:

 We once again use assembler directives to encode the values we need to use in the code. The
problem used these values as constants, we opt to do the same in our code.

 We use labels to help identify the actual if and else lines in the code. The way we structured
the code requires us to use the “else” label, but the “if” label is primarily a comment.

 The if clause assigns a value to a register while the else clause assignment to the same register
is a result of an addition instruction.

 The conditional associated with the if clause on line (13) jumps over the if clause to the else
when the condition is not true. If the code takes the if, it then unconditionally jumps over the
else on line (15).

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

;---
;- Assembler Directives (somewhere in the program)
;---
.equ C_DUB,192 # constant definitions
.equ RESET_VAL,65
.equ INIT_VAL,80
.equ INC_VAL,3
;---
#~~~~~~~~ program fragment ~~~
init: li x10,C_DUB # put constants into registers
 li x12,INIT_VAL #
 li x13,INC_VAL #

 bne x18,x10,else # jump to else if not equal
if: li x25,RESET_VAL # make assignment
 j done # jump over else

else: add x25,x12,x13 # jump when loop is completed

done: # code breaks out of loop
#~~~~~~~~ program fragment ~~~

Figure 15.40: The solution to this example.

FreeRange Computer Design Chapter 15

 - 431 -

Example 15.33: case Statement

Write a fragment of RISC-V assembly language code that implements the following C
programming construct. Consider all variables to be declared as unsigned chars. Assume x10
holds “val”, x11 holds “a_val”, x12 holds “b_val”, and x13 hold “c_val”.

switch (val)
{
 case 0x01:
 a_val++;
 break;

 case 0x08
 b_val++;
 break;

 case 0x02:
 c_val++;
 break;

 default:
 a_val = 0;
}

Solution: Once again, the code in the example is not a complete program. There are many ways to do this
problem; the code below shows one possible and probably solution, with a few fun things to note:

 The problem stated that all variable types were unsigned characters, which is a fact that does not
matter for this program. All of the compare operations in the program fragment use registers,
which are 32-bit value representations of the C unsigned characters, which are 8-bit values.

 A case statement is simply a special compact form of a string of if/else statements, which is what
the code below reflects. The code is of course sequential and it performs one compare at a time.
We coded the compares in the order they were given in the program, but the order does not matter.
If programmers know the value was most likely to be one of the values, then they would place that
compare first in the code; this problem provided no such information.

 This case statement contained a break statement for each compare, which is typically they way C
uses case statements, but not always. A common C programming error is to not include a break
where you actually meant to, which would alter the functionality of the code. This case statement
also contained a default clause, which is also optional.

 The case statement has three “cases”; there are thus three if/else clauses in the assembly code. We
provided slightly helpful labels on lines (01,06,11) with the “cx” terminology in the assembly
code.

FreeRange Computer Design Chapter 15

 - 432 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

#~~~~~~~~ program fragment ~~~
c0: li x20,1 # load compare value
 bne x10,x20,c1 # branch if not equal
 addi x11,x11,1 # increment x11 (a_val)
 j done # jump out of construct

c1: li x20,8 # load compare value
 bne x10,x20,c2 # branch if not equal
 addi x12,x12,1 # increment x12 (b_val)
 j done # jump out of construct

c2: li x20,2 # load compare value
 bne x10,x20,def # branch if not equal
 addi x13,x13,1 # increment x13 (c_val)
 j done # jump out of construct

def: mv x11,x0 # clear x11

done: # continue with program
#~~~~~~~~ program fragment ~~~

Figure 15.41: The solution to this example.

Example 15.34: Complex if/else Construct

Write RISC-V assembly language code that implements the following C programming
construct. Assume x17 holds x_val, x23 holds sensor_23, x24 holds sensor_24, and x11
holds f_val. Consider all values to be unsigned.

#define C_INC 93
#define RESET_VAL 44
#define CLAMP_VAL 156

if (x_val <= (C_INC + f_val)) {
 sensor_23 = CLAMP_VAL;
}
else {
 sensor_24 = RESET_VAL;
}

Solution: This is another if/else statement, but now the condition associated with the if statement is not as simple
as the other versions. Programmers can implement if/else statements in many different ways, but there always an
approach that minimizes instructions. The designers of the RISC-V instruction set provide six base conditional
instructions, and another ten conditional pseudoinstructions based on those six base instructions. This
instructional support provides the means for programmers to generate efficient code. Here are the exciting
highlights for this problem:

 We use assembler directives to encode the values provided as preprocessor directives in the
original code. Both C compilers and RISC-V assemblers have such an option.

 We must formulate the conditions for the conditional statement before we actually use the
conditional statement, which essentially means we need to do the addition one of the
conditional argument. We do this on line (07) by adding f_val to the provided constant and
saving it in another register. We opted to save the value in another register, which was
arbitrary; we could have also saved the result of the addition in the x11 register.

FreeRange Computer Design Chapter 15

 - 433 -

 The problem stated that everything was unsigned values, so we opted for a bgtu
pseudoinstruction on line (09). There are many ways to do the compare; this is the one that felt
most clear for us. Encoding statements such as these can become very confusing when you’re
not used to working with them. Be sure to check over your final approach when you’ve
completed the problem and be sure to check out your approach in a simulator.

 We implemented the if/else clause with one conditional branch statement and one
unconditional branch statement. This is the more efficient approach and is one you should
always implement when you’re writing if/else clauses in yoru code.

 We opted to use li pseudoinstructions in our code instead of addi instructions. Keep in mind
that the assembler translates the li pseudoinstruction into an addi instruction, but seeing an
addi instruction in the code can make human readers think there is an addition operation
happening, which is not the case in this code. In this case, we would be using x0 as one of the
operands to the addi instruction, which is not really addition.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

;---
;- Assembler Directives (somewhere in the program)
;---
.equ C_INC,192 # constant definitions
.equ RESET_VAL,65
.equ CLAMP_VAL,80
;---
init: addi x15,x11,C_INC # preliminary math

compare: bgtu x15,x17,if # start compare value build

else: li x24,RESET_VAL # add f_val
 j done # jump over if

if: li x23, CLAMP_VAL # do initial comparison

done: # somewhat meaningful label
;---

Figure 15.42: The solution to this example.

Example 15.35: while Loop

Write RISC-V assembly language code that implements the following C programming
construct. Assume x10 holds acc_val, x11 holds add_val, and x15 holds count. Consider the
variables to be

#define VAL_X 0x77

count = 0;
acc_val = 0;

while (acc_val < VAL_X) {
 acc_val += add_val
 count++;
}

Solution: This problem is the classic while loop, well known to check the condition before executing the body
of the loop. There are many approaches to solving this problem; the code below shows a good approach in that
the loop contains one conditional branch and one unconditional branch.

FreeRange Computer Design Chapter 15

 - 434 -

 The code uses an assembler directive to encode the preprocessor directive in the orginal
problem description.

 The code has an “init” section, where it set a value in a register (06), the sets the value of two
registers to zero lines (07-08).

 The while loop first check the contition on line (10); it the condition is not true, the body of the
loop does nto execute.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

;---
;- Assembler Directives
;---
.equ VAL_X,0x77
;---

init: li x20,VAL_X # put value in register
 mv x10,x0 # clear acc_val
 mv x15,x0 # clear count

loop: bltu x10,x20,done # check condition
 add x10,x10,x11 # body of loop, do add
 addi x15,x15,1 # increment count
 j loop # jump to check condition

done: # onto other good things

Figure 15.43: A possible solution for this example.

Any time we write assembly code, we should always wonder whether there is a more efficient way to code
things. The following solution represents the output of such thoughts. In this solution, we attempt to use a
sltiu instruction in an effort to make the code more efficient. As you can see the code has the same number
of instrutions, so the second approach is not more space efficient. The while loop now uses to instructions
to examine the condition on lines (09-10). Because the extra instruction is part of the loop, the second
solution requires more instructions to execute, and is thus less runtime efficient. Nice try, though.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

;---
;- Assembler Directives
;---
.equ VAL_X,0x77
;---

init: mv x10,x0 # clear acc_val
 mv x15,x0 # clear count

loop: sltiu x20,x10,VAL_X # check condition
 beq x20,x0,done # branch if condition fails
 add x10,x10,x11 # body of loop, do add
 addi x15,x15,1 # increment count
 j loop # jump to check condition

done: # onto other good things

Figure 15.44: Another possible solution for this example.

FreeRange Computer Design Chapter 15

 - 435 -

Example 15.36: The Classic do-while Loop

Write RISC-V assembly language code that implements the following C programming
construct. Assume x10 holds acc_val, x11 holds add_val, and x15 holds count.

#define VAL_X 0x77

count = 0;
acc_val = 0;

do {
 acc_val += add_val
 count++;
}
while (acc_val < VAL_X);

Solution: This problem is purposely similar to the previous problem. The previous problem was a while loop
but this problem is a do-while loop. We provided them for their pure comparison value.

 As you can see, the code in the following solution is rather interesting because the do-while
loop with similar statemnts executes using one less instruction. Keep in mind that although the
problems appear the same, they operate inherently different in the code because on is a while
loop and the other is a do-while loop. So the moral of this story is that if you know your loop
always executes at least once, model it as a do-while loop and save an instruction, which
means your loop executes in a shorter amount of time.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)

;---
;- Assembler Directives
;---
.equ VAL_X,0x77
;---

init: li x20,VAL_X # put value in register
 mv x10,x0 # clear acc_val
 mv x15,x0 # clear count

loop: add x10,x10,x11 # body of loop, the add
 addi x15,x15,1 # body of loop, increment count
 bltu x10,x20,loop # check condition, loop if necessary

done: # onto other good things

Figure 15.45: A possible solution for this example.

FreeRange Computer Design Chapter 15

 - 436 -

Example 15.37: C-Type memcpy Function

Write a assembly language subroutine that implements a C memcpy() function. See the C
definition for a memcpy() below. For this subroutine, assume that s1 is provided in x11 and
s2 is provided in x12, respectively; the value of n is provided in x10. Your function should
copy n-bytes of data starting at the RAM location specified in x11 to the RAM locations
specified in x12. For this problem, you can assume the n-bytes value is small enough not to
cause any problems. Make your code as efficient as possible.

memcpy(void *restrict s1, const void *restrict s2, size_t n);

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1.

Solution: This is a standard C function that copies memory from one area in memory to another. We solve this
two different ways. The first way is straightforward but sort of mechanical in that we did not think it out
before writing the code. We took what we learning writing the code and rewrote the code for the second
solution. Here are the highlights of the first solution:

 The approach we take is to separately find the count of words, halfs, and bytes. The second half
of the subroutines then uses those counts to read from one area in memory to another using
words, halfs, then bytes. This is a real generic and certainly non-clever approach.

 We use two while loops for thing the word and half count; the value that remains in x10 is then
the byte count. We essentially repeated the first while loop for the second while loop and
changed a few key values.

 The second part of the subroutine uses the counts in the first part of the program to read data
from one location and copy it to the other. It uses three while loops in the same way as the first
part of the subroutine used two while loops.

FreeRange Computer Design Chapter 15

 - 437 -

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(52)
(54)
(55)
(56)
(57)

#---
Subroutine: memcpy:

This subroutine stores a chunk of data where the size of the chunk is
passed to the subroutine in x10. This subroutine does it in the most
efficient way (fewest writes) possible.

Passed values x10 (size of a data chunk)
Passed values x11 (address of data to copy)
Passed value: x12 (address to copy data to)
Return values: none
Tweaked registers: x20,x21,x30,x10,x25,x10,x11,x12
#---
memcpy:
li x10,12

init: mv x20,x0 # clear word counter
 mv x21,x0 # clear halfword counter

 li x30,4 # load size of word

word: bltu x10,x30,wdone # branch if no more words
 addi x20,x20,1 # increment word count
 addi x10,x10,-4 # reduce by word size
 j word # do again

wdone: srli x30,x30,1 # divide word size by 2

half: bltu x10,x30,st_words # branch if no more words
 addi x21,x21,1 # increment halfword count
 addi x10,x10,-2 # reduce by word size
 j half # do again

st_words: beq x20,x0,st_halfs # branch to half store is zero
 lw x25,0(x11) # get a word
 sw x25,0(x12) # store at new address
admin1: addi x20,x20,-1 # decrement word count
 addi x11,x11,4 # advance mem address by word
 addi x12,x12,4 # advance mem address by word
 j st_words # repeat

st_halfs: beq x21,x0,st_bytes # branch to half store is zero
 lh x25,0(x11) # get a half
 sh x25,0(x12) # store at new address
admin2: addi x20,x20,-1 # decrement word count
 addi x11,x11,2 # advance mem address by word
 addi x12,x12,2 # advance mem address by word
 j st_halfs # repeat

st_bytes: beq x10,x0,done # branch to half store is zero
 lb x25,0(x11) # get a word
 sb x25,0(x12) # store at new address
admin3: addi x10,x10,-1 # decrement word count
 addi x11,x11,1 # advance mem address by word
 addi x12,x12,1 # advance mem address by word
 j st_bytes # repeat

done: ret # take it home jimmie

Figure 15.46: The unthoughtout solution to this example.

The second version of the solution uses a much more intelligent and thus more efficient solution. Here are some
of the highlights:

 We don’t break the program into two parts; we instead copy as we need to. We don’t find the
count of how many words and halfs to copy in advance, we mostly copy them on the fly.
Additionally, we note that the after the algorithm deals with the words, there is only a possibility

FreeRange Computer Design Chapter 15

 - 438 -

of one or zero halfs to copy, and one or zero bytes to copy. Knowing this allows us to not use
while loops for copy halfs and bytes, we use if/else statements instead.

 The overall runtime increases for the second algorithm. There is less code as well, and the code
uses less registers. Normally we would save and restore context in these examples, but that would
make the code even longer. The fact that the second algorithm uses less registers means that if we
chose to save/restore context, we could do it much faster than the first algorithm because that one
used more registers.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

#---
Subroutine: memcpy:

This subroutine stores a chunk of data where the size of the chunk is
passed to the subroutine in x10. This subroutine does it in the most
efficient way (fewest writes) possible.

Passed values x10 (size of a data chunk)
Passed values x11 (address of data to copy)
Passed value: x12 (address to copy data to)
Return values: none
Tweaked registers: x30,x25,x31,x10,x11,x12
#---
memcpy:
li x10,15

 li x30,4 # load size of word

word: bltu x10,x30,wdone # branch if no more words
 lw x25,0(x11) # get a word
 sw x25,0(x12) # store at new address
admin1: addi x10,x10,-4 # decrease word count
 addi x11,x11,4 # advance mem address by word
 addi x12,x12,4 # advance mem address by word
 j word # repeat

wdone: srli x30,x30,1 # divide word size by 2

half1: bltu x10,x30,byte1 # branch if no more halfs
 lh x25,0(x11) # get a half
 sh x25,0(x12) # store at new address
 addi x10,x10,-2 # decrease size counter

byte1: beq x10,x0,done # branch if no bytes
 lb x25,0(x11) # get a byte
 sb x25,0(x12) # store at new address

done: ret # take it home jimmie

Figure 15.47: The well-thoughtout solution to this example.

FreeRange Computer Design Chapter 15

 - 439 -

15.5 Chapter Summary

 This chapter contained many example programs that show many common techniques to assembly language
programming. The chapter started with easy problems that became; the chapter problems became more
complicated as the chapter progressed.

 The programming areas in this chapter include introductory problems, more complicated problems, and C
programming-based problems. Yes, lots of happy stuff embedded in those many solutions.

 The RISC-V uses memory-mapped I/O, which results in input/output using the load-type/store-type memory
access instructions.

FreeRange Computer Design Chapter 15

 - 440 -

15.6 Chapter Exercises

1) Briefly describe why we always write RISC-V assembly language programs using endless loops.

2) Briefly describe what would happen if our RISC-V program could not be characterized by an endless loop.

3) Briefly describe which type of divisions/multiplications can be done very efficiently using the RISC-V
instruction set.

4) Briefly describe if right-shifting by two results in a truncated or rounded-up number.

5) What is the largest digital number that a RISC-V register can represent using a BCD format?

6) Briefly describe how parity is typically determined in hardware.

7) The bubble sort algorithm is famous for having nested loops; briefly describe what this means in the context
of assembly language programming.

8) Briefly describe why you should always attempt to use do-while loops rather than while loops for iterative
constructs.

9) Compilers have many ways to translater higher-level language code into assembly code. Briefly describe
how you would know if the compiler is performing a correct and/or efficient job.

10) Briefly describe the use of a flag register.

FreeRange Computer Design Chapter 15

 - 441 -

15.7 Chapter Programming Problelms

For the following problems:

 Minimize the amount of code in your solutions

 Make your code looks exquisite in terms of readability

 Fully comment your code, including proper headers for subroutines

1) Write a RISC-V MCU assembly language subroutine that counts that examines and possibly modifies a
value in memory. The memory location in question is stored in x20. If the value at that location is even,
then the number is multiplied by four and stored back at the same address; otherwise the value is divided by
two and stored at the same address. Don’t worry about overflow and underflow for this problem

2) Write a RISC-V MCU assembly language program that does the following (assume the associated hardware
includes 16 switches at port address 0x11008000 and 16 LEDs at port address 0x1100C000): the program
toggles the right-most LED each time the state of the left-most switch changes. When the program detects
that change in switch value, it copies 100 bytes of data from the memory address starting at 0x0000D000 to
the addresses starting at 0x0000E000. If the switch value is currently on, the data is copied directly;
otherwise, a two’s complement of the data is copied.

3) Write a RISC-V assembly language subroutine that clamps a span of 8-bit unsigned binary number in
memory into the range [33,233]. This means if the number is in the given range, it is not altered. If the
number is less than the lower bound, the number is clamped to the lower bound. If the number is greater
than the upper bound, the number is clamped to the upper bound. The binary value is provided in x20; the
beginning of the range is given by the address in x25, and the number of values to clamp is given in x30.

4) Write a RISC-V fragment of assembly code that performs a firmware-based debounce of a button. The
button is the right-most bit of the data from port address 0x11008004. Have the fragment call a subroutine
Delay_bounce, but don’t bother defining that subroutine. The bounce should be associated with a 0→1
transition.

5) Write a RISC-V fragment of assembly code that performs a firmware-based debounce of a button. The
button is the right-most bit of the data from port address 0x11008004. Have the fragment call a subroutine
Delay_bounce, but don’t bother defining that subroutine. The bounce should be associated with a 1→0
transition.

6) Write a RISC-V assembly language program the implements the following FSM.

FreeRange Computer Design Chapter 15

 - 442 -

FreeRange Computer Design

 - 443 -

PART FIVE: RISC-V OTTER MCU Hardware Matters

FreeRange Computer Design Chapter 16

 - 444 -

16 RISC-V Architecture Details

16.1 Introduction

All of the previous chapters that dealt with the RISC-V MCU did so at primarily a programming level. We
purposely limited our mention of hardware details in an effort to not frighten programmers who have no
knowledge of the hardware implements an actual computer. This chapter delves into those details by describing
the underlying hardware details of the RISC-V MCU’s submodules at both a low and high-level context. The
notion here is that that act of executing an instruction makes certain things happen in the underlying RISC-V
MCU hardware. In other words, there are certain actions the RISC-V MCU’s hardware must take to correctly
implement any given instruction. This chapter describes the RISC-V various submodules and their relation to the
execution of instructions in the RISC-V MCU’s instruction set.

Main Chapter Topics

 DESCRIPTION OF RISC-V MCU’S SUBMODULES: This chapter describes the
various submodules in the RISC-V MCU architecture. These submodules include the
control units, the program counter, the main memory, the branch address generator,
the immediate generator, the branch condition generator, and the ALU.

 HARDWARE DETAILS OF INSTRUCTION EXECUTION: This chapter provides
pertinent hardware details regarding the execution of instruction.

 OVERVIEW OF THE RISC-V MCU WRAPPER: This chapter describes the “wrapper”
which we use to interface the RISC-V MCU with external hardware such as a
development board or other modules.

Why This Chapter is Important

This chapter is important because it describes the low-level architecture details of the
RISC-V MCU and its interfacing to the outside world with particular attention to
instruction execution.

16.2 The Big RISC-V MCU Overview

The RISC-V MCU is simply a relative large and relatively complex digital circuit that has the ability to run
programs. It can run roughly any program written using RISC-V assembly language, which means it’s quite
versatile. Because it has the ability to run programs, we refer to this circuit as a computer, or probably better
stated, as a microcontroller (MCU).

The RISC-V OTTER MCU has a level of complexity that makes is tough to understand as one large circuit. The
only way we (or at least me) can understand this circuit is to subdivide it into various modules. This act of
subdividing large circuit is one of the primary characteristics of modern digital design in that modeling the
circuit in a hierarchy facilitates the understanding of how the circuit operates. Because we are in the hardware
portion of this text, we need to understand absolutely everything about this circuit, and thus why it is we are able
to refer to it as a computer. Be sure to note that pure programmers don’t require the same level of understanding
as hardware designer; programmers are only responsible for writing programs. There are a world full people who
can program computers, but a whole lot less people who understand the hardware the programs execute on. I’m
glad I’m a hardware person who knows how to write efficient programs. The relation here is not obvious, but so
I’ll state it plainly, Mealy’s First and Only Law of Computer Programming (sorry pure programmers… it’s true):

FreeRange Computer Design Chapter 16

 - 445 -

Mealy’s First and Only Law of Computer Programming: If you understand the
hardware of the computer your program will run on, then you can write better programs.

In terms of the various operations computers perform, things don’t come for free. You use a MCU to solve
problems by writing programs; the computer executes the instructions in your program in order to solve the
problem. Executing instructions takes time, eats power, and generally speaking, you must solve every problem of
interest using some sort of algorithm. If you understand the instruction set from a low level, you can write
programs that are more efficient because you understand how to use the instructions in the given instruction set
in an efficient way and also know how to not use instructions in inefficient manners. Pure programmers are not
privy to the details.

Figure 16.1 show a high-level view of the RISC-V MCU, which includes a listing of its main submodules. This
chapter individually describes most of these submodules in the sections that follow. We do, however, save the
description of the CSR module for the chapter describing the RISC-V MCU interrupt architecture.

Figure 16.1: A high-level view of the RISC-V MCU and its submodules.

16.3 The Control Units

The current implementation of the RISC-V MCU uses two control-type modules what refer to as the control unit
FSM (CU_FSM) and the control unit decoder (CU_DCDR). The two modules control the low-level operations
of the RISC-V MCU. As their names’ imply, the CU_FSM is truly an FSM, which means it’s a sequential
circuit, while the CU_DCDR is a decoder, meaning it is a combinatorial circuit. Keep these distinctions in mind
in the following discussion.

It is an arbitrary design decision to separate the control unit into two modules. There is no reason preventing us
hardware designers from implementing both units in the same module. The thought is that we can comfortably
classify the two outputs from the control unit modules into two categories, so we opt to do so to help simplify the
understanding of the overall RISC-V operation. Additionally, the description in this section lists but does not
describe in any meaningful detail the signals or functionality associated with interrupts. We’ll add the required
signals as supporting hardware in Chapter 18.

16.3.1 The Control Unit FSM (CU_FSM)

The basic operation of the RISC-V MCU is to sequentially execute instructions stored in program memory.
Because the execution of an instruction does not occur in “one step”1, we need an FSM to provide the control
necessary to implement instructions in a specific sequence. If we could execute instruction in one step, we could
probably get away with only have a decoder control the operation of the computer. In other words, the execution

1 Here “one step” means one clock cycle; this is a topic we discuss in an upcoming section.

FreeRange Computer Design Chapter 16

 - 446 -

of an instruction is a multi-step process; we synchronize each of the steps in the process with an active clock
edge. Recall that the underlying RISC-V hardware comprises of a significant number of sequential circuit
elements, which generally means the operation of these elements depends on and are synchronized to an active
clock edge in the circuit.

Most instructions in the RISC-V ISA require two clock cycles for execution, though the load instructions require
three clock cycles. In essence, the execution of a program involves the repeated processing of these clock cycles.
Other literature on computer architecture refers to these cycles as “T cycles”. These basic clock cycles are
important so we give them names, which makes it easier to discuss them. The three clock cycles that we use in
the RISC-V OTTER are 1) the fetch cycle, 2) the execute cycle, and for the load instructions only, 3) the
writeback cycle. Roughly speaking, the fetch cycle involves “fetching” an instruction from program memory, the
execute cycle involve executing the instruction, and the writeback cycle involve writing data from an external
source to the register file. More details on these later.

The main responsibility of the CU_FSM is to sequence though the various cycles to implement the instructions.
Another way to view the CU_FSM’s responsibility is to control the flow of data through the underlying
hardware, a task that it does by sending out the required control signals during each cycle. As you would
imagine, control functionality such as this is ideally suited for a finite state machine (FSM).

Figure 16.2 shows the black box diagram for CU_FSM. The signals on the left side of the module are effectively
status signals (not including the clock signal), while the signals on the right side are control signals. The FSM
basically reacts to the status inputs and sends out the appropriate control signals. Table 16.1 provides a brief
description of the signals in the CU_FSM interface.

Figure 16.2: The Control Unit FSM black box diagram.

FreeRange Computer Design Chapter 16

 - 447 -

Signal Type Comment

INTR in An external asynchronous active high interrupt signal that the FSM uses to
determine if an active interrupt is pending or not.

ir[6:0] in These are the lower seven bits of the instruction word, which serves as the opcode
field shared by all instructions.

ir[14:12] in These are three bits that serve as the funct3 opcode share by some instructions.

RST in An external asynchronous reset signal that the FSM synchronizes and uses to send
out reset via the reset signal.

clk in The system clock (not shown in Figure 16.2), a rising-edge-triggered signal.

PCWrite out Controls the loading of data into the program counter (PC).

regWrite out Controls the loading of data into the register file.

memWE2 out Controls loading of data (writing) into main memory.

memRDEN1 out Controls the reading of instruction data from main memory (output read enable).

memRDEN2 out Controls the reading of generic data from main memory (output read enable).

int_taken out Controls other modules (CU_DCDR & CSR) handling of interrupts

reset out Controls synchronous resetting of the program counter (PC)

Table 16.1: Description of CU_FSM inputs and outputs.

Figure 16.3 shows the state diagram modeling the CU_FSM. This diagram shows three main states, but shows
only one external input signal: RST. The state diagram shows a LOAD signal, but this is effectively an internal
“condition” and not an external status signal. The first thing to notice about the state diagram is that it is missing
all of the control signals (outputs) listed in Table 16.1. It is not conceivable to make the state diagram complete
based on the basic functional requirements of the FSM acting as a controller for the RISC-V MCU. We’ll discuss
those details soon. The LOAD label in Figure 16.3 signifies that the RISC-V hardware executes all instructions
in two clock cycles (fetch & execute), except for the load-type instructions, which require the writeback cycle to
complete execution.

The state diagram in Figure 16.3 is actually not complete because we omitted all description of interrupt-based
operations. Part of the mechanism includes the int_taken signal, which we list in Table 16.1. We’re saving the
details of the interrupts architecture until Chapter 18, where we happily fill in all the gory details.

The high-level description of the CU_FSM responsibilities is relatively simple. The fetch cycle retrieves an
instruction from program memory. The instruction itself is comprised of field codes and opcodes. The right-most
opcode connects to the CU_FSM; the CU_FSM uses this opcode to determine which instruction requires
execution. We officially say the that CU_FSM “decodes” the opcode to determine which instruction is being
executed, and then sends out the appropriate control signals to “make that instruction happen” in the underlying
hardware.

FreeRange Computer Design Chapter 16

 - 448 -

Figure 16.3: The state diagram modeling the Control Unit FSM (no interrupts).

Figure 16.4 shows how the system clock delineates the fetch and execute cycles. Figure 16.4 assumes that RISC-
V circuit elements are rising-edge triggered, and that the instructions are non-load-type. Figure 16.4 shows two
and one half instructions cycles.

Figure 16.4: An example cycle sequence for executing non-load-type instructions.

16.3.1.1 Individual FSM States

Each of the three states in the FSM has distinctive responsibilities. We’ll describe those responsibilities in
general terms in this section in order to provide an intuitive notion of what each state does and the part they play
in implementing instructions.

The Fetch Cycle: The FSM’s fetch state implements the fetch cycle. This state’s single
responsibility is to retrieve, or fetch, an instruction from program memory. Program memory is a
part of main memory; all main memory reads are synchronous. Thus, the one responsibility of the
fetch cycle it so assert the read signal associated with program memory.

The Execute Cycle: The FSM’s execute cycle has several responsibilities, which is why we
sometimes refer to this cycle as the “decode/execute” cycle. The decode/execute moniker is a
better name but the name “execute” is far easier to write. As the state diagram indicates, the FSM
unconditionally enters the execute cycle after the fetch cycle, which is a fact that never changes in
the RISC-V MCU architecture. The fetch cycle provides (output of main memory) the machine
code for the instruction the next instruction to execute. The various opcode fields in individual
instructions indicate which instruction requires execution. The CU_FSM and the CU_DCDR
examine the instruction opcodes (in other words, “decode” the opcodes) and then send out the
correct control signals to implement the instruction on the underlying hardware. By “implement”,
we mean make the underlying hardware perform the operation requested by the instruction’s
opcodes in conjunction with the field codes in the instruction. The execute cycle is relatively
complex in that it needs to “decode” about 40 instructions and then send out the appropriate
control signals. Another way to look at instruction execution is that the control units are directing
the flow of data through the hardware so as to implement the operation specified by the
instruction.

The Writeback Cycle: The FSM’s writeback cycle is associated with only the load-type
instructions. If the instruction the MCU is implementing is a load-type instruction, the FSM
transitions from the execute state to the writeback state; for all other instructions, the FSM

FreeRange Computer Design Chapter 16

 - 449 -

transitions from the execute state back to the fetch state. We can describe the load-type instruction
operations execute state as needing to generate a memory address and the writeback state as using
that address to read data from main memory. The hardware simultaneously writes the data read
from main memory into the register file and transitions back to the fetch state.

Example 16.1

How many clock cycles does it require for the following RISC-V assembly language code
fragment to execute from the starting at the start label and going through the done label?

start: add x10,x0,x0
 addi x10,x10,4
 sub x13,x11,x12

loop: beq x10,x0,done
 lw x20,0(x21)
 lw x21,8(x22)
 sw x21,4(x23)
 addi x10,x10,-1
 j loop

done: nop

Solution: This is a classic problem that requires you to understand both iterative constructs and how the RISC-V
hardware implements instructions. The first thing you need to do in these problems is to examine the code to
look for iterative constructs. This code had a loop in it so this problem is not a matter of counting instructions,
you must also consider how many times the code runs through the loop and what instructions on in the body of
the loop.

There are two things to be aware of in problems such as this. First, we need to look for load-type instructions,
which are important because they require three clock cycles to execute. Second, you need to look for iterative
constructs, which there almost always is simply to make these problems more exciting (and less boring).

The value in x10 controls how many times the loop iterates, which we can see from the first two instructions.
Register x10 is first cleared, then advanced by four, so the number of loop iterations is four. The loop itself has
six instructions, which the loop executes each of the four times through the loop. There are two load-type
instructions in the loop, so they require three clock cycles. All the instructions in the body of the loop execute
four times, but the instruction that tests the loop count (the beq instruction) executes one more time than the
number of times the loop body executes. Here is the painful gathering of information for the solution, we gather
the final solution from adding the values in the third column in Table 16.2: A painfully detailed description of
the solution., which is 66 clock cycles.

Instructions Number of Clock Cycles Total Comments

The first three 6 6 3 @ 2 clock cycles

The loop 4 * (2 + 3 + 3 + 2 + 2 + 2) 56 4 times @ 14 clock cycles

The beq 2 2 Last time the loop

The last one 2 2 The final instruction

Table 16.2: A painfully detailed description of the solution.

FreeRange Computer Design Chapter 16

 - 450 -

Example 16.2

How many clock cycles does it require for the following RISC-V assembly language code
fragment to execute from the starting at the start label and going through the done label?

start: add x10,x0,x0
 addi x10,x10,8

loop: slli x10,x23,2
 lw x20,0(x21)
 sw x22,12(x28)
 sw x21,4(x23)
 addi x10,x10,-1
 bne x10,x0,loop

done: sub x23,x24,x25

Solution: At first glance, this problem looks similar to the previous problem, but looks can be deceiving,
particularly when you’re really tired. The previous problem contained a while loop, whereas this problem
contains a do-while loop. What this means is that we need to be careful about which instructions are part of the
loop administration as this example is different from the previous example.

Similar to the previous problem the first two instructions in this example establish the iteration count. The body
of the loop has six instructions, one of which is a load-type instruction; this means the body of the loop requires
13 clock cycles to execute. The final instruction adds two more clock cycles.

The cool thing to note in this problem is that the do-while loop only has one loop administrative instruction per
iteration. The while-loop in the previous example had two such instructions. Also, the do-while loop does not
include that “extra” instruction, which the previous problem required to test the loop condition.

Instructions Number of Clock Cycles Total Comments

The first two 6 4 2 @ 2 clock cycles

The loop 8 * (2 + 3 + 2 + 2 + 2 + 2) 104 8 times @ 13 clock cycles

The last one 2 2 The final instruction

Table 16.3: Another relatively painful description of the solution.

16.3.2 The Control Unit Decoder

The RISC-V implements the control unit using two modules. The CU_DCDR works conjunction with the
CU_FSM to implement instructions in the underlying hardware. As the name implies, the CU_DCDR is a type
of decoder, which means it’s a combinatorial circuit. Each of the outputs from the CU_DCDR connects to MUX
select inputs in other parts of the RISC-V MCU hardware. Figure 16.5 shows the high-level interface of the
CU_DCDR module; Table 16.4 provides a brief description of the module’s inputs and outputs.

FreeRange Computer Design Chapter 16

 - 451 -

Figure 16.5: Black box diagram of the CU_DCDR module.

Every input to the CU_DCDR is part of one the three opcode fields in the various instruction formats. Decoding
all instructions is a relatively simple process and structured process based on the instruction opcodes. There can
be up to three levels of decoding for each instruction, where the three levels correspond to the three possible
opcode fields. The first step is to examine the opcode (ir[6:0]), which roughly determines the type of instruction.
The CU_DCDR can decode some instructions using only the opcode field, but most instruction require at least
the funct3 opcode field (ir[14:12]) as well. The second step, when necessary, requires the CU_DCDR to use the
funct3 opcode field to further decode the instruction. A few instructions require a third step in the decoding
process, which entails the use of the funct7 opcode field. The CU_DCDR only requires one bit of the funct7
field (ir[30]) for instruction decoding, which is why we don’t route the other six bits of that field to the module.
Note that not all instructions require all three decoding steps.

Being that the CU_DCDR is a decoder, it is always outputting data. The only time this data is meaningful is after
the valid opcodes become available after entering the execute cycle. Exiting the fetch cycle includes a
synchronous read of the program memory data, which includes the instruction bits. Entering the execute cycle
makes the opcode bits available to both the CU_FSM and the CU_DCDR. Once the CU_DCDR decodes the
valid opcode during the execute cycle, the control outputs of the CU_DCDR become valid.

The CU_DCDR effectively has two modes of operation: 1) decoding instructions, and 2) decoding interrupts. As
for the decoding of instructions, all non-interrupt decoding is similar, including the decoding of the three-state
load-type instructions. Once the valid instruction bits become available the execute cycle, they remain on the
CU_DCDR’s output until the execute cycle of the next instruction. The CU_DCDR must also recognize when
the CU_FSM is acting on an interrupt, which is does by examining the int_taken signal.

FreeRange Computer Design Chapter 16

 - 452 -

Signal
Type

Comment

ir[6:0] in 7 bits of the instruction register, forming the opcode field in all instructions

ir[14:12] in 3 bits of the instruction register forming the funct3 opcode field in instructions

ir[30] in 1 bit in instruction register, part of the funct7 opcode bits

int_taken in 1-bit signal indicating MCU entered an interrupt cycle

br_eq
br_lt
br_ltu

in Three 1-bit signals used by conditional branch instructions to determine
appropriate program flow control actions.

alu_fun out Controls the selection of ALU operations (4 bits)

alu_srcA out Controls the selection of the source A (rs1) ALU operand (1 bit)

alu_srcB out Controls the selection of the source B (rs2) ALU operand (2 bits)

pcSource out Controls the selection of the address data for loading into the PC (2-bits)

rf_wr_sel out Controls the selection of data for loading into register file (2-bits)

Table 16.4: Description of CU_DCDR inputs and outputs.

16.4 The Program Counter (PC) (no interrupt support)

The program counter, or “PC”, is probably the most common sub-module in computer architecture. The PC’s
basic responsibility in a computer architecture is providing a pointer (address) to an instruction in program
memory. The official definition of the PC is that it holds the address of the instruction in program memory that
the MCU is currently executing. As you’ll soon see, the correctness of this definition depends underlying timing
considerations, which we’ll discuss in more detail later. More specifically, the PC points either to the currently
executing instruction or to the instruction following the instruction that is currently executing.

Figure 16.6 shows a high-level block diagram of the PC in the RISC-V MCU. The first thing you may notice
about this diagram is that we don’t implement the PC as a counter; we instead implement it as a register. While a
counter is a type of register, we choose to use a register for the PC because we are only loading values into the
PC; we are never actually doing an increment operation as we would do in a normal counter. Even though it may
cause initial confusion, we’ll keep referring to this module as the “PC”.

Being the PC is only a simple register, it only has typical register inputs such as clear, load enable, data, and a
clock input. We opt to include some external circuitry as part of what we consider the PC, which includes both a
MUX and an adder. As we indicate in Figure 16.6, we refer to the entire module as the PC_MOD. Here are the
interesting things to note about Figure 16.6.

 The MUX in the PC_MOD includes some select functionality beyond a simple register. The
CU_DCDR controls the select inputs to the MUX.

 The adder is the box in Figure 16.6 that contains the “+4” label. While this notation is really
handy, you must realize that using this notation essentially means that you’ll need some type of
adder to implement the box.

 The register heart of the PC is 32-bits wide; the MUX data inputs are also 32-bits wide.

 The PC’s responsibility is to provide an address to program memory of an instruction that requires
execution. We thus arbitrarily reduce the actual address lines from 32 to 14 using the reduction
box (the box with the “-“ in it). We reduce the number of bits by removing the two most
significant bytes and the two least significant bits. We can remove the top two bytes because the
current RISC-V MCU OTTER memory is limited to two bytes worth of memory space. We can
remove the two least significant bits because program memory is byte-oriented and every RISC-V
instruction is four byte long.

FreeRange Computer Design Chapter 16

 - 453 -

Figure 16.6: The Program Counter block diagram.

16.4.1 PC Inputs and Outputs

There are relatively few connections to the PC; Table 16.5 lists the PC interface as including a description of the
pertinent signals. There is truly nothing special about the PC: it’s just a relatively simple register. We’ll describe
the functionality associated with the MUX in a future section in this chapter.

Signal Type Comment

pc output
A 32-bit signal that reflects the current value stored in the PC; the PC
uses this value as an address to access instructions in the main memory.

ld input Controls the synchronous parallel loading of data to the PC.

data input
The data that is parallel loaded into the PC when the ld signal is asserted
and synchronized to an active clock edge.

rst input Synchronously resets the PC when asserted.

clk input System clock

Table 16.5: PC input/output signal description.

16.4.2 PC Functionality

The PC is a simple register but it has a few responsibilities that are key to the operation of the RISC-V MCU.
This section describes the functionality of the PC as it relates to the diagram in Figure 16.6. Keep in mind as you
read the following bullets that many of the implementation details that are arbitrary. There are many ways to do
this; the current RISC-V OTTER MCU architecture chooses one of the simpler approaches.

 We use the output of the PC to access instructions in memory, which requires two types of
operations relatively to the instructions in the program. All RISC-V MCU instructions are one of
two types: program flow control or otherwise. Instructions that are not program flow control
related always load the address of the next instruction into the PC. As you can see from Figure
16.6, the address of the next instruction is four greater than the address of the current instruction.
The “+4” box in Figure 16.6 modifies the current address by adding four to it. This works because
RISC-V instructions are 32-bits wide and the RISC-V MCU’s main memory is byte addressable.
The fact that main memory is byte addressable means that we have to advance the PC output

FreeRange Computer Design Chapter 16

 - 454 -

forward by four (or our bytes) in able to access the next instruction in program memory. Note that
the “+4” modification of the PC is an input to the MUX, which means the hardware has the ability
to load it into the PC under control of the pcSource signal.

 The PC is also responsible for implementing program flow control instructions. Recall that
program flow control instructions are ones that cause program flow to transfer to an instruction
other than the next instruction in program memory. The instructions are thus associated with
conditional and unconditional branches. The pcSource signal is a control signal, and is an output
of the control unit; the control unit is responsible for sending out the correct pcSource signal
based on the instruction that the MCU is currently executing. If the MCU is currently executing a
branch instruction, the hardware loads one of the three lower signals connected to the MUX in
Figure 16.6 into the PC. Another module in the RISC-V MCU architecture determines the actual
value of the data that loads. The three lower inputs to the MUX are jalr, branch, and jal. The jalr
and jal inputs correspond to the jalr and jal instructions, respectively, which are both
unconditional branch instructions. Be sure to recall that the jalr and jal instructions implement
subroutines calls and returns. The branch input corresponds to all of the branch instruction; the
BRANCH_COND_GEN module determines if the branch is taken or not, and then directs the
CU_DCDR to output the correct pcSource signal. If the program does not take the branch, the
hardware executes the next instruction in program memory, which is does by advancing the PC by
four using the non-branch MUX input.

 The output of the PC drives the program memory address input of main memory. As you’ll see
later, main memory is quite specialized in that it serves as both program and data memory. The
size of main memory is currently limited on the development board, so we do not use all the
output bits of the PC to access instruction. There are 16k 32-bit locations (or 64k 8-bit locations)
in main memory, which is why we opt to only connect 14 of the PC’s outputs to the address input
of main memory.

16.4.3 jal & jalr Instruction Details

The RISC-V MCU has two unconditional branch instructions: jal and jalr. Recall that although the RISC-V
ISA includes a call and ret instructions, they are pseudoinstructions that the assembler translates to the jal
and jalr instructions (and sometimes includes others). This section examines the implementation details of
these instructions.

The jal and jalr instruction mnemonics stand for “jump and link” and “jump and link register”. These are
very versatile instructions, though their versatility initially makes them rather challenging to understand. Table
16.6 shows the pertinent information regarding the two instructions; here’s the full skinny:

 The link part of the instruction is the same for both instructions; both instructions create a “link”
by storing the address of the instruction following the current instruction (jal or jalr) in the stated
register. This hardware can then use this value as a return address when returning from a
subroutine. The RTL shows that the RISC-V MCU hardware stores the return address in the
register listed as a destination operand. If the programmer provides no register, the assembler
instructs the hardware to store the return address in x1, which we also refer to as “ra”. Note in the
RTL that the value being stored is four greater than the current PC value, which is simply the
address of the instruction following the jal or jalr instruction. Because the link part of the
instructions is the same, programmers can use either instruction to call subroutines.

 The jump part of the instruction (the part that modifies the PC) is not the same for the jal and
jalr instructions; this is where the “register” in jump and link register comes in. Both versions
modify the PC, but they do so in different ways, as indicated by the RTL. The RTL for the
instructions show that the new PC is a function of a label, used as a relative offset value, and a
second value. The second value for the jal instruction is a PC while the second value for the jalr
instruction is a register. The notion here is that the register to use with the jalr instruction is the
link register used by a jal or jalr instruction, which effectively allows the jalr instruction to

FreeRange Computer Design Chapter 16

 - 455 -

act as a return from subroutine instruction. Thus, while we can use either instruction to call
subroutines, we can only use the jalr instruction to return from subroutines. The jalr
instruction does not use the label value in the address calculation when returning from a
subroutine; the hardware expects the value in the register used as the return address register to be
an absolute address value (after all, it is a 32-bit register).

Instr
Type Instruction Form Instruction RTL Example Usage

J-Type

jal rd,lab
X[rd] ← PC + 4

PC ← PC + lab
jal x8,lab

jal lab
x1 ← PC + 4

PC ← PC + lab
jal lab

I-Type

jalr rd,rs1,lab
X[rd] ← PC + 4

PC ← rs1 + lab
jalr x5,x6,lab

jalr rs,lab
x1 ← rs1 + lab

PC ← rs1 + lab
jalr x7,lab

Table 16.6: Two forms of the two unconditional branch instructions.

These instructions are definitely tough to understand at first, but all is not lost. We actually rarely if ever have a
need to use these instructions because the RISC-V includes four pseudoinstructions that are much more intuitive.
Table 16.7 lists these four pseudoinstructions with usage information. This table underscores the fact that we
don’t need to understand the exactly how the pseudoinstruction translate to base instructions because the
assembler takes care of most of the details. Our mission becomes one of understanding the how the individual
base instructions work on the hardware level so we can correctly implement them. Once we’ve correctly
implemented the jal and jalr instructions, the assembler does the correct math and formats the correct fields in
the machine code associated with the instructions such that when the hardware executes them, they simply work.

Instruction Form
Equivalent Base
Instruction(s) Example Usage Comment

j label jal x0,label j label Jump to instruction
associated with label

jr rs1 jalr x0,0(rs1) jr x8 Jump to instruction at
address in rs1

call rd,label
auipc rd,hi(label)

jalr rd,lo(rd)
call x5,subrot

Jump to instruction
associated with label;
Store current address in rd

call label
auipc x1,hi(label)

jalr x1,lo(x1)
call subrot

Jump to instruction
associated with label;
Store current address in x1

ret jalr x0,0(x1) ret Jump to instruction at
address in x1

Table 16.7: The program flow control pseudoinstructions and their base instruction translations.

Here’s the final summary of these two instructions. Keep in mind that RISC-V designers created these
instructions to be versatile, but that design goal makes it hard for humans to easy understand how these
instructions operate. Here is the final summary:

FreeRange Computer Design Chapter 16

 - 456 -

 Both jal and jalr are jump instructions that transfer program control to somewhere other than the next
instruction the program. The hardware implements these jumps by loading absolute address values into
the PC.

 The assembler is responsible for encoding the correct immediate values into the underlying machine
code for both instructions while the hardware is responsible for calculating the absolute address for both
instructions.

 The encoded immediate value for both instructions represents signed values, which allow program
control to jump forward or backward in the program. The instruction uses both immediate in the
absolute address calculations.

 These two instructions jump; the primary difference between these two instructions is how they
calculate the absolute address, which is the address in instruction memory to jump to (the new value
loaded into the PC). The jal instruction uses the immediate value as a signed offset that will modify
the current PC value; the jalr instruction also has an offset, but the instruction uses that offset to
modify an address in a register to form the absolute address. Thus, the new absolute address in the jal
instruction is a function of the current PC value, while the absolute address in the jalr instruction is not.

 The fact that the jal instruction’s absolute address calculation is based on a signed offset value added
to the PC, the instruction is limited to how far in program memory it can jump. It can jump in either
direction, with the offset value effectively limited to a 21-bit value, which means 20 bits in either
direction. The jalr instruction does not have limits on the jump distance because the register value in
the jalr instruction’s address calculation can be an absolute address.

Table 16.8 show the instruction formats for the jal and jalr instructions. Both of these formats use rd to
specify the destination register and rs1 to specify the course register. The jalr instruction has a field for a source
register because it uses a value in a register to calculate the address to jump to.

Table 16.9 shows the underlying machine code formats for both the jal and jalr instructions. The jal
instruction uses a 20-bit immediate field to encode the signed offset value. There are two things to notice
regarding the immediate field in the jal instruction. First, the ordering is somewhat wacky. The RISC-V decoded
upon this approach in an effort to save hardware by aligning some of the bits with similar bits in other instruction
formats. Second, the LSB of the immediate value is not included in the machine code. Since these are jump in
instruction memory, and instructions are 4-bytes wide, there is no need to encode the two LSBs. We only encode
the LSB to allow RISC-V to support 16-bit wide instructions. This approach effectively doubles the jump range
without having to encode an extra bit.

The immediate field for the jalr instruction is typically set to zero, which supports the use of jalr in
returning from subroutines. Recall that both jump instruction “link” the return address (store the value of the
next instruction following the current instruction being executed) in ra.

Instr
Type Instruction Format

I-type

J-type

Table 16.8: I-type and J-type instruction formats.

FreeRange Computer Design Chapter 16

 - 457 -

Instr
Instr type Instruction Format

jalr
I-type

jal
J-type

Table 16.9: Machine code format for jal and jalr instructions.

16.4.4 Conditional Branch Instruction Details

One of the other values that the PC can load are the branch address, which are the addresses the program flow
jumps to when the conditions associated with the branch instruct the hardware to “take” the branch (as opposed
to not taking that branch and instead continuing onto execute the next instruction in memory). All conditional
branch instructions share the same B-type format. Table 16.10 shows the B-type instruction format; we use
shading to indicate opcode fields, and no shading to indicate field codes. Table 16.11 shows the machine code
formats for each of the branch instructions. Here is some other fun stuff to note about the B-type instruction
format:

 The B-type format includes two 5-bit source register fields; the underlying hardware uses the
values in the registers designated by these fields as sources for the conditions that the branch
instructions uses to determine whether to take the branch or not.

 The B-type format includes a 12-bit immediate field, which it stores in some wacky order and
divided into two chunks (done this way to save hardware resources). The immediate value serves
as a signed offset that is added to the current PC value and loaded into the PC to effectively
implement the branch (when the conditions determine that the branch needs to be taken). The
instruction does not encode the LSB of the branch address because the value is always zero based
on the width of the RISC-V instructions. Not encoding the LSB allows the branch range to double
without requiring needing to store the extra bit. It is the assembler’s responsibility to form and
encode the correct immediate value; it is the hardware’s responsibility to reconstruct the
absolution branch address from the current PC and the encoded immediate value.

Instr
Type Instruction Format

B-type

Table 16.10: B-type instruction format.

FreeRange Computer Design Chapter 16

 - 458 -

Instr
Instr type Instruction Format

beq

bge

bgeu

blt

bltu

bne

Table 16.11: Machine code formats for the base branch instructions.

16.5 Main memory

The main memory in the RISC-V OTTER MCU serves three primary functions: 1) stores the program, 2) stores
generic data, 3) acts as an interface for I/O operations. Additionally, some portion of data memory serves as the
stack. This memory module is thus the most complex module in the RISC-V MCU architecture. In this section,
we describe the memory’s functionality in terms of its three primary functions.

Figure 16.7 shows the black box diagram for the memory module. The BBD in Figure 16.7 has all inputs to the
module on the left side and all outputs from the device on the right side. We modified the ordering of the inputs
and outputs to the module compared to the RISC-V MCU schematic to better describe the functionality of the
device.

Figure 16.7: Black box diagram for the main memory module.

Table 16.12 lists and briefly describes the input and output signals associated with main memory. The main
memory serves two primary functions: program memory and data memory. Although Table 16.12 appears
daunting with the sheer number of entries, this one fact helps you grasp it better. We delineate the signals
associated with the different memory functions (read and write enables, address, data input, data output) using

FreeRange Computer Design Chapter 16

 - 459 -

the number “1” and “2”, where signals associated with program memory have a “1” in the signal name and
signals associated with data memory have a “2” in the signal name. Get used to it; we use it quite a bit.

Signal
Type/
width Comment

ADDR1 in/14 The address lines providing access to program memory. This input is the output from
the PC; the upper 16 bits and lower 2 bits are not connected.

RDEN1 in/1 Enables the instruction addressed by ADDR1 to output to DOUT1; the instruction data
output is synchronized to the memory’s rising clock edge.

DOUT1 out/32 The instruction at the address specified by ADDR1. This output is often referred to as
the “ir”, short for instruction register.

ADDR2 in/32 The address lines providing access to data memory and I/O. The memory module uses
the value of these address lines to differentiate between I/O and data access.

RDEN2 in/32 Enables the instruction addressed by ADDR2 to output to DOUT2; the data stored in
memory is output is synchronized to the memory’s rising clock edge.

DIN2 in/32 The data written into memory at the address specified by ADDR2 input. Write
operations require an asserted WE2 and are synchronized to the rising clock edge.

DOUT2 out/32 The memory read operations, this is the data specified ADDR2. For input operations,
this is a copy of the input data on the IO_IN input.

WE2 in/1 The write enable signal for data memory. This signal must be asserted for data to be
written to memory on the rising clock edge.

SIZE in/2 Use for memory reads to determine placement of bytes and half words in destination
word; for memory writes it determines which byte or halfword in source register are
written to memory.

SIGN in/1 Used in memory reads to sign extend byte and halfword read: SIGN=1 are for zero
extension of read value and SIGN=0 are for sign-extending read values.

IO_IN in/32 The data input to the RISC-V MCU from the outside world. This data is passed directly
to the DOUT2 output for input operations.

IO_WR out/1 This signal asserts during the execute cycle of the load instructions used as data output
instructions. This signal is an output from the RISC-V MCU.

CLK in/1 The clock input; all memory reads and memory writes are synchronous.

Table 16.12: Description of main memory inputs and outputs.

The physical main memory in the RISC-V MCU has a capacity of 16k x 32, or 64k x 8. We list the capacity in
two ways to underscore the fact that it is byte addressable in terms of data transfers. This essentially means that
we can read and write individual data at any address 64k physical memory space. The main memory stores both
the program and generic data, however. Where exactly it stores the program and data is generally arbitrary, but
in projects such as the RISC-V MCU and its probable implementation on an FPGA-based development board,
we use the memory segmentation provided in Figure 16.8. If you know how to work with the assembler and
know how the assembler interfaces with the development tools, you can construct your memory map any way
you want. Otherwise, you should comply with the memory map in Figure 16.8.

Due to resource limitations on the development board, the “physical portion” of main memory is limited to 16k
locations of 32-bit data (or 64k of 8-bit data). The memory map in Figure 16.8 shows this by delineating the data
storage portion of memory (code, data, and stack segments) in the address space spanning from 0x00000000 to
0x0000FFFF. The memory module treats addresses above the physical memory address in a different way,
which primarily is I/O.

FreeRange Computer Design Chapter 16

 - 460 -

There is no magic associated with the address delineations in the physical address space of main memory; the
segment boundaries are once again arbitrary. The main mission for programmers is to prevent data in one
segment from overwriting important data from another segment. This is a mission that’s easier to accomplish if
the programmer understands the underlying limitations of physical memory.

Figure 16.8: The RISC-V MCU memory map.

16.5.1 Physical Memory

Many MCUs, including the RISC-V, refer to the notion of address space. For example, we consider the RISC-V
MCU as having a 32-bit address space. The notion of address space does not necessarily correspond to actual
physical memory. For example, despite the RISC-V MCU having a 32-bit address space, 64k of that address
space refers to physical memory, with each address location referring to a single byte. The hardware designer
can “map” that 64k of physical memory anywhere in the 32-bit address space; thus, the memory map in Figure
16.8 is arbitrary.

We divide our description of main memory in this section into physical memory and “other” memory space (I’m
trying not to say “virtual memory”). Once again, the physical memory holds instruction and data while we
associate the non-physical memory with input/output operations.

16.5.1.1 Program Memory

We refer to the space in memory that stores the program as the program memory. The memory map in Figure
16.8 arbitrarily places the program memory starting at the lower addresses in memory.

All instructions in the RISC-V MCU are 32-bit wide, which can sometimes be confusing because the data in
main memory is byte addressable. The main issue for program memory is that every instruction spans four-byte
addresses in memory. The reason we don’t use a counter for the program counter is that counter typically
increment (add 1). In the RISC-V MCU, it’s simply easier to include the hardware that adds four to go to the
next instruction in program memory. Because of this, we can best implement the RISC-V OTTER MCU
program counter as a register, but always referred to as a “counter”, and in particular, the “program counter”.

There are versions of the RISC-V that use 16-bit instruction words, but that’s simply not what we’re using in our
RISC-V MCU implementation. The RISC-V ISA designers included instruction level support to process 16-bit
instructions, which you can see by the fact that the LSB is not stored in the relative addresses associated with the
jal, jalr, and branch instructions.

One of the issues involved in reading 4-byte chunks of data from a byte addressable memory is the issue of
alignment. Our RISC-V instructions must grab the correct 4-byte chunk of memory, or the hardware can’t
correctly decode and execute the instruction. For example, the program memory needs to output four bytes of the
same instruction, not two bytes from one instruction and two bytes from another instruction. This is a common
issue in many MCUs, as the width of the instruction word is not typically the same width as the data the
instructions need to work with.

FreeRange Computer Design Chapter 16

 - 461 -

As it turns out, the main memory module we use in our RISC-V implementation works with the external
hardware to ensure that all program memory accesses are properly aligned. The PC output, which is the address
input to program memory portion of main memory, does not connect the two lowest LSBs to the ADDR1 input
to the main memory. Related to that is the fact that physical memory does not extend past 0x0000FFFF, so the
hardware does not route the two most significant bytes of the PC to the program memory address input
(ADDR1). In the end, it then becomes the responsibility of the main memory module to create a 32-bit address
from the 14 bits sent to the program memory from main memory.

In theory, program memory is not officially writable. The notion here is that some outside entity using some
unspecified mechanism put the machine code into program memory. That being the case, there is no need to
write new data to program memory2, and thus the program memory portion of data memory does not have a data
input or a write enable. You’ll see something different with “data” memory. On that note, all memory reads,
which includes both program and data memory reads, are synchronous, which means the data at the given
address only appears after the memory modules sees a rising clock edge with the appropriate read enable signal
asserted. The RDEN1 signal is a positive logic signal that serves as the read enable for the instruction memory
portion of main memory.

The final comment for this section is the official starting point of the program. In order for the hardware to start
any program, the hardware must know the location of the first instruction in the program. This fact requires some
type of agreement between the hardware and the assembler. The instructions are a set of machine code that the
programmer can place anywhere in program memory; the programmer must be able to somehow communicate
with the hardware what the address of the first instruction is so that the hardware can load that value into PC
before it does anything else. This escapes me right now, but there is a special name for this, such as entry point.
There currently is no such mechanism in the RISC-V OTTER MCU hardware. Because the current RISC-V
hardware will most likely be implemented on an FPGA, the hardware clears the PC when powered on, which
means the PC output is 0x00000000. This means that we then must ensure that we place our program at address
0x0000000 in main memory, which is clearly in the code segment according to Figure 16.8.

16.5.1.2 Data Memory

When we refer to data memory, we’re “probably” referring to the portion of main memory that is not the
program memory but still part of physical memory. But then again, we can consider the entire physical main
memory to be data memory because the underlying hardware does not know what you’re storing in it: it just
stores the bits the instruction tells it to store. Unless we specify otherwise, we’ll use the term data memory to
refer to part of physical memory not intending and/or not currently storing instruction data.

Data memory of course stores data, but we can further classify it by the nature of the data it stores. In the RISC-
V architecture, we use data memory to store data in the “data segment”, or in the “stack segment”. Both areas
store data, but the access is conceptually different. Conceptually speaking, we can access the data in the data
segment using absolute addressing, which we access data in the stack segment according to the definition of an
abstract data type called, wait for it, the stack.

Though we’ve slapped a label on different chunks of memory, we use the same set of instructions to access all of
physical main memory. In theory, we’re not supposed to write to program memory, but we can actually do so
using memory write (store-type) instructions. Similarly, we use the same memory access instructions to work
with both the data and stack segments: it’s just memory.

The main memory uses a “2” postfix on the memory’s data input, output, control and address to signify data
memory. Both data memory reads and writes are synchronous, where WE2 controls the data writes and RDEN2
controls the data reads. The ADDR2 input is an absolute address used to index into that data segment. ADDR2 is
a 32-bit value that effectively addresses 16-bits of physical memory, the meaning the hardware treats addresses
above the maximum 16-bit value (0xFFFF) as I/O (see section 16.5.2). The DIN2 input is 32-bit data used to
write to the RAM, the DOUT2 output is the 32-bit data read from RAM.

The load and store instructions allow for the loading (reading) and storing (writing) of data to main memory.
There are three flavors of load and store instructions, which differ by the size of data being loaded or stored. The
RISC-V instruction set provides the ability to store words (four bytes), halfwords (two bytes), or bytes (one byte,

2 There of course is a notion of self-modifying code, but we don’t want to go there.

FreeRange Computer Design Chapter 16

 - 462 -

duh!). If all the memory had to do were load and store words, things would be relatively simple; things become
slightly more complicated when we need to access something other than words.

Store instructions can write one of three different sizes of data to physical memory: words, halfwords, or bytes.
The three store instructions, sw, sh, and sb support the writing of these three sizes of data. The combination of
the assembler and the RISC-V MCU hardware provides an absolute address to write the data to in memory; the
hardware is ultimately responsible for providing this address from the summation of the base address provided
by a register and a sign-extended offset value encoded in the immediate field in the instruction. The absolute
address represents the lowest possible memory location address that the hardware can write the data to. This
means that the sw instruction write a four-byte value starting at that address and includes the next three address
values; the sh instruction writes a two-byte value starting at that address and includes the next address; the sb
instruction writes a value at that address.

The main memory handles the address portion of the store instructions in a special way. The memory module
only includes the 14 MSBs of the lower two bytes from the 32-bit DIN2 address input for the address
calculation. The SIZE signal provides the other two bits to the input to the memory. The size input from memory
is the lower two bits of the funct3 field code (ir[13:12]) in the store instructions. The three store instructions are
S-type instructions. Table 16.13 shows the instruction formats for the three store-type instructions. Note that bits
[13,12] reflect the size of data to store with bytes=”00”, halfword=”01”, and words=”10”. The memory module
formulates the absolute memory address by replacing the two lower bits of the two lower bytes of the ADDR2
input with these values.

Instr
Instruction Form Instruction RTL Example Usage Comment type

sb sb rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2[7:0] sb x11,0(x31) store byte in
memory

S-Type

sh sb rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2[15:0] sh x11,0(x31) store halfword in
memory

S-Type

sw sw rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2 sw x11,0(x31) store word in
memory

S-Type

Table 16.13: The store-type instructions.

Reading from memory is inherently different from writing to memory in terms of how the memory modules
respond. Writing to memory takes one of the three data sizes and places it starting at the specified location in
memory. On the other hand, reading from memory always places the read value into a register, while the
registers are all 32-bits wide. This works nicely for reading words, but it brings up the question of what to do
with the non-used register bit locations when reading halfwords and bytes. As it turns out, the memory module
fills the unused bits with either zeros (zero extension) or the sign-bit (right-most bit) of the data being read from
memory (sign extension).

The RISC-V MCU’s load-type instructions perform reads from memory and place the data into specified
registers. There are five load type instructions, two each for loading bytes and halfwords, and one for loading
words. Loading bytes and halfwords into registers can be specified as either signed or unsigned, which
designates how the unused register bits are assigned (signed uses sign extension while unsigned used zero
extension). Note that because there is no notion of unfilled bits in the register for reading words from memory,
there is no need for two types of load words instructions as there are for loading bytes and halfwords.

FreeRange Computer Design Chapter 16

 - 463 -

Table 16.14 shows the instruction formats and other useful information associated with the five load-type
instructions. Note that the instruction formats dedicate a single bit to indicate whether read instructions (load-
type) are of the signed or unsigned type. More specifically, the MSB of the funct3 field (ir[14]) indicates which
of the load-type instructions (not including lw) require zero extension. This bit is input to the memory modules
as the SIGN input. Table 16.14 uses “sext” and “zext” for sign and zero extending, respectively.

Instr
Instruction Form Instruction RTL Example Usage Comment type

lb lb rd,imm(rs1) rd ← sext(M[rs1+sext(imm)][7:0]) lb x11,0(x20) load byte from
memory signed

I-Type

lbu lbu rd,imm(rs1) rd ← zext(M[rs1+sext(imm)][7:0]) lbu x12,0(x30) load byte from
memory unsigned

I-Type

lh lh rd,imm(rs1) rd ← sext(M[rs1+sext(imm)][15:0]) lh x15,0(x23) load halfword from
memory signed

I-Type

lhu lhu rd,imm(rs1) rd ← zext(M[rs1+sext(imm)][15:0]) lhu x21,0(x21) load halfword from
memory unsigned

I-Type

lw lw rd,imm(rs1) rd ← M[rs1+sext(imm)][31:0] lw x23,0(x22) load word from
memory

I-Type

Table 16.14: The load-type instructions.

16.5.2 Input/Output Memory Space

The memory space in the RISC-V MCU involves input and output because the RISC-V uses memory-mapped
I/O (MMIO). The memory map in Figure 16.8 provides a specific segment dedicated to I/O. This memory space
is not associated with physical memory, however. In typical digital systems, part of the design includes
configuring the system such a memory read or write (load or store) that happens at a particular address will be an
I/O operation rather than a memory access operation. Recall that part of the memory mapped I/O mechanism is
that the assembler does not know the different between load/store instructions used for physical memory access
and the same instructions used for I/O. The same is true in the RISC-V MCU.

The responsibility of interpreting load and store instructions as either memory reads or writes, or I/O instructions
lies in the RISC-V MCU hardware. More specifically, we model the main memory model in such a way as to
take full responsibility for this determination: no other RISC-V module is involved. The memory module makes
this determination based solely on the value on the ADDR2 input: the module interprets load and store
instructions specifying an address above 0x0000FFFF as I/O; the module interprets all other load and store as
physical memory accesses.

Figure 16.9 show a diagram that models how the memory module handles load-type instruction. In this diagram,
we use two MUXes to indicate how the ADDR2 input controls the DOUT2 and IO_WR outputs. Both operations
are associated with one of the RISC-V’s five load instructions. Here are the details listed by output signal name:

FreeRange Computer Design Chapter 16

 - 464 -

DOUT2: The memory modules transfers data from the IO_IN input to the DOUT2 output when
the ADDR2 input is greater than 0xFFFF. This is an input operation in that IO_IN is 32-bit input
signal that the RISC-V MCU uses to input data from devices external to the MCU. When the
ADDR2 input is less than 0x10000, the memory module places 32-bits of data from a physical
memory address on the DOUT2 output.

IO_WR: This signal is an output signal on the RISC-V MCU. The MCU uses this signal to
indicate to external devices that the MCU is executing an output operation. The circuitry that
interfaces external hardware to the RISC-V MCU typically uses this signal to control the latching
of data output from the MCU into external registers. When the ADDR2 input is greater than
0xFFFF, the memory module transfers the WE2 signal to the IO_WR; the hardware only asserts
WE2 during the writeback cycle of any load-type instruction. The hardware clears the IO_WR
signal during all other instructions including load-type instructions used for physical memory
reads.

Figure 16.9: Model of memory data associated signals.

16.5.3 Memory Timing Issues

The specific nature of the underlying RISC-V hardware makes the instruction execution timing somewhat
unique. The program counter (PC) provides the address of the “current” instruction the RISC-V MCU is
currently executing. We put the word “current” in quotations because this is the official definition of the PC, but
as you’ll see, it’s not always 100% accurate depending on the exact time you examine it.

Figure 16.10 shows a partial RISC-V schematic highlighting the interface between the PC and the memory
module. Figure 16.10 shows the signals found in the timing diagram of Figure 16.11; we don’t bother including
less important signals.

FreeRange Computer Design Chapter 16

 - 465 -

Figure 16.10: Schematic diagram supporting Figure 16.11.

Figure 16.11 shows the important timing features associated with reading instruction from the memory. In this
context, reading instruction from memory is the responsibility of the “fetch” cycle part of instruction execution.
Here are some of the more important features from Figure 16.11:

 The timing diagram shows the execution of two full instructions and another fetch cycle. The
instructions being executed don’t matter here except for the fact they are not load-type instructions
or program flow-type instructions3.

 The PC[15:0] output represents the lower two bytes of the PC output. The upper 14 bits of this
output is becomes the address input to the memory. The address of the first instruction in the
timing diagram is arbitrarily at 0x20, which only lists the lower byte of the PC[15:0] signal.

 The PCWrite signal is an output from the CU_FSM that controls the latching of data to the PC.
This signal asserts upon entering the fetch cycle. Loading data to the PC is synchronous, so the
PCWrite signal does not do anything until the next clock edge, which also causes a transition to
the fetch state of the following instruction.

 The (1) note shows that the change in data is caused by the clock edge (and the PCWrite signal).
All the RISC-V MCU instructions are 32-bits wide, which causes the PC to advance by four each
instruction as the PC[15:0] lines show.

 The DOUT1 signal is the output of program memory, which should show the underlying bits
associated with each instruction. The diagram does not show machine code, but does show the
address where the machine code lives.

 Reading from memory is synchronous, which is why the instructions for a given address do not
appear immediately after the address changes at (1). The instruction bits for the current instruction
appear only after the next active clock edge, which is at the end of the fetch cycle and marked by
the (2) note.

 The PCWrite does not advance every clock edge, which is why we see the on/off pattern. It
makes sense that the PC should advance only once per instruction cycle, which is what the
diagram shows.

 Most important to note is the fact that the instruction bit output appears to be delayed by one clock
cycle from the PC output. We refer to this as “important” because it’s somewhat non-intuitive.
The notion that the read operations on the memory module are synchronous causes this behavior.

3 To be precise, they could be branch instructions, but the branch is not taken.

FreeRange Computer Design Chapter 16

 - 466 -

Figure 16.11: Example timing diagram for PC and instruction memory output.

16.5.3.1 Branch Instruction Timing

Branch instructions are one of the flow control-type instructions, which by definition change the value of the
program counter to something other than to point at the next instruction in memory. Recall that the definition of
the branch is that it is an instruction that jumps conditionally based on a comparison between two registers made
as part of the instruction. There are six conditional branch instructions as in the RISC-V base instructions, and
ten other pseudo-branch instructions that the assembler translates to base branch instructions.

When the MCU executes a branch instruction, the instruction actually causes a true branch when the condition
associated with the instruction test as true. If the conditions are not true, program controls continues onto the
next instruction in memory, exactly like a non-program flow control-related instruction. In this case, the only
interesting thing to examine here is when the instruction causes a branch. Figure 16.12 show an example timing
diagram associated with a branch-type instruction where the program conditions cause the program to take the
branch. Here are some other fun facts to know about this example.

 The PCWrite signal always asserts after entering the execute state. The (1) note indicates that the
PC loads a new value at the clock edge between the fetch and execute states. The note at (2) shows
the PCWrite signal asserted, which cases the PC to load the new value (PC+4) into the PC.

 The instructions executed in the example are either non-program flow control (and non-load-type)
or the beq instruction listed on the top of the diagram.

 The bits associated with beq instruction become available after entering the execute cycle, the
label (3) indicates. Once the instruction bits become available, the register addresses to the register
file become valid, which outputs valid data from the associated registers. These register’s outputs
are inputs to the combinatorial BRANCH_COND_GEN module, which then outputs relational
data about the contents of the two registers to the CU_DCDR. The CU_DCDR uses the relational
data in conjunction with the opcode data (that allowed the CU_DCDR to discern which instruction
was being executed) to send out the appropriate value to the pcSource signal. When the MCU
takes the branch, the pcSource signal is “10”, as the execute state associated with the branch
instruction shows.

 Because the pcSource signal is “10”, the PC MUX directs the value associated with the branch
label to the PC. The branch label in this case is done; the note in the diagram indicates the
numerical value of done is 0x80, which is then loaded into the PC at the end of the execute cycle
as indicated with (4) label.

 The instruction bits associated with the instruction at address 0x80 then appear on the memory
output (DOUT1) at the beginning of the next execute cycle as noted by (5).

FreeRange Computer Design Chapter 16

 - 467 -

Figure 16.12: Example timing diagram showing a branch instruction with the branch taken.

16.5.3.2 Memory Access: Load-Type Instruction

When we speak of load-type instruction, we are referring to both memory read instructions and input
instructions. Because the RISC-V uses memory mapped I/O, the load-type instructions thus serve as both
memory reads and external data inputs. Recall that the assembler does not know the difference between memory
read and I/O; the underlying RISC-V hardware, namely the main memory module, takes care of the difference.

Load-type instructions in the RISC-V ISA all operate in the same manner: they take data from somewhere (from
memory or from some external device) and place that data into a register. The only difference between these
instructions is where get the data from. In either case, it is the memory module’s responsibility to place the
correct data on the memory’s DOUT2 output. When the address associated with the load-type instruction is
greater than 0x0000FFFF, data the memory modules transfer the data on the IOBUS_IN lines to the DOUT2
output. When the address is 0x0000FFFF or less, the memory places the data at that memory address on the
DOUT2 output.

Figure 16.13 and Figure 16.14 show timing diagrams for load-type instruction for memory access and data input,
respectively. The first thing to notice about these two figures is that they are essentially the same; the only
difference is on the DOUT2 output signal, which the figures do not show. The following is a detailed description
of Figure 16.13, which shows a load instruction performing memory access.

 The only thing we know about the instruction before the load instruction is that it is not a load
instruction, as it only has a fetch and execute cycle.

 We know this instruction is performing a memory load based on the effective address in the
instruction’s second operand. The effective address is the sum of the offset and the value in x8,
which the diagram lists as 0x0000CD00. Because this address is less than 0x00010000, the
instruction performs a memory read.

 Load-type instructions require three t-cycles (states), which the RISC-V vernacular list as fetch,
execute, and writeback. The instruction in Figure 16.13 is an lw; other load-type instructions also
require three clock cycles.

 The PCWrite signal asserted in the final state of any instruction execution. For two cycle
instructions, that means PCWrite asserts during the execute state; for load-type instructions,
PCWrite asserts during the writeback state. Following every PCWrite assertion, is the assertion
of RDEN1 during the execute state of all instructions, which allows the instruction bits to appear
on the output of program memory (DOUT1). The (5) note highlights this.

FreeRange Computer Design Chapter 16

 - 468 -

 The RDEN2 signal is a read enable signal for the data portion of the memory. This signal asserts
at note (4) to allow the address in the memory’s ADDR2 input to have valid data. If for this
memory access instruction, the memory outputs the data at the address on the ADDR2 input to
the DOUT2 output. If this instruction were performing input, it would pass the IOBUS_IN input
to the DOUT2 output.

 Note (7) shows that the assertion of the regWrite signal allows the loading of the final data value
(DOUT2), whether it be from memory (read) or an external device (input) into a register file.
Note (3) shows that the data from the DOUT2 memory output is selected as the data that writes
to the register; the value “10” selects the DOUT2 data output to be the written to the register file.

 Note (1) and (2) show that no data needs writing to memory, so WE2 remains unasserted, and
that nothing is being output, so IO_WR remains unasserted as well.

 All but the load-type instructions follow a given two-cycle format. The three-cycle load-type
instructions effectively stretch that cycle to three states with the inclusion of the writeback state.
You can see this as a “one cycle delay” in the PC and DOUT1 lines associated with the load
instruction.

Figure 16.13: Example timing diagram showing a load instruction performing memory access.

16.5.3.3 Inputting Data: Load-Type Instruction

The RISC-V MCU also uses load-type instructions to input data. Figure 16.14 shows the timing associated with
a load-type instruction that performs an input operation. This load-type instruction performs an input because the
effective address is greater than 0x0000FFFF, as the note under the instruction in Figure 16.14 indicates. This
difference causes the only other difference in the instructions: when the memory modules sees that the address is

FreeRange Computer Design Chapter 16

 - 469 -

greater than 0x0000FFFF, it transfers the IOBUS_IN value to the output. When it effective address was less than
0x00010000, the memory module transferred the value in memory to the DOUT2 output (see Figure 16.13). The
main point here is the similarity of Figure 16.13 and Figure 16.14; this being the case, we’ll not bore you with
another detailed description.

Figure 16.14: Example timing diagram showing a load instruction performing input.

16.5.3.4 Memory Access: Store-Type Instructions

When we speak of store-type instructions, we are referring to both memory write instructions (memory access)
and input instructions (I/O). The RISC-V uses memory mapped I/O (MMIO), which means that the store-type
instructions thus serve as both memory writes and internal data outputs to devices external to the MCU. One
interesting artifact of MMIO is that fact that the assembler does not know the difference between memory read
and outputting data; the differences are at the RISC-V MCU hardware level.

Store-type instructions in the RISC-V ISA operate in the roughly the same manner: they take data stored in a
register (internal data) and make that data available to other entities. When programmers use store instructions
for writing memory, the instruction instructs the underlying hardware to copy data from the register to a location
in memory. When programmers use the store instruction as I/O, the data in the register is “made available” to
devices external to the RISAC-V MCU. We use the notion of being “made available” to mean that the MCU has
no notion of what devices external to the MCU do with register data that the MCU made available. The only
difference between these memory access and output instructions is where the register data goes.

Recall that the memory module makes the determination of whether the store instruction performs a memory
access or a data output. When the address associated with the store-type instruction is greater than 0x0000FFFF,
the memory modules asserts the IO_WR signal on the memory module. When the address is 0x0000FFFF or
less, the memory module does not assert IO_WR. In both cases, the control unit asserts the memory module’s

FreeRange Computer Design Chapter 16

 - 470 -

write enable WE2. It is the responsibility of the RISC-V MCU control units to ensure the data goes to the correct
sources.

Figure 16.15 shows an example timing diagram for one store-type instruction. The following is a description of
the pertinent details, worthy of attention from mere humans:

 The timing diagram shows one known instruction; all we now about the other instructions are that
they are not load-type instructions because they don’t include writeback states.

 The sw instruction performs a memory access based because the effective address is less than
0x00010000. The effective address is the value in x9 because the instruction includes a zero offset.

 Note (1) indicates that no instructions in the example include reading data from memory.

 Note (2) indicates the instruction is a memory access and thus does not asset the IO_WR signal.

 Note (3) indicates that no instructions are writing data to the register file. Recall that the
instruction is “doing something” with data in the register file.

 Notes (4) & (5) show the write pulse on the WE2 signal. The memory modules uses this signal as
an actual write enable because the instruction is performing a memory write. This signal asserts as
part of the execute cycle for all store instructions and remains unasserted otherwise.

 Note (6) shows that the PCWrite signal cause the PC to advance by four, indicating that none of
the instructions in this example are program flow control instructions. Note (7) reminds us of the
fact that the program memory read enable (RDEN1) allows the instruction at the current PC
address to output from program memory (DOUT1).

 Worth noting here is that the instruction is writing data to the memory, which is a synchronous
operation. Unlike load instructions, we can perform this operation in two clock cycles because we
don’t have to read data from memory (memory reads are synchronous operations).

FreeRange Computer Design Chapter 16

 - 471 -

Figure 16.15: Example timing diagram showing a store instruction used for memory access.

16.5.3.5 Outputting Data: Store-Type Instruction

Because it uses a memory-mapped I/O architecture, the RISC-V MCU uses store-type instructions to output data.
As with load-type instructions, the memory module is the only RISC-V hardware that knows the difference
between a store instruction intended for memory access and a store instruction intended for output. Recall that
the differences lies in the effective address value associated with the instruction. This implies that not even the
control units in the RISC-V architecture know the difference either, which is a fact that we’ll run across in the
timing diagram example that follows.

Figure 16.16 shows the timing associated with a store-type instruction that performs an output operation. The
store instruction performs an output because the effective memory address in the instruction is greater than
0x0000FFFF, as the noted under the instruction in Figure 16.16. When the memory modules see this difference,
it generates a slightly different output than the store instruction intended for memory access. Note that Figure
16.16 doesn’t show the register file’s output data, which is the data the instruction provides to the outside world.

The timing diagram in Figure 16.16 is similar to the timing diagram in Figure 16.15, so we won’t be describing it
in the same painful level of detail as we did with Figure 16.15. The most important thing to note about these two
timing diagram is their only difference: IO_WR asserts for output operations and does not assert for memory
write operations. Once again, this difference is a responsibility of the memory module, as no other hardware
modules know the difference between store-type instructions used as I/O or memory access.

 Notes (1), & (3) show unasserted signals, indicating that the instructions do not read memory or
write to the register file. Additionally, rf_wr_sel signal is always an unknown, which indicates
that none of the instructions are writing the register file (regWrite=0)

FreeRange Computer Design Chapter 16

 - 472 -

 Notes (2), (4), and (5) show the difference special operation associated with output. The WE2
signal asserts for all store instructions, but the IO_WR only asserts for when the store instruction
performs a data output operation. Once again, the asserting of the WE2 signal is a function of the
CU_FSM, but the assertion of the IO_WR signal is a function of only the memory module.

Figure 16.16: Example timing diagram showing a store instruction used outputting data.

16.6 The Immediate Value Generator (IMMED_GEN)

The IMMED_GEN module’s function is to convert immediate values stored in the instruction bits (machine
code) into 32-bit values. Five of the six RISC-V MCU instruction formats contain immediate fields of varying
lengths and a bizarre mixture of formats. The immediate fields reside in the all but the right-most LSBs in the
five instruction types that include immediate values. Figure 16.17 shows the block diagram for the
IMMED_GEN module. The input to the IMMED_GEN module comprises of the left-most 25 bits of the
instruction register; the outputs of the module include the 32-bit versions of the five instruction-type specific
immediate values. R-type instructions don’t contain immediate fields so are not a part of the IMMED_GEN
module. The IMMED_GEN module is a combinatorial circuit.

Figure 16.17: Block diagram of IMMED_GEN module.

FreeRange Computer Design Chapter 16

 - 473 -

The RISC-V OTTER MCU includes the IMMED_GEN module primarily to simplify the understanding and
implementation of the architecture. People who are implementing the RISC-V MCU in hardware can actually do
one of two things. First, they can omit this module, which would require that other modules using the 32-bit
immediate values do the reformatting themselves. Second, this module does not need to be an actual module; a
better approach would be to provide the functionality this module provides as part of the higher-level hardware
module.

Table 16.15 lists the five instruction formats that contain immediate fields. Table 16.16 shows how the RISC-V
hardware converts the five instruction immediate field in the instructions into 32-bit values. This IMMED_GEN
module is thus responsible for decoding the immediate values from the assembler’s encoding and then
converting the values to 32-bit numbers. Note in Table 16.16 that the conversions associated with I-type, S-type,
and B-type include sign extensions. Also good to note that the J-type and B-type outputs represent relative
address values. Be sure to note that immediate values are variables, while opcodes (the shaded values in Table
16.15) are constant relative to individual instructions. Lastly, to note in Table 16.15 is that the strange numbering
and omission of some values is one way the RISC-V supports efficient hardware implementations.

Table 16.15: The 32-bit immediate value transformation map.

Table 16.16: The 32-bit immediate value transformation map.

16.7 The Branch Address Generator (BRANCH_ADDR_GEN)

The BRANCH_GEN module is responsible for generating absolute instruction memory address from various
input data. As the name implies, this module generates 32-bit branch address values to be loaded into the PC,
which supports the RISC-V MCU’s program flow control instructions including branches and jumps. Another
way to view this module is that it converts relative addresses from the immediate values associated with
instructions into absolute addresses. This module’s inputs are the I-type, J-type, and B-type 32-bit immediate
value, and also the 32-bit PC and rs1 values. Note that rs1 is one of the operands output from the register file.
The BRANCH_GEN module is a combinatorial circuit.

FreeRange Computer Design Chapter 16

 - 474 -

Figure 16.18: Block diagram of the BRANCH_ADDR_GEN module.

Table 16.17 shows the calculations required to convert the BRANCH_ADDR_GEN inputs to 32-bit values using
three other forms of information including 1) relative addresses from the IMMED_GEN module (I-type, J-type,
and B-type inputs), the program counter (PC), and, 3) one of outputs from the register file. From this table you
can see that this modules main responsibility is to generate 32-bit absolute address from the relative addresses of
the immediate values and the rs1 and PC registers. A few of the highly interesting things to note from Table
16.17 are:

 The branch-type and jal instruction include the value in the calculation. The hardware uses the
jal instruction as a “branch to subroutine”, which means the instruction modifies the PC value to
alter normal program flow.

 The jalr instruction does not include the PC value in the calculation because the RISC-V MCU
uses the jalr instruction to return from subroutines. The hardware stores the return address of
the subroutine in a register, which is why the rs1 value appears in the absolute address calculation
for the jalr instruction.

BRANCH_ADDR_GEN
output

Comment Calculation

jal jump and link instruction PC + J‐Type

branch
address for all branch‐type

instructions
PC + B‐Type

jalr jump and link register instruction rs1 + I‐Type

Table 16.17: Calculation of BRANCH_ADDR_GEN outputs.

Similar the IMMED_GEN module, we provide the BRANCH_ADDR_GEN module for clarity. This section
describes a set of functionalities that roughly share a similar purpose; it was convenient to call it a module and
give that module a name. The important part of this module is thus the address calculations it forms, which
people who are implementing the RISC-V MCU hardware can do without making a separate module.

16.8 The Register File (REG_FILE)

The register file provides storage for the operands associated with various “bit-crunching” operations in the
RISC-V MCU. The register file is actually a RAM-type device despite have the word “register” in the module
name. Conceptually speaking, the register file is a 32 x 32 RAM that performs the reads and writes typical of any
RAM device. The RISC-V register file, however, has capabilities beyond a simple RAM, which is sometimes
why we refer to it as a “dual port RAM”, or more aptly, a “multiport RAM”, or even “some freaking amazing
RAM thang”.

The extra names for the register file RAM come from the fact that the register file must be able to
simultaneously read two different values from RAM and write a third one. The RISC-V bases these “worst case”
requirements on the R-type instructions, which read to register and write one register in the same instruction.

FreeRange Computer Design Chapter 16

 - 475 -

This means that the register file requires three 5-bit address inputs: two for reading and one for writing. The
register file read operations are asynchronous, which means the read output data changes whenever the input
addresses change. The register file write operations are synchronous, meaning the actual data written to the
register file is synchronized to the rising edge of the register file’s clock input.

The three 5-bit field codes associated with instruction formats provide the read and write addresses to the register
file. The data written to the register file is provided by one of four sources including the ALU output (result of
bit crunching operations), the memory output (result of store and input operations), or the PC (storage associated
with program flow control). Figure 16.19 shows a black box diagram of the RISC-V MCU’s register file; Table
16.18 provides a description of the register file’s external interface (input and output signals).

Figure 16.19: Block diagram of the RISC-V register file.

Signal Type Comment

adr1

adr2
in The address lines associated with the rs1 & rs2 source outputs. These addresses are five

bits wide to provide read access to the register file’s 32 registers. The instruction
register (output of program memory) provides data for these signals, which are five-bit
field codes in the associated instruction formats. Register file reads are asynchronous.

wa in The address lines for destination address, which is the address of data written to the
REG_FILE. These addresses are five bits wide to provide write access to the register
file’s 31 registers (excluding x0). The instruction register (output of program memory)
provides data for this signal, which is a five-bit field code in the associated instruction
formats.

wd in The data written to the register file at the address provided by wa. The data is 32-bit
wide and is provided by one of several external sources.

en in The “en” (write enable) signal controls the writing of the wd data to the register file.
Write register file write are synchronous.

clk in The system clock; register files reads are asynchronous while register file writes are
synchronous, which means they happen the active edge of the clk (rising edge)

rs1

rs2
out The data outputs associated with the adr1 & adr2 inputs, respectively. Data outputs are

32-bits wide, which match the width of the data inputs.

Table 16.18: Description of register file inputs and outputs.

16.9 The Arithmetic Logic Unit (ALU)

Arithmetic Logic Units (ALUs) are similar to the PC in that all computers have one in some form or another.
ALUs are one of those names in computerland that have misleading meanings. While it’s true the ALU performs
arithmetic and logic, it most often performs other functions as well. Generally speaking, the ALU does all the

FreeRange Computer Design Chapter 16

 - 476 -

MCU’s required bit crunching no matter what specific types of crunching the MCU requires. Thus, the main
responsibility of the ALU is to implement the bit crunching operations required by the RISC-V instruction set.
The ALU also performs various simple bit transfers as needed by the instruction set. The RISC-V OTTER
MCU’s ALU is a combinatorial circuit.

Figure 16.20 shows the schematic diagram of the ALU module and a few supporting modules. The ALU portion
of the circuit is the sideway “A-shaped” thing, which is common approach to model ALUs in circuit schematics.
The ALU has a 4-bit signal, alu_fun, that determines the operation the ALU performs. The alu_fun signal is an
output from the CU_DCDR module, the combinatorial portion of the control unit. Based on the width of the
alu_fun signal, the ALU can perform up to 16 different operations. The ALU performs operations on up to two
32-bit input operands and generates a 32-bit result on the result output.

The ALU supports the operations required by various instructions by tweaking the select signals on the Source A
and Source B MUXes. The alu_srcA and alu_srcB select signals are control signals output from the CU_DCDR
control unit module. Table 16.19 shows the list of ALU operations based on ordered values of the alu_fun signal
select signal.

Figure 16.20: Block diagram of the ALU module and supporting modules.

FreeRange Computer Design Chapter 16

 - 477 -

Alu_fun mnem Description RTL Comment
0000 add addition result ← srcA + srcB carry discarded

0001 sll Shift left logical result ← srcA << srcB zero fills on right

0010 slt Set if less than (signed) result ← (srcA <s srcB) ? 1 : 0 C notation

0011 sltu Set if less than (unsigned) result ← (srcA <u srcB) ? 1 : 0 C notation

0100 xor Logical bit-wise exclusive OR result ← srcA ^ srcB -

0101 srl Shift right logical result ← srcA >> srcB zero fills on left

0110 or Logical bit-wise inclusive OR result ← srcA | srcB -

0111 and Logical bit-wise AND result ← srcA ∙ srcB -

1000 sub Subtraction result ← srcA + srcB borrow discarded

1001 lui Load upper immediate result ← srcA Copy

1011 - not currently used - -

1100 - not currently used - -

1101 sra Shift right arithmetic result ← srcA >>s srcB sign fills on left

1110 - not currently used -

1111 - not currently used - -

Table 16.19: List of ALU operations indexed with the alu_fun select signal.

Important to note here is that the ALU module does not provide any type of status signal regarding the result of
any given ALU operation. Because of this, programmers are required to use the flexibility of the instruction set
in order to determine items such as when an ALU operation overflows the 32-bit register width.

16.9.1 Addition and Subtraction

The RISC-V supports three addition and subtraction instructions including two-register argument forms of add
and sub, and a register-immediate form of the addi instruction. These instructions perform addition and
subtraction as you know and love them; Table 16.20 shows an overview of these instructions including the
underlying bit formats. The associated assembly language manual includes a more complete description of these
instructions. Here are a few other facts to note about these instructions:

 The hardware performs all operations on 32-bit registers.

 The assembler encodes the immediate value for the addi instruction as a 12 bit signed value,
which provides a specifiable range of [-2048,2047]. The RISC-V hardware is responsible for
performing the sign extension, which it does in the IMMED_GEN module. Table 16.21 shows the
mapping the hardware uses to translate the 12-bit immediate field in an I-type instruction to a 32-
bit value.

 The underlying hardware discards any overflow (carry-outs and borrows) from each of these
operations. It is possible to do 64-bit math by examining the operands after the operation.

FreeRange Computer Design Chapter 16

 - 478 -

Instr
Instruction Form Instruction RTL Example Usage Comment format

add add rd,rs1,rs2 rd ← rs1 + rs2 add x11,x21,x31 addition

R-Type

addi addi rd,rs1,imm rd ← rs1 + sext(imm) addi x7,x8,0x0F subtraction

I-Type

sub sub rd,rs1,rs2 rd ← rs1 – rs2 sub x15,x14,x17

R-Type

Table 16.20: The addition and subtraction instructions.

Table 16.21: 32-bit immediate format for I-type instructions.

16.9.2 Shifting Instructions

The RISC-V supports both logical and arithmetic shifts4. Instructions supporting logical shifts are available for
shifting in both directions; the RISC-V ISA only support arithmetic shifts for right shifts. Both logical and
arithmetic shifts are available in both register and immediate forms. We typically use shifting instructions for
integer math operations, which supports fast multiples (shift lefts) and divides (shift rights) by powers of two.
We typically use logical shifts for unsigned arithmetic and arithmetic shifts for signed arithmetic.

All of the six shift-type instructions are three operand instructions. Each of the six instructions performs shifts on
register values and stores the results in register. The third operand specifies the number of bit positions to shift,
which effectively makes these instructions fully capable of barrel shifts. The logical-type shift instructions fill
vacated bit positions with zero while the arithmetic-type shift instructions consider the register being shifted as a
signed value and fill the vacated bit positions with the sign bit of the register.

The RISC-V hardware limits shifting to 32 bits, which the underlying instruction format can represent with a 5-
bit value. The instructions thus use only the five LSBs from right-most operand, which programmers can specify
by either a register or immediate value depending on the instruction type. Bits that the hardware shifts out of
registers by the set of shift instructions are gone forever; there is no available hardware to store any of the shifted
out bits. Table 16.22and Table 16.23 provide an overview of the pertinent information associated with the logical
and arithmetic shift instruction, respectively.

4 The RISC-V ISA only supports arithmetic right shifts.

FreeRange Computer Design Chapter 16

 - 479 -

Instr
Instruction Form Instruction RTL Example Usage Comment type

sll sll rd,rs1,rs2 rd ← rs1 << rs2[4:0] sll x11,x21,x31 logical shift left
zero filled

R-Type

slli slli rd,rs1,imm rd ← rs1 << imm[4:0] slli x7,x8,0x0F logical shift left
zero filled

I-Type

srl srl rd,rs1,rs2 rd ← rs1 >> rs2[4:0] srl x11,x21,x31 logical shift right
zero filled

R-Type

srli srli rd,rs1,imm rd ← rs1 >> imm[4:0] srli x7,x8,0x0F logical shift right
zero filled

I-Type

Table 16.22: The logical shift left & right instructions.

Instr
Instruction Form Instruction RTL Example Usage Comment type

sra sra rd,rs1,rs2 rd ← rs1 >> rs2[4:0] sra x11,x21,x31 Arithmetic shift right
Sign filled

R-Type

srai srai rd,rs1,imm rd ← rs1 >> imm[4:0] srai x7,x8,0x0F Arithmetic shift right
Sign filled

I-Type

Table 16.23: The logic shift right instructions.

16.9.3 Logic Instructions

The RISC-V MCU contains has standard Boolean logic instructions including AND, OR, and XOR (exclusive
OR). There are both register and immediate versions of the three logic-type instructions. These instructions
perform bitwise Boolean logic operations on the instruction operands. Table 16.24 shows an overview of these
instructions including the underlying bit formats. The associated assembly language manual includes a more
complete description of these instructions. Here are a few other fun facts to chew on:

 The hardware performs all operations on 32-bit registers.

 The assembler encodes the immediate values for the immediate versions of these instructions as
12-bit values, which are “sign extended” to create a 32-bit operand. In these cases, the RISC-V
hardware interprets the left-most bit as the sign bit and then performs the sign extension using the

FreeRange Computer Design Chapter 16

 - 480 -

IMMED_GEN module. Table 16.21 shows the mapping the hardware uses to translate the 12-bit
immediate field in an I-type instruction to a 32-bit value.

Instr
Instruction Form Instruction RTL Example Usage Comment type

and and rd,rs1,rs2 rd ← rs1 ∙ rs2 and x11,x21,x31 bitwise AND

R-Type

andi andi rd,rs1,imm rd ← rs1 ∙ sext(imm) andi x7,x8,0x0F bitwise AND sign
extend imm

I-Type

or or rd,rs1,rs2 rd ← rs1 + rs2 or x11,x21,x31 bitwise OR

R-Type

ori ori rd,rs1,imm rd ← rs1 + sext(imm) ori x7,x8,0x0F bitwise OR
sign extend imm

I-Type

xor xor rd,rs1,rs2 rd ← rs1 ^ rs2 xor x11,x21,x31 bitwise XOR

R-Type

xori xori rd,rs1,imm rd ← rs1 ^ sext(imm) xori x7,x8,0x0F bitwise XOR
sign extend imm

I-Type

Table 16.24: The Boolean logic-based instructions.

16.9.4 Set-If-Less-Than Instructions

The RISC-V ISA has two types of instructions that perform comparisons. The branch-type instructions perform
comparisons based on two register and are program flow control instructions. We consider the branch-type
instructions program flow control because they have the ability to branch based on the conditions in the registers
and the given branch instruction. The RISC-V ISA can also perform comparisons using the slt-type instructions.
Table 16.25 shows all the details of the two flavors of slt-type instructions. The slt-type instructions have two
significant differences from the branch-type instructions:

1) slt-type instructions are not program flow control instructions, meaning the MCU always
executes the instruction following slt-type instruction. This is of course a fancy way of saying
that the slt-type instruction never branch under any conditions. The result of this difference is that
the hardware uses a different module to perform the comparison. The RISC-V OTTER uses the
ALU to perform comparisons for the slt-type instructions (and also the setting or clearing of the
destination register). The ALU output, or result, for the slt-type instruction is either a ‘1’ or ‘0’
based on whether the condition was true or not, respectively.

2) There are two flavors of slt-type instructions: one type is similar to branch-type instructions
where the given comparison is between two register values. The other flavor of slt-type

FreeRange Computer Design Chapter 16

 - 481 -

instruction allows a comparison between a register and immediate value. The good news is that
programmers don’t have to stick the both compare values into registers; the bad news is that the
compare value in the immediate flavor of the slt-type instruction only contains a 12-bit field for
the immediate value. This means if you need to compare larger values, you must use the two-
register version of the instruction.

Instr
Instruction Form Instruction RTL Example Usage Comment type

slt slt rd,rs1,rs2 rd ← (rs1 <s rs2) ? 1 : 0 slt x10,x12,x13 Set if less than
(signed)

R-Type

slti slti rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slt x10,x12,23 Set if less than imm
(signed)

I-Type

sltu sltu rd,rs1,rs2 rd ← (rs1 <u rs2) ? 1 : 0 sltu x10,x8,x9 Set if less than
(unsigned)

R-Type

sltiu sltiu rd,rs1,imm rd ← (rs1 <u sext(imm)) ? 1 : 0 sltiu x10,x8,78 Set if less than imm
(unsigned)

I-Type

Table 16.25: The slt-type instructions.

16.10 The Branch Condition Generator (BRANCH_COND_GEN)

The BRANCH_COND_GEN is a module that provides branch information to the CU_DCDR. The
BRANCH_COND_GEN thus supports the six base instructions in the RISC-V ISA. All six branch instructions
are B-type instructions. Figure 16.21 shows the schematic diagram for the BRANCH_COND_GEN. The two 32-
bit inputs to the module are two source register outputs from the register file; the three outputs represent status
signals describing the numerical relations between the two inputs; these become inputs to the CU_DCDR. Table
16.26 provides a more detail description of the modules inputs and outputs. Based on the description in Table
16.26, the BRANCH_COND_GEN is nothing more than a comparator that has the ability to do signed and
unsigned comparisons.

FreeRange Computer Design Chapter 16

 - 482 -

Figure 16.21: Black box diagram of the CU_DCDR module.

Signal
Type

Comment

rs1 in 32-bit output of the register file (number 1 output)

rs2 in 32-bit output of the register file (number 2 output)

br_eq out 1-bit output indicating if rs1==rs2;

br_lt out 1-bit output indicating if rs1 < rs2; result based on operands being signed

br_ltu out 1-bit output indicating if rs1 < rs2; result based on operands being unsigned

Table 16.26: Description of register file inputs and outputs.

Table 16.27 shows a diagram of the B-type format, which supports the fact that the RISC-V bases all branch
instructions on the result of a comparison between the rs1 & rs2 source registers. This means that you need to
perform a branch based on an immediate value, you must first places that value into a register. The opcode field
is the same for all B-type instruction; the hardware differentiates the branch-type instructions using the funct3
opcode field.

Table 16.27: B-type instruction format.

The branch-type instructions require that programmers first must place the two values it compares into registers.
Placing values to compare into registers does seem somewhat limiting at first, but the slt and slti
instructions provide somewhat of a workaround of this limitation. Since the slt-type instructions are not program
flow instructions (meaning they can’t branch), the BRANCH_COND_GEN does not make the comparison for
those instructions and the CU_DCDR does not have the option to implement a branch. The ALU module
performs the comparison required by slt-type instructions.

Table 16.28 shows the relation between the BRANCH_COND_GEN outputs and the associated base branch
instructions in the RISC-V ISA. What this table shows is the condition the CU_DCDR checks in the context of
each base branch instruction to determine whether it takes the branch or not. The CU_DCDCR is effectively
controlling which value the PC loads based on the result of the comparison made in the
BRANCH_COND_GEN. Table 16.28 also shows that for any given branch instruction, the CU_DCDR only
considers one of the three outputs of the BRANCH_COND_GEN. Note that the two possible signal values for
each output signal support the six base branch-type instructions.

FreeRange Computer Design Chapter 16

 - 483 -

Instruction

True Condition Indicator

br_eq br_lu br_ltu

beq 1 - -

bne 0 - -

blt - 1 -

bge - 0 -

bltu - - 1

bgeu - - 0

Table 16.28: Output indicators associated with individual base branch instructions.

16.11 Then Control and Status Registers (CSR)
The control and status register (CSR) currently is only associated with the RISC-V MCU interrupt architecture.
For this reason, we won’t describe the CSR in this chapter, and delay that description until Chapter 18, which is
the chapter on the RISC-V Interrupt architecture.

16.12 The RISC-V MCU Wrapper

I’m not actually sure where the term “wrapper” came from. Someone, possibly even me, may have made it up
for all I can remember. Despite its dubious origins, the notion of a wrapper is rather important in the land of
softcore MCUs. The sole purpose of the wrapper is to provide an interface between the MCU and the
development board you implement it on. The MCU is a generic module in terms of its basic design, which means
it is flexible enough to solve many different types of problems. The wrapper provides the interface between an
outside world that has a given set of hardware (such as on a development board) and the generic MCU. In the
context of this discussion, the notion of genericity refers to the MCU’s generic I/O interface.

The notion of the wrapper is important for two reasons. First, because it helps you understand how to interface a
softcore MCU such as the RISC-V MCU with a development board. Second, because it helps you understand
how the input and output instructions work with the MCU and how the wrapper to actually implements I/O on
the RISC-V MCU. For these reasons, you should make sure you understand everything all aspects of the RISC-V
MCU wrapper.

The main purpose of a development board is to provide a modest set of input and output devices that you can use
to interface with the RISC-V MCU. This being the case, we have three types of I/O on typical development
board: 1) input devices (such as a buttons), 2) output devices (such as an LED), and 3) generic pins (meaning
you can assign the pins as either being an input or an output and associate them with an external device). For this
discussion, we only mention the actual physical devices on the development board, though you can use the
generic pins to connect any external peripheral to the system such that the MCU can monitor/control them.

The mission for the Wrapper is to interface the RISC-V MCU with the development board. We currently use the
Basys3 development board, which contains an FPGA-type PLD. Figure 16.22(a) shows a partial block diagram
of the dev board; we refer to this as partial because there are some features on the board that we omit. The
wrapper is the highest level of the design hierarchy that includes the RISC-V OTTER MCU. Figure 16.22(b)
shows the black box diagram of the RISC-V OTTER MCU. Our mission is to use the Wrapper to interface with
the RISC-V OTTER MCU in such a way as to create a working computer. There are many ways to do this; we
present a generic approach with full explanation in this section.

Figure 16.22(a) shows the black box diagram of the Basys3 development board. The PLD on the development
board is an FPGA, which interfaces with various input and output devices on the development board. This board
includes 16 inputs connected to switches (SWITCHES), five inputs connected to buttons (BUTTONS) and an
external clock signal (CLK). The board contains 16 output connected to LEDs (LEDS), eight outputs connected
to the segments of four 7-segment display devices (SEGMENTS) and four outputs connected to the anodes
associated with the four 7-segment display (ANODES). Figure 16.22 does not list the various generic signals
available for input or output on the board. Additionally, the LEDS output are positive logic while the

FreeRange Computer Design Chapter 16

 - 484 -

SEGMENTS and ANODES are both negative logic. The switches in the “up” position and pressed buttons
generate a ‘1’ to the onboard FPGA, while switches in the down position and unpressed buttons generate a ‘0’.

(b) (a)

Figure 16.22: The block diagram for the Basys3 development board (a), and the RISC-V OTTER MCU.

We implement the Wrapper as a simple Verilog model; you can find the full model in the appendix. The
approach we’ll take here is to describe the more important parts of the wrapper model by examining the Verilog
model and relating that model to real world digital parts that you know and love. If you are using the RISC-V
OTTER MCU or any other version of the RISC-V MCU, the information contained in this section allows you to
understand the interface requirements for your given device. The approach to interfacing a softcore MCU on a
development board is the same; the particular I/O available on a given development board is probably different.

16.12.1 Wrapper External Device Addressing

Because the underlying RISC-V MCU needs to interface with the external I/O devices, the Wrapper and RISC-V
MCU need to agree on a “port ID” for each I/O device. The RISC-V MCU uses these port_IDs as “port
addresses”, or simply “addresses” in the memory-mapped I/O architecture. These addresses are for the most part
arbitrary, but they do need to fall into the I/O portion of the RISC-V MCU address space (memory map), which
is 0x1100000 and above for the RISC-V OTTER. Figure 16.23 shows the list of port IDs for the I/O devices on
the development board. We assign the port IDs using the Verilog localparam in order to facilitate future
hardware changes.

 //- INPUT PORT IDS --
 localparam SWITCHES_PORT_ADDR = 32’h11008000; // 0x1100_8000
 localparam BUTTONS_PORT_ADDR = 32’h11008004; // 0x1100_8004

 //- OUTPUT PORT IDS ---
 localparam LEDS_PORT_ADDR = 32’h1100C000; // 0x1100_C000
 localparam SEGS_PORT_ADDR = 32’h1100C004; // 0x1100_C004
 localparam ANODES_PORT_ADDR = 32’h1100C008; // 0x1100_C008

Figure 16.23: Fragment of wrapper showing assigned port_IDs.

16.12.2 Wrapper Input Circuitry

The RISC-V MCU has one signal (a bundle) that handles all the possible input to the RISC-V MCU from
external devices. The IOBUS_IN in signal is the 32-bit input to the RISC-V MCU that “accepts” data from the
outside world and writes that data to a register in the register file. The RISC-V MCU is a general purpose MCU
so it is quite versatile; part of that versatility includes being able to interface with a high number of external
inputs, but not more than 32 at a time. The width of the IOBUS_IN signal governs how many inputs the RISC-V
can input in one operation, which is driven by a load instruction executed by the MCU. In this way, the wrapper
includes the circuitry to allow the RISC-V MCU to choose which input it wants input, which it does by using the
proper port_ID as listed in Figure 16.23.

Anytime we need to “choose” something in hardware, we use a MUX. We thus use a MUX to determine which
of the external input devices transfers their data from the MUX input to the MUX output, and thus connect to the

FreeRange Computer Design Chapter 16

 - 485 -

IOBUS_IN input on the RISC-V MCU. Figure 16.24 shows the Verilog code that the wrapper uses to handle
external input devices. Here are the important features to notice about the model fragment in Figure 16.24:

 The code models a combinatorial circuit, which we know primary because of the
“always_comb” choice of procedural block. We also know this because the body of the
procedural block uses a case statement that includes a default case. The always_comb is
actually a System Verilog construct; we could also implement the model using an always
construct using Verilog.

 The variable expression in the case statement is the IOBUS_addr signal, which the I/O address
output from the RISC-V MCU. This variable address is the absolute memory address associated
with the load-type instruction output executed by the program running on the RISC-V MCU.
Thus, the IOBUS_addr signal becomes the select input for the MUX modeled in Figure 16.24.
Figure 16.25 shows the BBD associated with the interfacing the Wrapper to the RISC-V MCU;
this diagram includes the input MUX.

 When the data on the IOBUS_addr signal matches a port_ID associated with an external input
device, the MUX assigns the output from that device to the IOBUS_in signal. Because the
IOBUS_in signal is 32-bits wide and inputs are often less bits, the MUX model clears all
unused input puts by pre-assigning the IOBUS_in value to zero. The actual data input signal
overwrites any pre-assigned value of zero.

 always_comb
 begin
 IOBUS_in=32’b0;
 case(IOBUS_addr)
 SWITCHES_PORT_ADDR : IOBUS_in[15:0] = switches;
 BUTTONS_PORT_ADDR : IOBUS_in[4:0] = buttons;
 default: IOBUS_in=32’b0;
 endcase
 end

Figure 16.24: Fragment of wrapper code showing the input model.

Figure 16.25 shows a high-level diagram of the hardware associated with the RISC-V MCU wrapper. This
diagram provides an overview of the wrapper hardware including the input MUX. Note that the input MUX uses
the IOBUS_addr signal output from the RISC-V MCU as select signals to the MUX.

Figure 16.25: Block diagram of the RISC-V MCU wrapper and internal modules.

16.12.3 Wrapper Output Circuitry

FreeRange Computer Design Chapter 16

 - 486 -

The RISC-V MCU has one signal (a bundle) to handle all the possible output to external devices. The
IOBUS_out is an output signal from the RISC-V MCU. The data associated with all store operations sent from a
register in the register file. The rs2 output of the register file serves as the IOBUS_out signal for the RISC-V
MCU. The RISC-V MCU shares the addresses lines for output with the input data (IOBUS_in); this works
because it is not possible to simultaneously perform both an input (load) and an output (store) in the RISC-V
MCU hardware.

Despite the fact that the output circuitry uses the same “selection” signals as the input circuitry (Figure 16.25),
the circuitry is significantly different. The reason is that data outputs from the RISC-V MCU module are
“temporary”, meaning that data, address, and control signals for the output operation only exist for the execute
cycle of the associated store instruction that generated them. These outputs are typically not useable for any
circuit depending on the outputs. The solution is similar to the inputs, where the input data is “stored”
somewhere, which means the RISC-V MCU stores data input from external sources into a register in the register
file. The Wrapper must then include registers that store the data output from the RISC-V MCU as a result of
executing store-type instructions configured to be output. Each output device on the dev board must have
corresponding registers in the wrapper circuitry. Figure 16.25(b) includes three registers to handle dev board
output, which we list on AN, LEDS, and SEGS.

Store instructions perform an absolute address calculation in hardware as part of the instruction. The absolute
address then becomes an input the to the memory module. One of the source registers (the rs2 output of the
register file) that is part of the store instruction provides the data associated with the store instruction. This
source data becomes the data written to the memory or the data output to external devices based solely on the
value of the absolute address associated with the store instruction. The hardware writes the data to memory if the
absolute address is 0x0000FFFF or lower; otherwise, the data is “output” to external devices. There is no
difference in the data output as the register file output (rs2) serves as both the data input to memory and the
IOBUS_out signal.

The only difference in the memory writes and data outputs is in how the main memory module in the RISC-V
MCU interprets the absolute address. The hardware writes the data on the DIN2 input to memory if the write
enable (WE2) is asserted and the value on the ADDR2 input (the rs2 output from the register file) is less than
0x00010000. If the write enable is asserted and the value on the ADDR2 input is greater than 0x0000FFFF, the
memory module asserts the IO_WR output. This output remains asserted for the duration of the execute cycle
associated with the underlying store instruction.

The IO_WR signal is an output signal from the RISC-V MCU. When the RISC-V MCU executes an output
instruction (a store instruction with an address value in I/O space), the MCU asserts this signal to indicate to
external circuitry that the MCU is implementing an output operation. We often refer to the IO_WR signal as a
“write pulse”, because the signal is only asserted for one clock cycle (the duration of the execute cycle of the
associated store instruction). The external circuitry then uses the IO_WR signal as a write enable for devices
such as registers. The RISC-V MCU Wrapper stores all data outputs in registers, which provides the data with
“persistence”. This means when you write to a specific output device, the Wrapper circuitry latches that data to
the external registers on the wrapper level using the IO_WR signal as the write enable to those registers. If we
did not store the output data in registers, the output data would essentially disappear after the MCU completes
executing the store instruction, which make the data hard to use based on the relatively short time the MCU
makes that data available.

Figure 16.26 shows the portion of the wrapper model that handles outputs. The code has two main purposes.
First, it generates three registers, one for the LED, cathodes (segments), and anodes, which are the three output
devices on the development board. Second, the “chooses” which register the data is written to using the
IOBUS_addr signal to discern the proper external output device. Figure 16.25 shows the output hardware in a
high-level flavor, but clearly shows that the latching of data output form the RISC-V MCU is a function of
IOBUS_addr, IO_WR, IOBUS_out, and the clock edge. Here are a few more items to note about this code.

 We included declarations for the three required registers. We use a logic type for the declaration
and provide a “r_” prefix in the associated label5. Using the “r_” prefix indicates to the human

5 The logic type is a feature of System Verilog, but not Verilog. If you were modeling this using Verilog, you would use
either a register or wire-type.

FreeRange Computer Design Chapter 16

 - 487 -

reader that the model uses the declared signal as a register type, which is a great form of self-
commenting that all good hardware modelers use.

 We use an “always_ff” block to model the actual input circuitry, which verifies the block actually
models registers. The always_ff is another System Verilog construct that can easily be replaced by
a Verilog always construct. The fact that we use the posedge function in the sensitivity list
ensures that the model generates synchronous sequential elements.

 The model only latches data to the registers when the IOBUS_wr signal is asserted. The
IOBUS_wr is the external connection associated with the IO_WR signal generated by the main
memory when the MCU executes an output instruction.

 The IOBUS_addr signal is the address value associated with the underlying store instruction. If
this address matches one of the port_IDs (port addresses) associated with an output device, the
data on the IOBUS_out signal (which is the signal from the register file’s rs2 output) is latched
into the correct register on the next active clock edge.

 Overall, the code in Figure 16.26 models three registers and a generic decoder. The IOBUS_addr
signal becomes the select input to the decoder; the decoder selects which register latches the
IOBUS_out data.

 //- register for dev board output devices -------------------------
 logic [7:0] r_segs; // register for segments (cathodes)
 logic [15:0] r_leds; // register for LEDs
 logic [3:0] r_an; // register for display enables (anodes)

 always_ff @ (posedge s_clk)
 begin
 if (IOBUS_wr == 1)
 begin
 case(IOBUS_addr)
 LEDS_PORT_ADDR: r_leds <= IOBUS_out[15:0];
 SEGS_PORT_ADDR: r_segs <= IOBUS_out[7:0];
 ANODES_PORT_ADDR: r_an <= IOBUS_out[3:0];
 default: r_leds <= 0;
 endcase
 end
 end

Figure 16.26: Fragment of wrapper code showing the output model.

Example 16.3: Maximum Control and Status Bits

How many unique status bits of can the current architecture read? Also, how many bits of unique
output can the current architecture write.

Solution: The best place to start on a problem like this is to examine the top-level RISC-V architecture diagram,
which we conveniently provide in Figure 16.27. The first thing to note is that is that the RISC-V has 100 inputs
and outputs, 98 of those (all but the RST and CLK) have to do with I/O. Another thing to note is that the RISC-V
designers made the MCU as flexible and extensible as possible, meaning that if you needs to control either five
or 500 signals, the RISC-V architecture can easily handles and do so in a generic manner.

Input: There are 32 bits associated with input (IOBUS_IN), which means every different input operation can
input 32 unique bits. The question is how many unique sets of 32 bits can the architecture manage? Recall that
the various inputs connect to a MUX in the wrapper; the IOBUS_ADDR signal acts as the control inputs to the
MUX. The next question is how many unique address values can the IOBUS_ADDR generate? The answer is
embroiled with the notion of the RISC-V MCU’s memory mapped I/O (MMIO). The RISC-V has a 32-bit

FreeRange Computer Design Chapter 16

 - 488 -

address space, but the addresses range [0x00000000,0x0000FFFF] is associated with memory access
instructions, which leaves the remaining addresses associated with I/O. Each of the unique addresses can input
32, or 25 unique bits, so the final answer is:

(232 – 216)* 25 = a lot of bit (you do the math).

Output: Calculating the number of unique output bits is similar to the number of unique input bits. The
IOBUS_OUT signal controls the number of outputs, which is 32. This means for any single output, the RISC-V
can output 32 unique bits. The output also uses the IOBUS_ADDR to “decode” the bits the output are sent to.
The IOBUS_ADDR is constrained by the RISC-V MCU’s MMIO, which gives the effective address space for
outputs the same as the effect address space for inputs: [0x00010000,0xFFFFFFFF]. This range provides (232 –
216) unique values, so the total number of output bits the RISC-V can control is (232 – 216)* 25 = many bits.

Figure 16.27: The Control Unit FSM black box diagram.

Example 16.4: Maximum Control and Status Bits

The RISC-VMCU physical memory address space was increased form 16 bit to 18 bits. What is the
resulting number of bits the RISC-V MCU can both input and output?

Solution: In this problem, the address space grows by two bits up to 18 bits. This means that the memory
address range is now [0x00000000,0x0003FFFF], which leaves the I/O address range based on 14 bits:
[0x00040000,0xFFFFFFFF]. Based on the RISC-V architecture, the input and output can both manage the same
number of unique bits, which is now based on a 14-bt address space. The final number of bits for both input and
output are (232 – 218)* 25. That’s a lot of control (unwarranted editorial).

FreeRange Computer Design Chapter 16

 - 489 -

16.13 Chapter Summary

 The RISC-V OTTER MCU is a relatively complex digital circuit that we can easily subdivide into a set of
smaller modules.

 Mealy’s First and Only Law of Computer Programming: If you understand the hardware of the computer
your program will run on, then you can write better programs.

 The RISC-V OTTER MCU has two modules that control the basic operations of the underlying hardware:
the CU_FSM and the CU_DCDR. The CU_FSM is a finite state machine (and thus a sequential circuit) that
sequences through the states associated with instruction execution. The CU_DCDR is a decoder (and thus a
combinatorial circuit) that provides a set of signals that controls the operation of various MUXes in the
MCU.

 Most instructions require two clock cycle for for execution, but load-type instructions require three clock
cycles. Instruction execution includes names for the states in the underlying FSM, which are fetch and
execute cycles for all instructions and a writeback state for load-type instructions. The fetch cycle roughly
fetches an instruction from program memory, the execute cycle roughly executes that instruction, and the
writeback cycle retrieves data from memory for load-type instructions.

 The program counter (PC) stores the address of the current instruction being executed. The PC is
implemented as a 32-bit register with external support on the current RISC-V implementation. The PC
addresses physical memory in the RISC-V OTTER, but because program memory uses 32-bit instruction,
the program memory only requires the 14 most significant bits of the PC address.

 The PC supports basic computer operations by loading a new value into the PC after executing an
instruction. The new value can either be the address of the next instruction (normal operation) or the address
associated with a branch-type instruction (both conditional and unconditional).

 The RISC-V MCU main memory represents the total address space for the computer. Although main
memory is considered to be 232 x 8, physical memory is only 216 x 8, where physical memory is the memory
where data can actually be stored. The other part of the address space is reserved for other operations such
as I/O. The physical memory stores the program and other data; the other data includes items such as the
stack.

 The RISC-V MCU uses memory-mapped I/O (MMIO). The RISC-V MCU interprets all memory accesses
above the physical memory limit 0x0000FFFF as I/O.

 The IMMED_GEN module creates 32-bit values from the smaller values and often strangely configured
values associated with the immediate fields in the RISC-V instructions.

 The BRANCH_ADDR_GEN module uses a combination of register data, PC values, and values output from
the IMMED_GEN module in order to create 32-bit absolute address. The values the
BRANCH_ADDR_GEN creates are loaded into the PC for conditional and unconditional branch instrutions.

 The REG_FILE module stores the 32 32-bit general purpose register in the RISC-V MCU. All bit crunching
operations in the RISC-V MCU are done using registers in the register files. All memory load operations are
from main memory to the register file register; all memory store operations are from register file register to
main memory. All input operations are from the outside world to registers; all output operations are form
register to the outside world.

 The ALU module peforms all bit-crunching operations. Although the name implies arithmetic and logic type
operations, ALUs typically do other operations as well. The ALU inputs two 32-bit operands and outputs a
32-bit result based on the selected operation.

 The BRANCH_COND_GEN module controls the branches associated with branch-type instructions in the
RISC-V MCU (which does not include slt-type instructions). This module inputs the two register outputs
from the REG_FILE module and generates three output signals based on comparisons of these signals in the
BRANCH_COND_GEN module. The CU_DCDR uses these three signals to control whether the MCU
takes a branch or not.

FreeRange Computer Design Chapter 16

 - 490 -

 The Wrapper is a model that interfaces the MCU to a given development board. Development boards
generally have a given set of input and output device; the Wrapper makes these devices available to the I/O
operations of the underlying MCU.

 Development board inputs are “selected” via a MUX to enter the MCU; the selection signals are the I/O
address signals output from the MCU. Development board outputs are registered on the Wrapper level so
that they are persistant and can more easily be used by external hardware devices. The I/O address signals in
conjunction with the IO_WR pulse output from the MCU control which register will receive the data output
from the MCU.

FreeRange Computer Design Chapter 16

 - 491 -

16.14 Chapter Exercises

1) Briefly describe why Mealy’s One and Only Law of Computer Programming is patently obvious.

2) Briefly describe how we use the notion of hierarchical design to understand the RISC-V MCU.

3) Briefly describe why the CU_FSM and CU_DCDR are separate modules.

4) Briefly describe the main responsibility of the CU_FSM.

5) Briefly describe the function that the memRDEN1 and memRDEN2 signals serve.

6) Briefly explain why the CU_FSM contains a clock input but the CU_DCDR does not.

7) Briefly describe why the CU_FSM contains a memWE2 signal but not a memWE1 signal.

8) We state that the program memory is not writable, but it actually is writeable. Briefly describe why you are
able to write to program memory and briefly describe how exactly to do it.

9) Each of the CU_DCDR outputs have a special commonality; what is that commonality?

10) Briefly explain how long the CU_DCDR’s output remain unchanged for a given instruction.

11) The outputs of the CU_DCDR in the fetch cycle still have the outputs associated with the previous
instruction. Briefly describe why this is so and why it is OK.

12) Briefly describe whether the CU_DCDR knows anything about instruction cycles.

13) Briefly describe why the CU_DCDR does not need to do anything different for load-type and all other
instructions.

14) How many clock cycles does it require for the following RISC-V assembly language code fragment to
execute from the starting at the start label and going through the done label?

start: add x10,x0,x0
 addi x10,x10,8

loop: beq x10,x0,done
 lw x20,0(x21)
 sw x21,4(x23)
 sw x21,4(x23)
 addi x10,x10,-1
 slt x23,x24,x35
 j loop

done: nop

15) How many clock cycles does it require for the following RISC-V assembly language code fragment to
execute from the starting at the go label and going through the stop label?

go: add x10,x0,x0
 addi x10,x10,0x12

loop: beq x10,x0,stop
 lw x20,0(x21)
 lw x22,0(x31)
 addi x10,x10,-1
 addi x21,x21,1
 addi x31,x31,4
 xor x23,x24,x25
 j loop

stop: nop

FreeRange Computer Design Chapter 16

 - 492 -

16) How many clock cycles does it require for the following RISC-V assembly language code fragment to
execute from the starting at the go label and going through the stop label?

go: add x10,x0,x0
 addi x10,x10,14

loop: sw x23,0(x21)
 lw x22,0(x31)
 addi x10,x10,-1
 ori x21,x21,1
 addi x31,x31,4
 xor x23,x24,x25
 beq x10,x0,loop

stop: nop

17) Briefly describe why the PC is a register and not a counter in the RISC-V OTTER MCU architecture.

18) Briefly describe why the PC is 32-bits wide but only 14 of those bits are used to access instructions in
program memory.

19) Briefly describe why programmers can use either jal or jalr instructions to call subroutines.

20) Briefly describe why programmers can use a jalr instruction but not a jal instruction to return from a
subroutine.

21) Briefly describe why the program memory is sometimes listed as 14k x 32, and other times listed as 16k x 8.

22) Briefly describe why the immediate fields in the branch instruction formats are stored using a strange
ordering.

23) Briefly describe what entity forms the immediate values associated with branch instruction.

24) Briefly describe what entity forms the absolute branch addresses from the signed immediate values
associated with branch-type instructions.

25) Briefly describe how it is that the RISC-V MCU can branch twice as far as the immediate value associated
with a branch instruction seems to indicate.

26) The RISC-V OTTER MCU memory module serves three functions: what are they?

27) What is the byte and word capacity of the RISC-V OTTER MCU main memory?

28) If the stack pointer grew larger than 0x0000FFFF, briefly describe what would happen if a program
attempted to push a value onto the stack.

29) Briefly describe the relationship between main memory and physical memory.

30) Briefly describe whether program memory is writeable under program control.

31) Briefly describe the potential proble associated with changing data in program memory.

32) Briefly describe whether you can push and pop data from the code segment.

33) Briefly describe whether the memory reads and memory writes on the RISC-V MCU are synchronous or
not. Your answer should include both the main memory and the register file.

34) Memory access instructions in the RISC-V MCU don’t officially use the lower two bits of the memory
address lines. This being the case, briefly describe how the hardware is able to perform reads of individual
bytes from any four-byte chunk of memory data.

35) Briefly describe why the RISC-V instruction set includes five load-type instructions but only three store-
type instructions.

36) Briefly describe what or who determines whether a memory access-type instruction will perform a memory
access or an input/output operation.

FreeRange Computer Design Chapter 16

 - 493 -

37) We generally speak of the PC as being the address of the current instruction being executed; briefly describe
why this definition is not always 100% accurate.

38) Briefly describe the purpose the IO_WR signal serves to the RISC-V MCU hardware. Be careful, this is a
trick question.

39) Briefly explain whether the RISC-V assembler knows the difference between a memory access instruction
and an I/O instruction.

40) Briefly explain whether the RISC-V hardware (not including the main memory module) knows the
difference between a memory access instruction and an I/O instruction.

41) The current RISC-V OTTER outputs the IO_WR signal from the main memory module. Briefly explain
how you could modify the RISC-V architecture such that the IO_WR signal was output from one of the
control unit modules.

42) Briefy describe the main purpose of the IMMED_GEN module.

43) Briefly describe why some of the immediate value fields have strange bit orderings.

44) Breifly explain why the final 32-bit immediate values associated with B-type and J-type instructions always
encode the LSB as zero.

45) Briefly explain why the jalr instruction does not include the PC in the calculation while the similar jal
instruction does.

46) Briefly describe the main purpose of the BRANCH_ADDR_GEN module.

47) In the context of branch-type instructions (conditional and unconditional), the RISC-V MCU hardware
converts relative offsets encoded as part of the instructions into absolute address. Briefly describe which
modules in the RISC-V OTTER MCU hardware are responsible for this conversion.

48) Briefly describe why we refer to the register file as a multiport RAM.

49) Briefly describe whether the register file is a synchronous or asynchronous device.

50) Breifly describe the main responsibilities of the ALU module.

51) Briefly describe whether the ALU directly provides any information regarding the status of the operations it
performs.

52) Arithmetic shifts support the shifting of which type of number representations?

53) Briefly describe why shift lengths are limited to 32 bit positions in the RISC-V OTTER MCU.

54) Briefly describe what would happen if you attempted to shift more than 32 bit positions in the RISC-V
OTTER MCU.

55) List the two significant differences between branch-type instructions and slt-type instructions.

56) Both the branch-type instructions and the slt-type instructions perform comparisons; briefly describe where
those comparisons occur in the underlying RISC-V MCU hardware.

57) Briefly describe any limits the slt-type instructions have regarding their ability to make comparisons.

58) Briefly but completely describe the purpose of the MCU wrapper.

59) Briefly describe why the Wrapper does not register the inputs to the MCU as it does the outputs.

60) What limits the amount of data that can be input to the RISC-V MCU in a single operation?

61) Briefly describe what causes data to be stores in the registers on the wrapper level.

62) What three items need to happen to allow data from the RISC-V MCU to a register in the Wrapper?

63) Briefly describe how it is possible for the IOBUS_addr signal to be shared by both input and outputs.

64) Would it be possible to use the current Wrapper for another softcore MCU. Briefly but completely explain
your reasoning.

FreeRange Computer Design Chapter 16

 - 494 -

65) Briefly but completely explain the main differences between the input and output portions of the MCU
wrapper.

66) The MCU can only control a fixed number of input and output bits. Describe what determines the number of
input and output bits can be controlled by the MCU.

67) How many total input bits can the current RISC-V OTTER MCU control? Show the calculation for this
question.

68) How many total output bits can the current RISC-V OTTER MCU control? Show the calculation for this
question.

69) If the RISC-VMCU physical memory address space was increased form 16 bit to 24 bits, what is the
resulting number of bits the RISC-V MCU can both input and output?

70) If the RISC-VMCU physical memory address space was increased form 16 bit to 30 bits, what is the
resulting number of bits the RISC-V MCU can both input and output?

71) If the RISC-VMCU physical memory address space was decreased form 16 bit to 12 bits, what is the
resulting number of bits the RISC-V MCU can both input and output?

72) If the RISC-VMCU physical memory address space was decreased form 16 bit to 8 bits, what is the
resulting number of bits the RISC-V MCU can both input and output?

73) Show a completed timing diagram based on the current RISC-V MCU wrapper that indicates exactly when
the data is latched into the output registers.

FreeRange Computer Design Chapter 16

 - 495 -

16.15 Chapter HDL (Verilog) Exercises

1) Show the modifications necessary to the wrapper code so that you can add two more input devices: a set of
six buttons (map them to address 0x44) and a set of seven switches (map them to address 0x77).

2) Show the modifications necessary to the wrapper code so that you can add three more input devices: a set of
five LEDs, another four-digit 7-segment display, and a set of 16 LEDs. You can choose any port addresses
you want for this question.

FreeRange Computer Design Chapter 17

 - 496 -

17 RISC-V Instruction Details

17.1 Introduction

All of the previous chapters that dealt with the RISC-V MCU did so at primarily a programming level. We
purposely limited our mention of hardware details in an effort to not frighten programmers who have no
knowledge of the hardware implements an actual computer. This chapter starts delving into some of the
hardware aspects and other details of RISC-V MCU instructions and operations. We delve into the details of the
underlying hardware of the RISC-V MCU in a later chapter.

Main Chapter Topics

 HARDWARE-BASED STACK IMPLEMENTATIONS: This chapter describes the
approach to implementing stack ADTs in digital hardware.

 INSTRUCTION FORMATS: This chapter describes the RISC-V instruction types and
their various formats including opcodes and field codes.

 SPECIAL INSTRUCTION HANDLING: This chapter describes the basic operations of
miscellaneous pseudoinstructions and their relation to the base instruction they
translate to.

Why This Chapter is Important

This chapter is important because it describes some of the low-level details regarding
RISC-V instructions and instruction execution.

17.2 Hardware-Based Stack Implementations

The stack is an abstract data type that the RISC-V MCU uses for specific types of data storage including the
implementation of nested subroutines. We covered the basic functionality of a stack in Section 12.2, but that
coverage intentionally did not mention stack implementation associated with hardware. This section covers the
same basic concepts but from the aspect of how we typically implement stacks in hardware.

Figure 17.1 shows an example of a stack implemented in hardware, or more precisely, using a structured
memory-type device such as a RAM. The example shows the highest memory locations of memory with 32k
storage locations. In Figure 17.1, we use a small arrow as the stack pointer to indicate the top of the stack and
listed the value in the box labeled “SP” (for “stack pointer”) below. We made this stack to be similar to the
example in Section 12.2 to highlight the major implementation differences; you may want to go back and review
that section, or equivalently stare out the window. Here are the descriptions of the state changes in Figure 17.1.
We don’t need to state the exact width of the data for this example.

 Image 1: the stack in its empty state. The stack pointer indicates the top of the stack (the box
with the letters SP next to it). In its initial state, the stack pointer is officially not pointing to the
memory associated with the stack. We initialize the stack pointer to point outside of the actual
memory.

 Image 2: the stack after one item has been pushed onto the stack. The figure uses a small arrow
in addition to the stack pointer box to indicate the top of the stack.

FreeRange Computer Design Chapter 17

 - 497 -

 Image 3: the stack after four items (three more values since image 2) have been pushed onto the
stack. The items on the stack were pushed in the following order: 34, 29, 19, and 17. Note that
the stack pointer is pointing at the last thing that was pushed on the stack (17).

 Image 4: the stack after one item is popped off the stack. Note that the item popped off the stack
is not actually removed; the item is still there but the stack pointer is adjusted to point to a new
top of the stack. If we were to push another item onto the stack after this point, it would
necessarily overwrite the number 17 with new data.

 Image 5: the stack after three items (two since image 4) are removed from the stack. Once again,
we don’t remove items from the stack; we simply adjust the stack pointer.

Figure 17.1: Implementation of a hardware-based (structured memory) stack.

One final but important characteristic exhibited by the stack in Figure 17.1 is that we consider the stack to
“grow” in the negative direction as we push items onto it. In other words, when we push data onto the stack, the
stack pointer (which is an address value pointing at the stack area in main memory) value becomes smaller.
Conversely, when we remove items from the stack, the stack pointer increases in magnitude. There is no
particular reason why most MCUs do it this way other than tradition; we could implement stacks the other way
just as easily.

17.3 Instruction Types and Formats

The best place to start any discussion on RISC-V hardware is with low-level descriptions of the instructions
themselves. Recall that an assembly language is a set of mnemonics that represent instructions. We humans use
the instructions to control the underlying hardware. That being the case, the instructions are nothing more than a
set of bits that the hardware uses to know what instruction needs executing and how exactly to execute that
instruction.

There about approximately 40 base instructions and another 20 or so pseudoinstructions in the RISC-V MCU
instruction set. While this seems like many instructions, it’s not as bad as it initially seems. First, we’re only
required to understand the ins and outs of the base instructions because the assembler translates the
pseudoinstructions. Additionally, we use various approaches to exploit the many similarities between the
instructions to further expedite our understanding of both the instruction set and how we implement those
instructions in the underlying hardware.

17.3.1 Field Codes and Opcodes

We divide all of the 40 base instructions fall into six different types. The thing that differentiates these
instruction types is how they arrange the underlying bits. Because the instructions have different numbers and
types of operands, it makes intuitive sense that the underlying bits that form those instructions will also be
different. Table 17.1 shows the six RISC-V formats. We’ll look more closely at these formats when we look into
individual instructions, but there are a few general items to notice about Table 17.1.

 Although each instruction comprises of 32 bit, we arrange those bits in an organized manner by
dividing them into groups according to their purpose. There are two types of groups, which we
refer to as “field codes” and “operational codes” (or “opcodes”). These two different groups have

FreeRange Computer Design Chapter 17

 - 498 -

different purposes. The opcodes define the particular instruction being executed and cannot vary
for a given instruction. The field codes are variable for a given instruction. The field codes define
either register values or immediate values. While the field codes defining registers are always 5-
bits wide, the immediate values vary depending on the instruction.

 We designate the opcodes in Table 17.1 using shading.

 The field codes and opcodes have both common widths and common locations in the instruction
across the set of instruction types. Organizing the field codes in this way makes the underlying
RISC-V hardware less complex.

 The numbering on the immediate value field codes can sometimes be strange. Once again, the
RISC-V designers chose this organization to simplify actual RISC-V MCU implementations.

 We designate the register-based field codes in Table 17.1 by either an “rd”, “rs1”, or “rs2”, where
rd is the destination register and rs1 & rs2 are the source registers. The number of register-based
operands depends on the instruction type. We give the register-based field codes common names.

Instr
Type Instruction Format

R-type

I-type

S-type

B-type

U-type

J-type

Table 17.1: RISC-V Instruction types and associated formats.

17.4 Notable Handling of Specific Instructions

Some the RISC-V instructions are notable because of the way programs use them and because of their somewhat
unique hardware implementations. The “uniqueness” of these instructions primarily refers to their non-intuitive
usage and “lack” of direct use. Programmers use these instructions quite often, but in an indirect manner as these
instructions are primarily what the assembler uses to implement various and common pseudoinstructions.

17.4.1 Add Upper Immediate to PC Instruction: auipc

The RISC-V ISA includes several pseudoinstructions involved in program flow control. These instructions then
necessarily involve using the PC. The primary purpose of the auipc instruction is to load a copy of the current
program counter to a register, where then other instructions can use that value. The primary use of the auipc
instruction is as part of the call pseudoinstruction (the other part of the call pseudoinstruction is a jalr
instruction) and the la pseudoinstruction (the other part being an lw instruction).

FreeRange Computer Design Chapter 17

 - 499 -

The auipc instruction loads the sum of the current PC and a modified immediate value into the destination
register. The instruction sign-extends the immediate value and shifts it left by 12-bit locations before being
adding to the PC value. Table 17.2 provides an RTL description of the auipc instruction while Table 17.3
shows lower-level implementation details. The efficacy of this instruction relates to its usage as part the call
pseudoinstruction, so we save insights into the operation of the auipc instruction when we describe the call
pseudoinstruction in Section 17.4.3 and the la pseudoinstruction in 17.4.6.

The RTL for the auipc instruction in Table 17.2 is misleading. The instruction essentially creates a 32-bit value
from an immediate value and the PC. The instruction makes that value by placing the 20-bit immediate value in
the 20 left-most bits of the register, and then adding the PC value. The notion of the shifting operation implies
that the lower 12-bits are zero before the addition operation. The underlying RISC-V hardware does more of a
reassignment of 20-bit immediate value for the lower 20 bits to the upper 20 bits; no shifting occurs. It is the
programmer’s responsibility to handle overflows of the addition operation. If the immediate value associated
with the instruction is zero, the instruction effectively moves the PC to the destination register, which is actually
one way we commonly use the instruction.

Instr
Type Instruction Form Instruction RTL Example Usage

U-Type auipc rd,imm rd ← PC + (sext(imm) << 12) auipc x8,imm

Table 17.2: Usage and description of the auipc instruction.

Type Instruction Type Format

Instr Instruction Format

U-type

auipc

Table 17.3: Type and Instruction format for the auipc instruction.

17.4.2 Load Upper Immediate Instruction: lui

The lui instruction is similar to the auipc instruction. It’s once again one of those instructions that programmers
don’t use often in a direct manner, but use often in an indirect manner as a part of useful pseudoinstructions. The
assembler translates the li pseudoinstruction into lui instruction.

The lui instruction loads a modified immediate value into the destination register. The instruction sign-extends
the immediate value and shifts it left 12-bit locations before loading it to the destination register. Table 17.4
provides an RTL description of the lui instruction while Table 17.5 shows lower-level implementation details.
The efficacy of this instruction is related to its usage as part the li pseudoinstruction, so we save insights into
the operation of the lui instruction for Section 17.4.5, where we describe the li pseudoinstruction.

The RTL for the lui instruction in Table 17.2 is misleading similar to the way the auipc instruction is
misleading. The instruction essentially creates a 32-bit value from an immediate value by placing the 20-bit
immediate value in the 20 left-most bits of the register. The notion of the shifting operation implies that the
lower 12-bits in the destination register are always zero. The underlying RISC-V hardware does more of a
reassignment of immediate value; no shifting occurs. If the immediate value associated with the instruction is
zero, the instruction effect is to clear the destination register.

FreeRange Computer Design Chapter 17

 - 500 -

Instr
Type Instruction Form Instruction RTL Example Usage

U-Type lui rd,imm rd ← sext(imm) << 12 lui x8,imm

Table 17.4: Usage and description of the lui instruction.

Type Instruction Type Format

Instr Instruction Format

U-type

lui

Table 17.5: Type and instruction format for the lui instruction.

17.4.3 Calling Subroutines: The call Pseudoinstruction

Programmers use the call pseudoinstruction to transfer program flow control to another area of the program
we refer to as a subroutine. The basic operation of a subroutine call is to load the address of the first instruction
in the subroutine into the PC, but at the same time, storing the address of the instruction following the call
instruction. We refer to the address of the instruction following the call instruction as the return address, as
that is where program control transfers to after completing execution of the instructions in the subroutine. The
subroutine code uses a label to mark the address of the first instruction in the subroutine.

The call instruction has two primary responsibilities. First, it must formulate the absolute address of the
subroutine from the label value. Absolute address formation is another exercise in using the RISC-V instructions
and assembler to convert the relative addresses encoded in the instructions1 into a 32-bit address that the
hardware loads into the program counter as part of the translated call instruction sequence. Second, the call
instruction must store the return address in a register, which the return from subroutine instruction (ret) later
uses to transfer program flow control back to the instruction following the call instruction listed in the
program code.

Table 17.6 shows an overview of the call pseudoinstruction including the associated RTL statements. The
RTL statement in Table 17.6 is slightly misleading in that the information makes it seem like there is only one
instruction required to execute the call pseudoinstruction. As you’ll see next, this is not the case.

Instruction Form Instruction RTL Example Usage Comment

call label

rd ← PC + 8
PC ← &label

call my_sub

Transfers program control
to instruction associated
with my_sub label.

Table 17.6: The overview of the call pseudoinstruction.

Table 17.7 shows the call instruction in two forms and includes some other usage information. Table 17.7
shows that the assembler translates the call pseudoinstruction into an auipc & jalr instruction. We’re
primarily interested in the form of the instruction in the second row, which is the one we primarily use when
programming. The call pseudoinstruction form in the second row is a special case of the call form in the
first row where the destination register defaults to x1.

1 call is a pseudoinstruction, but we commonly reference it as an instruction to save typing keystrokes.

FreeRange Computer Design Chapter 17

 - 501 -

Instruction Form
Equivalent Base
Instruction(s) Example Usage Comment

call rd,lab
auipc rd,hi(lab)

jalr rd,lo(lab)
call x5,subrut

Jump to instruction
associated with label;
Store current address in rd

call lab
auipc x1,hi(lab)

jalr x1,lo(x1)
call subrut

Jump to instruction
associated with label;
Store current address in x1

Table 17.7: The two forms of the call pseudoinstruction and equivalent base instructions.

Table 17.8 provides all the gory details as to how the auipc & jalr instructions work together to execute a
call pseudoinstruction. Note that the following description is for the call form in the second row of Table
17.7. Here is a full description of the code in Table 17.8:

 The call pseudoinstruction has an associated label: Instr. The comment above the call
pseudoinstruction states that the value of this label is 0xFEBA.

 The assembler translates the call pseudoinstruction into the auipc and jalr instructions in
the right column of Table 17.8. These two instruction perform three distinct functions (one for
auipc and two for jalr):

1) The auipc instruction stores the upper 20 bits of the address of the subroutine in the upper
20 bits of register x6. The current PC value is 0x0000FEBA, which is the address of the call
instruction in the left column. The value stored in x6 after this instruction is 0x0000F000.

2) The jalr instruction stores the current PC value plus four (PC+4) in x1, which is the address
of the “instruction after the call pseudoinstruction”. But since the call pseudoinstruction
generates two base instructions, the address loaded into x1 is the address of the instruction
after the jalr instruction, which is effectively the address 8 greater than the address of the
call pseudoinstruction as it appears in the source code. This is why the RTL statement in
Table 17.6 is misleading. The return address is officially the instruction after the jalr
instruction in the translated code.

3) The jalr instruction completes the subroutine address formulation started in the auipc
instruction by adding the value in x6 to the lower 12 bits of the address of the first instruction
of the subroutine (thus creating an absolute address) and storing that value in the PC.

 Lucky for us programmer types that the assembler handles most of the ugly details. Namely, the
assembler generates and assigns the right-most operands of both the auipc & jalr instructions.

Pseudoinstruction Usage Pseudoinstruction Translation

#Instr=0x0000FEBA

Instr: call my_sub
 nop

inst1: auipc x6,0x0000F # x6 = 0x0000F000

inst2: jalr x1,x6,0xEBA # PC <- (x6 + 0xEBA)

Table 17.8: Example of the call pseudoinstruction translation.

17.4.3.1 Subroutine Call Timing

Calling subroutines is another common type of program flow control operation. There is no dedicated calling
instruction in the RISC-V architecture, but there is a call pseudoinstruction that programmers can use. The
call pseudoinstruction translates to two base instructions: auipc & jalr. Section 17.4.3 described the

FreeRange Computer Design Chapter 17

 - 502 -

operation of the call pseudoinstruction and underlying base instruction; this section provides an example
timing diagram with verbose description. Figure 17.2 shows an example timing diagram associated with a call
pseudoinstruction; here are the gory details:

 This example shows the calling of a subroutine names “sub_rut”; the address of the first
instruction in this subroutine is 0x4328, which arbitrary. The address of the call instruction is
0x90. The assembler translates the call instruction to an auipc instruction (address 0x90)
followed by a jalr instruction (0x94).

 The PCWrite signal asserts at the beginning of the execute cycle, which causes the PC to advance
to the next instruction as the diagram indicates with the (1) note. The actual instruction at 0x8C
does not matter but it is not a program flow control-type instruction.

 The note at (6) indicates the machine code associated with the auipc instruction become
available starting at the execute cycle for the auipc instruction because part of the fetch cycle
includes asserting the read enable for instruction memory.

 The auipc instruction loads the upper 20 bits of the address of the subroutine to the upper 20
bits of x6 as note (2) indicates. The auipc instruction essentially grabs the 20 MSBs of the
subroutine address. The value of x6 does not matter before note (2), but it is loaded with the five
most significant nibbles of the subroutine address as the control unit transitions from a execute to
fetch cycle.

 The assembler generates the jalr instruction shown at the top of the diagram. The left-most
operand indicates the register where the MCU stores the return address. The hardware uses the
values associated with the other two operands to complete the formation of the address of the
first instruction in the subroutine. The “0x294” value in the jalr instruction is the lower 12-bits
of the relative offset from the address of the current instruction to the address of the subroutine:
(0x00004328 – 0x00000094). Yes, this seems like a lot of trouble, but the assembler handles all
the math for you.

 The jalr instruction has two responsibilities as the notes at (3) & (4) show. The note at (3)
indicates the address of the instruction after the call pseudoinstruction is stored in x1. Recall
that x1 is the designated register for holding return addresses. The value in x1 is the address of
the first instruction that will execute after returning from the subroutine. The documentation for
the call instruction indicates that the MCU stores “PC+8” in x1, but this is because the
assembler translates the call instruction into two base instructions, which is eight greater the
address of the call pseudoinstruction as it appears in the assembly language source code. The
note at (4) indicates the new PC address is the address of the first instruction of the subroutine,
which indicates program control has transferred to the subroutine.

 The instruction bits for the first instruction in the subroutine become available during the execute
cycle as the note at (5) indicates.

FreeRange Computer Design Chapter 17

 - 503 -

Figure 17.2: Example timing diagram for the call pseudoinstruction.

17.4.4 Returning from Subroutines: The ret Pseudoinstruction

The ret pseudoinstruction is another program flow control operation, typically associated with a call
pseudoinstruction. Recall that the assembler translates the call pseudoinstruction into an auipc and jalr
instruction. While the assembler could have used a jal instruction as part of the call translation, it uses a
jalr. The same is not true for the returning from subroutines. When returning from subroutines, the assembler
must use a jalr instruction because the return address is stored in in a register. The main difference between
the jal & jalr subroutine is in the fact that the absolute address calculation to determine the value loaded into
the PC includes a register. When programmers use the ret pseudoinstruction, the register used in the calculation
defaults to x1. Table 17.9 shows all the important information for the ret pseudoinstruction.

Instruction
Form Instruction RTL

Example
Usage

Equivalent
Base Instruction Comment

ret PC ← x1 ret jalr x0,0(x1) Transfers program
control to address in x1

Table 17.9: The overview of the ret pseudoinstruction.

17.4.4.1 Subroutine Return Timing

We can best describe the operation of the ret pseudoinstruction by using a timing diagram. Figure 17.3 shows a
timing diagram that uses the ret pseudoinstruction; this diagram is somewhat special because it works with the
call instruction timing diagram in Figure 17.2.Here are the nitty-gritty details of the ret of the timing diagram
in Figure 17.3:

 The assembler translates the ret pseudoinstruction to a jalr instruction, which Figure 17.2
indicates in the top of the diagram directly above the jalr instruction. The only responsibility of
the jalr instruction is to load the value in the return address, x1 or ra, into the PC. Note that the

FreeRange Computer Design Chapter 17

 - 504 -

jalr instruction uses x1 as a base address and then includes a zero offset. The assembler does
with translation for us programmers.

 Register x1 contains the return address from Figure 17.3. This was the address two instructions
after the call pseudoinstruction because the assembler translated the call pseudoinstruction to
two base instructions. The address in x1 is effectively the instruction two instructions locations
after the call pseudoinstruction.

 Note (1) shows normal sequential instruction execution with the addition of 4 to the current PC.
The value of 0x4400 is arbitrary. Note (2) shows when the instruction bits associated with the
instruction become available at the start of the execute cycle.

 The jalr instruction must select the absolute address associated with jalr input to the PC.
Note (3) shows that the pcSource changes to “01” as a result of the MCU decoding the bits
associated with the jalr instruction after the start of the execute cycle.

 The control unit in the RISC-V hardware decodes the instruction and sends out the appropriate
control signals; two of those signals are PCWrite and pcSource. These two signals direct the
MCU to copy the address in x1 into the PC, as the note at (4) shows. The value in x1 was loaded
there by the jalr instruction associated with the call pseudoinstruction.

 Note (5) shows that the instruction bits associated with the instruction at the address in the PC
become available after entering the execute cycle.

Figure 17.3: Example timing diagram for the ret pseudoinstruction.

17.4.5 Loading Immediate Value: li

The li pseudoinstruction effectively loads an immediate value into a register. RISC-V MCU registers are 32-bit
wide, but the various instruction forms represent immediate values using significantly less bits. The assembler
translates the li pseudoinstruction into an addi instruction if the assembler can represent the immediate value
using the 12-bit immediate field in the addi instruction. If the assembler can’t represent the immediate value
with a 12-bit value, the assembler translates the li pseudoinstruction to an lui base instruction followed by an
addi instruction. Table 17.10 shows an overview of the li instruction.

FreeRange Computer Design Chapter 17

 - 505 -

Instruction Form Instruction RTL Example Usage Comment

li rd,imm rd ← imm li x8,20 Immediate value loaded
into destination register

Table 17.10: The overview of the li pseudoinstruction.

Although the assembler handles the details of whether the li instruction translates to one or two base
instructions, it’s instructive to know the mechanics of the assembler’s translations. Table 17.11 shows an
example of two li pseudoinstructions in the left column; the right column shows how the assembler converts
those instructions to base instructions based on the magnitude of the immediate operand in the li
pseudoinstruction. Here are some extra items worthy of noting about Table 17.11:

 For the first row in Table 17.11, the associated immediate value can fit into a 12-bit signed value
range [-2048,2047] (the 12-bit range threshold is associated with the addi instruction). Because
the immediate value can fit into a 12-bit range, the assembler translates the la pseudoinstruction
into a single addi instruction.

 For the second row in Table 17.11, the associated immediate value is does not fit into a 12-bit
signed range. This larger immediate value thus causes the assembler to translate the la
pseudoinstruction into two base instructions: lui & addi as follows:

1) The lui instruction encodes the upper 20 bits of the immediate value into the upper 20 bits
of the destination register x8, and clears the lower 12 bits of x8.

2) The addi instruction places the lower 12 bits that were not included from the lui
instruction into the lower 12 bits of the x8, which was also the destination register in the lui
instruction.

Pseudoinstruction Usage Pseudoinstruction Translation

 li x8,19

 addi x8,x8,19 # x8=19

 li x8,0x12345678

inst1: lui x8,0x12345678 # x8=0x12345000

inst2: addi x8,x8,678 # x8=0x12345678

Table 17.11: Example of the la pseudoinstruction translation.

17.4.6 Load Address Pseudoinstruction: la

The la is a pseudoinstruction used to translate program labels into to numerical values and store those values in
registers. Programmers typically use labels as symbolic addresses, which allow jump and branch instructions to
transfer program control to instructions associated with label. This symbolic representation of addresses allows
for 1) easy program modifications, and 2) absolves programmers from dealing with relative and absolution
address calculations. One common use of labels to locate the base addresses of look-up-tables (LUTs). Table
17.12 shows an overview of the la instruction usage. The RTL in Table 17.12 uses the “&” symbol, which is the
“address of” operator in the C programming language. In this context, it refers to the fact that labels in RISC-V
programs are address values of data (instruction or actual data) in memory.

FreeRange Computer Design Chapter 17

 - 506 -

Instruction Form Instruction RTL Example Usage Comment

la rd,label rd ← &label la x8,my_label Numerical value of
my_label copied to x8

Table 17.12: The overview of the la pseudoinstruction.

The assembler translates the la pseudoinstruction into an auipc base instruction followed by an addi base
instruction. The la pseudoinstruction uses a two-step process to obtain the label value:

1) The auipc base instruction places the value of the current program counter into a register.

2) The addi base instruction adds an offset to the register value loaded by the auipc
instruction. The offset is a relative value, specifically the relative offset from the address of
the auipc instruction to the value (data or instruction) associated with the label in question.

Table 17.13 shows an example of the la instruction with comments. Here are a few items to note about the la
pseudoinstruction.

 The auipc instruction is only interested in the PC, which is why it the assembler places a zero
in the immediate operand in the instruction.

 The addi instruction adds a relative offset to the PC valued stored in the register. The assembler
makes the calculation and assignment of the result into x10. The assembler calculates and assigns
the immediate value to the immediate operand in the addi instruction, which is: (address of
auipc instruction) – (value of label).

Pseudoinstruction Usage Pseudoinstruction Translation

My_lab: nop

 la x10,My_lab

 auipc x10,0 # x10 <- PC + 0

 addi x10,x10,-4 # x10 <- x10 – 4

Table 17.13: Example of the la pseudoinstruction translation.

17.4.6.1 Assembler Handling of Labels

The assembler assigns a value to every label in a program; this value is effectively an absolute memory address.
The memory stores two types of data: instructions and data. This means that a label can either be the address of a
specific instruction in program memory (code segment or text segment) or the addresses of a data (data or stack
segments).

The value that the assembler assigns to labels is effectively the output of a counter used in the assembler in the
assembly process. When the program encounters data (in the data segment) or instructions (in the code segment),
this internal counter advances. For example, each byte of data in the data segment advances the counter by one;
each halfword and word of data advances the counter by two and four, respectively. When the assembler
encounters a label in the code, the assembler assigns the current value of that counter to that label. When the
assembler encounters multiple labels without encountering data, all the labels receive the same value. Programs
specify data (assigned values) or space (unassigned values) in the data segment using various assembler
directives.

While specifying data can advance the internal assembler counter by one, two, or four, instructions always
advance the counter by four. Labels in the code segment are treated exactly the same as labels in the data
segment, including the ability to have multiple labels (one per line though) without encountering an instruction.

FreeRange Computer Design Chapter 17

 - 507 -

The assembler translates the la pseudoinstruction into two base instructions: auipc & addi. The good part
about this is that the assembler does the work for the programmer, but it’s a good to know exactly how the
assembler does this. The code fragment in Table 17.14 provides an example to explain this mechanism. Here is
the full explanations including the gory details:

 The program has the “dog” label associated with the instruction on line (02). The assembler
assigns the “dog” label the value of the internal counter, which is 0x00000080; this value is the
address in the code segment where the nop instruction on line (02) is stored.

 Two more generic instruction happen in the program on lines (02-03); nothing big here.

 The assembler encounters the la instruction on line (06), which copies the value associated
with the “dog” label into x10. The assembler does this by translating the la instruction into an
auipc instruction followed by an addi instruction; the approach here is to use existing base
instructions to load the address of the instruction associated with the “dog” label into a register.
Once that value is in the register, programs can use this value for other very useful purposes.

 The auipc instruction used in this context effectively loads the current PC value to a register. It
does this by encoding a zero into the immediate value associate with the auipc instruction.
The PC value that is encoded is the value of the la instruction as it appears in the program,
which is the same address as the auipc instruction after the assembler translates the instruction.

 The assembler then needs to “adjust” the current value in x10 to be the address of the instruction
associated with the dog label, which are three instructions before the la instruction in the
program. The assembler makes this adjustment by adding a relative offset from the address of
the la instruction (or the auipc instruction) to the address of the instruction associated with
the dog label: the relative offset value is -12. It’s a negative number because it’s going
backwards in the code (instruction addresses are becoming smaller). It’s 12 because there are
three instructions where each instruction is four bytes wide. It adds this offset value to the value
in x10 using the addi instruction. What the addi instruction effectively does is creates an
absolute address from the base PC address and the relative offset. I’m sure glad the assembler
takes care of these details for me; very clever, but I have better things to do.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)

#~~~~~~~~~~~~~~ code fragment ~~
.text
dog: nop # generic instruction: addr=0x00000080
 nop # placeholder instructions
 nop

 la x10,dog # place associated value of dog (0x00000080) into x10

#----- the assembler translates the la instruction to the following: -------

auipc x10,0 # zero is the immediate value

addi x10,-12 # -12 is the relative offset from the la instruction
to the instruction associated with the dog label

#~~~~~~~~~~~~~~ code fragment ~~

Table 17.14: Code fragment example using the la instruction.

17.4.7 Special Operations: the slt-Type Instructions

The RISC-V ISA uses bases branching operations on the result of the comparison of the value in two registers.
The RISC-V hardware makes the branching decision based on the values of the branch instruction operands and
directs the loading of the appropriate value to the PC. The RISC-V ISA uses the set-if-less-than-type instructions
to make comparisons between two registers or a register and an immediate value and store the result of the
comparison in a register without the option of making a branch or not.

Table 10.9 provides an overview of the set if less than (slt) instructions. There are two main types of slt-type
instructions. All slt-type instructions set the destination register (writes ‘1’ to the register) if the result of the

FreeRange Computer Design Chapter 17

 - 508 -

comparison is true; the differences lie in the comparisons made by the instructions. The immediate forms of the
instructions (slti & sltiu) compare a register to an immediate value, while the register-immediate forms of
the instructions compare two register values. Additionally, the instructions either interpret the two operands
differently, as both unsigned values (sltu & sltiu) or signed values (slt & slti).

Table 10.9 uses some special vernacular in the associated RTL to describe the instructions. First, it uses “<u” and
“<s” for unsigned and signed comparisons, respectively. Second, it uses a C programming language type
operator to describe the result of the comparison. The “? :” is an arithmetic if operator. This operator includes an
expression on the left of the question mark, and a value on each side of the colon; the RTL statements in Table
10.9 use a comparison in place of the expression. If the comparison evaluates are true, the operator assigns the
value on the left side of the colon (‘1’) to the destination register; otherwise, the operation assigns the value on
the right side of the operator (‘0’). Thus, the destination register is either set or cleared as a result of executing
any one of these slt-type instructions.

The immediate forms of the slt-type instructions represent the immediate operand in a 12-bit field in the
instruction format. The hardware interprets these values as signed values, which gives an effective range of [-
2048,2047]. The RISC-V MCU hardware sign-extends these values prior to the comparison. Table 10.9 indicates
sign-extension of the immediate value with using the “sext(imm)” notation in the RTL statement.

Instr
Type Instruction Form Instruction RTL Example Usage Comment

R-Type slt rd,rs1,rs2 rd ← (rs1 <s rs2) ? 1 : 0 slt x10,x5,x21 signed compare

I-Type slti rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slti x8,x9,0xF0 signed compare
12-bit signed imm

R-Type sltu rd,rs1,rs2 rd ← (rs1 <u rs2) ? 1 : 0 sltu x5,x6,x16 unsigned compare

 I-Type sltiu rd,rs1,imm rd ← (rs1 <u sext(imm)) ? 1 : 0 sltiu x7,x8,25 unsigned compare
12-bit signed imm

Table 17.15: The two forms associated with the four logic instructions.

FreeRange Computer Design Chapter 17

 - 509 -

17.5 Chapter Summary

 The stack is an abstract data type that the RISC-V MCU uses to store data. Stacks are a common module in
most computer architectures and are typically implemented using a structured memory device such as a
RAM. There are many approaches to implementing stacks, but the most efficient approach in digital
hardware is a structured memory device.

 The auipc and lui instructions are similar in that they transfer an immediate value to a register. These
instructions are not typically used directly in programs; they instead are part of pseudoinstructions such as
li and la. The main difference between the auipc and lui instructions is that the PC value modifies the
result for the auipc instruction.

 The li pseudoinstruction places an immediate operand into a register. The li pseudoinstruction translates
to one or two base instructions depending on the sign and magnitude of the immediate value.

 The la pseudoinstruction places the value associated with a program label into a register. Programmers
typically don’t keep track of the various addresses of items in programs; they instead use the la
pseudoinstruction to work with only the addresses they require without ever actually knowing that address.

 The slt-type instruction are similar to branch instructions in that the perform a compare operation, but differ
because, unlike branch instructions, the result of a slt-type instruction can never be a branch.

FreeRange Computer Design Chapter 17

 - 510 -

17.6 Chapter Exercises

1. Breifly describe what exactly the stack pointer is and what it does in terms of hardware-based stack
implementations.

2. Briefly describing the notion of stacks growing and shrinking in terms of digital hardware.

3. Briefly describe the notion of stack overflow and underflow in terms of digital hardware.

4. Breifly describe what occurs if the stack pointer value exceeds its designated bit width.

5. Briefly describe what determines how many stacks a RISC-V based MCU can “easily” have.

6. Briefly describe the drawbacks of having a high number of easily implemented stacks using the RISC-V
architecture.

7. Briefly describe why stacks implemented in hardware do not alter data that is popped off the stack.

8. Briefly describe why the hardware has no need to implement pseudoinstructions.

9. Briefly describe who or what decides how many instruction types a given computer ISA has.

10. List the six types of RISC-V instructions.

11. Briefly explain whether pseudoinstructions fall into the category of the six different types of RISC-V
instructions.

12. Briefly explain the main difference between a field code and an opcode.

13. Briefly describe who or what determines the field code and opcode configuration for a given instruction set
architecture.

14. Briefly describe what differentiates the six different RISC-V instruction types.

15. Briefly describe why there is significant overlap between with the field codes and opcodes in the RISC-V
instruction types.

16. Briefly describe why the immediate-type field codes sometimes have really wanky arrangements.

17. Briefly describe how it is possible that you the programmer can write programs until the cows come how but
never have a lui or auipc instruction in your source code.

18. Breifly describe if the auipc and lui instructions actually do any shift operations as their RTL
descriptions seem to indicate.

19. What are the two primary responsibilities of the call pseudoinstruction?

20. Briefly describe why the call pseudoinstruction adds 8 to the PC rather then 4, where 4 seems like it
would be the addresses of the instruction following the call pseudoinstruction.

21. Briefly describe the responsibilities of the two base instructions associated with a call pseudoinstruction.

22. Briefly describe why the call pseudoinstruction translated to two base instruction while the ret
pseudoinstruction translates to only one base instruction.

23. Briefly desrcribe what determines whether the li pseudoinstruction translates into one or two base
instructions.

24. Briefly describe from an efficiency standpoint whether it is better to use a mv pseudoinstruction or a li
pseudoinstruction to clear a register.

25. Briefly describe why there is not one li-type pseudoinstruction or instruction that loads a full 32-bits at one
time.

26. Briefly describe when the la pseudoinstruction can find the addresses of data in both program and data
memory.

FreeRange Computer Design Chapter 17

 - 511 -

27. Briefly describe whether it is possible to branch to an address in data memory.

28. Briefly describe how branch instructions and set-if-less-than-type instructions are similar.

29. Briefly describe the primary difference between branch instructions and set-if-less-than-type instructions.

FreeRange Computer Design Chapter 18

 - 512 -

18 RISC-V MCU Interrupt Architecture (Hardware)

18.1 Introduction

We previously discussed the notion of interrupts and real-time programming in Chapter 13. While that chapter
was designed such that pure programmers could understand it, the discussion in this chapter is for people who
have a solid understanding of standard digital design topics. We focus the discussion in this chapter on the low-
level hardware implementation details of the RISC-V OTTER MCU interrupt architecture and assume our gentle
readers as well-versed with the theory of interrupts as the relate to MCUs. This chapter is somewhat stand-alone,
but the best approach would be to become familiar with the topics in Chapter 13 before reading this chapter.

The notion of interrupts forms the heart of most embedded systems. The interrupt mechanism essentially
provides hardware with the ability to “call” subroutines, which means that devices outside of the MCU can affect
program operation. The main purpose of interrupts is to reduce the response time to external inputs, which
allows the MCU to avoid other less efficient approaches to I/O, which thus allows makes the architecture into a
real-time system. There are many other advantages to using interrupts that we cover in both Chapter 13 and this
chapter.

Main Chapter Topics

 HARDWARE DETAILS OF INSTRUCTION EXECUTION: This chapter provides pertinent
hardware details regarding the RISC-V MCU interrupt architecture.

 INTERRUPT SUPPORT HARDWARE: This chapter describes the structure in the RISC-V
hardware that directly supports the interrupt architecture.

 PROGRAM FLOW CONTROL: This chapter describes interrupts in the context of
program flow control, which is an inherent quality of interrupts.

 INTERRUPT TIMING ISSUES: This chapter describes the various timing issues involved
with interrupts.

 INTERRUPT INTERFACING ISSUES : This chapter describes common interrupt
interfacing issues such as interrupt signal noise and signal duration requirements.

Why This Chapter is Important

This chapter is important because it describes the low-level architecture details of the
RISC-V MCU interrupt architecture.

18.2 RISC-V MCU Interrupt Overview

The concept of interrupts is relatively simple due to their similarity to subroutines. You can generally connect
external peripheral devices to an MCU in such a way as they can do what we refer to as “generate an interrupt”.
While this may sound complicated, it simply means that the device has the ability to assert a signal; this signal is
understood to be connected to the interrupt input on the MCU. When an external peripheral device “generates an
interrupt”, the microcontroller stops what it is doing and starts processing a special subroutine known as the
interrupt service routine, or ISR. When processing of the ISR is complete, the microcontroller resumes to its
regularly scheduled programming. Simply stated, the ISR is nothing more than a subroutine initiated by
hardware. The section covers the details of how the hardware processes the interrupts.

FreeRange Computer Design Chapter 18

 - 513 -

Because interrupts are similar to subroutines, the hardware portions of the RISC-V MCU’s interrupt architecture
is minimal. Because the hardware already supports subroutines, most of the required hardware for interrupt
processing is already in place. The hardware we describe in this chapter supports the interrupt cycle and
interrupt-related instructions.

18.2.1 The RISC-V Interrupt Input

The RISC-V MCU has an input that allows external devices to indicate to the MCU that they require some type
of attention. When the signal on this input is asserted, the MCU goes thought a specific process in order to give
the external device the attention it’s requesting. Figure 18.1 shows the black box diagram for the RISC-V MCU;
the INTR signal is the interrupt input. The current RISC-V OTTER MCU contains only one interrupt; if there
were two interrupts, there would most likely be two different interrupt-type inputs to the RISC-V MCU.

Figure 18.1: Black box diagram for the RISC-V MCU.

18.2.2 The Interrupt Cycle

The MCU responds to an asserted signal on the INTR input by entering an interrupt cycle. As with other cycles
associated with the MCU (fetch, execute, and writeback), the interrupt cycle is associated with a given number
of states in the FSM that controls the RISC-V MCU. A MCU’s particular interrupt architecture determines the
number of states in the interrupt cycle. The interrupt cycle is thus a blanket term for all the “special” events that
must happen when the MCU responds to an external interrupt signal. In other words, the interrupt cycle does the
special operations to support the firmware entering the interrupt service routine; instruction execution controls
the exits from ISRs (no special states required).

Figure 18.2 shows the state diagram for the RISC-V FSM including the interrupt cycle. This is essentially the
FSM in Figure 16.3 but now with support for interrupts. We’ve opted to describe the RISC-V OTTER MCU
state diagram in two different ways: first without interrupts, and then with interrupts. The approach underscores
the notion that interrupts are a feature in the MCU; our intention was not to overload you with information by
presenting interrupt topics simultaneously with basic computer architecture and programming concepts. The
following items list the high-level details of the interrupt cycle as it relates to the RISC-V MCU’s FSM.

 Transitions from the fetch state are unconditional, the fact that the state diagram is now supporting
interrupts does not change that.

 The state diagram does not show the fact that acting on an interrupts depends on a bit in an
external register (the CSR) being set. In other words, the FSM can only enter the interrupt cycle if
the interrupts are “enabled” by that external bit. The hardware controlling the enabling and
disabling of interrupts is external to the FSM so we do not include it in the state diagram. We
discuss the specifics of this in Section 18.3.

 The state diagram supports interrupts, which means that the FSM can transition to the interrupt
state. The FSM can transition to the interrupt state from either execute state (for most instructions)
or the writeback state (for load-type instructions).

 All instructions will complete execution before entering the interrupt state. If hardware is currently
executing a load-type instruction and there is a pending interrupt, the FSM transitions to the
writeback state to complete execution of the load-type instruction. Once again, any instruction that

FreeRange Computer Design Chapter 18

 - 514 -

the FSM is implementing must complete before having the possibility of entering an interrupt
cycle.

 The interrupt state in the FSM is responsible for controlling the various operations required to
support the RISC-V interrupt architecture. We’ll save the details for a later section, but generally,
the control units send out the control signals that implement the various operations associated with
the interrupt processing, which is similar to the processing of a subroutine.

 The interrupt cycle we speak of is associated with “going into an interrupt”; note that there are no
special FSM states associated with exiting an interrupt cycle. Exiting interrupts is a notion
associated with exiting the interrupt service routine, which the MCU does under program control
(the mret instruction). We describe the full details in Section 18.4.3.

 As the state diagram shows, it appears possible that the FSM can go immediately back into an
interrupt cycle after it receives an interrupt. For reasons you’ll see later, one function of the
interrupt architecture that we’ll discuss later prevents this from occurring.

 The RISC-V MCU happens to have an interrupt cycle comprised of a single state. In general, the
amount of “stuff” that needs to be done to support the interrupt architecture determines the length
of the interrupt cycle. The MCU happens to be able to do everything it needs to do to implement
the interrupt architecture in a single state; this would not necessarily be true of other MCUs.

 The FSM includes an asynchronous reset signal, RST. This is signal connects to the reset signal on
the RISC-V OTTER MCU.

Figure 18.2: The RISC-V MCU control unit state diagram.

18.3 Interrupt Support Hardware

Implementing the interrupt architecture on the RISC-V MCU requires two new modules and modifications to
existing modules. The support hardware as two basic functions. First, it provides a form of control by allowing
the MCU to either act on or ignore the asserted interrupt signal. Second, it provides circuitry that basically
mimics the RISC-V MCU’s support for subroutines. The next sections describe this hardware.

18.3.1 The Interrupt Masking Circuitry

The RISC-V MCU can ignore pending interrupts under program control (using instructions). In this context, a
pending interrupt is an asserted signal external to the interrupt that has the ability to cause the MCU to go into an
interrupt cycle. Figure 18.3 shows the RISC-V OTTER MCU circuitry that controls the interrupt enable; here are
the pertinent things to notice about this diagram:

 Entering an interrupt cycle depends on two conditions. First, some external device must assert the
interrupt signal, which we list as the INTR signal in Figure 18.3. Second, the interrupts must be
“unmasked”; the MIE signal in Figure 18.3 controls interrupt masking.

FreeRange Computer Design Chapter 18

 - 515 -

 The MIE signal is the output of a register that programmers can configure under program control.
This register is one of the registers in the CSR module, which we describe in Section 18.3.2. The
MIE signal of two inputs to an AND gates and essentially acts as a switch that either blocks the
INTR signal or allows the INTR signal to pass through to the CU_FSM.

 When the AND gates blocks the signal, the output of the AND gate is always zero; under this
condition, the CU_FSM will never receive an interrupt. We refer to this blocking condition as the
interrupts being “masked”, or disabled. In this case, the INTR signal may be asserted, but it can’t
pass through the “dead” gate. When the signal is allowed to pass through this gate, we refer to this
condition as the interrupts being “unmasked”, or simply, enabled.

 The INTR external input signal in Figure 18.3 is the same INTR signal in the state diagram of
Figure 18.2.

Figure 18.3: The interrupt masking control circuitry.

The controlling signal to the AND gate represents the output of a register in the CSR module. We refer to MIE
as a register, but it is actually a flip-flop, which is a 1-bit register. Programmers can write to this register under
program control, where setting and clearing the register is equivalent to unmasking and masking the interrupts,
respectively. The masking control register is one of three registers in the CSR module, which we refer to as
CSR[mie]. We describe the CSR register in the next section in more detail. The notion of “ie” such as in “mie” is
common in MCU-related discussion; the acronym stands for “interrupt enable” and generally represents a
positive logic signal.

18.3.2 The Control and Status Registers (CSRs)

The control and status register (CSR) is a module that controls various operations associated with the RISC-V
OTTER interrupt architecture. The CSR module contains three registers: 1) the mie, 2) the mepc, and 3) the
mtvec. Each of these registers has a distinct function supporting the interrupt architecture. Table 18.1 provides a
brief summary of the three CSR registers. We describe these registers in more detail in the following sections.

Register Width Addr Description

MIE 1 0x304
Interrupt enable. Interrupts are masked (disabled) when MIE=0 and
unmasked when MIE=1 (enabled).

MEPC 32 0x341
Holds the return address to be loaded into PC upon return from
interrupt, which is indicated in code with the mret instruction.

MTVEC 32 0x305
Holds the vector address (first instruction of ISR), which the hardware
loads into PC upon entering the interrupt cycle.

Table 18.1: CSR register names and descriptions.

Figure 18.4 shows the interface to the CSR module. Table 18.2 provides a brief description of the
input and output signals associated with the CSR module.

FreeRange Computer Design Chapter 18

 - 516 -

Figure 18.4: The CSR Module Interface.

CSR Interface Description

Input Signals Description

RST Resets register values in the CSR. This input is output by the CU_FSM

INT_TAKEN
Indicates that the CU_FSM is in the interrupt cycle. This input is output from the
CU_FSM.

ADDR
The address value which acts as a register select for reading and writing CSR
registers. This input is the 12 MSBs from the current instruction.

WR_EN The write enable for the CSR registers. This input is output from the CU_FSM.

PC The current PC, which loads into CSR[mepc] when the MCU acts on an interrupt.

WD The data to write to CSR registers. The input is output from rs1 of the register file.

Output Signals Description

CSR_MIE
The current value of CSR[mie], which is the interrupt enable bit. This output is a
control input to the CU_FSM.

CSR_MEPC
The current value of CSR[mepc], which the return address that loads into the PC
when returning from an interrupt (upon issuing a mret instruction).

CSR_MTVEC
The current value of CSR[mtvec], which is the address of the ISR. This address is
loaded into the PC when the MCU enters an interrupt cycle.

RD
The value of a CSR register as selected by the ADDR input. This signal is loaded into
a selected register in the register file.

Table 18.2: Description of CSR input and output signals.

18.3.2.1 The mie Register

The mie register, or CSR[mie], controls whether the external interrupt signal is passed to the RISC-V MCU’s
control unit FSM. The output of this register is a control input to a simple AND gate. The CSR[mie] is set or
cleared under program control using the csrrw instruction, an instruction mnemonic that roughly stands for
CSR read and write.

Table 18.4 shows an overview of the csrrw instruction; consult the RISC-V assembler manual for full details.
The csrrw instruction has the ability to simultaneously read the value in a CSR register and write that register
with a new value. For simply writing the individual CSR registers and not reading the same register,
programmers can use x0 for the destination register as the usage column in Table 18.4 shows. The source

FreeRange Computer Design Chapter 18

 - 517 -

register (rs1) provides the value to write to the CSR[mie] register. The csr operand is effectively an address that
the CSR module uses to differentiate the three registers in the CSR module. The csrrw is a base instruction.

Inst
r

Form Example

csrrw csrrw rd,csr,rs1 csrrw x0,0x304,x8 # loads value in x8 into CSR[mie]

csrrw x7,0x304,x8 # loads value in x8 into CSR[mie]
 # loads value in CSR[mie] into x7

Table 18.3: Instruction usage for the csrrw instruction.

Table 18.4 shows the underlying instruction format for the csrrw instruction. Note that the instruction is not
one of the six standard RISC-V instruction types. The CSR module uses the 12-bit csr field to choose the
register in the CSR module to write to. Programmers use the csrrw instruction to configure each of the three
regsiters in the CSR module. The instruction differentiates between the three regsiters in the CSR module by
including a value in the csr field in the csrrw instruction that the CSR module treats as an address.

Instr Format

csrrw

Table 18.4: Instruction format for the csrrw instruction.

18.3.2.2 The mtvec Register

The mtvec register, or CSR[mtvec], stores the location in program memory of the interrupt service routine. The
CSR[mtvec] is a 32-bit register that we officially refer to as the “interrupt vector address”, or simply “interrupt
vector”. When the MCU enters the interrupt cycle, the hardware loads the interrupt vector address into the PC
under control of the interrupt cycle, which causes program control to “vector” to the ISR. Programmers are
responsible for loading the mtvec register under program control using the csrrw instruction.

18.3.2.3 The mepc Register

The mepc register, or CSR[mepc], stores the address of the instruction that follows the instruction that was the
hardware was executing directly before the MCU entered the interrupt cycle. The CSR[mepc] register is
analogous to the return address (ra) associated with standard subroutine calls. After the MCU completes
execution of the ISR, the MCU returns to the instruction at the CSR[mepc] address by loading this address into
the program counter. The RISC-V OTTER hardware loads this value into the PC when it executes an mret
instruction. Programmers have the ability to write the CSR[mepc] under program control, but they generally
have no need to do so as the hardware writes this register as part of the interrupt cycle and reads this register as
part of the mret instruction.

18.4 Interrupts and Program Flow Control

The notion of program flow control in interrupt processing is similar to the program flow control associated with
subroutine processing. The processing of the instructions in the interrupt service routine represents normal
instruction processing with no new details. What we are interested are the steps the hardware takes upon
acknowledging interrupts and returning from interrupts. The following sections describe those details as they
relate to the underlying MCU architecture.

18.4.1 Interrupt Initialization

The RISC-V MCU requires two steps for initialization. First, programmers must load the CSR[mtvec] register
with the address of the ISR. The notion of the “address of the ISR” means the address of the first instruction in
the ISR. Programmers load the CSR[mtvec] under program control using the csrrw instruction.

FreeRange Computer Design Chapter 18

 - 518 -

The second step required in initialization is the unmasking the interrupts. Programmers unmask interrupts by
writing a ‘1’ to the CSR[mie] register also using the csrrw instruction.

Instr Format

csrrw

Table 18.5: Instruction format for the csrrw instruction.

18.4.2 Acting on Interrupts

Normal program flow control is “interrupted” (for lack of a better word) when two conditions happen: 1) when
the interrupts are unmasked (enabled), and, 2) then the value on the interrupt input pin (INTR) on the MCU is
asserted. When these conditions are met, the MCU goes into an interrupt cycles.

When the MCU goes into an interrupt cycle, the following things happen as part of that interrupt cycle. The
control units issue the appropriate control signals to ensure the operations required by the interrupt cycle
complete before starting execution of the first instruction in the ISR. The control units are then responsible for
issuing the control signals that implement the following, which they complete as part of the interrupt cycle. Note
that all of these items occur simultaneously, and are synchronous with the rising clock edge that ends the
interrupt cycle:

 The MCU completes execution of the current instruction, which is after the execute state for most
instructions or after the writeback state for load-type instructions. Keep in mind that the signal
connected to the RISC-V MCU can change asynchronously in relation to the MCU’s system clock,
means interrupts can occur during any phase of the instruction cycle.

 The hardware stores the address of the instruction following the instruction that the MCU was executing
when the MCU received the interrupt in CSR[mepc]. This instruction address is effectively the current
output of the PC.

 Simultaneously to the previous bullet, the MCU loads the interrupt vector (CSR[mtvec]) into the PC,
which is the interrupt vector address. The next instruction that executes after the interrupt cycle will
then be the first instruction in the ISR.

 Also simultaneously to the previous two bullets, the MCU hardware clears the CSR[mie] register,
which masks interrupts. This, interrupts are masked automatically as a function of hardware and stay
masked until they are unmasked under program control.

There are two other items regarding interrupt processing work noting here. First, the hardware is not responsible
for saving the operating context before entering the ISR. As with subroutines in the RISC-V MCU, all context
saving is done under program control by pushing registers used by the ISR onto the stack, and popping them off
the stack before returning from the interrupt. Second, interrupt nesting is not possible on the RISC-V MCU
based on the notion there is only one register to store the return address (CSR[mepc]). Nesting interrupts is
possible on other MCUs, but not currently in the RISC-V MCU.

18.4.2.1 Interrupt Cycle Timing

Examining an example timing diagram is always a good path to gaining a complete understanding of the
interrupt cycle. Figure 18.5 provides such a timing diagram. The diagram in Figure 18.5 shows the pertinent
signals associated with the interrupt cycle, not including control signals.

The timing diagram in Figure 18.5 makes the following assumptions:

 The CSR[mtvec] was pre-loaded the value 0x58, which is the address of the first instruction in the
interrupt service routine.

 Some external device generated the interrupt signal (intr). This intr signal connects to the MCU,
which is actually the INTR signal of Figure 18.3.

FreeRange Computer Design Chapter 18

 - 519 -

 None of the instructions are load-type instructions, which means the diagram has no need to
include writeback cycles.

Here is a detailed description of the timing diagram in Figure 18.5.

 The interrupt signal (intr) asserts asynchronously for approximately 2½ clock cycles; the duration
is long enough to cause the MCU to go into an interrupt cycle because the interrupt input was
asserted at the end of the execute cycle and the interrupts were unmasked (CSR[mie]=1).

 We don’t know what instruction the MCU was executing when we entered the interrupt cycle, but
we know it was not a load-type instruction because it entered the interrupt cycle instead of going
onto the writeback state.

 The MCU enters the interrupt cycle at the end of the execute cycle associated with the 0x3C
instruction. Part of the execute cycle includes advancing the PC, so the PC is now pointing at the
instruction that would have been executed had the MCU not entered the interrupt cycle. This
instruction is now the first instruction that the MCU executes after it returns from the ISR, which
officially makes this instruction’s address the “return address”.

 Part of the interrupt cycle include storing the ISR return address, which is 0x40, into the
CSR[mepc] register, which happens when the interrupt cycle exits and goes onto the fetch cycle.
This loading happens because the CU_FSM asserts the csr_WE signal as part of the interrupt
cycle.

 Another part of the interrupt cycle is to clear the CSR[mie] bit, which masks the interrupts and
thus prevents other interrupt from occurring until CSR[mie] is set under program control. This
CSR clears this bit as a result of the CU_FSM asserting the int_taken signal as part of the
interrupt cycle.

 Normal processing continues after exiting the interrupt cycle (and entering the ISR). Be sure to
note that the instruction at address 0x58 is the address of the first instruction in the ISR;
instructions listed after the interrupt cycle are in the interrupt service routine. Because no
instruction has a writeback state, none of the ISR instructions are load-type instructions.

Figure 18.5: Timing Diagram for entering an interrupt cycle.

18.4.3 Returning from Interrupt Processing

When the ISR is complete, the MCU returns program control to the instruction after the instruction that it was
executing when it received the interrupt, which the hardware stored in CSR[mepc] as part of the interrupt cycle.

FreeRange Computer Design Chapter 18

 - 520 -

The program indicates the ISR is complete by issuing a special return-type instruction for interrupts: mret. The
mret instruction is base instruction with a format different from the standard six RISC-V instruction formats. For
this description, we do not include any context restoration information as context saving and restoring must be
done under program and is thus not a function of hardware. The complete sequence of events is as follows:

 The program alerts the MCU hardware to the fact that it has completed processing of the interrupt
service routine by issuing an mret instruction. The mret causes the hardware to load the address in
CSR[mepc] into the program counter. Recall that CSR[mepc] was loaded with the return address as
part of the MCU’s interrupt cycle.

Table 18.6 shows an example of the mret instruction; Table 18.7 shows the underlying bit format for the mret
instruction. As Table 18.7 shows, there are no field codes in the mret instruction. Note that the mret instruction
shares the same opcode as the csrrw instruction.

Instr Form Example

mret mret mret # return from ISR: PC CSR[mepc]

Table 18.6: Instruction usage for the return from interrupt instruction.

Instr Format

mret

Table 18.7: Instruction format for the mret instruction.

18.4.3.1 Return From Interrupt Timing

Returning from interrupts refers to the notion that the interrupt service routine (ISR) has completed and program
flow control returns from the foreground process to the background process. The program indicates the end of
the ISR by issuing an mret instruction, which returns program control to the instruction following the
instruction that the MCU was executing when it acted on the interrupt (entered the interrupt cycle). Returning
from interrupt processing is inherently different from starting interrupt processing in that there is no special state
associated with exiting the ISR. Thus, control units process the mret instruction using the same fetch-execute
cycle as with all other non-load-type instructions.

Figure 18.6 show an example of the timing associated with returning from interrupts. This image pairs with the
image in Figure 18.5 in the timing diagram in Figure 18.6 represents the returning from the ISR that was entered
using the timing diagram in Figure 18.5. Here are the most interesting things to note about Figure 18.6.

 The instructions at addresses 0x78 → 0x84 are all part of the instructions in the ISR. The final
instruction in the ISR is the mret instruction at address 0x84.

 The execute cycle of the mret instruction is responsible for loading the CSR[mepc] value into the
PC. Recall that the CSR[mepc] was loaded with the address of the instruction following the
instruction that was executing when the MCU acted on the interrupt (entered the interrupt cycle).
Had the MCU not entered the interrupt cycle, the MCU would have executed the instruction at
address 0x40 following the instruction at address 0x3C. The timing diagram shows the
CSR[mepc] value loaded into the PC at the end of the execute cycle. The MCU effectively reads
the value in CSR[mepc] and loads that value into the PC; being a read operation, the value in
CSR[mepc] does not change.

 The CSR[mie] value remains low. Recall that the hardware cleared CSR[mie] as part of the
interrupt cycle, which masked the interrupts. The fact the CSR[mie] is low in Figure 18.6
indicates that no instructions in the ISR unmasked the interrupts; recall that CSR[mie] can only
change under program control by executing a csrrw instruction.

FreeRange Computer Design Chapter 18

 - 521 -

Figure 18.6: Timing Diagram showing an example of exiting an ISR.

Example 18.1: Interrupt Processing Timing

What is the fewest number of clock cycles required to unmask the interrupts after the RISC-
V MCU acts on an interrupt? Why is this a killer important question?

Solution: The problem does not provide many details, so it is up to the people reading the problem to figure out
what the problem is really asking. And here are the details.

Some external device made the RISC-V MCU go into an interrupt cycle. Part of the interrupt cycle includes the
hardware automatically masking the interrupt, which it does by loading a ‘0’ into the CSR[mie] register.
Therefore, what this question is asking is what is the minimum number of clock cycles required to unmask the
interrupt. The only way to unmask the interrupts is under program control by issuing a csrrw instruction. The
fastest way to do this is to make the csrrw instruction the first instruction in the interrupt service routine.

The csrrw instruction is a two-cycle instruction. As part of the execute cycle on the csrrw instruction, the
csr_WE signal asserts and writes enabling data to CSR[mie]. At the end of the execute cycle, the hardware
latches the data into the CSR[mie] register and the interrupts are once again enabled.

So in total, the interrupts were only disabled for two clock cycles, which was the fetch & execute associated with
the csrrw instruction. This information is important because it the signal that generated the interrupt stays
asserted, the RISC-V will immediately enter an interrupt cycle again based on the assertion event associated with
the interrupt. In most every case, this would be a problem. The moral of the story is to constrain the assertion
time-width of an interrupt signal because leaving signal asserted for too long could cause multiple interrupt
cycles to be entered for the same interrupt-event. Specific to the timing diagram in Figure 18.7, if the intr signal
was asserted at the end of the execute cycle (or writeback cycle for load-type instructions) associated with the
instruction following the csrrw instruction that unmasked the interrupts, the MCU would go into another
interrupt cycle for the same asserted intr signal, which is problematic for two reasons. First, it would overwrite
the CSR[mepc] and the original return address would be lost. Second, it probably not what you want to do in the
first place.

FreeRange Computer Design Chapter 18

 - 522 -

The timing diagram in Figure 18.7 shows what the words above were trying so desperately to say; here is are the
fascinating highlights of Figure 18.7.

 The intr line is the interrupt input on the RISC-V MCU (not on the CU_FSM). This inputs asserts
sometime during the first listed fetch cycle but is not acted on until the end of the execute cycle,
which means the instruction associated with the left-most FET & EX labels in the diagram is not a
load-type instruction.

 The FSM senses the asserted interrupt because the CSR[mie] is at a ‘1’ level, thus enabling the
asserted interrupt signal intr to be sensed by the CU_FSM. The FSM then enters the interrupt
state, or the interrupt cycle.

 As a result of entering the interrupt cycle, three things happen: 1) interrupts are masked
(CSR[mie]=0), 2) the PC loads CSR[mtvec], and, 3) the current PC is stored in CSR[mepc].

 The notion here is that the instruction at address 0x58, which is the first instruction in the ISR, re-
enables the interrupts. That instruction is the listed csrrw instruction, which does several things
including asserting the csr_WE signal that hardware to write a ‘1’ to CSR[mie]. The result is that
the CSR[mie] becomes a ‘1’ at the next clock edge, which transfers the FSM from an execute to a
fetch cycle. You can see from Figure 18.7 that the interrupts can be re-enabled under program
control in two clock cycles.

Figure 18.7: Timing diagram showing how fast you can unmask interrupts once in the ISR.

Example 18.2: Minimum Interrupt Pulse Requirement

What is the shortest interrupt pulse width (in terms of clock cycles) that the interrupt signal
can be and still guarantee the RISC-V MCU will respond to that interrupt?

FreeRange Computer Design Chapter 18

 - 523 -

Solution: When dealing with the signal connected to the MCU’s interrupt input, we always must consider the
internal workings of the MCU in order to guarantee that the width of the signal is long enough so that the MCU
is able to act on the interrupt. For the RISC-V MCU, this means that the interrupt must be present on the MCU’s
interrupt input at the end of the execution of a given instruction. Recall here that we designed the MCU’s control
unit such that the MCU always completes the instruction that it is executing when it receives the interrupt before
it acts on the interrupt.

For this problem, we must consider the worst-case timing for the solution. All RISC-V instructions execute in
two or three clock cycles, so the worst-case timing would be associated with the load-type instructions, which
execute in three clock cycles. Figure 18.8 shows the timing diagram, which provides a basis for description of
this example’s solution. Here are the interesting particulars:

The note at (1) show the interrupt signal asserting immediately after entering the fetch state for a load-type
instruction. For the MCU to react to this asserted signal, the interrupt must still be asserted by the end of the
writeback cycle for the instruction, which note (2) indicates. This diagram shows that the interrupt pulse must be
at least three clock cycles to guarantee the signal is present at the completion of the instruction that requires to
the most clock cycles to execute.

Also worthy of note is the notion that the MCU asserts the int_taken signal upon entering the interrupt cycle as
note (3) indicates. Leaving the interrupt cycle causes the int_taken signal to de-assert as note (4) indicates. The
CU_DCDR and CSR use this signal as part of the RISC-V’s interrupt architecture implementation.

Figure 18.8: Timing diagram showing the minimum interrupt pulse width.

Example 18.3: Maximum Interrupt Pulse Limitation

What is the longest duration of an interrupt pulse width (in terms of clock cycles) that the
interrupt signal can be such that it guarantees the RISC-V MCU will not respond to that
interrupt more than one time?

Solution: The two problems with the interrupt signal connected to the MCU’s interrupt input is that it can be too
short or too long. We’ve covered the case where it is too short; this example covers the issue of what interrupt
pulsewidth can be too long. What this question is really asking is how long can the interrupt signal be without it
being too long in the worst case. The timing diagram in Figure 18.9 shows the wosrt case scenario.

 In this case, the intr signal is asserted immediately after entering the fetch state, as the note at (1)
indicates. We’re looking for the shortest interrupt signal, so our example states that the instruction
being executed when it receives the interrupt is a non-load-type instruction, as these instructions
execute in two clock cycles.

FreeRange Computer Design Chapter 18

 - 524 -

 The asserted intr signal causes the MCU to enter the interrupt cycle, which inturn causes the
int_taken signal to assert as note (2) indicates. The int_taken unasserted after leaving the
interrupt cycle. Entering the interrupt cycle causes the RISC-V hardware to automatically disable
the interrupts as note (5) indicates.

 Our example then assumes the first instruction in the ISR is a csrrw instruction that renables the
interrupts. This is a two cycle instruction that results in the csr_WE signal being asserted as note
(4) indicates, which in turn causes the interrupts being unmasked as note (5) indicates.

 The interrupts are now enabled as note (6) indicates. The next instruction after the csrrw is
another non-load-type instruction. The constraint here is that the interrupt signal must unasserted
before the end of the execute cycle associated with this instruction to ensure the MCU will not
enter another interrupt cycles based on the same interrupt.

 And the final answer is: six clock cycles. If the interrupt was seven clock cycles, it could still be
asserted at the end of the execute state associated with the instruction following the instruction that
unmasked the interrupts (csrrw).

Figure 18.9: Timing diagram showing safe limitation on the interrupt pulse width.

18.5 Other RISC-V Interrupt-Related Hardware Modifications

Section 18.3 described the major modifications required by the RISC-V MCU to support interrupts. This section
provides a description of the “less major” modifications. These modifications are in the PC support and the
control units (CU_FSM and CU_DCDR).

18.5.1 Program Counter (PC) Support

The program counter needs to support the additions to the program flow control associated with the RISC-V
interrupt architecture. While the PC itself is not modified, the MUX controlling the data inputs expand to include
two extra jump locations. These two jump values are mtvec and mepc, are the interrupt vector address and the
return from ISR address, respectively. The number of MUX inputs increases from four to six, which necessitates
an increase in select control input width (pcSource) from two to three. Figure 18.10(a) shows the PC without
interrupt support while Figure 18.10(b) shows the PC with interrupt support.

FreeRange Computer Design Chapter 18

 - 525 -

(a) (b)

Figure 18.10: The PC-related hardware for no interrupts (a) and with interrupt support (b).

18.5.2 Control Unit Support: FSM & DCDR

The two control units require a modest amount of modifications in order to support interrupts. We group changes
to the CU_FSM and CU_DCDR into one discussion because the changes closely involve both topics. Figure
18.11(a) shows the control units without interrupt support and Figure 18.11(b) shows the control units with
interrupt support.

Modifications to the CU_FSM fall into two major areas. First, the state diagram needs to be modified in order to
support the newly added interrupt cycle (interrupt state). This state controls the parts of the interrupt architecture
having to do with acting on interrupts. The CU_FSM also needs to be modified in order to support two interrupt
related instructions: csrrw & mret. The CU_DCDR needs to be modified such that it outputs the correct
pcSource when the CU_FSM is in the interrupt cycle. Table 18.8 lists the required changes with an added
amount of description.

FreeRange Computer Design Chapter 18

 - 526 -

(a) (b)

Figure 18.11: The PC-related hardware for no interrupts (a) and with interrupt support (b).

Interrupt
Support Mod Wimpy Explanation

INTR masking
control

The INTR input, which was previously connected directly to the CU_FSM, is now
connected to a AND gate. The other input to the AND gate is CSR_MIE with is the current
state of the CSR[mie] register. The AND gate acts as a switch controlled by the CSR_MIE
input, which allows passage of the INTR signal to the CU_FSM.

CU_FSM:
csr_WE

The CU_FSM now controls writing of data to the CSR register under program control
using the csrrw instruction. The csr_WE output of the CU_FSM is the write enable
signal for the registers in the CSR module.

Int_taken The int_taken is an output of the CU_FSM and an input the CU_DCDR, which is why we
left the connection symbols in the diagram.

Ir[14:12] The ir[14:12] is the funct3 inputs associated with the instruction formats. The two new
instructions added to the ISA to support interrupts (csrrw & mret) both share the same
opcodes and are thus differentiated using the funct3 opcode. The funct3 opcode were
previously only input to the CU_DCDR, but are now input to the CU_FSM.

CU_DCDR:
pcSource

The pcSource signal is the select signal for the PC MUX, which expands from two bits to
three bits. This expansion allows the MUX to support the added data inputs associated with
the mtvec & mepc inputs.

Table 18.8: Description of control unit changes to support interrupts.

18.6 Interrupt Signal-Related Timing Issues

Typical system clock signals for MCUs are relatively fast compared to how quickly you can press and release a
hardware actuator device such as a button. This brings up two serious issues that the system designer must deal
with in order ensure the overall circuitry (both hardware and firmware) will work properly under all possible
conditions. The two issues are: 1) “noise” on the interrupt signal, and 2) the duration of the pulse physically
connected to the interrupt input on the MCU.

FreeRange Computer Design Chapter 18

 - 527 -

18.6.1 Interrupt Signal Noise

One type of noise that will affect the operation of interrupt processing is switch bounce. Recall that switch
bounce is a characteristic associated with mechanical actuators such as buttons and switches. These mechanical
properties of switches generally prevent them from being directly connected to the interrupt inputs on MCU
hardware. Mechanical actuators connected to MCU typically are “debounced” in hardware or firmware before
being connected to the MCU’s interrupt input.

The problem with switch bounce in the context of MCUs involves timing issues. The specific problem is that
typical bounce times are in the millisecond range while the MCU is operating in the nanosecond range. This
means that if you press the switch once, the switch contacts can actually “bounce” a few times before arriving at
a steady state value, which means that a single button press can generate a separate pulse from each switch
bounce. Each of the bounces can generate a separate interrupt, which is generally not intended from a single
button press.

You can’t solve with this issue under program control outside of writing a debouncer in firmware. The main
drawback of firmware debouncers is the notion that simple debouncers are computationally expensive because
they typically require polling loops in their implementations. Debounce firmware that does not use polling loops
require other MCU resources such as timer interrupts. The problem with timer interrupts is the fact that there is
only one interrupt on the RISC-V MCU and no timers (typically an internal peripheral). Lastly, if you have many
buttons that need debouncing, such as with a keyboard, you’ll want to think of an external hardware solution.

18.6.2 Interrupt Signal Duration

There is another issue you need to deal with in addition to noise on the interrupt input issue. The pulse width of
signal interrupt signal connecting to the MCU must comply with two parameters: if the signal is too short or too
long, it’s highly probably the interrupts will not work as expected. Here are the details.

1. Interrupt Pulse Too Short: If the interrupt pulse is too short, the MCU may not recognize it and the
interrupt will effectively go away without the MCU entering into an interrupt cycle. Recall that the
interrupt must be present at the end of the execute cycle for most instruction or at the end of the
writeback cycle for load-type instructions. An interrupt signal can thus be 2½ clock cycles in duration
and still not be long enough to ensure the MCU will act on it in the case of load-type instructions. For
most instructions, a pulse width two clock cycles wide is sufficient, but not for load-type instructions.
Therefore an interrupt pulse with a minimum width of three clock cycles guarantees the pulse will be
caught by the MCU’s FSM, but too short for that interrupt to cause the MCU to enter the interrupt cycle
more than once.

2. If the interrupt pulse is too long, it can cause the MCU to enter the interrupt cycle more than once for a
single interrupt. The issue here is that we try to keep interrupt service routine short, which means that
when we exit the ISR and unmask the interrupts, the MCU could re-enter the interrupt cycle if the
interrupt signal was still asserted. Additionally, MCU’s have relatively fast clocks; even a “non-short”
ISR executes extremely fast compared to something such as a human button press. In essence, the MCU
may attempt to process more interrupts than what actually arrived. Note that automatic interrupt
masking when entering the interrupt cycle does not solve this issue.

In actuality, chances are good that when you press the button, the button will remain pressed long enough for the
MCU to process the interrupt and return to normal program execution. This presents the situation that when the
MCU exits the interrupt service routine and the interrupts are unmasked, the interrupt from your last button press
will still be there because you have not yet lifted your finger. In this situation, the hardware notices that the
interrupt line is still asserted and enters back into a second round of interrupt processing for the same interrupt
(namely the initial single button press). In effect, the MCU would service the same interrupt multiple times,
which probably is not what you want.

The pulse-width of the one-shot’s output acts independently of the input to the one-shot. In this way, the input
signal can remain high for an indefinite period while the output signal remains only briefly asserted before it
returns to zero. The final result is that the pulse is long enough to cause the MCU to go into an interrupt cycle
(meaning the pulse will be present at the end of the execute cycle) and that the pulse will be not so long that it
gone before the end of the next execute cycle. In particular, these issues are:

FreeRange Computer Design Chapter 18

 - 528 -

To avoid the situation where a single “event” can generate multiple interrupts, you can connect the signal that
indicates a device needs attention to a “mono-stable multivibrator”, commonly known as a ”one-shot”. As the
name implies, this device has one stable state, and one non-stable state, or temporary state. The “on” state is the
non-stable state, which means it’s only temporarily in that state. The stable state is the off state. When you
connect a button to a one shot, the output of the one-shot is only asserted for a fixed length of time, which
officially makes it independent of the length of time the button is pressed for. The input of the one-shot connects
to the output of the device generating the interrupt signal; the output of the one-shot connects to the RISC-V
MCU’s interrupt input. The one-shot circuitry thus provides a relatively short pulse output to the MCU input;
this pulse is short enough to ensure that the MCU will only process one interrupt per button press.

18.7 Interrupt Architecture Summary

As you can see from the previous sections, the interrupt architecture of the MCU entails a definite sequence of
steps. This sequence of steps ensures a smooth transition to and from the interrupt service routine, as well as
protecting the pre-interrupt operating context of the MCU. Here is a brief summary of the steps involved with the
acting on an interrupt, executing the interrupt service routine, and returning to the regularly scheduled
processing.

 The RISC-V MCU detects an asserted signal on the interrupt input (assume the interrupt is not currently masked
on the RISC-V MCU)

 Execution of the current instruction completes and the RISC-V MCU goes into an interrupt cycle

 The Interrupt Cycle:

o The hardware automatically masks the interrupt

o The address of the instruction what would have been executed next is stored CSR[mepc]

o The program counter is loaded with CSR[mtvec]

 Execution of the ISR completes with the issue of an mret instruction

o The mret instruction loads the address stored in CSR[mepc] into the PC

 Execution resumes at the instruction following the one that was executing when the RISC-V MCU received the
interrupt

Table 18.9: Summary of the RISC-V interrupt architecture.

FreeRange Computer Design Chapter 18

 - 529 -

18.8 Chapter Summary

 The interrupt architecture is a term we use to describe all the hardware and hardware-induced operations
associated with the processing interrupts. The interrupt architecture is one of the first things you should
examine when dealing with a new MCU or CPU, as interrupt driven programs have many distinct
advantages over programs that are not interrupt driven.

 The RISC-V MCU contains a state machine that is responsible for the decoding and execution of
instructions and to implement the interrupt cycle. The interrupt cycle on the RISC-V OTTER MCU consists
of a single state.

 The RISC-V OTTER MCU interrupt architecture uses a set of three registers to implement the interrupt
architecture. These three registers reside in the CSR module; we refer to them as the CSR[mie], the
CSR[mtvec], the CSR [mepc].

 The interrupt signal is a signal from a device external to the RISC-V MCU. When this signal asserts, it can
cause the RISC-V MCU to enter an interrupt cycles. The RISC-V MCU can choose not to act on active
interrupts if the interrupts are masked; in these case, the hardware ignores the asserted external interrupt
signal. The interrupt masking hardware consists of a single bit, CSR[mie] that shares an AND gate input
with the external interrupt signal. If the CSR[mie] bit is a zero, the AND gate output is a zero; otherwise, the
AND gates passes the external interrupt signal to the CU_FSM.

 Interrupts are similar to subroutines and they are thus part of the RISC-V MCU program flow control.
Interrupts differ from subroutines in that they require initialization of the interrupt vector address and
unmasking the interrupts, both of which are done under program control.

 The RISC-V OTTER MCU “acts” on interrupts by entering the interrupt cycle. The interrupt cycle then
does the following under hardware control: 1) mask the interrupt (CSR[mie]), loads a return address into
CSR[mepc], and loads the interrupt vector address (CSR[mtvec]) into the PC. Returning from in interrupts
are down with the mret instruction, which loads the return address from CSR[mepc] to the PC.

 In order to support interrupts, the MUX that provides the PC with an address expands to include CSR[mepc]
(for returning from interrupts) and CSR[mtvec] (branching to the ISR). Interrupt support for the CU_FSM
includes an interrupt state and the addition of the funct3 opcodes as inputs. The CU_FSM also controls the
CSR with the int_taken signal and the CSR_WE signal. The int_taken signal also notifies the CU_DCDR
that the CU_FSM is in the interrupt cycle.

 The interrupt signal input to the CU_FSM must have certain properties in order for the RISC-V MCU
interrupts to work properly. The interrupt signal can’t be too short of the CU_FSM may miss it because the
it only looks for it on the clock edge befrore transitioning back the fetch cycle. The interrupt signal can’t be
too long or the signal may be still asserted when the program unmasks the interrupt under program control.
The interrupt signal should be debounced if connected to a mechanical switch and connected to a one-shot if
the signal could stay asserted for a long amount of time.

FreeRange Computer Design Chapter 18

 - 530 -

18.9 Chapter Exercises

1) Interrupt service routines are very much like subroutine; briefly describe their main difference.

2) Briefly describe the purpose of the interrupt cycle.

3) Briefly explain why MCUs do or don’t require interrupt cycles.

4) Briefly describe why transitions from the fetch state to the execute state are always unconditional; be sure to
include a comment regarding interrupts in your answer.

5) Briefly describe what determines the number of FSM states there need to be in an interrupt cycle. Briefly
describe how the CU_FSM knows whether to enter an interrupt cycle or not.

6) Briefly describe the four conditions that must be present in order for the CU_FSM to enter an interrupt
cycle.

7) Briefly describe how the MIE signal acts as a troll that allows the external interrupt signal to pass through to
the CU_FSM or not.

8) Briefly explain the following statement: The CU_DCDR only knows about only one state in the CU_FSM.

9) Briefly describe whether it is possible to write a value to the CSR[mepc] register under program control.

10) Briefly describe why programmers don’t have a pressing need to ever write the CSR[mepc] register.

11) Briefly describe why the RISC-V OTTER MCU complete execution of the current instruction before acting
on an interrupt.

12) Briefly describe the three things that occur in hardware as part of the interrupt cycle.

13) Briefly describe why there is a special state (the interrupt cycle) for entering interrupts, but no special state
for exiting interrup service routines.

14) Briefly describe how the CU_DCDR knows that the MCU is currently in an interrupt cycle.

15) Briefly describe the CU_DCDR’s responsibilities during an interrupt cycles.

16) Briefly describe any context saving mechanism that the RISC-V MCU hardware is responsible for.

17) Briefly describe what a programmer must do to allow the nesting of interrupts on the RISC-V OTTER
MCU.

18) Briefly describe why the RISC-V OTTER MCU can’t support nested interrupts.

19) The interrupt signal should be at least three clock cycles in duration to ensure that it “works” properly.
Briefly describe the reason for three clock cycles.

20) Briefly describe the problem with the interrupt signal being too short.

21) Briefly describe the problem with the interrupt signal being too long.

22) Briefly describe the difference between an ret and mret instruction.

23) I decided that I wanted to use a ret instruction to return from an interrupt service routine. I did this by
placing a return address in the return address register before issuing a ret instruction. Briefly describe
whether this approach could work or not, and if it could work, under what conditions.

FreeRange Computer Design Chapter 19

 - 531 -

19 Miscellaneous RISC-V MCU and Other Architecture Details

19.1 Introduction

While the previous chapters discussed many aspects of the RISC-V MCU, there are a few more topics we need
to introduce to provide the overall big picture. When we say “big picture”, we mean the big picture in terms of
both the MCU and basic computer architectures in general. In truth, we could not easily introduce a few subjects
out there earlier because we had not yet provided you with the background to facilitate that discussion. This
chapter ties together many of the issues regarding the MCU and computer architecture in general.

Main Chapter Topics

 OVERVIEW OF RISC AND CISC ARCHITECTURES: This chapter describes the
RISC and CISC architectures including their main accepted differences.

 STANDARD ARCHITECTURES: This chapter introduces the standard architecture
types of Harvard and Von Neumann architectures.

 OVERVIEW OF LEVELS OF MEMORY: This chapter describes the notion of memory
levels as they relate to basic computer systems.

 SEVEN-SEGMENT DISPLAY MULTIPLEXING: This chapter describes the popular
digital design topic of display multiplexing.

Why This Chapter is Important

This chapter is important because it describes some the non-architectural but still
important details involving the RISC-V MCU.

19.2 RISC vs. CISC Architecture Types

Out there in computer land, you’ll find that people attempt to model computer architectures as one of two
different types. Complex Instruction Set Computer (CISC) and Reduced Instruction Set Computer (RISC). The
names probably meant something at one time, but they’re now something that you should not take literally.

Since the dawn of computers, or even before, there has been an ongoing argument of which architecture
is ”better”: RISC or CISC? To understand the parameters of the RISC vs. CISC argument, you must understand
the current accepted differences between RISC and CISC architectures. Table 19.1 lists the commonly accepted
characteristics and differences between RISC and CISC architectures.

FreeRange Computer Design Chapter 19

 - 532 -

RISC Architectures CISC Architectures

 All instructions execute in the same number
of clock cycles

 Instructions are relatively simple compared
to CISC architecture

 System clock speed is relatively fast

 Instruction set has relatively few addressing
modes

 Has a relatively large register file

 Instructions require varying numbers of clock
cycles for execution

 Instructions are relatively complex compared
to RISC architectures

 System clock speed is not overly fast

 Instruction set has relatively many addressing
modes

 Has a relatively small register file

Table 19.1: The characteristics of RISC & CISC architectures.

Generally speaking, the instructions on a RISC machine relatively simple, which allows them to execute in a few
number of clock cycles. Conversely, instructions on a CISC machine can be complicated and thus require more
instruction cycles or longer clock periods to execute. In the end, to complete the same task, programs written for
a RISC architecture are longer (meaning more instructions) because the instructions are simple so there must be
more of them to complete the same task. The same program functionality implemented on a CISC architecture is
shorter (less instructions) because each instruction can generally do more stuff. Nevertheless, because each
instruction is doing more stuff, the system clock period typically must be longer. The general thought here is that
it takes more instructions for a RISC computer to perform a given task than it does for a CISC computer.
However, the RISC instructions, because of their simplicity, allows for a higher clock speed. This is a classic
trade-off in computer-land.

So how do we classify the RISC-V MCU architecture? Wow, that’s a tough on. As the name implies, we
consider it a RISC architecture because it contains most of the characteristics of a RISC architecture. The only
characteristic that it violates is that the current RISC-V implementation does not implement all instructions in the
same amount of clock cycles. Recall that the load-type instructions require three clock cycles to complete. Hey,
what’s one instruction?

The RISC vs. CISC thing is quite important. But then again, you’ve probably worked on many different
computers without knowing whether the underlying architecture was a RISC or CISC. The thing to note here is
even though you didn’t know this information, you were able to work with that computer. Often times in
computer land we simply do all our work at a high level, such as with a higher-level computer programming
language. We write our programs and let the compiler do the grunt work. Once again, if you know something
about the underlying architecture, you’ll be able to write programs that are more efficient. This notion becomes
even more important as the complexity of the underlying hardware increases. This knowledge includes both the
architecture and the instruction set; this knowledge is something pure programmers could not use. Don’t ever be
a pure programmer.

19.3 Standard Computer Architectures

Any study of computer architectures arrives at the notion of two common architectures: the Harvard architecture
and the Von Neumann1 architecture. Everyone who studies computer architectures should be aware of the
characteristics of these two architectures. The problem is that these definitions are not carved in stone and leave
some amount of gray area as to their interpretation. Someone created these definitions a long time ago, so even
though they’re becoming harder to use as a label for an architecture, we still use them. This is a standard
interview question that someone is going to ask you if you state you took an architecture course.

The best way to understand the characteristics of Harvard and Von Neumann architectures is to examine high-
level models side-by-side. Figure 19.1(a) shows examples of a Harvard architecture and Figure 19.1(b) shows an

1 The Von Neumann architecture is also known as the Princeton architecture. The story goes that Harvard and Princeton had
some type of computer design competition; these two architectures were the result of that competition.

FreeRange Computer Design Chapter 19

 - 533 -

example of an Von Neumann architecture. Both diagrams show the CPU module with two submodules of the
Control Unit and ALU. The main difference is evident in the Harvard architecture has a different memory for
both instructions and data while the Von Neumann uses a single memory for instructions and data.

The definition is somewhat more detailed than that though. The true definitions have to do with the datapath of
data from the CPU to the memories. In rough terms, if there are separate paths from the CPU to the data and
instruction memory, then we consider that to be a Harvard architecture. If there is one datapath from the CPU to
memory, then data and instructions must share the datapath.

(a) (b)

Figure 19.1: Diagrams of Harvard (a) and Von Neumann architectures (b).

Yes, we still talk about Harvard and Von Neumann architectures. If one of these was clearly better than the other
one, then that is what everyone would use and we would not care about it, so that is clearly not the case. The
main ramifications of Harvard vs. Von Neumann has to do with advanced architectures. If there is only one
memory for data and instructions, the architecture can face memory bandwidth limitations. Advanced
architectures generally use a pipeline for instruction execution, which roughly means that instruction execution is
divided into distinct sections such that all the sections can be simultaneously executed. Simultaneous execution
of multiple parts of an instruction can require, for example, that a memory be read (such as an instruction for a
fetch cycle) at the same time as memory is written to (such as with a store-type instruction).

When you pick up a new MCU, looking at the general architecture is always one of the first things you must do.
Often times MCU datasheets describe their processor as either being Harvard or Von Neumann, but modern
architectures often run into the gray areas of these definitions. The best approach is to understand general
computer architectures at a high level, which allows you to relatively quickly understand any new architecture
you see.

19.4 Levels of Memory

A typical computer system has many types of memory and many memory entities. Even a relatively simple
computer such can have several relatively large structured memories (such as register files and main memory),
and several special register memories (program counter and special use registers supporting interrupts).
Computer architects are always attempting to classify items in computer architecture, and one of the primary
targets is the structured memories. For this discussion, we’re interested in the two writable structured memories
in the RISC-V MCU architecture, which are the register file and the main memory.

Computer architects often speak of “levels of memory” in the context of structured memories in a given
computer system. In this way, they consider a typical computer model to have multiple levels of memory. We
differentiate these different levels of memory by one thing: how long it takes to do something useful with the
memory in those levels. We’re careful here not to classify these different memories solely by access times, as we
typically do with structured memories because there are other special usage parameters involved. The RISC-V
MCU has two structured memories: the register file and the main memory; these are the memories we’ll base
this discussion on, knowing that we could also have large memories external to the RISC-V MCU as well.

FreeRange Computer Design Chapter 19

 - 534 -

We consider the register file to be a lower level of memory than the main memory, but not because it has a faster
access time. For this discussion, we don’t care about access times; what we do care about is the amount of time it
requires to do something useful with the data in those memories. Recall that all useful operations in the RISC-V
MCU occur with instructions that access the register file, which means that if we have data in a register, we’re
immediately ready to operate on it. This differs from data in the main memory in that if we want to operate on
data stored in the main memory, we first must load it into a register in the register file. The notion of loading the
value from memory into the register file requires an extra instruction (some type of load instruction), and thus
doing something useful with the data in main memory is “slower” (takes more time) than doing something with
data already in a register. Because of the extra time it requires to do meaningful work with the data in main
memory compared with data in the register file, we consider main memory a higher-level of memory. And of
course, what follows is the notion that the register file is a lower-level memory.

A typical computer system such as your laptop computer has many different levels of memory. For example, the
lowest level of memory may be some type of general-purpose registers such as the register file in the RISC-V
MCU. More complex computer architectures typically have many more levels of memory; so for something like
your laptop, the hierarchy of memory starts with low with registers, then goes to various cache memories (for
data and/or instructions), main memory, external RAM, hard-drive, thumb drive, tape drive, etc.

The general thought with levels of memory is that the lower the level, the more expensive it is, the faster it is in
terms of usage and/or access, and the less your system has of it. You certainly see this with the RISC-V MCU, as
there are several reasons why the register file memory is more “expensive” than the main memory. Note that if
register file memory did not have associated expenses, the system architects would have provided a lot more of
it. On the other end, memory in hard drive is cheap, plentiful, and requires a relative long time and a variable
amount of time to access. It’s great that solid-state drives (SSD) are becoming cheap enough and large enough
for people to invest in; having a spinning drive in your system is like having a campfire in your living room.
Each level of memory has its place in a computer system; exactly what place that is, is something computer
architects deal with constantly.

The final note here is that the RISC-V has the ability to interface with external memory peripherals the standard
I/O. We typically classify these memories as higher levels of memories depending on the particular memory.
Keep in mind that when we think of memory, we tend to think of parallel interfaces. Because having large
parallel interfaces uses up many resources, many discrete memory devices have serial interfaces, which would
necessarily have slower access times than similar memories with parallel interfaces.

19.5 Switch Bounce

Every mechanical actuator device such as a button or switch has a physical characteristic known as bounce, or
switch bounce. This means that if you press a button, for example, the button contacts usually “bounce” a few
times before arriving at a steady state value2. The notion of bounce here means that the output of the switch goes
on and off (or off and on) a few times before attaining a steady state (does not change any more). The result is
that a single button press can generate a separate pulse from each switch bounce. Because the contacts can
bounce for up to 50ms (which is a long time in MCU-land), they can cause unwanted effects in a MCU because
MCUs typically operate in tens of nanoseconds range.

Figure 19.2 show an oscilloscope output of switch bounce. The top trace in Figure 19.2 shows an idealized off-
to-on signal transition while the bottom trace shows the actual transition. Notice the glitches on the bottom trace.
Realize that the time scale of the oscilloscope output is rather high (in the millisecond range), which means that
each of the glitches in the lower trace of Figure 19.2 are actually pulse of a longer duration. This duration is long
enough to allow MCUs to complete tasks associated with the switch activation. This means that although the
switch activation in Figure 19.2 only intended for one activation, a MCU connected to the circuit sees eight 0→1
transitions, with only the final 0→1 transition being the one of interest. The concept of bouncing from a
mechanical actuator holds true for high-to-low transitions also.

2 Steady state in this context means the contacts have stopped bouncing.

FreeRange Computer Design Chapter 19

 - 535 -

Figure 19.2: Oscilloscope display capture showing actual switch bounce.

Any device that utilizes a mechanical switch (or button) most likely uses some type of “debouncer”, particularly
if the switch is in a MCU controlled circuit. System designers must debounce all mechanical switches, but they
have two choices for debouncing: hardware of firmware. The model for both hardware and firmware debouncers
is the same: the debounce mechanism works by first detecting a change in the signal value (off-to-on or on-to-
off, for example), waiting for a specific amount of time, and then checking the signal value again. If the signal
value of the switch after the delay indicates the signal is “off”, then the transition on the signal must have been
noise, so the debouncer does not pass the signal. On the other hand, if the value on the signal is still in the “on”
state after the delay, the debouncer passes the “on” value of the signal. The good news is that the debouncer only
passes along a clean signal; the bad news is that the debouncer introduces a delay in the circuit, which increases
the response time.

The solution for these types of noise is to apply a “debouncer” to the switch outputs. You must debounce all
switches, but you have the choice of debouncing them in hardware of firmware. Figure 19.3(a) shows a block
box diagram of a debouncer circuit. There are many approaches to a implementing a debounce circuit; the BBD
in Figure 19.3(a) represents a digital approach, where we use the clock signal input to “time” the delay
associated with the debounce circuit. The timing diagram in Figure 19.3(b) shows an example of the ideal and
actual outputs of the debounce module in Figure 19.3(a).

Figure 19.3(b) arbitrarily shows an example of a signal transitioning from low-to-high, which is a function of
how the particular hardware and how the hardware designer connects the device in the circuit. The top trace in
Figure 19.3(b) shows the idealized switch activation; the middle trace shows the actual characteristics of the
switch activation, and the bottom trace shows the debounced switch activation.

(a) (b)

Figure 19.3: A debouncer circuit BBD (a) and the associated timing diagram (b).

FreeRange Computer Design Chapter 19

 - 536 -

19.6 Monostable Multivibrators (One-Shots)

Often times in digital systems we need to have control over signals in order to ensure they perform as designers
intend them to in a digital circuit. We generally need to take an output provided by one circuit and operate on
that signal such that it conforms to the input requirements of another circuit. We sometimes refer to this as
synthesizing a new signal from a given signal; other times we refer to this as filtering the signal. Debouncing a
signal is an example of this type of operation.

When humans interface with computers, there are always special interface issues that designers need to deal
with. The problem is that computers are fast, while humans pressing buttons are relatively slow. Even the fastest
possible human button press looks like forever at the speeds typical MCUs run at. This difference in speed can
cause problems if you don’t properly handle it.

The notion of a human pressing a mechanical actuator (such as a button) can mean two things. If the “event” in
question the notion that someone pressed a button, or is the associated “event” the fact the button continues to be
pressed. The problem lies in the case where the event of interest is where someone presses a button (changes
state). To ensure the fact that the “button press” event is not interpreted as a “button continues to be pressed”
event, we modify the output of the button using a monstable multivibrator, which is longhand for “one-shot”.

As the name implies, the one-shot device has one stable state, and one non-stable state, or temporary state. The
“actuated” state is the non-stable state, which means it’s only temporarily in that state. The stable state is the
“not-actuated” state, which is the state the one-shot resides in when it’s waiting for an event to happen. When
you connect a button to a one-shot, the output of the one-shot is only asserted for a fixed length of time, which
officially makes it independent of the length of time the button is actually pressed for. The one-shot circuitry
thus takes a pulse of unknown length (including the signal transition) and transforms it into a pulse of known
length.

Figure 19.4(a) shows an example of digital one-shot circuitry3 while Figure 19.4(b) shows examples of two
representative timing diagrams. Once the signal is actuated (goes high or low), the one-shot is activated. The
output of the one-shot becomes a pulse independent of the duration that the input signal is high (rising-edge
signal) or low (falling-edge signal). The output pulse width requirements are dictated by the input requirements
of the circuit that the one-shot connects to. Any one-shot worth dealing with includes the ability to configure the
pulse-width. We refer to the high state associated with the rising-edge pulse of the debounce circuit’s output as
the unstable state (because it’s momentary) while the low state is the stable state. There is only one stable state,
hence, the circuit exhibits mono-stability.

Another item worth noting about the circuit in Figure 19.4(a) is the fact that it contains a clock input. Digital
one-shots work by using internal counters to time the input sampling delay; the counter is a sequential circuit,
which is driven by the clock input. One interesting artifact from this design is that the digital one-shot inherently
synchronizes the in input to the system clock of the given circuit. The input to the one-shot can thus be
asynchronous, but the output is always synchronous.

(a) (b)

Figure 19.4: A one-shot circuit BBD (a) and an example timing diagram (b).

Figure 19.5 shows a diagram showing a circuit that is both debounced and one-shotted. The signal labeled (A)
represents the signal from the button. This signal shows a button press and the actual reaction on the signal due

3 We can implement one-shots as purely analog circuits as well.

FreeRange Computer Design Chapter 19

 - 537 -

to switch bounce. The signal labeled (B) represents the ideal output of the button press. Note differences between
signal (A) and (B) are the toggling of the switch after the initial actuation. The signal labeled (C) represents the
classic debounced button, which shows the switch actuates only after the switch has complete it bounce routine.
The debounced characteristic in (C) is fine for some applications, but not for signals that connect directly to the
RISC-V MCU’s interrupt input. The signal in (D) shows what the MCU requires, which is essentially a signal
that is both debounced and connected to the one-shot.

Figure 19.5: Timing diagram showing a signal both debounced and one-shotted.

19.7 Seven-Segment Display Multiplexing

The seven-segment display is one of the most common display devices in the universe; we generally use these
devices to display decimal numbers. The seven-segment display can display any of the digital digits (0-9) using,
wait for it, seven segments, which care typically LEDs (but sometimes are LCDs). The displays are relatively
simple so it is an attractive approach to displaying numbers, particular numbers with a relatively large number of
digits. Additionally, seven-segment displays do an adequate job of displaying alpha hex digits (a-f), though it’s a
mix of upper and lower-case letters.

There are two main reasons hardware uses seven-segment display multiplexing. First, it saves inputs. Imagine a
four-digit 7-segment display that included decimal points. If the displays did not use multiplexing, they would
require 32 separate pins (outputs) to properly drive the device, which is many outputs, but embedded systems
programming considers outputs relatively expensive in embedded designs. A four-digit multiplexed display
would require on 12 outputs to drive it, which is 20 less inputs than an equivalent non-multiplexed display.

We represent individual decimal numbers by turning on specific sets of the segments. For this discussion, we’ll
refer to 7-segment displays implemented with LEDs. Referencing the seven segments is done by assigning
unique letters to each of the segments. Figure 19.6(a) shows the most common listing of these segments is.
Figure 19.6(b) shows a 7-segment display creating the illusion of a ‘0’ by lighting all the segments except
segment ‘g’. Figure 19.6(c) shows segments a, b, c, d, and g lit to simulate the number ‘3’. Most 7-segment
displays actually have eight segments because they typically include a decimal point with each set of seven
display segments.

The seven-segment display can use fewer inputs because of the way it handles the individual digits. In a seven-
segment display, all of the segments are driven simultaneously (a-g and the decimal point) meaning that when
you turn on one segment, all the segments are potentially activated. You control which segment actually turns on
by actuating the correct gate device associated with each display4. Driving displays in this manner have the
added benefit of requiring less power because only one display is on at a given time5. Actuating a segment on
most 7-segment displays is a two-step process. You need to both turn on the LED and actuate the individual 7-

4 Seven-segment displays come in either “common anode” or “common cathode” configuration, which you can effectively
consider an on/off switch for a given display. Turning on a single segment on a single display requires that you both drive the
segment and turn on the proper display.
5 This is not a super strong reason as was the first, but people often consider it significant.

FreeRange Computer Design Chapter 19

 - 538 -

segment display. Both of these actuation steps involve sending a logical ‘1’ or ‘0’ to the device. You must
consult the reference manual for the particular display you’re working with to figure out how it works.

(a) (b) I

Figure 19.6: The amazing 7-segment display (a), and ‘0’ (b), and a ‘3’ (c).

The approach is to actuate each individual seven-segment display sequentially in a circular manner thus ensuring
each display activates for the same amount of time before going onto the next display. This multiplexing action
takes advantage of the human visual system’s characteristic of retinal persistence in order to make the display
appear as if the individual digit displays activate simultaneously while in fact only one digit of the display
actuates at a time.

You can implement display multiplexing in either hardware or firmware; this section describes a firmware
implementation6. Imagine a development board that contains four seven-segment displays; each display contains
eight segments (including a decimal point). There is one signal per each segment for all of the four displays on
the board; the activation of a single segment on a single digit display involves actuating that segment and
actuating the display enable (anode) for that digit. Each individual segment of the seven-segment displays on the
development boards connect to each other, so writing to one individual segment of a display is actually writing
to that segment on all four seven-segment displays

To make the displays appear as if they are constantly on without the appearance of flicker, you need to leave
each display actuated for a given amount of time using a firmware delay function such as the one in Figure 19.7.
The idea is to do no further processing for a set period of time after firmware actuates a display before going on
to actuate the next display.

The firmware delay in Figure 19.7, however, is not an efficient use of the microcontroller’s resources since the
program execution is in a tight loop that effectively does no meaningful processing. It is for those reasons that
we often refer to delays such as these as dumb loops. It is, however, a viable firmware-based approach to
providing a time delay.

#---
Subroutine: delay_ff

Delays for a count of FF. Unknown how long that is but it
is plenty of time for display multiplexing

tweaked registers: x31
#---
delay_ff:
 li x31,0xFF # load count (relative big value)
loop: beq x31,x0,done # leave if done
 addi x31,x31,-1 # decrement count
 j loop # rinse, repeat
done: ret # leave it all behind
#--

Figure 19.7: A standard delay subroutine.

There are two reasons why we need to use a delay. First, because the MCU is so fast, we need to provide enough
time for the LED to turn completely one. Second, the way we need to multiplex the displays require that each
display be off for at least a small amount of time relative to the amount of time they display is on. To make the
number appear as bright as possible, we want to ensure that the percentage of time the display is off compared to
when the display is one is relatively small.

6 You hopefully implemented a 7-segment display in your introductory digital design course.

FreeRange Computer Design Chapter 19

 - 539 -

Figure 19.8 shows a flowchart that models the approach to multiplexing two 7-segment displays in firmware
using a common cathode-type seven-segment display. Note that code in Figure 19.8 shows one pass of the
algorithm; the complete algorithm endlessly repeats the flowchart in Figure 19.8.

Figure 19.8: Process flow for firmware multiplexing algorithm.

19.7.1 Undesirable 7-Segment Display Effects

Multiplexing 7-segment displays can have on of several undesirable effects if not done properly. Table 19.2
shows a description of several types of effects, their causes, and some ideas on how to correct the issues. If your
particular implementation is having issues, you can use Table 19.2 to help solve those issues.

Effect Cause Comment

Dim display Multiplex delay too
short

If the segment display is not actuated for enough time, the
ration of display off/on time is too small. Increasing the delay
fixes this issue.

Flickering Multiplex delay too
long

The operation of the multiplexed display requires that it fool
the human visual system (HVS). In this case, the HVS is not
getting fooled good enough. Decreasing the delay fixes this
issue.

Ghosting Segment data
displayed at wrong
time

Multiplex delay too
short

There are two causes of this problem. First, the wrong segment
data is sent to the display that is on for a short time causes
some segments to be at different brightness levels than other
displays. Fix this by ensuring that displays are off before
writing new segment data. Second, if all the segments are
mostly dim, it indicates the multiplex delay is too short.

Differing
Digit
Intensity

Individual displays are
not on for equal
amounts of time.

This generally means there is an error in the algorithm that
implements the multiplexing.

Table 19.2: Common problems when multiplexing displays in firmware.

19.7.2 Lead-Zero Blanking

Lead-zero blanking (LZB) is a simple notion that is typically associated with 7-segment displays. The issue is
what to do with “lead zero”, which refers to the left-most zeros in a multi-digit display of a decimal number less
than ten. Although placing zeros in to the left of a digital number does not change the value of that number, if

FreeRange Computer Design Chapter 19

 - 540 -

makes the number hard for humans to read. The better option is to “blank” the lead zeros, which means to not
display them. For example, if you had the number 32 on a four-digit display, it is better to blank the lead zero so
that the display shows “_ _ 3 4” rather than “0 0 3 4”. Then again, if the number you need to display is “0”, you
want to display one “0” because a blank display would cause people to wonder if the display was actually
working or not.

FreeRange Computer Design Chapter 19

 - 541 -

19.8 Chapter Summary

 Despite the MCU being a relatively simple device, there are timing issues associated with the instructions
that you must understand in order to understand the overall operation of the RISC-V MCU. If you’re just a
programmer, you don’t really need to understand these timing details. But if you know/understand anything
regarding the underlying RISC-V MCU hardware, you must understand basic timing issues.

 The RISC-V MCU “wrapper” provides an interface between the RISC-V MCU and a development board.
The RISC-V MCU wrapper is a relatively simple HDL model that interfaces the RISC-V MCU I/O with the
various input (such as buttons and switches) and output devices (such as LEDs) on the development board.
The highlights of the wrapper include a MUX for the development board’s inputs and a decoder and register
for the development board’s outputs.

 Reduced instruction set computers (RISC) and complex instruction set computers (CISC) are the two main
classifications that we try to place computer architectures into. RISC architectures have instructions that
execute in the same number of clock cycle, relatively large register files, few addressing modes, and
relatively simple instructions. CISC architectures have all the opposite characteristics. Programs written for
RISC architecture generally have more instruction than the same program for a CISC architecture, but the
RISC instructions generally execute in a smaller amount of time.

 The notion of levels of memory refers to how fast a system can access (read and write) that memory.
Generally speaking, lower levels of memory have faster access times, are but lower storage capacity than
higher levels of memory.

 One-shots, also known as monostable multivibrators, filter signals to make them more effective to systems
with special constraints on the input. The MCU interrupt input has special constraints in that the interrupt
signal can cause problematic behavior if the signal is too short or too long. This one-shot solves this
problem.

 Switch bounce is a known characteristic of all mechanical switches. When switch contact is initiated or
uninitiated, the switch contacts can be unstable (touch and retouch many times) before arriving at a steady
state. The switch bounces issue must be handled in firmware or hardware to make the system work in a
predictable manner.

 There are two “standard” computer architectures that many computer people refer to: the Harvard and
Princeton (usually referred to as Von Neumann architecture) architectures. The Harvard architecture uses a
separate memory for instructions and data, while the Von Neumann architecture uses the same memory for
both instructions and data.

 Seven-segment display multiplexing is a method to have seven-segment displays show many numbers but
only use a minimal amount of input pins. Input and outputs are expensive on computer devices; the main
purpose of a multiplexed display is to reduce the number of I/O required to drive the device. In a
multiplexed display, only one digit actuates at any given time. The displays take advantage of the human
visual system’s retinal persistence to make it appear that all the display devices are on at the same time. It
does not have leaving a single digit display on for a given amount of time, then switching to another digit to
repeat the process. When this is done fast enough, the human visual system sees more than one number at a
given time.

 Seven-segment displays typically use lead zero blanking, which means they do not display higher-order
digits if those digits are zero and do not change the value of the number. If the number to display is zero, the
display shows that zero (does not blank it).

FreeRange Computer Design Chapter 19

 - 542 -

19.9 Chapter Exercises

1) In your own words, explain which is better (or if one is not better) RISC or CISC architectures.

2) Briefly describe why system clock speeds in RISC architectures are typically faster than the clock speeds in
CISC-based computers.

3) Briefly but completely explain why modern computer architectures often blur the accepted definitions of
RISC and CISC architectures.

4) Briefly describe whether the RISC-V OTTER MCU is a RISC or CISC computer.

5) What is the alternative name for the Von Neumann architecture?

6) Briefly describe which standard computer architecture better supports the notion of pipelining and why.

7) Briefly describe why it is a good idea to discern the type of architecture the you’re working with early when
working with a new computer architecture.

8) Briefly describe whether the computer you’re working on now has a Von Neumann or Harvard architecture.

9) If lower levels of memory are faster, briefly but completely explain why there is a need for higher levels of
memory.

10) Briefly describe the drawbacks of simply increasing the register file size in a computer architecture simply
because it’s a faster memory because it is a lower-level of memory.

11) Briefly describe why the notion of levels of memory is not necessarily dependent upon the data access times
for a given structured memory.

12) List the three typical characteristics of a lower level of memory.

13) What is a lower level of memory: a tape drive or a hard drive? Briefly explain.

14) In the RISC-V OTTER MCU, which module represents the lowest level of memory and briefly explain why.

15) All mechanical switches have bounce when activated. Briefly explain whether silicon switches have switch
bounce also.

16) Briefly describe why debouncing switches and buttons is more important for systems utilizing MCUs.

17) Briefly describe at least two drawbacks to using a switch debouncer in your circuit. Include both hardware
and firmware debouncer in your answer.

18) If you had a circuit with many switches but only one debouncer, briefly describe the conditions where you
could effectively debounce each of the switches using one debouncer.

19) Briefly describe how digital one-shots provide synchronization to the output of the one-shot.

20) What is another name for a mono-stable multivibrator?

21) What is another name for a bi-stable multivibrator?

22) What is another name for an a-stable multivibrator?

23) If you used both a debouncer and one-shot modules in your circuit, briefly describe if the order they appear
in your circuit matters or not.

24) Briefly describe the two main reasons why we use multiplexed seven-segment displays.

25) Briefly describe the basic operation of a multiplexed display.

26) Briefly describe why in firmware multiplexing applications we speak of a ratio of time the display is on/off.

27) Briefly describes what happens when the 7-segment display on/off ratio is too small.

28) List the two reasons why we need to leave the display on for a given amount of time.

FreeRange Computer Design Chapter 19

 - 543 -

29) Seven-segment displays are useful for two main reasons, list those reasons.

30) Write a closed form formula showing the number of inputs required to drive a seven-segment display for
any number of digits two or greater.

31) Briefly describe the two main reasons we use lead zero blanking in a seven-segment display.

32) Briefly describe why we never blank all zeros in a seven-segment display if the number to be display is zero.

FreeRange Computer Design Chapter 20

 - 544 -

20 RISC-V MCU Timing Issues

20.1 Introduction

In order to truly understand the RISC-V MCU, you must have a solid grasp on various issues regarding the
RISC-V hardware. Computer programming is an exercise in writing text that some software (assembler and/or
compiler) translates into machine code that drives the computer. That is not the end of the story. All operations
on a computer, such as executing instructions, require time to complete. Because the underlying computer
hardware implements the timing and actions taken by each instruction, we have a tendency to concentrate on
programming as independent entity. But the truth is that to become complete excellent hardware designers as
well as great programmers, we must understand all aspects of how the underlying hardware executes
instructions. One of those important aspects of instruction execution is the associated timing diagrams.

This chapter introduces timing characteristics of instructions. The bad news is that timing diagrams can
potentially become really complex based on the number of important signals associated with a computer. But the
good news is that there are a limited number of types of instruction execution we need to deal with. This of
course means that there are many similarities between executing certain types of instructions, where these types
generally follow the standard instruction types in the RISC-V OTTER MCU ISA.

This chapter takes a higher-level approach to timing diagrams in an effort to save time and space. We present
example that contain a limited number of signals, but these signals are the more important signals associated
with the execution of those given instructions. The signals we utilize fall are a classic set of both data and control
signals, where some of the data signals include addresses.

Main Chapter Topics

 RISC-V MCU TIMING ISSUE: This chapter shows the execution of RISC-V MCU
instructions as a function of time.

 RISC-V MCU DATA & CONTROL TIMING: This chapter shows a subset of the
data changes and corresponding control signals in timing diagrams as a function of
instruction execution.

Why This Chapter is Important

This chapter is important because it provides important insights into RISC-V MCU
instruction execution by the use of timing diagrams.

20.2 RISC-V OTTER MCU Timing Problems

You can’t fully understand the lower-level operations of the MCU unless you have a firm grasp on the
underlying timing issues associated with the MCU instruction set. This section outlines the underlying timing
issues by solving a few key timing problems associated with MCU instructions. The idea behind this section is to
convince you that the operation of the MCU is fully deterministic and relatively simple once you fully
understand all aspects of the MCU hardware and how the MCU instructions interact with that hardware.

We covered some the basic RISC-V MCU timing issues in previous chapters. In chapter, we take a more detailed
look at some of the more important operations such as basic instruction execution timing, and subroutine calls
and returns. The RISC-V MCU has many internal signals, so many that it would be near impossible to complete

FreeRange Computer Design Chapter 20

 - 545 -

a timing diagram with all the internal signals. Because of this, we limit our with timing diagrams in this chapter
to a small set of meaningful data and control signals associated with instruction execution.

20.2.1 Modeling Instructions Using Timing Diagrams

These problems are rather unique compared to other problems we’ve worked with thus far. With programming-
type problems, we knew there were many approaches to find functionally equivalent solutions. The ultimate goal
was to write code that solved the problem, and there were essentially an infinite number of ways to do that.
There were many ways to arrive at the solution and there were many solutions (although the solutions were
necessarily functionally equivalent). With timing diagram problems, there are typically many approaches to
arrive at the solution, but there is only one solution. Another way to state this is that operation of the RISC-V
MCU is deterministic, which roughly means everything is 100% predictable and nothing is left to chance. We
base this determinism on the RISC-V instructions and the underlying hardware that implements the instructions.

Example 20.1: RISC-V Instruction Timing Problem

Complete the following timing diagram for all empty rows.

Solution: Figure 20.1 shows the solution to Example 20.1. These timing diagram solutions are hard to describe
after the fact, but we’ll do our best here. The best was to understand these problems is to watch them being done
in class or in a video. With any luck, you’ll have one of those available. Here’s the skinny:

 Because these instructions do not include program flow control instructions, we are not
constrained to completing one instruction at a time and instead can complete one row at a time in
many instances.

FreeRange Computer Design Chapter 20

 - 546 -

 The Instructional Opcode line shows the opcode associated with each instruction below it. Each
instruction includes a fetch and execute cycle as the line below the Instruction Opcode indicates.

 The CLK signal delineates the fetch and execute cycles, which the underlying FSM controls.

 The Instruction line shows the instruction that the MCU is executing at any given time.

 The PCWrite line is responsible to loading new values into the PC. It asserted soon after the start
of each execute cycle; the actual loading of the new PC occurs at the next rising clock edge. The
FSM asserts the PCWrite control signal after entry to the execute cycle; the loading of the PC
occurs at the next active clock edge.

 The regWrite line controls writing to the register file. The first two and last two instructions write
the result to the register file, which is why the regWrite signal asserted by the FSM soon after the
start of the execute cycle for those four instructions. The two store-type instructions write values
to memory and not the register file, which is why regWrite is not asserted in the execute state for
the two store-type instructions.

 The memWE2 line asserts in the execute cycle for the two store-type instructions. Asserting the
memWE2 signal allows the hardware to write the data in the register file to main memory.

 The memRDEN1 signal asserts as part of the fetch cycle for every instruction. This allows the
address that was loaded into the PC at the start of the fetch to serve as an index into main memory.
The memory has synchronous reads so the output from the memory becomes available on the
DOUT2 after the rising clock edge that transitions the FSM from the fetch to execute state.

 We are not executing any load-type instructions, so the memRDEN2 input remains unasserted
throughout the timing diagram.

 The alu_fun chooses what operation the ALU performs. It performs XOR, OR, AND, and OR
operations for the first two and last two instructions; the four bits shown in the timing diagram
correspond to the operation chart on the RISC-V MCU schematic. The store-type instructions both
require the ALU to do an addition operation as part of the address calculation for the instructions.
This means that the alu_fun must choose an addition operation (0000) for all instructions
requiring address calculations, which include all load-type and store-type instructions.

 The alu_srcA signal remains unasserted for these instructions, which means the instructions are
always choosing rs1 to as the srcA input of the ALU.

 The alu_srcB choose the rs2 input for the logic instructions (00), and choose the S-type input (10)
for the store-type instructions.

 The pcSource always chooses (00) for this example, which is the PC PC + 4 operation. This is
normal operation, meaning that none of instructions are program flow control-type instructions.

 The rf_wr_sel chooses the output of the ALU for the four logic-type operations, which is the (00)
input on the register file MUX. The two store-type instructions do not use the rf_wr_sel signal,
which is why we list the rf_wr_sel value as don’t cares for those instructions. There actually a
value on the data output the register file MUX, but since we’re not loading values into the register
file, the actual values do not matter.

FreeRange Computer Design Chapter 20

 - 547 -

Figure 20.1: The solution to Example 20.1.

FreeRange Computer Design Chapter 20

 - 548 -

Example 20.2: RISC-V Instruction Timing Problem

Complete the following timing diagram for all empty rows.

Solution: Figure 20.2 shows the solution to this example. Once again, and for the last time, these are much better
explained in an incremental manner, rather than “here’s the complete diagram, let me try to explain it”. If you’re
reading this (and I know you are), there is a video where I go through this one part at a time. Keep in mind that
there are many approaches you can take to complete this problem. Here is the important stuff to know about this
timing diagram:

 Most signal operate “normally”, though there is a load-type instruction in there that is different
because it requires three clock cycles, this means that some of the control signal outputs are
persistence through both the execute and writeback cycles.

 The PCWrite signal always asserts in the state before the fetch state of the next instruction. For
the lhu instruction, this mean PCWrite asserts as part of the writeback state. The memRDEN1
signal shows a similar behavior in that it always asserts as part of the execute cycle; this execution
is delayed with the three-cycle lhu instruction.

 The lhu instruction reads a value from memory and sticks it in a register, which requires the
memRDEN2 signal to assert during the execute cycle of the lhu instruction. At this point, the
ALU has calculated the effective memory address and the hardware can read the memory data.

 None of the instructions write to data memory, so the memWE2 signal remains unasserted.

 The auipc instruction and the lhu instruction both use the ALU for formulate values, which is
why the alu_fun signal is configured for addition for both of these instructions.

 Because j is a pseudoinstruction, we know that it translates to a jal base instruction. Part of the
jal instruction is to write the new PC value to a register, which is why the regWrite signal is

FreeRange Computer Design Chapter 20

 - 549 -

asserted during the execute cycle. Accordingly, the rf_wr_sel signal chooses the “PC+4” input to
be loaded into the register file.

 Because the j instruction does not use the ALU, so the three ALU-controlling signals (alu_fun,
alu_srcA, & alu_srcB) are “don’t cares” for this instruction.

 The rf_wr_sel signal selects the memory output for the lhu instruction. Even though the
rf_wr_sel signal is asserted to “10” for three clock cycles associated with the lhu instruction, the
only time rf_wr_sel matters is at the end of the writeback cycle, which is when the regWrite
signal asserts.

 The alu_srcB signal typically follows the instruction type. For reg-reg instructions, the alu_srcB
signal chooses the rs2 register output, but for other instructions, it inputs ether the PC (auipc), or
the I-Type or S-Type immediate values. The lhu instruction is an I-Type instruction, which is
why the alu_srcB signal is “10” for this instruction.

Figure 20.2: The solution to this example.

FreeRange Computer Design Chapter 20

 - 550 -

Example 20.3: RISC-V Instruction Timing Problem

Use the following program and information to complete the empty rows in the timing diagram.

Cat: slt x20,xl0,xl3
 jal dog
 andi xl0,x8,0xF
dog: lw x8,0(xll)
 bgt x8,xl3,done
 xor x8,xl0,xl3
done: jalr xl
 andi x8,x8,0x0F

x10 = 0xAA
x13 = 0xCC
x11 = 0x11001100
cat = 0x50
IOBUS = 0x000000FF

Solution: Figure 20.3 shows the solution to this example. This solution for this timing diagram is slightly more
complicated in that we don’t know in advance if conditional branches are taken or not. This means we need to
work through the solution on instruction at a time. We only are interested in the interesting signals below. Here
is the cool stuff to know about this timing diagram:

 No instructions write memory, so the WE2 is always unasserted.

 The first instruction is an slt. Because it writes a ‘1’ or ‘0’ to the destination register, regWrite
asserts during the execute cycle. The alu_fun selects the “0010” option supporting the slt
instruction as the value that the hardware assigns to the destination register from the ALU output.
The wd signal indicates that the instruction writes a ‘1’ to the destination register. The rs1 & rs2
lines are the source operands, which are the values in the x10 & x13 registers, respectively.

 The jal instruction causes a jump to the instruction associated with the “dog” label. The
pcSource must choose the jal option to the PC MUX, which the pcSource signal indicates on the
execute cycle with a value of “11”. The jal instruction also writes a PC+4 value to the register
file, which is why regWrite asserts and rf_wr_sel is set to “00” to route the value in the PC to the

FreeRange Computer Design Chapter 20

 - 551 -

register file. The value that writes to the register file is four greater than the current PC, which is
0x58, as indicated on the wd signal.

 The instruction at the “dog” label is an lw, the infamous three-cycle instruction. This causes a
memRDEN2 assertion during the execute cycle and regWrite assertion on the writeback cycle.
The rf_wr_sel is set to “10” to allow the memory output to route to the register file. The data that
writes to the register file is the IOBUS_IN data because the address in x11 is greater than
0x0000FFFF, making this an input operation and not a memory access operations (read). The rs1
& rs2 values are the base register and offset values for the load instruction, respectively. And
finally, the actual input data writes to the register file, as the wd signal indicates.

 The bgt instruction takes the branch because the value in x8 is greater than the value in x13. Note
that the x8 & x13 values are output from the register file (rs1 & rs2, respectively). The ALU is not
involved in comparisons, so ALU support signals are in “don’t care” space. The pcSource
chooses the branch input to the PC MUX to be the next address loaded to the PC. The pcSource is
a control output from the CU_DCDR, which acts on the comparison done in the
BRANCH_COND_GEN module. The code takes the branch, which causes the value of the “done”
label to load into the PC.

 The jalr instruction is similar to the jal instruction; it causes a jump by using the pcSource to
load the jalr input to the PC MUX into the PC. Also like the jal instruction, the jalr
instruction causes the PC+4 value (0x6C in this case) to load into the register file, which requires
the rf_wr_sel to be ”00” and the regWrite to assert. The jalr instruction uses a source register
to calculate the absolute address, which is the value put in the ra as a result of the jal instruction;
this value is 0x58, as the value of the rs1 signal indicates.

 The final instruction performs an AND operation on the data in x8, which is trying to be some sort
of masking operation. The data in x8 is 0xFF; ANDing it with 0x0F results in 0x0F, which is
indicated on the wd signal for this instruction. The alu_fun chooses AND operation with a
“0111”; alu_srcB chooses the lower ALU operand to be the I-Type immediate value from the
IMMED_GEN module. The rs2 line is an unknown because the immediate operand is output from
the IMMED_GEN module and not the register file.

FreeRange Computer Design Chapter 20

 - 552 -

Figure 20.3: The solution to this example.

Example 20.4: RISC-V Instruction Timing Problem

Use the following program and information to complete the empty rows in the timing diagram. Use
the empty timing diagram from the previous example problem.

cat: addi x10,x10,5
 beq x10,x11,dog
 add x10,x0,x0
dog: sb x11,4(x30)
 slli x11,x11,1
 jal cat

x30 = 0xC0
x10 = x40
x11 = 0x45
cat = 0x80

Solution: Figure 20.4 shows the solution to this example. This is another solution where we can’t write out the
instructions because the program includes program flow control instructions in the form of conditional branches;

FreeRange Computer Design Chapter 20

 - 553 -

and we don’t know in advance if the program takes the branches. We only are interested in the signals that
provide us with enlightenment in the discussion below. Here is the good stuff to know about this timing diagram:

 The program fragment has no input instructions so the IOBUS_IN has no use in this example.

 There are no instructions reading from data memory, so the memRDEN2 signal never asserts.

 We know in advance what memRDEN1 looks like because only one of the instructions is a load-
type instruction.

 The addi instruction is at 0x80 (cat label), which the problem description provides. This
instruction adds the value in x10 (rs1=0x40) to the I-Type immediate value (5) and stores the
result in x10. Note that we don’t know the rs2 value as the immediate value is an output the
IMMED_GEN module. The requires the regWrite asserted and the alu_fun to select an add
operation. The result of the addition operation is 0x45 appears on the wd line. The alu_srcA
signal chooses the register value and the alu_srcB signal chooses the immediate input to the MUX
to be the input to the ALU. The ALU result writes to the register file thus requiring the regWrite
to assert.

 The beq instruction compares two register value rs1 & rs2 as they appear on the rs1 & rs2 lines;
both values are 0x45, which causes the instruction to take the branch. The instruction does not use
the ALU so all ALU-based signals are don’t cares. The pcSource chooses the branch option
(“10”), which is an output from the CU_DCDR. The program jumps a whopping one instruction to
0x8C as the value on the PC line indicates.

 The sb instruction copies data from a register to memory, which requires the assertion of
memWE2 on the execute cycle. The ALU does an add operation to calculate the effective address
with an offset of “4” (rs2) and a base register value of 0xC0 (x30 @ rs1). The sb is an S-Type
instruction so the alu_srcB is set to “10” to have the appropriate immediate value input to the
ALU. The rs2 line is an unknown because the immediate value is output from the IMMED_GEN
module. The instruction does not involve the register file other than reading the base register (rs1)
so the register file related control signals are don’t cares.

 The slli instruction is an I-Type instruction. The ALU inputs are “1” for the I-Type input and
0x45 for the other input (rs1). The shifted-left value appears on wd as 0x8A, which is the value
that writes to the register file. The alu_fun chooses the “sll” option.

 The jal instruction causes program control to unconditionally transfer to the instruction
associated with the cat label, which is at address 0x80. This instruction causes the pcSource to be
“11”. This instruction also writes the “PC+4” (0x98) address to x1, which requires the regWrite
signal to assert on the execute cycle. Recall that the “PC+4” is a potential return address as
programmers can use the jal instruction to call subroutines. The ALU is not used so associated
signals are don’t cares.

 The addi instruction is a repeat of the first instruction, so nothing new happens. The value in x10
is now 0x45 because the first addi instruction advanced it by five. The wd line shows the result
to that writes back to the register file.

FreeRange Computer Design Chapter 20

 - 554 -

Figure 20.4: The solution to this example.

Example 20.5: RISC-V Instruction Timing Problem

Use the following program and information to complete the empty rows in the timing diagram. Use
the empty timing diagram from the previous example problem.

Cat: addi sp,sp,-4
 sw x8,0(sp)
 xor x8,x8,x9
hen: beq x8,x0,dog
 slti x7,x8,0x34
 xori x8,x10,0x40
 andi x8,x8,0x01
dog: lw x8,0(sp)
 addi sp,sp,4

cat = 0xB0

x2 = 0xF08

x8 = 0xAA

x9 = 0x55

Solution: Figure 20.5 shows the solution to this example. This is another solution where we can’t write out the
instructions as a first step in the solution because the program fragment includes program flow control

FreeRange Computer Design Chapter 20

 - 555 -

instructions in the form of conditional branches. We only are interested in the interesting signals and happenings
in the solution, which we liberally describe below:

 We don’t use the IOBUS_IN signal because the program fragment has no input instructions.

 This example basically shows the pushing and popping of a single register on the stack. Both
operations require a memory access and an adjustment of the stack pointer.

 The problem description provides the addi instruction address, which is 0xB0 (cat label). This
instruction adjusts the stack pointer, which it needs to do to make room for the register that the
next instruction stores. The stack pointer is at address 0xF08, which the problem description
provides. The rs1 value is one operand; the other operand is the output from the IMMED_GEN
module, which is -4 (not shown in diagram). The result is loaded into the register file, which the
0xF04 on the wd line shows.

 The sw instruction asserts the memWE2 signal on the execute cycle to write x8 to memory. The
instruction uses the ALU to create an effective address by adding the offset (0) to the base register
(sp); note the address value on rs1 is 0xF04, which was the value written to sp by the previous
instruction. This instruction does not use the register file, which is why the wd line shows a “???”.

 The xor instruction performs an exclusive OR on the data in the x8 & x9 registers and stores the
result in x8. We see the result on the wd line, which we conveniently designed to be zero when we
created this problem.

 The branch instruction compares the value in x8 & x0, which are equal, so the code takes branch.
The code takes the branch by setting the pcSource to “10”, which chooses the branch address to
be loaded into the PC. This branch causes a jump to the instruction with the “dog” label, which is
at address 0xCC, as the PC value associated with the lw instruction indicates. The regWrite
signal does not assert, as branch instructions don’t involve the register file.

 This lw is the first instruction in the pop operation. The lw is a three-cycle instruction that
formulates the memory address during the execute cycle (the memRDEN2 signal) and write that
value to the register during the writeback cycle (the regWrite signal). The rf_wr_sel signal is set
to “10” to select the memory output (DOUT2) to be input the register file. The effective address is
the offset (0, not shown) plus the value in sp (x1=0xF04). The rs2 value is not known as the offset
is an output of the IMMED_GEN module, which alu_srcB chooses (“01”)to input to the ALU.
The alu_fun selects “0000” to perform the addition that generates the effective address. The value
written to the register file is on the wd signal; 0xAA is the original value of x8 before the sw
instruction operated on it. Note that for the lw instruction, the data that writes to the register file is
not available until the effect address calculation completes and the memRDEN2 signal enables
the reading of data. This timing is important, which is why we littered the diagram with the arrow.

 The addi instruction adjusts the stack pointer, and is thus the second half of the pop operation.
The first instruction in the program fragment decreased the sp; this addi instruction returns it to
its original value. The rs1 signal shows the current sp value of 0xF04; the wd signal shows the
new value for sp, which is 0xF08.

FreeRange Computer Design Chapter 20

 - 556 -

Figure 20.5: The solution to this example.

FreeRange Computer Design Chapter 20

 - 557 -

20.3 Chapter Summary

 Computers do what they do over a given period of time, which allows us to model program execution units,
such as instructions, as a function of time. The standard approach to viewing digital signals as a function of
time is the timing diagram.

 All RISC-V instructions require two clock cycles to execute, except for load-type instructions, which
required three clock cycles to execute.

 Most program flow is conditional, meaning that it is controlled by some type of conditional branch
instruction. This means that we must complete timing diagrams using a vertical analysis going from left to
right and completing all signals. We can complete timing diagrams associated with unconditional branches
or no branches one signal at a time going from left to right. Calling subroutines is an example of
unconditional program flow control.

FreeRange Computer Design Chapter 20

 - 558 -

20.4 Chapter Exercises

1) Briefly describe why the timing diagrams in the problems examined in this chapter only contained an
abbreviated set of control signals.

2) Briefly describe what the term “timing diagram” refers to.

3) Briefly describe why there is only one unique solution to timing diagram problems associated with the
RISC-V MCU.

4) Briefly describe what condition in a timing diagram problem allows us to complete entire signals at one time
rather than one instruction at time.

5) Briefly describe the main difference in analyzing problems containing conditional branch instructions
compared to problems not containing conditional branch instructions.

6) Briefly describe why we typically slightly delay the switching of control signals in timing diagrams. This
delay manifests itself as a slight delay past the active clock edge in the timing diagram.

FreeRange Computer Design Chapter 21

 - 559 -

21 RISC-V Architectural Modifications

21.1 Introduction

As you extend your knowledge regarding computer architecture and assembly language programming, you’ll no
doubt start questioning some of the design decisions that went into design the RISC-V MCU ISA and associated
hardware. In truth, a countless number of design decisions went into the design. The main thought here is that
these design decisions, though well thought out, were somewhat arbitrary all the same. As with any digital
design, if you stare at it long enough, you’ll surely figure out a better approach to the design. The same goes for
the RISC-V OTTER MCU instruction set. If you haven’t found yourself complaining that there is a
useful/important instruction missing from the instruction set, you’re probably missing something.

This chapter allows you to apply your knowledge and skills by asking you to describe various changes to the
RISC-V MCU hardware and/or instruction set. The idea here is that if you can’t describe viable changes to the
RISC-V MCU architecture and instruction set, you may not have a strong understanding of the MCU in general.
In other words, to make meaningful changes to the RISC-V, you must understand all aspects of the RISC-V
MCU, particularly how the hardware implements instructions in the RISC-V MCU. If you’re not quite at that
point yet, the examples in this chapter quickly move you along in the direction of complete understanding of the
RISC-V MCU. Recall that this course provided you with a schematic of a working RISC-V MCU, so there was
no hardware design involved. But this course in general is about hardware and assembly language programming,
so it makes more sense to divide the time between hardware and firmware rather than moving to strictly
firmware after you’ve implemented the RISC-V MCU.

Computer design continues to be an open book. While there is a significant amount of commonality between
various computer architectures, they are still completely arbitrary. If you’re a computer user, you need to
understand the hardware provided for you. If you’re a computer designer, you have the ability to design any
computer you want.

Main Chapter Topics

 RISC-V HARDWARE ARCHITECTURE MODIFICATIONS: This chapter outlines
hardware modifications in order to achieve various stated design goals.

 RISC-V ASSEMBLER MODIFICATIONS: This chapter outlines changes to the
RISC-V assembler in the context of desired hardware architecture modifications.

 RISC-V INSTRUCTION SET ARCHITECTURE MODIFICATIONS: This chapter
outlines changes in the instruction sets in response to proposed RISC-V hardware
architecture changes.

Why This Chapter is Important

This chapter is important because it advances your knowledge of the RISC-V MCU
by outlining hardware architecture changes in response to stated design goals.

21.2 RISC-V Architectural Modifications and Extensions

The chapter comprises of suggested modifications and changes to the RISC-V hardware architecture and/or
instruction set. These problems represent my best take on these proposed changes; I have no doubt that I have
mistakenly omitted important information in these examples and/or you can think of a better solution than the

FreeRange Computer Design Chapter 21

 - 560 -

ones I’ll present here. That’s good. These problems are quite open-ended, meaning there are many correct
solutions. You can argue that one solution is better than another solution, but that’s not primarily what we’re
after here. If you discover something that I did not see, then you definitely know the RISC-V MCU architecture
and instruction set, which is the underlying goal of this text and associated course.

Once again, these problems are open-ended. The only general guideline to follow is that you should always try to
find the most “doable” solution. In the context of these problems, doable means you can describe what you’re
going to do without having to massively increase the complexity of the RISC-V MCU hardware. One other
guideline is the notion of “adding” or “removing” functionality from the RISC-V hardware or instruction set.
Whenever you “add” something, you’re most likely increasing the complexity of the hardware include the
amount of memory required to support that addition. Conversely, if you remove something, you’re probably
reducing complexity and possibly removing memory requirements.

In reality, you must consider each addition of removal individually in order to ascertain its full ramifications. For
these types of problems, know that you’re going to need to pull out the assembler manual and architectural
diagrams in order to help you generate a viable solution. In the real world, you must consult various sources
when you’re working on problems; it’s strange why academia needs to be different.

When writing your solutions, be as descriptively complete as possible. Humans grading these problems need to
know what you know. If something requires modification, then be specific about the required modifications; you
certainly can’t be too descriptive in this area. If you say something like “there are no changes required”, be
specific about what is not changing and why that thing does not need to change. Note that problems such as these
that appear on an exam or quiz is going to require you to do an organized brain dump so the wacky instructor can
ascertain what you know or don’t know. The instructor won’t be giving you the benefit of the doubt on these
types of problems.

Example 21.1: Shift-Set Instructions

Add a two new instructions to the RISC-V MCU:

 sll_1 rd,rs1 # x[rd] ← { x[1’b1,rs1[30:0]] }

 srl_1 rd,rs1 # x[rd] ← { x[rs1[31:1]],1’b1 }

For this problem, describe the following

a) Required changes to the RISC-V MCU hardware

b) Required changes the RISC-V assembler

c) Required changes in RISC-V memory requirements

d) Describe why these instructions are potentially useful

e) Describe why you don’t need a sll_0 & srl_0

Solution: There is nothing magic about this solution; it is somewhat arbitrary. I feel it’s about as simple as I
can think of. The first thing to notice about this problem is that it requests that you add something to the RISC-
V MCU, which means we want to stay on the lookout for “things increasing”, such as memory and/or the
width of MUX select lines, width of data lines, etc. Note that unlike the current shift instructions, these two
new instructions are single shifts and not barrel shifts.

a) Required changes to the RISC-V MCU hardware:

 You would need to modify the ALU to recognize these new instructions. The alu_fun signal would
not need to change width as there is room for five more instructions; these two instructions require
only two more ALU choices. This also means that you can implement this instruction with only the
ALU, and there is no need to modify the lower ALU MUX to include a ‘1’ input.

FreeRange Computer Design Chapter 21

 - 561 -

 You would need to modify the CU_FSM to include a new instruction type. This instruction would be
similar to an I-type instruction as far as operands go. There are currently six I-type instructions that
use the “0010011” opcode, so you can reuse this opcode for these instructions; in this case you would
need to change the funct3 opcode value for these instructions to the two funct3 opcodes that are not
currently included in the six ALU-oriented immediate instructions, which are “001” & “101” (check
the spec).

 You would need to modify the CU_DCDR to account for these instructions so it can send out the
correct alu_fun signals in the case of ALU-based immediate instructions. The CU_FSM requires no
changes because we were able to make this a true I-type instruction by reusing the immediate-type
opcode and only tweaking the funct3 opcode.

b) Required changes the RISC-V assembler:

 You would need to make the assembler aware of the new instruction including the three new funct3
opcodes from the previous step.

c) Required changes in RISC-V memory requirements

 You did not add states, change main memory, change the CSR, or change the PC, so there would be no
changes in memory sizes.

d) Describe why these instructions are potentially useful

 If your application needs to shift 1’s into register rather than 0’s, this instruction would save an
instruction or a register (depending on whether you would implement the shift as an immediate of reg-
type instruction).

e) Describe why you don’t need a sll_0 & srl_0

 The current shift left and right instructions insert 0’s already, which means a shift-type instruction that
shifts one bit location does the same thing.

FreeRange Computer Design Chapter 21

 - 562 -

Example 21.2: Reg-Reg Load Instructions

You must modify the RISC-V OTTER to include three new instructions:

 lb rd,rs2(rs1) # load rd with data at mem addr M[rs2+rs1]

 lh rd,rs2(rs1) # load rd with data at mem addr M[rs2+rs1]

 lw rd,rs2(rs1) # load rd with data at mem addr M[rs2+rs1]

The lb and lh instruction should zero-extend data such that it fills the 32-bit destination
register.

For this problem, describe the following:

a) changes you need to make to the RISC-V MCU hardware

b) changes you need to make to the RISC-V MCU assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would or could be useful

Solution: This problem asks you to add something to the MCU, which means there is a possibility that the
width of some items such data widths or memory may increase. We don’t know anything for sure yet, but
we’ll be on the lookout for stuff “growing”.

a) Required changes to the RISC-V MCU hardware:

 The first thing to notice about these instructions is that they have the same mnemonic as existing
RISC-V MCU instructions. This is possible and programmers do it quite often. The trick here is
even though the instructions are the same, the form of the operands is different, which thus
allows the assembler to differentiate between the instruction types. So no need to worry there.
We do then hope to make these I-type instructions similar to the other load-type instructions.
There are currently five load-type instructions that share the “0000011” opcode; these
instructions are differentiated by the funct3 opcode field. Since there are only five instructions,
and the 3-bit funct3 opcode has three unused bit combinations, we can easily fit this instruction
with the other instructions having the “0000011” opcode flavor.

 We next need to examine the control units since we’re adding new instructions. The instructions
as similar to other load-type instructions in that they provide an absolute address to the memory
module; these instructions only differ in the way the instruction calculates the absolute address.
This instruction chooses rs2 for the second operand rather than an immediate value, which
means the only difference between a “lw rd,imm(rs1)” and “lw rd,rs2(rs1)“ is
the data selection on the ALU’s srcB MUX. We thus need to modify the CU_DCDR to
recognize these instructions and send out the correct alu_srcB signal. We don’t need to change
the CU_FSM because the present support for the load-type signals works fine for our new
instruction.

b) Required changes the RISC-V assembler:

 We would need to make the assembler aware of the three new instructions including whatever
new opcodes you decided from the previous step.

c) Required changes in RISC-V memory requirements:

 We did not add states, change main memory, change the CSR, or change the PC, so there would
be no changes in memory sizes.

d) Why this modification would or could be useful:

FreeRange Computer Design Chapter 21

 - 563 -

 This instruction provides another memory addressing mode. Now this may not excite you the
programmer and hardware person, but it make compiler writers slather at the mouth as they now
have more options as to implementing higher-level language code. In reality, the previous
address calculation used one register and one immediate value, while these two new instructions
use two register values. In this context, registers are effectively variable, which renders these
load-type instructions potentially more useful than the current RISC-V load-type instructions.

Example 21.3: Branch Based on Memory Data

Add the following instructions to the RISC-V MCU. These are conditional branches based on a
comparison of a bit set in a register and a memory address.

bm_eq rs1,rs2,label # branch to label if rs1 = mem[rs2]

bm_ge rs1,rs2,label # branch to label if rs1 ≥ mem[rs2]

bm_geu rs1,rs2,label # branch to label if rs1 ≥u mem[rs2]

bm_lt rs1,rs2,label # branch to label if rs1 < mem[rs2]

bm_ltu rs1,rs2,label # branch to label if rs1 <u mem[rs2]

bm_ne rs1,rs2,label # branch to label if rs1 ≠ mem[rs2]

example: bm_eq x10,x11,My_label

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

e) why you would or would not include these instructions in the computer you’re designing

Solution: This is yet another branch-type instruction. Here’s what I see:

a) Changes you need to make to the RISC-V hardware:

 There are six instructions here, which seem like quite a few. What we want to do is use as much as the
existing hardware as possible to implement these instructions. These looked like the regular branch
instructions, so that is a good starting point for these problems. The BRANCH_COND_GEN module
currently has two inputs, which are the two outputs from the register file. We can use one of those
outputs, but the other output needs to come from the memory module. But since we need to support the
regular branch instructions as well, the rs2 input to the BRANCH_COND_GEN needs a MUX in front
of the rs2 input. This means the CU_DCDR needs another select output. The other input to the MUX
connects to the DOUT2 output of memory.

 We need to be able to use the register file’s rs2 output as an address to memory, which means we need
a MUX to choose between the current input (the ALU output) and rs2. This requires that we add
another select signal to the output of the CU_DCDR.

 Our next concern involves timing. These new instructions are somewhat like load-type instructions in
that the first needs to get a memory address, and then need to do something with that address. The load-
type instructions require three states because of the synchronous read nature of the memory. Therefore,
these new types of instruction are going to require three states.

FreeRange Computer Design Chapter 21

 - 564 -

 We don’t need to change the BRANCH_COND_GEN module in any way, which simplifies the changes
we need to make to the CU_DCDR.

 We can make these new instructions have the B-type format, since it already contains the required
fields. We need to have it a new 7-bit opcode and differentiate the instructions using the funct3 opcode
field.

 We need to modify the CU_DCDR to recognize these six instructions. Additionally, we need to add a
control signals for the two MUXes we added to the MCU. One MUX chooses between the rs2 output or
the memory output for the lower input of the BRANCH_COND_GEN; the other MUX chooses
between the rs2 output of the register file or the ALU result output to act as the address to data memory.
We’ll need to modify all load and store-type instructions to use the memory address MUX select; we’ll
need to do the same thing with the regular branch-type instructions, but with the other new MUX.

 We need to change the CU_FSM to recognize these instructions. Additionally, we can get either add a
new state or make the current third state (the writeback) state more complex by supporting these new
instruction. We’ll shoot for the more complex FSM to make the problem more interesting. This means
we’ll add a special state for these new branch-type instructions, which is similar to the writeback state.

b) Changes you need to make to the RISC-V Assembler:

 The assembler needs to recognize the new instructions. We created a new opcode for a B-type
instruction, and added a supporting set of funct3 opcodes.

c) Required changes in RISC-V memory requirements:

 Because we added a new “writeback” state especially for these new instructions, we increased the
number of FSM states from four to five. Assuming we use the minimum number of bits to encode the
FSM states, we then need to add another bit to the state registers, which means the state registers grow
from two to three bits. We did not change main memory, the PC, the register file, or the CSR register,
so their memory requirements do not change.

d) Why this modification would be useful:

 This modification would be useful to save instructions by accessing memory directly for branch
instructions. If we did not have this instruction, we would need to do get the data from memory before
executing the branch instruction.

e) Why you would or would not include this instruction in the computer you’re designing:

 If your application required that you do many branches based on the values in memory, these
instructions would certainly save clock cycles. Once again, there are tradeoffs involved. These
instructions require three clock cycles, so the saving are not overly significant. On other hand, the
comparisons can be made without bring memory data to registers, so it does reduce register usage.

FreeRange Computer Design Chapter 21

 - 565 -

Example 21.4: Bit Set and Bit Clear Instructions

Add the following instructions to the RISC-V MCU. These are conditional branches based on a bit
set in a register.

bbset rs1,rs2,label # branch to label if rs1[rs2] = 1

bbclr rs1,rs2,label # branch to label if rs1[rs2] = 0

example: bbclr x10,x11,My_label

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

e) why you would or would not include this instruction in the computer you’re designing

Solution: The following is my take on this problem; my solution is has no magic associated with it. Please let me
know if you have better ideas. This is another example where we are adding something, so we’ll stay attentive to
parts of the architecture that require expanding.

a) Changes you need to make to the RISC-V hardware:

 These new instructions look just like branch instructions, meaning we can use the B-type format for
these new instructions, which is good because we won’t need to define a new instruction format.
There are currently six B-type instructions using the “1100011” format and differentiated by the 3-
bit funct3 opcode, so there are two unused funct3 opcodes we can use for these two instructions.

 We first need to modify the BRANCH_COND_GEN module to include more functionality. We
don’t need more inputs as we have both registers already input. We need to add one output, which
would indicate whether a specific bit in a specific register was set or not, such as br_bb, similar to
the other outputs from the modules. The hardware that we add to the BRANCH_COND_GEN
module would drive the output to complete the given functionality.

 We then need to modify the CU_DCDR to include these two new branch instructions, which would
entail adding another input bit to the module to handle the new output from the
BRANCH_COND_GEN module.

 We can use the CU_FSM as is because we did not add a new OPCODE. This module will not need
to change.

b) Changes you need to make to the RISC-V Assembler:

 The assembler needs to recognize the new instructions. We didn’t change the B-type OPCODE, but we
did add two funct3 opcodes; the assembler needs to know about these.

c) Required changes in RISC-V memory requirements:

 The memory size does not change. We did not change main memory, the PC, the register file, or the
CSR register. We also did not change the CU_FSM, which is where the last bits of memory reside.

d) Why this modification would be useful:

 This modification would be useful to save instructions. If we did not have this instruction, we would
need to do masking and shift and other voodoo that makes adds extra instructions.

FreeRange Computer Design Chapter 21

 - 566 -

e) Why you would or would not include this instruction in the computer you’re designing:

 The RISC-V designers probably didn’t add this instruction because it is somewhat specialized, and
programmers would not use it a relative large amount of time in normal coding. However, if the
application you’re designing your computer for could or would find this instruction useful, you would
add it as it would have several instructions if you did not have it available. The again, implementing this
instruction does take up much chip real estate, so you would only add it if it truly provided you with
some meaningful benefit.

Example 21.5: Reg-Reg Load Instructions

Add the following instructions to the RISC-V MCU. Make as few modifications to hardware as
possible. These are rotate left and right instructions based on words, two halfwords, or four bytes.
For halfwords, the instructions perform rotates on the two individual halfwords in a register; for
bytes the instructions perform rotates on each of the bytes in the register. These are similar to the
shifts in that they are barrel rotates based on the lower bits of the immed value.

rolw rd,rs1,imm # rotate word left by imm val; store result in rd

rorw rd,rs1,imm # rotate word right by imm val; store result in rd

rolh rd,rs1,imm # rotate 2 halfword left by imm val; store result in rd

rorh rd,rs1,imm # rotate 2 halfword right by imm val; store result in rd

rolb rd,rs1,imm # rotate 4 bytes left by imm val; store result in rd

rorb rd,rs1,imm # rotate 4 bytes right by imm val; store result in rd

example: rolw x4,x5,4 # barrel left rotate v positions

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

e) why you would or would not include this instruction in the computer you’re designing

Solution: This problem asks you to implement six instructions, all of which represent some type of left or right
rotates. We are adding something to the current RISC-V MCU, so we want to be aware of possible changes in
memory requirements.

a) changes you need to make to the RISC-V hardware:

 These six instructions look like just like immediate instructions so we’ll encode these as I-types. We
don’t have enough code space to encode these instructions using the current I-type instruction opcodes,
so we’ll give these instructions a new 7-bit opcode (it does not matter what exactly that is so long as it
is unique). We’ll then differentiate these instructions by assigning the each of the instructions a
different funct3 opcode, which works because there is space for eight instructions in the 3-bit funct3
opcode space.

 The ALU does all the work for these new instructions, so we need to modify the ALU to support these
instructions. There is currently only enough room for five more instructions in the ALU based on the
width of the alu_fun signal, so we need to increase the bit-width of the alu_fun signal from four to five
bits.

FreeRange Computer Design Chapter 21

 - 567 -

 We need to modify the CU_DCDR so that it recognizes these instructions with their sporty new
opcodes and associated funct3 codes. We also need to extend the width of the alu_fun output from four
to five bits. This changes all the other 11 alu_fun values to account for the six extra instructions.

 We need to make the CU_FSM recognize our new opcode for these instructions. They are I-type
instructions, and the same as other I-type instructions, but with a different opcode. Recall that the
CU_FSM does not use the funct3 opcode.

b) changes you need to make to the RISC-V assembler

 We need to make the assembler aware of the new instructions and send out the correct opcodes and
funct3 codes.

c) changes in RISC-V MCU memory requirements

 We did not change main memory, the PC, the CSR, the reg file, or add new states to the FSM; so these
changes do not cause the memory size to change.

d) why this modification would be useful

 Rotates are always nice to have in the instruction set. You don’t always have a use for them, but they
really save time and effort when you do. Wimpy answer indeed.

e) why you would or would not include this instruction in the computer you’re designing:

 These are six instructions, which are significant, but also the hardware implementation requires a non-
trivial amount of hardware. Therefore, you must really have a specific use for these instructions or it
may be a better choice to use the instructions currently available in the RISC-V and take a small hit on
execution time and program space.

Example 21.6: Push Instruction

You want to add the following instruction to the RISC-V MCU. Make as few modifications to
hardware as possible. Implement this instruction in two clock cycles. Note that this instruction
assumes the stack pointer is always x2.

push rs2 # push rs2 on stack; assume stack pointer is x2

examples:

 push x25 # push x25 on the stack

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

Solution: This problem is a bit challenging, but we included it because it shows you the possibilities and
accompanying thought process you need to take on when you do these types of problems. The first thing to be
aware of is that we’re adding something to the RISC-V MCU, which means we may increase memory
requirements.

a) Changes you need to make to the RISC-V hardware:

FreeRange Computer Design Chapter 21

 - 568 -

 Push operations are generally two things: write something to memory at the correct address and change
the address of the stack pointer. Write it out:

 x2x2–4; mem[x2–4]rs2 # these operations happen simultaneously

 Writing it out shows that we need to access two registers at the same time, which is the data in rs2, and
the SP address in x2. There is only one type of instruction outputs values from two registers, which is
the R-type instructions, so we can thus model our push instruction as an R-type instruction. There are
many R-type instructions using the “0110011” opcode, which leaves no space for any more instructions
using this opcode (based on the funct3 opcode), so we give this instruction a new opcode and
differentiate it with the 3-bit funct3 opcode.

 We then need to get the right data to the places, which means adjusting addresses. We first need to write
the data to the reg file into register x2. We can do this by hardcoding the value “00010” into the rd field
in the push instruction (recall we’re using an R-type format). Therefore, we’ve taken care of the address
that we need to write to the reg file.

 The data we need to write to the register file is the data in x2 minus 4 (x2-4). We do this getting the x2
data out of the register file by hardcoding the adr1 input to “00010”. Once on the output, we subtract 4
from that value and feed it into the register file select MUX, which means we have to grow the MUX
select (rf_wr_sel) by one select variable. The act of subtracting four from the value indicates that we
also need to include some type of adder. Note that this approach opted to not use the ALU. We could
have achieved the same result by adding a “-4” input to the srcB MUX, which also would have required
we add an extra select bit to srcB MUX.

 rs2 currently connects to the data input of the memory, so that does not need to change. The data
address input connects to the ALU output, which is not going to help us. We need to place a 2:1 MUX
on the memory ADDR2 input to allow either the ALU output or the x2-4 data for use as the data
address.

 We need to change the CU_DCDR because we added two new control signals and a new instruction.
Recall that we need to expand the register file MUX to account for the adjusted SP, and the new MUX
in front of the memory address. The two new control signals for the CU_DCDR are for extending the
register file MUX and by one bit and adding a 2:1 MUX for the data address.

 We need to change the CU_FSM to recognize the new 7-bit OPCODE, though it has the same control
outputs as other R-type instructions.

b) Changes you need to make to the RISC-V assembler:

 The assembler needs to recognize the new instruction and assign the correct opcodes; recall that we
hardcoded two of the R-type instruction register address fields.

c) Changes in RISC-V memory requirements:

 The memory size does not need to change to support this instruction. We did not change main memory,
the PC, the register file, or the CSR register. Although we changed the CU_FSM, we did not add new
states, which is the only way we could have increased memory size in that unit.

d) Why this modification would be useful:

 This mod would be useful because it would change a push operation from two instructions into one,
thus providing a glimmer of hope for the free world.

FreeRange Computer Design Chapter 21

 - 569 -

Example 21.7: Conditional Jump Instructions

Add the following instructions to the RISC-V MCU. Make as few modifications to hardware as
possible. Implement these instructions in two clock cycles. These instructions are essentially
conditional jump instructions. When we issue a jal instruction as a jump (not a subroutine call),
we don’t utilize the destination register (rd). For the following instructions, we use the rd register as
a source address register rather than a register to write to as in the normal jal instruction.

jal_s rd,imm # jump if reg_file[rd] != 0

jal_c rd,imm # jump if reg_file[rd] == 0

examples:

 jal_s x25,my_label # jump if value in x25 is non-zero

 jal_c x4,my_label # jump if value in x4 is zero

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

e) why you couldn’t use these instructions for subroutine calls
f) how these instructions differ from the other branch-type instructions

Solution: Here is a possible solution. Keep in mind that we are adding something to the MCU, so we’ll stay
attentive of the possibility of things growing.

a) Changes you need to make to the RISC-V hardware:

 This instruction is some type of jump so we can use the jal instruction format, which is a J-type
instruction. What we need to do is to get a register value to the BRANCH_COND_GEN module; the
registers already both connect to the module but the J-type instruction format has only one field for
registers, which is a the destination register. We’ll use the rd field in the jal instruction as a source
register and not a destination register. We can use either source register for this as both the rs1 and rs2
outputs from the reg file connect to the BRANCH_COND_GEN. To make this work, we need to place
a 2:1 MUX in front of the adr2 input on the reg file (this choice is arbitrary; you could use either source
address for this) so that we can use the destination address (wa) field in the J-type instruction as a
source address. The inputs to this MUX would be the current adr2 input (ir[24:20]); the other input
would be the current wa input value (ir[11:7]). In this way, when we issue this instruction, we can use
the rd value as a source address.

 Due to the previous bullet, the rs2 has the address of rd. The rs2 output already connects to the
BRANCH_COND_GEN, but we need to slightly modify the module. We need to add a single-bit
output to the BRANCH_COND_GEN that indicates when the rs2 input is zero or non-zero; the new
hardware would drive this output and connect to the CU_DCDR as in input.

 We need to modify the CU_DCDR to recognize the new output from the BRANCH_COND_GEN and
to recognize the new instructions. Since we are using a J-type format for our new instructions, there is
no funct3 field, so each of these instructions would require its own 7-bit opcode to differentiate these
instructions from the current jal instruction. The CU_DCDR would also now have a new control
output, which would be the select input to the MUX we added in front of the reg file’s adr2 input. The
CU_DCDR would decide to take the jump or advance the PC to the next instruction.

 The CU_FSM would need to change to recognize the new 7-bit opcodes for these instructions and
output the correct control signals, which would be different from the jal instructions.

FreeRange Computer Design Chapter 21

 - 570 -

b) Changes you need to make to the RISC-V assembler:

 The assembler would need to be modified to recognize the two new instructions so it could generate the
correct machine code for the instructions.

c) Changes in RISC-V memory requirements:

 We did not change main memory, the reg file, the CSR module, or the PC. We also did not add new
states to the CU_FSM, so this change would require no memory changes.

d) Why this modification would be useful:

 This instruction would save a few instructions as it creates a conditional branch. The jal and jalr
instructions are currently unconditional branches.

e) Why you could not use these instructions for calling subroutines:

 You could not use this instruction for subroutines calls because a subroutine call would use the
destination register to store the return address, which is typically x1. The way we implemented this
instruction took away to the rd write addresses and used it as a source address.

f) How these instructions differ from the other branch-type instructions

 These new instruction allow for farther jumps than branch-type instruction based on the width of the
immediate field in the jal instruction as opposed to the branch-type instructions.

Example 21.8: Reg-Reg Swap Instruction

Add the following instruction to the RISC-V MCU. Make as few modifications to hardware as
possible. This instruction swaps the data in two registers.

reg_swp rs1,rs2 # swaps the values in source registers

example:

 reg_swp x10,x11

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

e) describe an algorithm where this instruction could particularly useful

Solution: Here is a possible solution. Note that this problem requires you to add something to the RISC-V MCU,
so there is a possibility that memory requirements will change.

a) Changes you need to make to the RISC-V hardware:

 The most obvious thing we see from this problem is that is has two reg file writes; that means there is
no way to do this in one execute cycle. We’re going to have to add extra cycles for this instruction. We
can do this problem in many ways, but they are all complicated. The problem is storing intermediate
data while we do the swap. The solution is to use the XOR trick and swap the registers “in place”. This
is what we want: xor rs1,rs2,rs1 followed by xor rs2,rs1,rs2 followed by xor
rs1,rs2,rs2 where the left-most operation is the destination register.

FreeRange Computer Design Chapter 21

 - 571 -

 First, let’s decide to use a B-type instruction as it has two source operands and no destination operand.
We need both source operands as the destination operand (not at the same time), so we need to put a
MUX in front of the wa input to the MUX. It needs to be a 4:1 MUX because we’ll need to choose
between three different values as the wa input (the three current reg file addresses). This creates the
need for two select inputs.

 We don’t need to change the CU_DCDR other than to recognize this instruction in order send out the
correct control signals. We need to make the CU_DCDR aware of the opcode for this instruction.

 We need to add the two select signal for the new MUX to the CU_FSM. We need to add them here
because we need to change the values for each execute cycle of the instruction. Since the CU_DCDR
does not know of the cycles, we can’t add them to that module. We need to do three task reg file writes
for this instruction, so we need to add two more states to the CU_FSM. We can get one write done with
the current execute cycle, but we then need do add two more cycles for the other two required XOR
operations for this instruction. On an exam, you would for sure want to draw the new state diagram for
clarity.

b) Changes you need to make to the RISC-V assembler:

 The assembler would need to be modified to recognize the two new instructions so it could generate the
correct machine code for the instructions.

c) Changes in RISC-V MCU memory requirements:

 We did not change main memory, the reg file, the CSR module, or the PC. We added two new states to
the FSM, which currently has four states. We maxed out the code space for the two bits of state
variable, so we need to add another bit, which gives us the option of coding eight states. This was a
50% increase in memory for the CU_FSM.

d) Why this modification would be useful:

 This instruction would do two things: save a few instructions, and because it does an “in-place” swap,
we used less registers.

e) Describe an algorithm where this instruction would be useful:

 This instruction would be ideal for sort algorithms.

FreeRange Computer Design Chapter 21

 - 572 -

Example 21.9: Pop Instruction

Add the following instructions to the RISC-V OTTER MCU. Make as few modifications to
hardware as possible. This instruction assumes x2 is used as the stack pointer.

pop rs1 # pop data from stack into rs1;

example:

 pop x10

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

Solution: This is similar to the push instruction we described in a previous solution we conquered. We’re
adding something to the MCU, so we may cause an increase in memory requirements. The first thing you want
to do in a problem like this is to understand the underlying RTL. Here it is for a pop operation:

 rs1 mem[sp]; sp sp+4

a) Changes you need to make to the RISC-V hardware:

 The first thing to notice about this problem is that we’re doing two writes to the register file. That
means there is no way we can implement this instruction with one execute cycle. This gets ugly; hang
on. We need two cycles: the first cycle copies data from memory to the register file; the second cycle
advances sp and stores the result in sp.

 Make this an I-type instruction. Give it a new 7-bit opcode to differentiate it from other I-type
instructions. Hardcode the immediate field in the I-type instruction to zero. Hardcode the rs1 in the
instruction to 2, which is the address of the sp. The output of the ALU then has the memory address of
the sp, which is the data we need to load into the register in the register file. The output of the memory
already connects to the register file. This would be the first cycle. The second cycle would be to add a
“+4” box to the rs1 reg file output, and connect that output to the register file MUX. This means we
need to change the register file MUX to be an 8:1 MUX and add an extra bit to rf_wr_sel. We also need
to place a MUX in front of the wa input to the reg file so we can route the adr1 reg file address there to
be the write address for the second cycle. But wait, it gets worse.

 We need to change the CU_FSM in a few ways. First, we need to add an extra state to the state machine
for this instruction. Second, we need to override the entire register file MUX for this instruction. We
need to do this because rf_wr_sel needs to different for each execute cycle for this instruction, and the
CU_DCDR controls this signal. We need to add a MUX to the external hardware to have the CU_FSM
take over the rf_wr_sel signal for this instruction. This would require an extra output from the
CU_FSM to control this MUX.

 We need to modify the CU_DCDR so that it recognizes this instruction with its new opcode. We need
to add a select signal output from the CU_DCDR to control the MUX for the reg file’s wa input.

b) changes you need to make to the RISC-V assembler

 We need to make the assembler aware of this new instruction and send out the correct associated
machine code.

c) Changes in RISC-V memory requirements:

FreeRange Computer Design Chapter 21

 - 573 -

 We did not change main memory, the PC, the CSR, the reg file. We did add a new state to the CU_FSM,
which put us at five states instead of four states. This requires an extra bit in FSM’s state registers.

d) Why this modification would be useful:

 This would save an instruction when you need to do a pop, and make the code more readable as
opposed to tweaking the immediate values on the associated lw instruction.

Example 21.10: Adding a HALT Instruction

Add the ability to pause program execution. Many CPUs contain a “HALT” instruction, so I want
the RISC-V to have one also. Describe the changes you need to make to the associated hardware
and the assembler in order to implement this instruction and any other instruction I would need as a
result of executing a “HALT” instruction. For this problem, do the following:

For this problem, describe the following:

a) changes you need to make to the RISC-V hardware

b) changes you need to make to the RISC-V assembler

c) changes in RISC-V MCU memory requirements

d) why this modification would be useful

Solution: The MCU is always doing something; the designers planned it that way. Recall that the never stopping
feature is a characteristic of embedded systems. HALT-type instructions are useful in many ways, the ways are
not worth going into here. The most obvious advantage would be to reduce power consumption by stopping the
MCU from doing anything. There is nothing special about this solution, so you can definitely come up with a
better one yourself.

a) Changes you need to make to the RISC-V hardware:

 Implementing this instruction would require the Control Unit to be modified in order to recognize
this instruction and send out the appropriate control signals. Adding an instruction does not change
the number of states in the control unit thus does not change memory requirements. We would
implement this instruction by causing the MCU to go into a “HALT” state if the MCU executed
this instruction. This could possibly cause an increase in the memory associated with the control
unit as we’re officially adding a state.

The main issue with this instruction is how you would restart the MCU once you executed a
HALT instruction. The question is rather misleading on this issue as it suggests that you must add
another instruction to “START” the CPU. But, if the MCU is HALTed, you won’t be able to
execute an instruction. The only solution is to have some external signal “unhalt” the MCU. In
this case, the HALT instruction would cause the Control Unit to go into a “HALT” state; in this
case, some external signal, strangely similar to an interrupt, would be required to get the MCU
doing something meaningful again by leaving the HALT state. This signal could be anything,
such as a user button-press or something similar. Keep in mind in real life, CPUs do all they can
to turn themselves off if they are not being used; these are referred to as power-saving modes.
But, they need to quickly wake up when something important needs the CPUs computational
abilities.

b) changes you need to make to the RISC-V assembler

 We need to make the assembler aware of this new instruction and send out the correct associated
machine code.

c) Changes in RISC-V memory requirements:

FreeRange Computer Design Chapter 21

 - 574 -

 We did not change main memory, the PC, the CSR, the reg file. We did add a new state to the
CU_FSM, which put us at five states instead of four states. This requires an extra bit in FSM’s state
registers.

d) Why this modification would be useful:

 This would essentially provide a power-saving mode to the MCU. This would also be a useful
instruction if you were using the RISC-V in a multi-processor environment.

FreeRange Computer Design Chapter 21

 - 575 -

21.3 Chapter Summary

 Because the RISC-V architecture was provided to you, it leaves little room for actual hardware design. In
cause you may have not noticed, hardware design is a significant aspect of this course. If you truly
understand the current RISC-V MCU hardware and how it interfaces with the RISC-V ISA, you should be
able to make modifications to the RISC-V to extend the current functionality.

 This chapter presented a bunch of possible modifications to the RISC-V MCU and/or RISC-V instruction
set. The learning element here is comes by understanding the solutions.

 Any changes to “additions” to the current RISC-V MCU may affect the complexity and storage
requirements of the hardware; and “reductions” made to the RISC-V MCU may have the opposite affect.

 You must reference the RISC-V assembly language manual and RISC-V MCU architectural diagram in
order to complete these problems. No one should expect you to memorize reference data such as that stuff.
A complete understanding of the instruction formats is vital when working with these problems.

FreeRange Computer Design Chapter 21

 - 576 -

21.4 Chapter Exercises

1) The text describes these hardware modification problems as “open ended”. Briefly describe what that
means.

2) Briefly describe how it is possible to reuse instruction mnemonics for new instructions and not freak out the
assembler.

FreeRange Computer Design Chapter 21

 - 577 -

21.5 xxxxChapter Design Problems

1) Add the following instruction to the RISC-V OTTER MCU. Make as few modifications to hardware as
possible. Implement this instruction in two clock cycles. This instruction stores the word in the rd
register to memory and leaves the rd value cleared.

mr_clr rd,imm(rs) : xd 0; mem[X(rs)+sext(imm)] xd

example: mr_clr x25,8(x10) # write x25 to memory; clear x25

a) Describe changes you need to make to the RISC-V hardware

b) Describe changes you need to make to the RISC-V assembler

c) Describe changes in RISC-V MCU memory requirements

d) Describe why this modification could be useful

2) xxxxImplement the following instruction: “INOUT”. This instruction has the form: “INOUT r0,0x23”
where the source operand is considered a port_id. This instruction will simultaneously input a value and
write it to r0 (the destination operand) and also output the value to the port_id (the source operand).

3) Implement the following instruction: “IN 0x37,0x23” where the source operand (right operand) is
considered a port_id and the destination operand is an address used to index RAM. This instruction inputs
the value from the input port to the given RAM address.

4) Implement the following instruction: “ROLST r1,(r2)” where the destination operand (r1) is rotated left
and the result is stored in the RAM location referenced by the value in the source operand (r2).

5) Implement an instruction that automatically increments the index register for indirect LD instructions. For
example, when I write “LD r0,(r1+)”, the value from address value in r1 is loaded from memory
into r0 and the value in r1 is automatically incremented as part of this operation. For this problem, do the
following:

6) I want to implement the following instructions: “SRSWP” which stands for “RAM swap”. This instruction
has the form “SRSWP r1,(r2)”, which means it swaps the value in r1 with the contents of the memory
location indicated by the value in r2.

FreeRange Computer Design Appendix

 - 578 -

Appendix

FreeRange Computer Design Foundation Modeling Cheatsheet

 - 579 -

Foundation Modeling Cheatsheet
 Circuit Diagram Data IN Control IN Data OUT Status OUT

C
 o

 m
 b

 I
 n

 a
 t

o
r

i a
 l

RCA

A
B
Cin

- SUM Co

MUX

Multiple DATA SEL Single DATA -

Generic
Decoder
(LUT)

IN_DATA - OUT_DATA -

Standard
Decoder

IN_DATA SEL OUT_DATA -

Comparator

A
B

- - EQ
GT
LT

Parity
Generator

DATA - - PARITY

S
 e

 q
 u

 e
 n

 t
I

a
l

Register

IN_DATA CLK
LD
CLR

OUT_DATA -

Counter

IN_DATA CLK
LD
UP/DOWN
ENABLE

COUNT RCO

Shift
Register

IN_DATA CLK
LD
SH LEFT/RIGHT
data
ENABLE

OUT_DATA -

RAM

IN_DATA
-

CLK
WE
ADDR

OUT_DATA
-

-

 Inputs Outputs
FSM

- CLK
status

- control

F
S

M
 M

od
el

s

DATA = multiple bits data = single bit

FreeRange Computer Design RISC-V OTTER Architecture (no interrupts)

 - 580 -

RISC-V OTTER MCU Architecture Diagram (no Interrupts)

FreeRange Computer Design RISC-V OTTER Architecture (no interrupts)

 - 581 -

RISC-V OTTER MCU Architecture Diagram (with Interrupts)

FreeRange Computer Design Verilog Style File

 - 582 -

Finite State Machine Modeling using Verilog Behavioral Models

FreeRange Computer Design Verilog Style File

 - 583 -

RISC-V MCU Wrapper Source Code
// Engineer: James Ratner, Joseph, Paul Hummel, Celina Lazaro
// Revision 1.04 – (02-08-2020) removed typo for anodes

module OTTER_Wrapper(
 input clk,
 input [4:0] buttons,
 input [15:0] switches,
 output logic [15:0] leds,
 output logic [7:0] segs,
 output logic [3:0] an);

 //- INPUT PORT IDS ---
 localparam SWITCHES_PORT_ADDR = 32’h11008000; // 0x1100_8000
 localparam BUTTONS_PORT_ADDR = 32’h11008004; // 0x1100_8004

 //- OUTPUT PORT IDS --
 localparam LEDS_PORT_ADDR = 32’h1100C000; // 0x1100_C000
 localparam SEGS_PORT_ADDR = 32’h1100C004; // 0x1100_C004
 localparam ANODES_PORT_ADDR = 32’h1100C008; // 0x1100_C008

 //- Signals for connecting OTTER_MCU to OTTER_wrapper
 logic s_interrupt;
 logic s_reset;
 logic s_clk = 0;

 logic [31:0] IOBUS_out;
 logic [31:0] IOBUS_in;
 logic [31:0] IOBUS_addr;
 logic IOBUS_wr;

 //- registers for dev board output devices ---------------------------------
 logic [7:0] r_segs; // register for segments (cathodes)
 logic [15:0] r_leds; // register for LEDs
 logic [3:0] r_an; // register for display enables (anodes)

 assign s_interrupt = buttons[4];
 assign s_reset = buttons[3];

 //- Instantiate RISC-V OTTER MCU
 OTTER_MCU my_otter(
 .RST (s_reset),
 .intr (1’b0),
 .clk (s_clk),
 .iobus_in (IOBUS_in),
 .iobus_out (IOBUS_out),
 .iobus_addr (IOBUS_addr),
 .iobus_wr (IOBUS_wr));

 //- Divide clk by 2
 always_ff @ (posedge clk)
 s_clk <= ~s_clk;

 //- Drive dev board output devices with registers
 always_ff @ (posedge s_clk)
 begin
 if (IOBUS_wr == 1)
 begin
 case(IOBUS_addr)
 LEDS_PORT_ADDR: r_leds <= IOBUS_out[15:0];
 SEGS_PORT_ADDR: r_segs <= IOBUS_out[7:0];
 ANODES_PORT_ADDR: r_an <= IOBUS_out[3:0];
 default: r_leds <= 0;
 endcase
 end
 end

FreeRange Computer Design Verilog Style File

 - 584 -

 //- MUX to route input devices to I/O Bus
 //- IOBUS_addr is the select signal to the MUX
 always_comb
 begin
 IOBUS_in=32’b0;
 case(IOBUS_addr)
 SWITCHES_PORT_ADDR : IOBUS_in[15:0] = switches;
 BUTTONS_PORT_ADDR : IOBUS_in[4:0] = buttons;
 default: IOBUS_in=32’b0;
 endcase
 end

 //- assign registered outputs to actual outputs
 assign leds = r_leds;
 assign segs = r_segs;
 assign an = r_an;

endmodule

FreeRange Computer Design Verilog Style File

 - 585 -

Verilog Style File
James Mealy v1.00

The main goal of your Verilog source code is to model a digital circuit, which means that your only required
mission is to satisfy the Verilog synthesizer. Good Verilog models must both work properly and be readable by
humans. Poorly written Verilog models can be work properly but are not maintainable or reusable if humans
can’t easily read and understand the code. Digital designers can generate good Verilog models by following a
few relatively simple guidelines. The following code describes how digital designers can create superbly
formatted Verilog models, but does not cover aspects of how to properly use the various Verilog constructs. Use
this document in conjunction with the Verilog Coding Guidelines to help you create most excellent Verilog
models. The overriding factor with your Verilog source code is to make it neat, organized, and readable; any
specific items not listed in this style file should adhere to these principles.

// The file contains a header describing the important features of the file.

//
// Company: Ratner Surf Designs
// Engineer: James Ratner & Myron Bucketts
//
// Create Date: 07/07/2018 08:05:03 AM
// Design Name:
// Module Name: prime_gen_fsm
// Project Name:
// Target Devices:
// Tool Versions:
// Description: Model contains the names of the model creator, name of
// the module, and a description at the very least. You should also track
// revisions of the model also. This is the standard Xilinx header which
// contains other items we choose to remain blank.
//
// Dependencies:
//
// Revisions:
// Revision 1.00 - (07-07-2018) File Created
//
// Additional Comments:
//
//

// The module name describes the module’s purpose, separates inputs and outputs,
// and only places one item per line. We opted to include types (wire or reg),
// but this is not necessary.
module prime_gen_fsm(
 input wire PRIME,
 input wire DONE,
 input wire RCO,
 input wire btn,
 input wire clk,

 output reg START,
 output reg WE,
 output reg UP1,
 output reg UP2,
 output reg CLR,
 output reg SEL);

 /* Longer comments are more easily modified if you delineate them using
 block comments.
 */

 /* Note how we separate each “item” with whitespace (blink lines). We
 Do this in the entire file. While this approach makes the code model
 Longer, it does not affect the size of the synthesized hardware.
 */

 /* Note that we place all declarations at the top of the model and do
 Not inter-mingle declarations throughout the code.

FreeRange Computer Design Verilog Style File

 - 586 -

 */

 // next state & present state variables
 reg [1:0] NS, PS;

 wire s_clk; // divided (slowed) clock signal

 // bit-level state representations
 parameter [1:0] st_wait=2'b00, st_start=2'b01, st_work=2'b11;

 /* We use the vertical “dot” form for instantiations. There is one
 mapping per line, everything is nicely aligned, and we use self-
 commenting names.
 */

 // divide the FSM clock down
 clk_2n_div_test #(.n(25)) fsm_clk_divider (
 .clockin (clk),
 .fclk_only (1’b0),
 .clockout (s_clk));

 /* this is a sequential block based on the “posedge” argument in the
 Sensitivity list. Note that we use non-blocking assignment statements
 Because this block models a sequential circuit (state registers)
 */

 // the state registers
 always @ (posedge s_clk)
 PS <= NS;

 // the next-state and output decoders
 always @ (*)
 begin

 // we place many assignments on the same line because they serve
 // a similar purpose.
 START=0; WE=0; UP1=0; UP2=0; CLR=0; SEL=0; // assign all outputs

 /* All the cases in the case statement are nicely delineated.
 The if clauses in the final cases are also separated using
 whitespace (blank lines).

 All cases are represented so the case statement does not rely
 on the default clause to work properly.

 Longer blocks use comments for “ends” to indicate what they
 are ending.

 If statements with compound requirements are delineated using
 parenthesis.

 This is a combinatorial block (a decoder) so all if statements
 contain else statements, all case statements contain default
 statements, and we use block assignment statements.
 */

 case(PS)

 st_wait: // waiting for button press
 begin
 if (btn == 0)
 begin
 CLR = 0;
 NS = st_wait;
 end
 else
 begin
 CLR = 1;
 NS = st_start;

FreeRange Computer Design Verilog Style File

 - 587 -

 end
 end

 st_start: // prepare FSM to start calculation
 begin
 START = 1; SEL = 1;
 NS = st_work;
 end

 st_work: // state doing the main work
 begin
 START = 0; SEL = 1;
 if ((RCO==1) && (PRIME==1) && (DONE==1))
 begin
 WE = 1;
 NS = st_wait;
 end

 else if ((DONE==1) && (PRIME==0))
 begin
 UP1=1; UP2=0; WE=0;
 NS = st_start;
 end

 else if ((RCO==0) && (DONE==1) && (PRIME==1))
 begin
 UP1=1; UP2=1; WE=1;
 NS = st_start;
 end

 else if (DONE==0)
 NS = st_work;

 else
 NS = st_work;

 end // ends current case

 default: NS = st_wait;

 endcase
 end // ends always block
endmodule

FreeRange Computer Design RISC-V Assembly Language Style File

 - 588 -

RISC-V MCU Assembly Language Style File

The following file shows some of the more important issues regarding generating neat and readable RISC-V
MCU assembly source code. No style file can show you everything and they rarely make such an attempt. The
underlying factor in writing any source code is to be neat and consistent. Using proper indentation, white space
and commenting helps you attain the goals of being neat and consistent. The code is some example problem that
we edited for clarity and to make it shorter. The code does not assemble, but that is not the point; the program is
presented primarily for appearance purposes. Also, you can’t see it in the following code, but never use the tabs
of align items; use spaces instead.

FreeRange Computer Design RISC-V Assembly Language Style File

 - 589 -

#---
Program Description:

The entire program contains a header (or banner) describing the purpose of
the program. The more detail you can provide here the better, as you or anyone
else reading the program will want to know the details. Note that this banner
clearly delineated from the remainder of the program.
#---

the data segment is listed before code; all data in the data
segment is aligned and divided up between lines for clarity
#---- data segment ---
.data # data segment
junk: .word 0x3, 0x7 # describe purpose of data
bugs: .word 0x32, 0xDD # don’t try to fit data on one line
trash: .byte 0x3, 0x7 # more description

Always declare a text segment even if you have no data segment
The first part of any program or subroutine should have some
type of “init” label.
.text # text segment
init: la x10,junk # load address of junk
 li x20,2 # load count of data

Use white space (blank lines) between sections of program
that perform distinctively different tasks.

Align all labels, instructions, left-most operands and comments
One comment per line is a good assembly language programming approach.

init1: mv x25,x0 # designated large value
 addi sp,sp,-4 # make space for ra
 sw ra,0(sp) # store return address

loop1: beq x20,x0,done1 # quit if count is zero
 lw x30,0(x10) # get value
 call Calc_unary # find unary equivalent

admin: addi x10,x10,4 # advance address
 addi x20,x20,-1 # decrement count
 j loop1 # repeat

done1: lw ra,0(sp) # pop return address
 addi sp,sp,4 # adjust sp
 ret # going home, all the time

#---
Subroutine: My_sub:

All subroutines have banners describing that the subroutine does, the values
passed to and returned from the subroutine, and the register that the
subroutine permanently changes.

Passed values: x30
Returned values: x29

Tweaked register: x25, x31, x29
#---
My_sub:
init2: mv x31,x0 # init count
loop2: beq x30,x0,done2 # see if no more ones
 andi x29,x30,1 # mask LSB
 add x31,x31,x29 # accumulate count
 srli x30,x30,1 # shift value 1 to right
 j loop2 # do it again
done2: ret # bring it home

FreeRange Computer Design Glossary of Computer Design Terms

 - 590 -

Glossary of Computer Design Terms

-A-

Abstract Data Types: A data type that is described
at a high-level, such as how the object should
behave, rather than describing the type using low-
level implementation details.

Academonic: The rallying cry for those who dare to
expose the endemic corruption in academia.

Active Edge: The portion of a logic signal used to
synchronize digital circuit operation; can either be
rising edge (‘0’ to ‘1’ transition) or falling edge (‘1’
to ‘0’) transition.

Address: (or Memory Address), the way
semiconductor memory devices (structured memory)
specify memory locations. The address is analogous
to an array “index” in higher-level programming
languages.

Address Space: The maximum amount of memory
a given processor can access (or address). This does
not refer to the actual amount of memory (physical
memory) in any given system.

Anode: The positive end of a diode (the end that
accepts electrons). See cathode;

Arithmetic Logic Unit (ALU): The ALU is
generally a datapath submodule, which in turn is a
submodule of CPU. The ALU is responsible for
standard bit operations such as arithmetic and
logical operations (and shifts and any other way you
can think of to tweak bits). The ALU is responsible
for generating status of various operations (zero,
negative, overflow, carry, pointlessness, parity, etc.)
which are typically individual bits that are latched
outside of the ALU.

Arithmetic shifts: Shift operations that protect the
sign of data residing in a shift register when
performing shift operations.

Assemble Time: The notion of what values are
known at the time a program is assembled.
Generally speaking, the assembler knows constants
values at assemble time but does not know constant
values until run time.

Assembler Directives: One of the three main parts
of an assembly language program. Assembler
directives provide a method for the programmer to
send messages to the assembler.

Assembler: An assembler is a computer program
that translates assembly code (instruction
mnemonics) into machine code.

Assembly Language Program Parts: There are
generally three types of information found in
assembly language programs: 1) comments, 2)
assembler directives, and, 3) assembly language
instructions.

Assembly Language: A computer language that
uses mnemonics to represent the instructions
available to the programmer (the instruction set) for
a given computer architecture. The mnemonics
roughly spell out what the instruction does in terms
of the underlying hardware. Assembly language
programs are translated to machine code by use of a
software program referred to as an assembler.
Assembly language is generally non-portable in that
the assembly instructions are specific to a given
computer architecture.

Astable Multivibrator: A term referring to a signal
with no stable states, typically an oscillator (clock
signal).

Asynchronous: A term that refers to digital circuits
whose operations are not synchronized to any signal
such as a clock signal. This term often is a synonym
for combinatorial circuits.

-B-

Background Task: A term used to describe the
program code associated with main code and not
associated with interrupt service routines. The
foreground task is generally all the code that is not
initialization code or interrupt service routine code.

Barrel shifts: A special type of shift register shift
that shifts any number of bits (other than one bit) on
a single clock cycle.

Base Address: A value that is one of the values to
calculate a physical address; another value, such as
an offset, is used to modify the base address to create
a physical address.

CPE 233 Computer & Digital Term Glossary

 - 591 -

Big Endian: One of two ways to represent a
multibyte value in a byte-oriented memory that
places the most significant byte of the data at the
lower address value. See little endian.

Bit: A term commonly used to describe a binary
digit.

Bitwise: A really smart bit, or a term meaning that
an operation on a set of bits is done at the bit level
(on individual bit-pairs) and not on the entire set of
bits. You typically hear this term associated with
MCU’s logic-based instructions.

Bistable Multivibrator: A device with two stable
states (on and off); another term for a flip-flop.

Bi-Directional Signals: A term that refers to the
notion that data can flow through a line in two
directions (though not at the same time) rather than
only one direction. Bi-directions signals are
generally associated with tri-state outputs because a
given device cannot generally simultaneously drive
a signal and read from that signal.

Bit Masks: The term bit-mask describes a value that
“selects” certain bit locations of a given word while
disregarding other bit locations. The disregarded bits
are generally cleared by the bit-masking operation.
Bit masking is generally required because most
operations in microcontrollers occur on the byte-
level.

Bit-Banging: The process of using microcontroller
outputs on a bit-level to control external peripherals.
In this way, the general purpose outputs of a
microcontroller are used to generate the control
signals required to control and/or exchange
information with external devices.

Bit-Wise Operations: This term generally refers to
operations that on done on individual sets of bits in
registers, such as logic operations.

Block Diagram: A modeling approach used in
hardware to quickly transfer high-level knowledge
regarding the operations of a given circuit to the
human reader. Block diagrams can and should be
hierarchical in nature when appropriate to expedite
their understanding to the human reader.

Branch: A computer instruction that can cause
program flow to transfer to an instruction other than
the instruction following the current instruction.
Branch instructions are by definition conditional,
meaning program control transfers based on the state
of the hardware or a condition encoded into the
instruction.

Bus Contention: Bus contention occurs when two
different busses attempt to simultaneously drive the
same bus. In this context, the bus is a shared
resource. Contention can also occur on individual
signals as well as busses.

Bus: A set of electrical signals that are grouped
together because they share a common purpose. The
term “bus” also refers to various standard data
transmission protocols, and as a result, a bus, as
defined here is often referred to as a bundle.

Byte: A set of eight binary digits.

-C-

Carry: The bit that overflows or underflows from a
mathematical or shift operation.

Cathode: The negative end of a diode (or the end
that sources electrons). See anode.

Central Processing Unit (CPU): The CPU is
generally considered the part of the computer that
executes the instructions. Typical submodules of the
CPU include the control unit, datapath, program
counter, instruction memory, register files,
accumulators, ALUs, secondary memory, roach
motels, etc.

CISC: An acronym for complex instruction set
computer. See complex instruction set computer.

Clear: The act of making a bit value into a ‘0’.
Often used to refer to making a set of bit’s all zeros,
such as “clear the register”.

Clock: A signal that sequences or synchronizes all
operations in a sequential digital circuit. Clock
signals are typically periodic outputs from
oscillators circuits such as astable multivibrators.

Code Space: The part of a computer system’s
memory dedicated to the program memory.

CPE 233 Computer & Digital Term Glossary

 - 592 -

Complex Instruction Set Computer: This acronym
officially stands for “Complex Instruction Set
Architecture” and is generally used to describe
computer architectures. CISC computers generally
have the following characteristics:
The architecture contains relatively few general
purpose registers
 The instruction word formats are of different

lengths
 Instructions require a different number of

clock cycles to complete execution
 Some instructions in the instruction set are

complex (meaning they can generate a
significant amount of processing internal to
the architecture)

System clock rates are generally slower than their
RISC counter-parts.

Complexicated: Something that is both complex
and complicated.

Constant: A value that never changes; the opposite
of a variable.

Combinatorial vs. Sequential Circuits: The
outputs of a combinatorial circuit are a function of
the current inputs while the outputs of a sequential
circuit are a function of the combination of past
inputs. Stated differently, combinatorial circuits do
not have the ability to “remember” bits while
sequential circuits are able to store values and are
this considered to have memory.

Compiler: A computer program that translates
higher-level language code into machine code.
Compilers generally also produce assembly
language code listings, which are specific to the
target computer. Compiling is generally a two-step
process where the code is first translated to a generic
intermediate form, then translated to a form specific
to a given computer architecture.

Computational Complexity: A term that provides a
way to classify and/or describe the amount of
resources required to execute a program, section of
code or algorithm.

Computer I/O: One of the three main subsections
of a computer that allows the computer to interact
with the outside world.

Context: A term that refers to the state of the
processor at any given time, where state is defined
by the data the given processor is storing at a given
time. This term is synonymous with operating
context.

Context Restoration: A term describing what a
CPU does upon completion of servicing an interrupt.
In this case, context restoration refers to the notion
that the CPU must return to the state it was in (flags,
registers, etc.) before the CPU executed the interrupt
service routine.

Context Saving: A term that describes what a CPU
must do when an interrupt is acted upon. The
general notion is that interrupts are asynchronous
and can occur while the CPU is executing some
important piece of code. In this case, the CPU saves
the current state of the CPU (flags, registers, etc.)
before processing executing the interrupt service
routine.

Counter: A hardware sequential device that
generates a known sequence of values on the
circuit’s outputs. The device is typically
synchronous. Typical counter functions include
increment, decrement, clear, and hold.

-D-

Data: A set of 1’s and 0’s.

Data Segment: The part of an assembly language
program used to declare and/or define data; no
instructions can be listed in the data segment.

Datapath: The hardware module that is generally
considered to do the number crunching associated
with instructions. Submodules of the datapath
generally include the ALU, register file,
accumulator, various selection logic, etc.

Debouncer: An entity that “debounces” a switch,
which means the entity provides a noiseless state
transition. Switch debouncing can be done in
hardware or firmware.

Debug: The act or removing errors from an entity
such as a computer program or hardware
schematic/circuit.

Decoder: A standard combinatorial hardware device
the implements Boolean functions characterized by
tables. Two flavors of decoders include generic and
standard decoders.

CPE 233 Computer & Digital Term Glossary

 - 593 -

Decrement: The act of increasing a value by one;
it’s also one of the typical operations of a standard
digital counter.

Delay: A given span of time in a circuit where state
of the circuit does not change in a meaningful way.

Destination Operand: A given span of time in a
circuit where state of the circuit does not change in a
meaningful way.

Deterministic: An event that is known to happen
the same way each time it occurs and can thus be
described in advance.

Dev Board: A nickname for a development board.

Development Board: A populated PC board
containing hardware that allows you to prototype
various electronic circuit projects.

Diode: A two-terminal semiconductor device that
passes current in only one direction (from anode to
cathode). The diode causes a voltage drop across the
device terminals when conducting.

Direct Memory Access: One of three main type of
computer I/O, characterized by the MCU initiating
data transfers with external peripherals but not
expending significant amount of clock cycles
controlling that I/O operation. The programmed I/O
and interrupt I/O are the other two types.

Disassembly: The act of generating the assembly
code that generated the machine code from the
machine code.

Display Multiplexing: An approach typically used
by LED-based 7-segment displays that allows the
driving device to control many digits without
dedicating a signal to each LED in each segment.
The general approach is to connect each type of
segments with one signal and give each individual
display an on/off control. Using this configuration,
display multiplexing only actuates one display at a
time, but does so at a rate that makes it appear as if
all displays are on at the same time. Multiplexing
works for humans because of the notion of retinal
persistence.

DMA: An acronym standing for direct memory
access; see direct memory access.

Do-While Loop: An iterative loop characterized the
fact that the loop body is executed at least one time,
which it does by checking the loop ending condition
only after it executes one loop body.

-E-

Edge-Triggered: A term referring to a sequential
digital circuit whose state can only be changed
synchronized with an active edge of a given signal,
typically, a clock signal. The edge in question can
either be a “rising edge” (0→1 transition) or a
“falling edge” (1→0 transition).

Elementary Operation: A basic operation
performed by a sequential circuit. Elementary
operations are most often spoken of in terms of
registers. Typical operations performed by registers
include loading (generally a parallel load), setting
(sets all bits in register), clearing (clears all bits in
register), shifting/rotating (specifically for shift
registers), and incrementing/decrementing (generally
for counters).

Embedded System: The hardware and software of a
computer system that typically performs a dedicated
task. Embedded systems are well known to be hard
to test and debug based on a limited number of input
and output features. The software that runs
embedded systems is typically firmware because it
is specialized to run only one particular set of
hardware.

Endianness: A term that describes how multibyte
values are stored in byte-oriented memories; the
choices are little endian and big endian.

Ethics: A quality that you either have or don’t have.
If you tell the world you have it, or you’re an
academic administrator, then you don’t have any
ethics.

Event: An occurrence of something that has
meaning and/or significance. In the context of
computers, an event is typically some occurrence the
computer is expected to react to.

-F-

Feature Creep: A condition where device or
program specifications grow over time while
typically bypassing the appropriate channels for
such changes.

CPE 233 Computer & Digital Term Glossary

 - 594 -

Feedback: A portion of an entities output is
returned (fed back) to the input to allow the input to
be modified accordingly. Feedback can either be
positive or negative feedback.

Fetch Cycle: The part of instruction execution that
typically includes reading an instruction from
program memory.

Field Code: A term referring to an underlying bit
field in an assembly language instruction. Field
codes are variables for a given instruction (meaning
they have no set value); opcodes are constants for a
given instruction.

Field Programmable Gate Array (FPGA): A
programmable logic device (PLD) is an integrated
circuit that contains internal devices that can be
configured (or programmed) to implement a given
digital circuit. The internal devices include logic,
memory, routing, and input/output resources.

Finite State Machine (FSM): An abstract machine
that defines a finite set of states, actions performed
in those states, and a set of rules defining how the
machine transitions from state to state. FSM are
generally classified as either Mealy or Moore
machines. FSMs are one of two major hardware
devices that are typically used to control other
hardware entities. In these cases, FSM inputs are
considered status inputs while FSM outputs are
considered control outputs.

Firmware: Firmware is a computer program that is
written to run on a specific piece of hardware and is
thus often associated with embedded systems.
Firmware does not refer to the language-level in
which the program is written thus can be written in
machine code, assembly code, or a higher-level
language.

First Five Things for a New CPU: When you first
examine a new CPU, the five things you should
initially examine are 1) the programmer’s model, 2)
the instruction set, 3) the interrupt architecture, 4)
the memory model, and 5) the I/O architecture.

Flag: A value used a Boolean variable to that
indicates a two-stateness of something (on-off, true-
false, yes-no, etc.).

Flag Register: A register used to represent a flag
value.

Flicker: An issue associated with display
multiplexing where the multiplexing rate is slow
enough for humans to note that displays are not
“always on”.

Flip-Flop: A synchronous single-bit store device
(aka, bistable multivibrator). Typical flavors include
D (data), T (toggle), and JK (unknown).

Flowchart: A diagram that uses a few distinctive
symbols to model the program flow associated with
an algorithm. Computer programmers use flowcharts
as an aid to program design and/or documentation
support. Flowcharts can and should be hierarchical
in nature when appropriate. The hardware analogy to
a flowchart is the black-box diagram.

Foreground Task: A term used to describe the
program code associated with interrupt service
routines.

Fragile: A label attached to code that is
unmaintainable. Fragile code breaks if you attempt
to modify it, hence the name fragile. The roots of
fragile code are a complete lack of planning of the
code as well as modifications made by people who
don’t know what the f**k they’re doing.

-G-

General Purpose Computer: A computer with an
instruction set that is designed to be flexible to give
it the ability to solve a wide range of problems.

Generic Decoder: A generic decoder is a hardware
implementation of a look-up-table (LUT). LUTs
generally establish a functional relationship between
inputs and outputs by assigning an output for every
unique input.

Ghosting: An issue associated with display
multiplexing where an LED is on when it should be
off resulting in dimly lit LED showing incorrect
information.

-H-

Hardware: The part of an embedded system that is
not software and/or firmware; the stuff you can hold
in your hand.

Harvard Architecture: A computer architecture
that has separate memory space for both data and
instructions.

CPE 233 Computer & Digital Term Glossary

 - 595 -

Hex: A shorthand name for “hexadecimal”; see
hexadecimal. Don’t look too hard on this one.

Hexadecimal: A number represented with a radix of
16 (base 16).

HDLs (Hardware Description Languages): Text-
based languages used to model digital circuits. The
main flavors of HDLs include VHDL and Verilog.

Higher-Level Computer Language: A computer
language that uses opened-ended expressions and
functions to generate desired results. Higher-level
languages are generally input to computer programs
such as compilers, which translate the languages to
both assembly code and machine code associated
with the target machine. Higher-level languages are
generally portable (processor independent) and thus
various higher-level language code can be compiled
to run on different target machines.

High-Impedance: A term that refers to a device that
effectively removes itself from a circuit by turning
off its drive current. A device that cannot drive a
circuit can no longer affect the circuit and is thus
effectively not in the circuit.

Hold Time: The amount of time a synchronous
circuit’s non-clock inputs must remain stable after
the active clock edge; violation of hold times cause
the hardware to go “metastable” and makes your
circuit act like an academic administrator.

-I-

I/O: An acronym for input/output.

Immediate Operand: One of the operands of an
assembly language instruction that is a constant
value, but typically not an offset value.

Increment: The act of increasing a value by one;
it’s also one of the typical operations of a standard
digital counter.

Indentation: The act of using white space to align
various parts of source code to make the code more
readable to humans. In most meaningful computer
languages, indentation is optional, but highly
recommended. Chimpanzees can generate source
code; intelligent people can generate museum
quality source code.

Infinite Loop: An iterative structure that never
terminates; the main code in embedded systems
applications are typically encoded as infinite loops.

Information: A set of data that has a known
meaning.

Input/Output: One of the three basic computer
subsystems; it’s the subsystem that allows a
computer to interact with the external world.

Initialization: A section of code that when
executed, places a system in a known state.
Typically, embedded applications and subroutines
include a section of code dedicated to initialization.

Instruction format: The bit-level description of
instructions associated with assembly language
instructions. Each instruction is comprised of op-
codes in every case, but also can include field codes
in most cases.

Instruction Register: A common register in
computer architectures that holds the machine code
of the current instruction being executed by the
computer; often referred to as simply ir.

Instruction Set: The instruction set describes the
operations that the computer hardware can perform
under program control (either software of firmware).

Instruction Set Architecture (ISA): A term that is
typically used to refer to the instruction set
organization and purpose for a given architecture.
This is a more global and inclusive term for
instruction set. .

Iteration: The act of repeating something, such as
the body of a loop in a computer program.

Iteration Count: The value that governs how many
times something, such as a loop in a computer
program, will iterate. .

Interrupt Architecture: A common term used to
describe all the characteristics (both hardware and
software considerations) of interrupts for a given
processor. Every computer device generally has a
different interrupt architecture and is thus one of the
three important aspects of any computer device (the
programmer’s model and instruction set are the two
other important aspects).

CPE 233 Computer & Digital Term Glossary

 - 596 -

Interrupt Cycle: The steps a CPU goes through in
order to handle an interrupt. The interrupt cycle is
generally different from “normal” processing cycles.

Interrupt Driven I/O: Another form of I/O
characterized by an external device having the
ability to change the normal flow of a program by
executing a special set of code referred to as the
interrupt service routine.

Interrupt Handlers: An alternate name for interrupt
service routines (ISRs).

Interrupt Masking: This refers to the notion that
most interrupt architectures allow for the prevention
of response to interrupts based on software control.
Processor support for interrupts generally includes
instructions that allow for processor response to
interrupt signals (unmasking) or prevent system
response to interrupt signals (masking).

Interrupt Service Routine (ISR): When a
processor responds to an interrupt, the given
interrupt architecture responds by executing a set of
instructions known as an interrupt service routine.
The ISR is nothing more than a subroutine that is
executed after being “called” by some device. ISRs
are often referred to as “interrupt handlers”.

Interrupt Service Routine: A section of code that
the CPU executes automatically as a result of acting
on an interrupt.

Interrupt Vector Address: The address the CPU
places into the program counter when the CPU acts
on an interrupt. Thus, when an interrupt is
processed, the first instruction executed is the one
residing at the vector address. The instruction at the
vector address is generally a branch to the interrupt
service routine.

Interrupts: An asynchronous signal from an
external device to the processor. Exactly how the
processor reacts when an interrupt is received is
based on the interrupt architecture for a given
processor. In simple terms, an interrupt can be
considered a method for internal hardware or
external devices to call a special subroutine (ISR).
Interrupts signals are generally considered
asynchronous in nature, which makes them vital to
real-time embedded systems.

ir: Common acronym standing for instruction
register (see instruction register).

Iterative: Something that repeats, such as a section
of code in a loop.

-J-

JK Flip-Flop: A standard but antiquated type of
flip-flop that has characteristics of both D and T
flip-flops.

Jump: A computer instruction that causes program
flow to be unconditionally transferred to an
instruction other than the instruction following the
current instruction.

-K-

Karnaugh Map: A sophomoric approach to
reducing Boolean functions, only taught by those
who fear modern digital design.

Kernel: Another word for operating system, typical
a minimal operating system.

-L-

Label: A placeholder or alias that allows humans to
understand computer programs. Labels are used in
place of memory addresses. Some program
statements reference labels, but labels can also be
used for commenting purposes.

Latches vs. Flip-flops: Both latches and flip-flops
are 1-bit storage devices. Latches are considered
level-sensitive devices and its outputs can change
anytime a change in its inputs occurs. Flip-flops are
considered edge-sensitive devices and changes in
outputs are synchronized to an edge-sensitive input,
which is often assigned as a clock signal.

Latency: The span of time between the occurrence
of an event and the beginning of the response to that
event.

Lead Zero Blanking: A term associated with
seven-segment display devices, where the left-most
digit(s) in a given number are not displayed if they
don’t change the value of the number (meaning left-
most zeros are not displayed). If the given number to
display is zero, one zero is displayed in the right-
most position.

LIFO: An acronym standing for “last-in, first out”,
which describes the general operating characteristic
of a stack data object.

CPE 233 Computer & Digital Term Glossary

 - 597 -

Little Endian: One of two ways to represent a
multibyte value in a byte-oriented memory that
places the most significant byte of the data at the
higher address value. See big endian.

Load: The act of latching data into a register. In
terms of computer instructions, it’s the act of
loading data from program memory into a register in
the register file.

Load-Store Architecture: A computer architecture
that tweaks memory in registers rather than directly
from memory. Data must first be loaded to registers
for it to be tweaked.

Logic Analyzer: A device that debugs actual
hardware by interpreting all signals as digital signals
and outputting timing diagrams and/or state charts.

Look-Up Table (LUT): A LUT is a programming
or hardware construct that translates an input value
to a specific output value. Hardware LUTs are
typically implemented with generic decoders while
software LUTs are generally organized as a list of
entries in successive memory locations. Hardware
LUTs generally save on logic generation and can be
used to speed-up hardware operations.
Software/Firmware LUTs are typically used to avoid
costly calculations at the cost of dedicating memory
resources to the LUT.

Loop: A portion of computer code that is iterative,
which means it can repeat based on the structure of
the code.

Loop Count: A variable that controls the number of
times the body of a loop is executed.

Low Power Mode: Many MCUs have the ability to
adjust to ambient circumstances and operate using
less power. These special modes accomplish low-
power using means such as turning off unused
portions of the circuit or lowering system clock
speeds.

-M-

Machine Code: A computer program in its lowest-
level form. Machine code is comprised of the 1’s
and 0’s that the computer hardware interprets to
perform the given operations specified by the
program. Machine code is the only level of
programming that hardware can actually understand.

Main Computer Components: The three main
components of a computer include: 1) CPU, 2) the
I/O, and 3) memory. The CPU is the brains/number
crunching portion of the computer, the I/O allows
the computer to interact with the outside world, and
the memory is generally used for program and
intermediate data storage.

Main Memory: The term used described the large
structured memory device in a computer system.
This term does not include items such as register
files.

Main Task: The set of code that a program executes
when it has no other tasks to attend to. The main
task is often referred to as the background task.

Main Types of Code in Assembly Language
Programs: There are generally three main part of an
assembly language program: 1) initialization code,
2) main task code, and 3) interrupt service routine
code.

MCU: A common abbreviation for a
microcontroller.

Mealy vs. Moore FSM Models: There are two
classes of finite state machine model which are
referred to as Mealy and Moore “machines”, or
“models”. The external outputs of a Moore machine
are a function of state only and output changes are
thus considered to be synchronized to state changes
in the FSM. The external outputs of a Mealy
machine are a function of both FSM state and the
internal inputs. Changes in external outputs of a
Mealy machine are not necessarily synchronized to
the changes in FSM state since they are also a
function of external inputs.

Mealy’s First Law of Digital Design: If in doubt,
draw some black box diagrams.

Mealy’s Second Law of Digital Design: If your
digital design is running into weird obstacles that
require kludgy solutions, toss out the design and
start over from square one.

Mealy’s Third Law of Digital Design: Every
digital design problem can have many different but
equivalent solutions; the absolute right solution is
eternally elusive.

CPE 233 Computer & Digital Term Glossary

 - 598 -

Mealy’s Fourth Law of Digital Design: The digital
design process is circular, not linear; you rarely
generate the correct solution with one pass. The
digital design process is circular; going back a few a
few steps to fix unforeseen issues is part of the
design process. Don’t try to make your design
perfect from the get-go, make it simple to
understand so that you can fix issues as they arise.

Mealy’s First and Only Law of Computer
Programming: If you understand the hardware of
the computer your program will run on, then you are
able to write better programs than someone who
does not understand the hardware.

Memory Access Time: A term referring to the
amount of time require to either read data from or
write data to a memory object.

Memory Bandwidth: Memory bandwidth refers to
the amount of data that can be transferred to and
from memory. The speed of memory reads and
writes are constrained by physical attributes of the
device as well as the system in which the device
operates in which thusly allow for a maximum
amount of information to be transferred to and from
the device.

Memory Capacity: The amount of storage a given
memory contains. Memory capacity is stated in
various forms such as total number of bits, total
number of bytes, or total number of words.

Memory Configurations: This term refers to the
notion that multiple memories can be configured in
ways to obtain different memory capacities (number
of accessible storage elements) and different storage
characteristics (the width or word-length) of each
storage element.

Memory Levels: A term that encompasses the
various types of memory in a given system.
Generally speaking, the lower-level memories are
faster but more expensive than higher-level
memories. Computer system deal with a trade-off
between program execution speed and expense.

Memory Mapped I/O (MMIO): One of the two
forms of programmed I/O, characterized the
instruction set using memory access instructions,
such as load & store, to perform input and output
operations, respectively.

Memory Model: A term that describes the general
way a given CPU utilizes the memory resources it
has at its disposal.

Memory Performance Measures: Because systems
rely heavily on memory, items such as read access
times, write cycle times, and memory bandwidth are
used to measure the specific performance of
memory devices within the system.

Memory Reading: An operation that accesses the
contents of memory without changing those
contents.

Memory Writing: An operation that changes the
contents of memory.

Metastability: Digital circuits can become
metastable when a set-up and/or hold time is not
met. Metastability is a loose definition and means
the circuit’s output is neither high nor low and may
remain in that state there for an unstated amount of
time.

Microcontroller: An integrated computer system
that contains a CPU, memory (program and data),
and can also contain on-board peripherals.

Microoperations: A microoperation is an
elementary operation performed on data stored in a
register. Microoperations can also include
interactions with other registers such as storing the
result of microoperations associated with other
circuit elements. Microoperations are commonly
used in higher-level descriptions of digital circuitry
such as computers.

Microprocessor: A hardware device containing a
general-purpose central processing unit (CPU).

MMIO: An acronym standing for memory mapped
I/O.

Mnemonic: A set of letters that represents a given
operation. Generally speaking, mnemonics loosely
describe, in an abbreviated manner, the operation
they represent.

CPE 233 Computer & Digital Term Glossary

 - 599 -

Model: A model is a representation of something. A
more (definitive) descriptive description of a model
is a description of something in terms that highlights
the relevant information in that thing while hiding
the less useful information. The purpose of a model
is to quickly transfer important information to the
entity reading the model (whether human, or
computer, or member of the EE Faculty). Generally
speaking, the quality of any model is determined by
its ability to transfer information to the user.

Mono-Stable Multivibrator: A device that has one
stable state; the stable state can either be the ‘0’ or
‘1’ state. The device’s output is only in the non-
stable state momentarily before transitioning to the
stable state. This term is a fancy name for a device
commonly referred to as a “one-shot”

Museum Quality: A clever label attached to source
code that is highly pleasing to the eye of intelligent
humans. Such source code is easily readable,
understandable, maintainable, and modifiable.

-N-

NAFT Engineer: An acronym describing a certain
type of engineering generally associated with the
defense industry (speaking from personal
experience); the acronym stands for Not A F*cking
Thing. Usage: “what type of engineering do you do?
Ans: “I’m a NAFT engineer”.

Narcissistic Personality Disorder (NPD): A
disorder inflicting most faculty members in
academia. Individuals must have this disorder in
order to become a successful academic
administrator.

Nesting: A term that common refers to two
different items in programming of MCU. First, it
refers to a subroutine that calls another subroutine
(not including calling itself, which is recursion).
Second, it refers to the nesting of interrupts, which is
similar to the nesting of subroutines.

NOP: An acronym for “no operation”, which is a
common executable instruction in assembly
languages used exclusively to create delays in
program throughput.

Nibble: A 4-bit set of data.

Non-Maskable Interrupt: An interrupt that can’t
be disabled under program control.

Non-Volatile: A term that refers to an electronic
device that retains it memory when power is
removed and reapplied. ROMs are considered non-
volatile memory devices.

-O-

Off-by-One Error: A common error where a loop
iterates one too many or one too few times, typically
based on the many non-intuitive ways instructions
control loops and access memory. The C
programming language is famous for this type of
errors.

Offset: A value that modifies another value, such as
a base value, to calculate a final value. For example,
a base address plus an offset is used to calculate the
physical address.

One-off: A solution that is specific to a given
problem and won’t generally apply to other
problems. This includes programs, subroutine, and
digital circuits.

One-Shot: The common name for a mono-stable
multivibrator. One-shots are used to synthesize
fixed-length pulse signals in response to signal
events such as clock edges.

Ones Complement: A mathematical term referring
to complementing or toggling all bits in a set of bits.

Opcode: A term that is shorthand for “operational
code”. Opcodes are the bits of an instruction that are
used by the control unit to decode which instruction
is being executed. Opcodes are constant in any given
instruction whereas field codes are variable.

Operand: The computer code that acts as an
interface between the hardware and the executing
program.

Operating Context: A term that refers to the state
of the processor at any given time, where state is
defined by the data the given processor is storing at
that given time. This term is often referred to as
simply context.

Operating System: The computer code that acts as
an interface between the hardware and the executing
program.

-P-

CPE 233 Computer & Digital Term Glossary

 - 600 -

Parity: A term that describes a characteristic of a
group of bits. If an odd number of bits in the group
are set, the group of bits exhibits odd parity;
otherwise, the set of bits exhibits even parity (even
number or zero bits set).

Parity Bit: A bit that describes the parity of a given
set of bit, where typically ‘1’ represents odd parity
and ‘0’ represents even parity.

Passed Value: A value that is provided to a
subroutine.

Pig: A term that completely describes academic
administrators, though the term can be insulting to
our actual porcine friends.

Persistence of Vision: An alternative term for
retinal persistence, which is a characteristic of the
human vision system utilized by some electronic
devices.

Physical Address: An value that appears on the
address lines of a memory device such as a RAM or
ROM.

Physical Memory: The actual amount of memory
present in a given system.

Polling: Processors use polling to interface with
external devices where the process constantly
evaluates the status of the external device in order to
determine if the device is in need of services from
the processor. Polling is considered to be used in
“programmed I/O” and is one of three major types
of computer related I/O. Polling is generally
associated with inefficient embedded system design
in that the system is considered to have low overall
throughput when executing a polling loop

Pop: An operation associated with stacks where an
item is removed from a stack; the stack pointer is
appropriately adjusted.

Port: A generic location in a computer system’s
address space.

Port Address: The numeric value associated with
an external input or output device used by I/O
instructions. The I/O instructions use these values to
differentiate and communicate with various external
peripheral devices.

Port Mapped I/O (PMIO): One of the two forms
of programmed I/O, characterized by dedicated
instructions in the instruction set for performing data
input and output.

Princeton Architecture: A computer architecture
where data and instructions share the same memory
space. This architecture is also known as a Von
Neumann architecture.

Processor: A generic term that generally refers to
some type of device that does processing such as a
microcontroller or microprocessor.

Program: Noun: a complete set of software that can
be in different forms such as a listing or machine
code. Verb: the act of writing text that can be used to
control a computer.

Program Memory: The part of a computer system
memory that stores the machine code for programs
the computer is running.

Program Counter (PC): The program counter is a
simple counter generally found in a computer’s
control unit and whose output is generally used as an
address that points to the next instruction in program
memory to be executed by the program. The PC is
typically expected to do standard counter
microoperations such as parallel load and increment.

Program Flow Control Instructions: Instructions
that cause or potentially cause the CPU to execute
an instruction other than the instruction following
the current instruction. Examples of program flow
control instructions are conditional/unconditional
branches, and subroutine calls/returns.

Program Flow Control: For computer programs to
do useful things, they must appropriately respond
accordingly to important “events”. This response at
a low level includes executing different portions of
the given computer program. Computer instructions
that facilitate any computer operation other than
simple incremental execution of instructions from
the program memory are generally referred to as
program flow control instructions. Program flow
control is generally handled by clever manipulations
of the program counter.

CPE 233 Computer & Digital Term Glossary

 - 601 -

Programmable Logic Device (PLD): Any
integrated circuit used to create circuits in which the
functionality of the internal circuit is not defined
until the device is programmed (in this context, the
term “program” does not typically refer to a
computer programming language). One common
type of PLD is the FPGA.

Programmed I/O: One of three main forms of
computer I/O. The two subtypes of programmed I/O
include port mapped I/O (PMIO) and memory
mapped I/O (MMIO). The other forms of I/O include
Interrupt I/O and Direct Memory Access.

Programming Language Levels: Computer
programs can be written on one of three general
levels (listed from low to high): machine code level,
assembly code level, or higher-level. Higher-level
languages include C, C++, C#, Java, Wanker, etc.

Programming Model: The programming model, or
programmer’s model, describes the hardware
resources available on a programmable computer-
type device that the programmer is able to control
via the program control. Program control is provided
by the operations described by the device’s
instruction set and can either categorized as software
or firmware.

Pseudocode: An approach to modeling programs
that looks somewhat similar to the actual
programming code; used often in the design of
computer programs. .

Pseudoinstruction: An instruction that you can uses
with the RISC-V MCU, but that instruction is not
actually implemented in hardware;
pseudoinstructions are instead implemented by the
assembler with one or more base instructions.

Pure Programmer: A programmer who knows how
to program using a particular language, but knows
nothing about digital hardware, or particularly, the
digital hardware the program they write will execute
on.

Push: An operation associated with stacks where
data is placed onto a stack; the stack pointer is
appropriately adjusted.

-Q -

Q: The letter commonly used to represent state
variables when working with FSMs and flip-flops.

Q+: The symbology commonly used to represent the
next state when working with FSMs.

Quizo-rama: A word I made up describing having
many quizzes instead of few mid-term exams.

Quizster: A person who loses sleep looking forward
to and/or preparing for quizzes.

-R-

ra: A term the RISC-V MCU documentation uses to
refer to the return address.

Radix: A term describing the number of symbols in
the symbol set associated with a given number
system.

Radix Point: The symbol, typically a small dot low
in the symbol field, the separates the integral and
fractional portions of a number.

RAM: The acronym officially stands for Random
Access Memory; a solid definition for RAM is
fleeting due to advances in technology. RAMs are
most often characterized as volatile, random access
storage devices.

Random Access: A memory device is considered
random access if it can access any of its contents in
a constant amount of time. Devices such as flash
drives are considered random access while devices
such as tape drives and hard drives are not random
access.

rd: A term that RISC-V documentation uses to refer
to a generic destination register.

Read: A term referring to copying data from a
memory device to another location without changing
the value in memory.

Read Access Time: The amount of time required
for memory output data to become available after an
address and the correct control signals have been
provided to the device.

Read Only Memory: A memory device roughly
meaning that you can only read from it and not write
to it. The accepted definition is a memory that
readable, but not writeable, and is non-volatile.

CPE 233 Computer & Digital Term Glossary

 - 602 -

Real Time System: A computer system that has
deadlines (response time to events) that must be met
in order for the system to work properly. Interrupt-
driven systems are after referred to as real-time
systems because programmers can leverage the
interrupt architecture to reduce response time.

Recursion: The notion of a subroutine calling itself.
The “depth of recursion” refers to the number of
times a subroutine calls itself before commencing
returning from the subroutine calls.

Reduced Instruction Set Computer: This acronym
officially stands for “Reduced Instruction Set
Architecture” and is generally used to describe
computer architectures. In actuality, the term has
little or nothing to do with the size of the instruction
set. RISC architectures generally have the following
characteristics:
 The architecture contains a register file with

many general purpose registers
 The instructions word formats all contain the

same number of bits (no extended opcodes)
 The instructions are executed in the same

number of clock cycles
 The instructions generally are not overly

complicated (meaning they don’t generate
great amounts of processing within the
architecture)

They have higher system clock frequencies than
non-RISC architectures

Register File: An abstract device that is used to
model a given number of general purpose registers
that are directly accessible by the given computers
instruction set. Register files are typically modeled
as multiport RAMs that can read and/or write
multiple registers, roughly speaking, in a
simultaneous manner.

Register Transfer Language (RTL): A
syntactically loose approach to specifying a digital
circuit that can be modeled as the synchronous
transfer of data between sequential circuits such as
registers. A RTL statement generally describes a
microoperation (or set of micro-operations)
generally associated with a digital circuit. The two
parts of an RTL statement are 1) the register transfer
specification, and 2) the specific conditions that are
necessary for that transfer to occur. Generally
speaking, only signals necessary for the stated
transfer to occur are listed in the RTL statement
while non-listed signals are assumed to be “properly
handled” elsewhere. Each RTL statement is assumed
to occur in one clock cycle. RTL is also known as
register transfer notation (RTN).

Register: An n-bit wide sequential circuit that is
primarily known for its ability to store bits.
Registers are generally modeled as “n” D flip-flops,
which share a common clock. Register generally
have synchronous parallel load inputs and
sometimes other features (elementary operations)
such as asynchronous or synchronous presets and
clears. Specialized registers include shift registers
and counters.

Retinal Persistence: The notion associated with the
human visual system that does not allow humans to
perceive an off state of an LED at the exact time the
LED is turned off. The notion of retinal persistence
is what allows display multiplexing to work for
humans.

Return Address: The address of an instruction that
is the next instruction to execute after a returning
from a subroutine or interrupt service routine.

Return Value: A value that is returned, or passed
from a subroutine back to the part of the program
that called the subroutine.

RISC vs. CISC: The age-old computer argument of
which is better that has never been solved. Generally
speaking, RISC architectures require more
instructions to complete a given operation than a
CISC architecture would for that same operation, but
those instructions are executed “more quickly” than
a CISC architecture.

RISC: This acronym for reduced instruction set
computer”; see reduced instruction set computer.

ROM: The acronym officially stands for Read Only
Memory

CPE 233 Computer & Digital Term Glossary

 - 603 -

rsx: An abbreviation used by the RISC-V literature
to indicate a numbered source register, such a rs1 or
rs2.

Round-Up: The act of adjusting a value to better
reflect the parts of a value that was truncated.
Numbers are typically rounded up if the truncated
value is 0.5 or greater, which is digital is the
weighting of the first bit to the right of the radix
point.

Run Time: A term that refers to the active of
running a program, as opposed to compile time,
which is an important term but necessarily occurs
before a program is actually run.

Run Time Complexity: A term that refers to the
amount of time required to run a section of code, a
program, or an algorithm; this term is closely related
to computational complexity in that more complex
coder requires more time to execute.

Running Time: A term that refers to the amount of
time required for a program, section of code, or
algorithm to execute in hardware. Running time can
be measured in time units or other time-related
metrics such as rate of instruction execution.

-S-

Self-serving: The defining characteristic of all
academic administrators and most engineering
faculty.

Set: The act of making a bit into a ‘1’.

Sequential Circuit: A circuit whose output is a
function of the sequence of the circuit’s inputs.
Another common definition is a circuit that has
state, meaning it can store data.

Set-up & Hold Times: Digital devices that are edge
sensitive (circuit changes state on a rising or falling
clock edge) must hold inputs stable (the inputs must
not change state) for a certain amount of time before
the active clock edge arrives; this time is referred to
as the set-up time. Digital devices must also hold the
inputs stable for a certain amount of time after the
active clock edge which is referred to as the hold
time. Failing to meet set-up and/or hold times leads
to the circuit going metastable.

Shift Register: A special flavor of register designed
to perform contiguous bit-level transfers (or serial
transfers) of data between the bit storage elements of
the register. Shift registers generally shift all the
storage elements to a contiguous storage element
once per clock cycle.

Simulator: A piece of software that outputs the
expected output from another piece of software or a
model of a digital circuit.

Signed Extension: A term associated with
expanding the bit-width of signed data by adding
extra bits to the left side of the data and setting all
the added bits to the value of the original sign bit.

Softcore MCU: An MCU that has been or will be
synthesized on a programmable logic device.

Signed Value: A set of bits or other numbers that is
to be interpreted as either negative, zero, or positive.

Software: In the specific case, software is a
computer program that is written in a generic way so
that it can run on a more than one type computer.
Software does not refer to the language-level in
which the program is written and thus can be written
in machine code, assembly code, or a higher-level
language. In the less specific case, the term software
is often means any code written to run on a
computer.

Source Operand: The term used in assembly
languages to describe where an instruction gathers
data from, such as from main memory or a register.

sp: A shorthand notion for stack pointer.

Space Efficient: Refers to the storage requirements
for a given program. If two programs are
functionally equivalent, the program that uses less
program memory is the more space efficient
program. The more space efficient program may not
be more time efficient than that other program.

Spaghetti code: Programming code that does not
follow standard structured programming concepts.
Spaghetti code is by definition fragile; it is hard to
understand, maintain, modify, and reuse.

Stack pointer: A term that refers to an entity that
contains information that describes the “top of the
stack”.

CPE 233 Computer & Digital Term Glossary

 - 604 -

Stack: An abstract data type that implement a last-
in/first-out (LIFO) queue (or list of things). Stacks
can be implemented in hardware or software with
hardware implementation of stacks employing the
use of a stack pointer to increase efficiency of the
device. Stacks are typically used in computer
architectures to keep track of hierarchically nested
processes such as subroutines and interrupts.

Stack Segment: The part of the main memory
dedicated to the system’s stack operations.

Stack Overflow/Underflow: Stacks require a given
amount of memory space. Stacks operations (pushes
and pops) can cause the stack beyond that memory
space which results in overflow or underflow
conditions. Overflow and underflow can overwrite
important information such as program memory and
data memory.

Standard Decoder: A standard decoder is a
hardware device that implements a one-hot or one-
cold output based on a given set of inputs. There is
typically a binary relationship between the number
of select inputs and the number of outputs and come
in such flavors as 1:2, 2:4, 3:8, etc.

Start-up code: The code that is inserted
automatically by the assembler as a result of
declaring data in the program that requires
initialization. The start-up code is typically
comprised of instructions that initialize data
memory.

State: The currently value(s) being stored by a
sequential digital circuit.

Store: A common term that refers to the act of
writing a value to memory. This term is most often
synonymous with write.

Structured Code: Code that can be decomposed
Into three basic structures: 1) sequence, 2) if-then-
else, and, 3) iterative. Structured code is easily
understood, maintained, modified, and reused.

Stupathetic: A term used to describe people who
are both stupid and apathetic; we all know who they
are.

Structured Memory: A term used to describe
relatively large semiconductor memories, such as a
RAM or ROM. Structured memory does not include
distributed registers in a circuit. The notion of
“structure” is derived from regular structures, which
have a repeatable pattern on the silicon die.

Subroutine: A set of instructions that a computer
explicitly transfers to and returns from. In terms of
program flow, the program transfers program
execution to a set of instructions referred to as the
subroutine. When the instructions in the subroutine
have completed executing, control is returned to the
instruction after the instruction, which caused the
program to initially transfer to the subroutine.

SWAG System: An acronym standing for scientific
wild ass guess, which can be the first step in getting
something done when you know nothing. However,
it sure sounds good when you use the term because
most people are afraid to ask what it means.

Switch Bounce: A condition associated with all
mechanical switches were upon actuation, the switch
contacts make and break connections several times
before the “settling” to the connected state. Switch
bounce can last up to 20ms, depending on what
source you consult.

Synchronous: The process of converting a circuit
described using an HDL model into a gate-level
representation of that circuit.

Synthesis: The process of converting a circuit
described using an HDL model into a gate-level
representation of that circuit.

System Verilog: System Verilog is one of several
modeling systems referred to as “hardware
description languages”, or HDLs. System Verilog is
a superset of Verilog and contains a rich set of
programming-like functionality to support the use of
System Verilog as a circuit verification tool. Most of
the added functionality is not synthesizeable.

-T-

Tab: A shorthand approach to indentation in source
code that astute programmers and designers never
use because different editors and printer interpret
them differently and can make your code look like
garbage.

CPE 233 Computer & Digital Term Glossary

 - 605 -

Task: Typically a set of operations that “need
doing”. This term has a richer definition in the
context of real-time operating systems.

Test Vector: A set of numbers used by a simulator
to verify a given hardware design; can be machine
generated.

Three State: This is an alternative term for tri-state,
where the issue here is that someone had a
trademark on one of the terms.

Throughput: The throughput of a system is the total
amount of useful information processed or
communicated during a specified time period. Note
that this definition is really general. Systems with
high throughput are generally desired over systems
with low throughput with the exception of
administrative systems on university campuses.

Time Efficient: Refers to the running time, or the
time to generate a meaningful result, for a given
program. If two programs are functionally
equivalent, the program that generates the result in a
shorter amount of time is the more time efficient
program. The more time efficient program may not
be more space efficient program.

Timing Diagram: An illustration that provides
digital signal values as a function of time, where the
vertical axis is represents the digital value and the
horizontal axis represents time.

Tool Chain: The set of software programs that
allow humans to go from a concept to a working
system, typically an embedded system. These tools
typically include assemblers and/or compilers,
linkers, and a mechanism to insert programs onto
hardware.

Top-of-stack: A term that generally refers to the
more recent item placed onto a stack. The stack
pointer typically points to the top of the stack.

Tri-State: A term that refers to a devices ability to
effectively remove itself from a circuit. Thus, a tri-
state device in a digital circuit can either be high,
low, or high-impedance. The notion of tri-stating is
used to share routing resources in a circuit; the only
possible drawback of tri-stating is that only one
device can drive the resource at a given time,
otherwise the condition of contention occurs, which
is ungood.

Truth Table: A matrix that displays all possible
input and output values for a given Boolean equation
or digital circuit.

Truncation: The act of removing part of something.
In digital design, we often chop off lower bits of
value such as in shift operations. The chopped bits
are lost, with no possibility of round-up.

Two’s Complement: A common representation for
signed binary numbers. Additionally, taking the
“two’s complement” of a number is equivalent to
taking the one’s complement of the number and
adding one to the result.

-U-

Universal Shift Register: A special flavor of shift
register that performs actions other than simple one-
directional shifts including some or all of the
following operations: shift left, shift right, barrel
shifts, arithmetic shift, and rotates.

Unsigned Value: A set of bits or other numbers that
is to be interpreted as a zero or positive value.

-V-

Verification: The act of testing HDL models to
discern the correctness before the models are
synthesized. Verification is thus one form of testing.

Verilog: Verilog is one of several modeling systems
referred to as “hardware description languages”, or
HDLs. Verilog is typically used to model digital
circuits; the resultant models can be used to simulate
circuits, or synthesize circuit implementations on
PLDs or silicone. Verilog uses a “C-like” syntax,
which makes it popular with software-type people.

VHDL (Very High Speed Circuit Hardware
Description Language): VHDL is one of several
modeling systems referred to as “hardware
description languages”, or HDLs. VHDL is typically
used to model digital circuits; the resultant models
can be used to simulate circuits, or synthesize circuit
implementations on PLDs or silicone.

Volatile/Non-Volatile: A device is considered
volatile if its contents are lost when power is
removed from the device while non-volatile devices
retain their memory when power is removed and
subsequently returned. The term volatile is most
often associated with memory devices and PLDs
such as FPGAs.

CPE 233 Computer & Digital Term Glossary

 - 606 -

Von Neumann Architecture: A computer
architecture where data and instructions share the
same memory space. The term Von Neumann
machine is often used to mean Von Neumann
architecture. Von Neumann architecture is
sometimes referred to as a “Princeton” architecture.

-W-

While Loop: An iterative programming construct
characterized by the condition to continue the
iteration is checked before performing the first
iteration.

White Space: Empty space in source code files
including indentation (not tabs), blank lines, and
extra spaces (such as to align parts of the listing).
White space is used by good programmers and
hardware designers.

Wrapper: A term used to provide a higher-level
interface to a circuit. The wrapper circuit is thus a
superset of the circuit it wraps.

Write Cycle Timing: The amount of time required
for data to be written to memory after a valid
address, valid input data, and the appropriate control
signals have been provided to the device.

-X-

X: The symbol typically used to represent input
variables in finite state machines.

XOR: A common shorthand notion for exclusive
OR.

-Y-

Y: The symbol typically used to represent state
variables in finite state machines.

-Z

Z: The symbol typically used to represent high
impedance. This symbol is also used to represent
output variables state machines.

Zero Extension: A term associated with expanding
the bit-width of unsigned data by adding extra bits
to the left side of the data and clearing those bits.

CPE 233 Index

 - 607 -

INDEX

6

68000 ∙ ‐ 21 ‐

A

ABI ∙ See Application Binary Interface
absolute address ∙ ‐ 461 ‐
absolute addresses ∙ ‐ 473 ‐
abstract data types ∙ ‐ 292 ‐
academic administrator ∙ ‐ 180 ‐
accumulator ∙ ‐ 46 ‐
active clock edge ∙ ‐ 47 ‐
address of the ISR ∙ ‐ 517 ‐
addressing modes ∙ ‐ 281 ‐
ADTs ∙ See abstract data types
algorithm ∙ ‐ 176 ‐
alignment ∙ ‐ 190 ‐
alternative register names ∙ ‐ 196 ‐, ‐ 202 ‐
ALU ∙ ‐ 161 ‐
antiquated ∙ ‐ 161 ‐
Application Binary Interface ∙ ‐ 196 ‐
architecture ∙ ‐ 159 ‐
Arithmetic Logic Unit ∙ ‐ 161 ‐
arithmetic shift ∙ ‐ 74 ‐
arithmetic shifts ∙ ‐ 73 ‐
array ∙ ‐ 366 ‐
arrow ∙ ‐ 55 ‐
assemble time ∙ ‐ 253 ‐, ‐ 280 ‐
assembler ∙ ‐ 160 ‐, ‐ 170 ‐, ‐ 171 ‐
assembler directive ∙ ‐ 222 ‐, ‐ 428 ‐
assembler directives ∙ ‐ 189 ‐
assembly language ∙ ‐ 170 ‐

B

background task ∙ ‐ 331 ‐
bad press ∙ ‐ 171 ‐
bag of tricks ∙ ‐ 229 ‐
barrel shift ∙ ‐ 72 ‐
barrel shifts ∙ ‐ 478 ‐
base address value ∙ ‐ 280 ‐
base instruction ∙ ‐ 203 ‐
base instructions ∙ ‐ 194 ‐
Basys3 ∙ ‐ 483 ‐
BFD ∙ See Brute Force Design
bi‐directional ∙ ‐ 68 ‐
bit banging ∙ ‐ 265 ‐
bit crunching ∙ ‐ 229 ‐
bit manipulations ∙ ‐ 194 ‐
bit masking ∙ ‐ 174 ‐

bit‐addressable ∙ ‐ 115 ‐
bit‐masks ∙ ‐ 265 ‐
bit‐tweaking ∙ ‐ 265 ‐
bit‐twiddling ∙ ‐ 163 ‐
bit‐wise ∙ ‐ 230 ‐
black block diagram ∙ ‐ 176 ‐
bottleneck ∙ ‐ 119 ‐
bounce ∙ ‐ 534 ‐
brain dump ∙ ‐ 560 ‐
brains ∙ ‐ 159 ‐
branch ∙ ‐ 194 ‐, ‐ 221 ‐
branches ∙ ‐ 245 ‐
BRUTE FORCE DESIGN ∙ ‐ 29 ‐
bulletproof ∙ ‐ 305 ‐
bulletproof code ∙ ‐ 182 ‐
bus contention”. ∙ ‐ 67 ‐
butthead friends ∙ ‐ 181 ‐

C

C programming language ∙ ‐ 248 ‐, ‐ 505 ‐
call ∙ ‐ 500 ‐
cascadeability ∙ ‐ 53 ‐
Cascadeable ∙ ‐ 47 ‐
case structure ∙ ‐ 179 ‐
Central Processing Unit ∙ ‐ 161 ‐
CIRCUIT CONTROL ∙ ‐ 29 ‐
Circular ∙ ‐ 47 ‐
CISC ∙ ‐ 531 ‐
clearing ∙ ‐ 265 ‐
clever ∙ ‐ 265 ‐
code segment ∙ ‐ 349 ‐
co‐design ∙ ‐ 158 ‐
code‐word ∙ ‐ 47 ‐
Combinatorial ∙ ‐ 32 ‐
Combinatorial circuits ∙ ‐ 36 ‐
Comments ∙ ‐ 188 ‐
common cathode ∙ ‐ 539 ‐
comparator ∙ ‐ 43 ‐
compiler ∙ ‐ 160 ‐, ‐ 171 ‐
Complex Instruction Set Computer ∙ ‐ 531 ‐
complex programs ∙ ‐ 175 ‐
computationally expensive ∙ ‐ 72 ‐
computer ∙ ‐ 21 ‐, ‐ 158 ‐
computer architecture ∙ ‐ 159 ‐
computer architectures ∙ ‐ 170 ‐
computer language ∙ ‐ 160 ‐
computer peripherals. ∙ ‐ 30 ‐
computer program ∙ ‐ 160 ‐
computer programmer ∙ ‐ 159 ‐
computer user ∙ ‐ 159 ‐
computerland ∙ ‐ 230 ‐
computersaureses ∙ ‐ 171 ‐
conditional branch ∙ ‐ 248 ‐
conditional branches ∙ ‐ 245 ‐

CPE 233 Index

 - 608 -

conditionally ∙ ‐ 221 ‐
constant ∙ ‐ 223 ‐, ‐ 253 ‐
control signals ∙ ‐ 57 ‐
control unit ∙ ‐ 161 ‐
Control Unit ∙ ‐ 161 ‐
cost effective ∙ ‐ 176 ‐
Count Enable ∙ ‐ 47 ‐
counter ∙ ‐ 46 ‐
Counter Overflow ∙ ‐ 47 ‐
Counter Underflow ∙ ‐ 47 ‐
CPU ∙ ‐ 161 ‐
cross‐coupled NAND cell ∙ ‐ 44 ‐
cross‐coupled NOR ∙ ‐ 44 ‐
crunch data ∙ ‐ 159 ‐
CU_DCDR ∙ ‐ 445 ‐
CU_FSM ∙ ‐ 446 ‐
cursory glance ∙ ‐ 181 ‐

D

data ∙ ‐ 112 ‐
data memory ∙ ‐ 461 ‐
datapath ∙ ‐ 533 ‐
dead gate ∙ ‐ 515 ‐
debouncer ∙ ‐ 535 ‐
debugger ∙ ‐ 351 ‐
debugging ∙ ‐ 180 ‐
Decision ∙ ‐ 178 ‐
decision point ∙ ‐ 179 ‐
decode/execute cycle ∙ ‐ 448 ‐
decoder ∙ ‐ 38 ‐
Decrement ∙ ‐ 47 ‐
design libraries ∙ ‐ 34 ‐
destination register ∙ ‐ 85 ‐, ‐ 197 ‐, ‐ 202 ‐, ‐ 498 ‐
deterministic ∙ ‐ 545 ‐
development board ∙ ‐ 483 ‐, ‐ 484 ‐
digital bag of tricks ∙ ‐ 27 ‐
Digital tricks ∙ ‐ 174 ‐
direct memory access ∙ ‐ 214 ‐
Direct Memory Access ∙ ‐ 214 ‐
DMA ∙ See direct memory access, See direct memory

access
don’t care ∙ ‐ 58 ‐
do‐while loop ∙ ‐ 179 ‐
do‐while loops ∙ ‐ 253 ‐
Down Counter ∙ ‐ 47 ‐
drive the bus ∙ ‐ 67 ‐
driving the bus ∙ ‐ 67 ‐
dumb loop ∙ ‐ 327 ‐
dumb loops ∙ ‐ 538 ‐

E

eloquence and beauty ∙ ‐ 181 ‐
embedded system ∙ ‐ 190 ‐, ‐ 197 ‐, ‐ 328 ‐
enable interrupts ∙ ‐ 333 ‐

endless loop ∙ ‐ 190 ‐
entry point ∙ ‐ 179 ‐
ESX MCU ∙ ‐ 22 ‐
execute cycle ∙ ‐ 446 ‐, ‐ 448 ‐
EXTERNAL CONTROL ∙ ‐ 29 ‐
external interrupts ∙ ‐ 327 ‐

F

FA ∙ See full adder
fast multiplication ∙ ‐ 74 ‐
feature creep ∙ ‐ 182 ‐
feature set ∙ ‐ 53 ‐
fetch cycle ∙ ‐ 446 ‐, ‐ 448 ‐
fetching ∙ ‐ 446 ‐
field codes ∙ ‐ 498 ‐
file banner ∙ ‐ 190 ‐, ‐ 222 ‐
file header ∙ ‐ 190 ‐
filtering ∙ ‐ 536 ‐
finite state machine ∙ ‐ 30 ‐, ‐ 446 ‐
Finite State Machine ∙ ‐ 53 ‐
firmware ∙ ‐ 176 ‐, ‐ 197 ‐
flag register ∙ ‐ 336 ‐
Flip‐flops ∙ ‐ 33 ‐
floating point numbers ∙ ‐ 72 ‐
flow arrows ∙ ‐ 178 ‐
flowchart ∙ ‐ 175 ‐
foreground task ∙ ‐ 331 ‐
forward slash ∙ ‐ 57 ‐
FPGA ∙ ‐ 483 ‐
fragile ∙ ‐ 173 ‐
Full Adder ∙ ‐ 37 ‐
function ∙ ‐ 297 ‐
Functionally Complete ∙ ‐ 32 ‐

G

general purpose ∙ ‐ 197 ‐
general purpose registers ∙ ‐ 195 ‐
General‐Purpose Computer ∙ ‐ 187 ‐
general‐purpose register ∙ ‐ 194 ‐
generic decoder ∙ ‐ 38 ‐
Generic Decoder ∙ ‐ 39 ‐
Good‐looking code ∙ ‐ 181 ‐

H

HA ∙ ‐ 36 ‐, See half adder
Half Adder ∙ ‐ 36 ‐
handles ∙ ‐ 329 ‐
hard drives ∙ ‐ 113 ‐
hardcoded to 0 ∙ ‐ 196 ‐
Harvard architecture ∙ ‐ 532 ‐
header ∙ ‐ 222 ‐
hierarchical ∙ ‐ 165 ‐

CPE 233 Index

 - 609 -

higher‐level language ∙ ‐ 171 ‐
high‐impedance ∙ ‐ 64 ‐
hi‐Z ∙ ‐ 66 ‐
HLL ∙ See higher‐level language
holding ∙ ‐ 265 ‐
Hold‐times ∙ ‐ 32 ‐
human visual system ∙ ‐ 538 ‐

I

I/O ∙ ‐ 159 ‐
if/else constructs ∙ ‐ 174 ‐
if‐then‐else construct ∙ ‐ 175 ‐
if‐then‐lese structure ∙ ‐ 179 ‐
IMD ∙ See Iterative Modular Design
immediate instruction ∙ ‐ 206 ‐
in‐case‐of ∙ ‐ 179 ‐
incidental memory ∙ ‐ 112 ‐
Increment ∙ ‐ 47 ‐
information ∙ ‐ 112 ‐
information content ∙ ‐ 112 ‐
Input/Output ∙ ‐ 159 ‐
Input/Output architecture ∙ ‐ 174 ‐
instruction memory ∙ ‐ 161 ‐
instruction set ∙ ‐ 162 ‐
Instruction Set ∙ ‐ 172 ‐
instruction set architecture ∙ ‐ 186 ‐
instructions cycles ∙ ‐ 448 ‐
integer‐based math ∙ ‐ 72 ‐
INTERNAL CONTROL ∙ ‐ 29 ‐
internal interrupts ∙ ‐ 327 ‐
interrupt architecture ∙ ‐ 327 ‐, ‐ 329 ‐
Interrupt architecture ∙ ‐ 174 ‐
interrupt cycle ∙ ‐ 513 ‐
interrupt enable ∙ ‐ 332 ‐, ‐ 515 ‐
interrupt mask bit ∙ ‐ 333 ‐
interrupt nesting ∙ ‐ 334 ‐
interrupt service routine ∙ ‐ 329 ‐, ‐ 512 ‐
interrupt vector ∙ ‐ 517 ‐
interrupt vector address ∙ ‐ 517 ‐
ISA ∙ ‐ 186 ‐, See instruction set architecture
ISR ∙ See interrupt service routine
iterative construct ∙ ‐ 175 ‐
iterative design ∙ ‐ 37 ‐
iterative modular design ∙ ‐ 43 ‐
ITERATIVE MODULAR DESIGN ∙ ‐ 29 ‐
iterative structure ∙ ‐ 179 ‐

J

job security ∙ ‐ 173 ‐, ‐ 181 ‐
jump ∙ ‐ 221 ‐
jump and link register ∙ ‐ 454 ‐
jumps ∙ ‐ 245 ‐

K

kludgy ∙ ‐ 28 ‐, ‐ 597 ‐
knarly ∙ ‐ 208 ‐

L

Labels ∙ ‐ 189 ‐
Last In, First Out ∙ ‐ 293 ‐
Latches ∙ ‐ 33 ‐
lazy professors ∙ ‐ 181 ‐
lead‐zero blanking ∙ ‐ 539 ‐
level sensitive ∙ ‐ 44 ‐
levels of memory ∙ ‐ 533 ‐
LIFO ∙ ‐ 293 ‐
link ∙ ‐ 454 ‐
look‐up‐table ∙ ‐ 505 ‐
loop overhead ∙ ‐ 359 ‐
loops ∙ ‐ 253 ‐
low power ∙ ‐ 330 ‐
low‐power mode ∙ ‐ 328 ‐
LUT ∙ See look up table
LUTs ∙ ‐ 182 ‐
LZB ∙ See lead zero blanking

M

machine code ∙ ‐ 162 ‐, ‐ 170 ‐
machine language ∙ ‐ 162 ‐, ‐ 170 ‐
main memory ∙ ‐ 348 ‐
masked ∙ ‐ 333 ‐
maybe ∙ ‐ 250 ‐
MCU ∙ See microcontroller
Mealy ∙ ‐ 32 ‐
memory ∙ ‐ 159 ‐
Memory ∙ ‐ 193 ‐
memory address space ∙ ‐ 349 ‐
memory elements ∙ ‐ 54 ‐
memory map ∙ ‐ 214 ‐
memory mapped ∙ ‐ 194 ‐
memory mapped I/O ∙ ‐ 213 ‐
messages from the programmer to the assembler ∙ ‐ 189

‐
messages to assembler ∙ ‐ 189 ‐
messages to humans ∙ ‐ 188 ‐
method ∙ ‐ 297 ‐
Microcomputer ∙ ‐ 22 ‐
microcontroller ∙ ‐ 30 ‐
Microcontroller ∙ ‐ 22 ‐
mnemonics ∙ ‐ 170 ‐
model ∙ ‐ 159 ‐
modular code ∙ ‐ 182 ‐
MODULAR DESIGN ∙ ‐ 29 ‐
monstable multivibrator ∙ ‐ 536 ‐
Moore ∙ ‐ 32 ‐

CPE 233 Index

 - 610 -

mtvec ∙ ‐ 333 ‐
multiplexor ∙ ‐ 42 ‐
MUX ∙ ‐ 42 ‐, See multiplexor

N

n‐bit Counter ∙ ‐ 47 ‐
next state ∙ ‐ 54 ‐
Next State ∙ ‐ 55 ‐
next state decoder ∙ ‐ 54 ‐
Next State Decoder ∙ ‐ 53 ‐
next state forming logic ∙ ‐ 54 ‐
next state logic ∙ ‐ 54 ‐
NO CONTROL ∙ ‐ 29 ‐
non‐normal operation ∙ ‐ 243 ‐
non‐volatile ∙ ‐ 113 ‐
normal operation ∙ ‐ 243 ‐

O

off‐page connection ∙ ‐ 178 ‐
offset value ∙ ‐ 280 ‐
off‐the‐shelf ∙ ‐ 30 ‐
Ohm’s Law ∙ ‐ 64 ‐
old guys ∙ ‐ 21 ‐
one‐off ∙ ‐ 158 ‐
one‐shot ∙ ‐ 536 ‐
opcodes ∙ ‐ 498 ‐
operands ∙ ‐ 194 ‐
ort addresses ∙ ‐ 484 ‐
oscilloscope ∙ ‐ 534 ‐
Output decoder ∙ ‐ 53 ‐
Output Decoder ∙ ‐ 54 ‐
overhead ∙ ‐ 361 ‐

P

Parallel Load ∙ ‐ 47 ‐
peripherals ∙ ‐ 327 ‐
physical memory ∙ ‐ 461 ‐
PicoBlaze2 ∙ ‐ 22 ‐
PicoBlaze3 ∙ ‐ 22 ‐
pipeline ∙ ‐ 533 ‐
PLD ∙ ‐ 483 ‐, See Programmable Logic Device
pointers ∙ ‐ 390 ‐
polling ∙ ‐ 213 ‐, ‐ 327 ‐
polling loop ∙ ‐ 327 ‐, ‐ 328 ‐
portable ∙ ‐ 171 ‐
Predefined Process ∙ ‐ 178 ‐
preprocessor directive ∙ ‐ 428 ‐
Present State ∙ ‐ 55 ‐
Process ∙ ‐ 178 ‐
processor ∙ ‐ 159 ‐
Processor ∙ ‐ 161 ‐
profiler ∙ ‐ 172 ‐

program ∙ ‐ 160 ‐
program control ∙ ‐ 245 ‐
program counter ∙ ‐ 193 ‐, ‐ 195 ‐
program flow control ∙ ‐ 221 ‐, ‐ 243 ‐, ‐ 454 ‐
program memory ∙ ‐ 349 ‐
programmable logic device ∙ ‐ 174 ‐
Programmed I/O ∙ ‐ 212 ‐
programmers model ∙ ‐ 162 ‐
Programmers Model ∙ ‐ 172 ‐
programming efficiency ∙ ‐ 358 ‐
Programming Model ∙ ‐ 192 ‐
programming style ∙ ‐ 176 ‐
Pseudo code ∙ ‐ 175 ‐
pseudoinstruction ∙ ‐ 202 ‐, ‐ 203 ‐
pseudoinstructions ∙ ‐ 194 ‐
psychic ∙ ‐ 182 ‐

R

ra ∙ ‐ 454 ‐
RAM ∙ ‐ 113 ‐
random access memory ∙ ‐ 113 ‐
RAT ∙ ‐ 22 ‐
RCA ∙ See ripple carry adder
read only memory ∙ ‐ 113 ‐
real‐time clock ∙ ‐ 327 ‐
real‐time programming ∙ ‐ 328 ‐
recursion ∙ ‐ 311 ‐
recursive subroutine call ∙ ‐ 311 ‐
Reduced Instruction Set Computer ∙ ‐ 531 ‐
reg file ∙ ‐ 201 ‐
register ∙ ‐ 54 ‐
register addressing ∙ ‐ 206 ‐
register file ∙ ‐ 474 ‐
relative addresses ∙ ‐ 473 ‐
replacement operator ∙ ‐ 86 ‐
restoring context ∙ ‐ 304 ‐
retinal persistence ∙ ‐ 538 ‐
retirement ∙ ‐ 21 ‐
return ∙ ‐ 298 ‐
return address ∙ ‐ 306 ‐, ‐ 454 ‐, ‐ 519 ‐
ripple carry adder ∙ ‐ 37 ‐
Ripple Carry Out ∙ ‐ 47 ‐
RISC ∙ ‐ 531 ‐
RISC vs. CISC ∙ ‐ 531 ‐
robot ∙ ‐ 180 ‐
robot grader ∙ ‐ 181 ‐
ROM ∙ ‐ 113 ‐
rotates ∙ ‐ 73 ‐
run time ∙ ‐ 253 ‐
running ∙ ‐ 160 ‐
runtime ∙ ‐ 280 ‐

S

saving context ∙ ‐ 304 ‐

CPE 233 Index

 - 611 -

segments ∙ ‐ 348 ‐
self‐loop ∙ ‐ 55 ‐
sequence construct ∙ ‐ 175 ‐
sequence of code words ∙ ‐ 46 ‐
sequence structure ∙ ‐ 178 ‐
Sequential circuits ∙ ‐ 44 ‐
Sequential Circuits ∙ ‐ 32 ‐
sequential execution ∙ ‐ 194 ‐
setting ∙ ‐ 265 ‐
Set‐up ∙ ‐ 32 ‐
seven‐segment display ∙ ‐ 537 ‐
shift register ∙ ‐ 49 ‐
shift register cell ∙ ‐ 49 ‐
sign extended ∙ ‐ 479 ‐
sign extension ∙ ‐ 462 ‐
signed offset ∙ ‐ 457 ‐
signedness ∙ ‐ 74 ‐
Simple code ∙ ‐ 181 ‐
simple registers ∙ ‐ 44 ‐
single purpose ∙ ‐ 158 ‐, ‐ 197 ‐, ‐ 359 ‐
societal norms ∙ ‐ 327 ‐
softcore MCUs ∙ ‐ 483 ‐
software ∙ ‐ 176 ‐, ‐ 197 ‐
software‐based interrupts ∙ ‐ 327 ‐
software‐land ∙ ‐ 292 ‐
solid‐state drives ∙ ‐ 534 ‐
source register ∙ ‐ 85 ‐, ‐ 202 ‐, ‐ 498 ‐
source registers ∙ ‐ 197 ‐
space efficient ∙ ‐ 204 ‐, ‐ 233 ‐, ‐ 270 ‐, ‐ 295 ‐
spaghetti code ∙ ‐ 175 ‐
Specific Purpose Computer ∙ ‐ 187 ‐
spiritually enlightening ∙ ‐ 251 ‐
stack pointer ∙ ‐ 293 ‐
standard decoder ∙ ‐ 38 ‐
Standard Decoder ∙ ‐ 40 ‐
state ∙ ‐ 53 ‐
state bubble ∙ ‐ 57 ‐
state diagram ∙ ‐ 53 ‐
state registers ∙ ‐ 54 ‐
State Registers ∙ ‐ 53 ‐
state transition ∙ ‐ 55 ‐
state transition arrow ∙ ‐ 55 ‐
state variables ∙ ‐ 54 ‐
status signals ∙ ‐ 54 ‐
stop running ∙ ‐ 190 ‐
structured code ∙ ‐ 175 ‐
structured memories ∙ ‐ 533 ‐
structured memory ∙ ‐ 112 ‐
structured programming ∙ ‐ 178 ‐, ‐ 249 ‐
Structured programs ∙ ‐ 181 ‐
style file ∙ ‐ 182 ‐
subroutine ∙ ‐ 296 ‐
subroutine call ∙ ‐ 194 ‐
switch bounce ∙ ‐ 534 ‐
symbology ∙ ‐ 59 ‐
synthesizing ∙ ‐ 536 ‐
system clock ∙ ‐ 55 ‐

T

T cycles ∙ ‐ 446 ‐
tape drives ∙ ‐ 113 ‐
task code ∙ ‐ 331 ‐
terminal ∙ ‐ 178 ‐
testing ∙ ‐ 180 ‐
text editor ∙ ‐ 160 ‐
three‐state ∙ ‐ 64 ‐
throughput ∙ ‐ 330 ‐
time delay ∙ ‐ 538 ‐
time efficient ∙ ‐ 204 ‐, ‐ 295 ‐
time slots ∙ ‐ 54 ‐
toggling ∙ ‐ 265 ‐
toolchain ∙ ‐ 174 ‐
top of the stack ∙ ‐ 293 ‐
transition ∙ ‐ 55 ‐
tricks ∙ ‐ 229 ‐
tricky code ∙ ‐ 182 ‐
tri‐state ∙ ‐ 64 ‐
tri‐state register ∙ ‐ 66 ‐
twiddles ∙ ‐ 158 ‐

U

Unconditional branch ∙ ‐ 194 ‐
unconditional branches ∙ ‐ 245 ‐
unconditionally ∙ ‐ 221 ‐
Understandable code ∙ ‐ 181 ‐
universal shift register ∙ ‐ 70 ‐
unmasked ∙ ‐ 333 ‐
Up Counter ∙ ‐ 47 ‐
Up/Down Counter ∙ ‐ 47 ‐

V

variable ∙ ‐ 253 ‐
vector address ∙ ‐ 332 ‐
vectors ∙ ‐ 332 ‐
vernacular ∙ ‐ 195 ‐
volatile ∙ ‐ 113 ‐
Von Neumann architecture ∙ ‐ 532 ‐
voodoo ∙ ‐ 565 ‐

W

wacky instructor ∙ ‐ 560 ‐
while loop ∙ ‐ 179 ‐
while loops ∙ ‐ 253 ‐
white space ∙ ‐ 182 ‐
whitespace ∙ ‐ 190 ‐
word ∙ ‐ 115 ‐
working register ∙ ‐ 281 ‐
wrapper ∙ ‐ 483 ‐

CPE 233 Index

 - 612 -

write enable ∙ ‐ 486 ‐
write pulse ∙ ‐ 486 ‐
writeback cycle ∙ ‐ 446 ‐, ‐ 448 ‐

Z

zero extension ∙ ‐ 462 ‐

