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Rambling Commentary 

My inspiration for writing free textbooks came from my own personal notion that knowledge, particularly 
technical knowledge, should not be held ransom by publishing companies, bookstores, book authors, and 
academic administrators. Students seeking knowledge are sitting ducks when it comes to the notion of 
structured learning situations such as colleges and universities. Being that students are the lowest hanging fruit, 
they always are the first to have their wallets lightened by various well-connected entities. I hope this book 
serves as an alternative to shelling out money for overpriced textbooks.  

This book is going to have errors. Please accept my sincerest apologies for the errors you will come across. I 
did my best to remove errors, but there are a few reasons why some errors remain.  

1. Writing and proofreading is very timing consuming.   

2. Unlike several of my colleagues, I do not bribe students into proofreading my writing. There has been 
more than one instance of an instructor at the institution where I teach giving “extra credit” to anyone 
who reported errors in their writing. I do happily accept suggestions and corrections from students, 
but it is out of the student’s own desire to help on the project.  

3. I generated every digital design problem in this book. Once again, unlike many of my colleagues, I 
did not “assign” students to generate problems for me. I believe instructors who force students to 
create problems as graded assignments are unethical and are taking advantage of their positions are 
instructors. It’s called an abuse of power; I simply won’t do that.  

I could spend the remainder of my life tweaking this text, but I need to move onto other things. Feel free to 
contact me with corrections and comments.  

   

There were two primary negative comments I received when I mentioned I was writing a textbook and was 
planning to give it away at no cost.  

 “If you don’t charge something, people will not value it”. I don’t understand this statement. The 
things I value most in my life were given to me. Maybe I’m missing something here.  

 “You need to have experts in your field review your text”. As a college teacher, I constantly receive 
requests from book companies to “review” one of their texts. They always sweeten the deal with an 
offer of cash. I know of no one who is going to dedicate any significant amount of their time to 
reading a text they care nothing about, but I know of people who pretend to review books, write 
down some drivel, and receive their cash. Wow! Great review! A book is a mechanism to transfer 
knowledge; it’s not a popularity contest, as are most things in academia. 

   

As you read this book, you may get the impression that I don’t like academic administrators. The truth is that 
I do not like academic administrators. In addition to cleaning out the wallets of students, they seem to want 
to rip the hearts out of students and teachers alike. They lack ethics and morals (an understatement). They 
reward those who support their agendas and crap on everyone else. They make sure they are first at the 
feeding trough and leave little for anyone else. They run the school as a business and not as institutions of 
learning. They base all their decisions on economics; quality of education and the basic needs of students are 
never one of their considerations. Academic administrators seem to believe that students and teachers should 
be serving them; I believe we should all be serving students. Schools exist to help students learn; we should 
base all decision making on supporting student learning. Academic administrators have clearly lost sight of 
the basic tenets of education.  

Finally, this text is what it is. The quality and coverage is the best I can do given the various constraints I 
face. I made the decision to embark on this project knowing that it was more than likely a career killer in the 
context of Cal Poly SLO. Well, no need to wonder anymore; it’s definitely a career killer. I don’t regret 
ensuring that I was a person who supported student learning rather than simply supporting my own personal 
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career aspirations. The academic environment in general encourages faculty to adopt characteristics of NPD 
(narcissistic personality disorder) in order for the admin to bestow the “successful” label. I continue to 
choose to not compromise my ethics and to never lose sight of my mission as an instructor.  

   

 
 

“If you judge safety to be the paramount consideration in life you should never, under any 
circumstances, go on long hikes alone. Don’t take short hikes alone, either – or, for that matter, go 
anywhere alone. And avoid at all costs such foolhardy activities as driving, falling in love, or inhaling 
air that is almost certainly riddled with deadly germs………And never, of course, explore the guts of 
an idea that seems as if it might threaten one of your more cherished beliefs. In your wisdom, you 
will probably live to be a ripe old age. But you may discover, just before you die, that you have been 
dead for a long, long time.” (Collin Fletcher, Complete Walker 3). 
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Overview of Chapter Overviews 

This text presents introductory computer design and assembly language programming concepts. This book 
focuses on a single generic computer design: The RISC-V OTTER Microcontroller. There are definitely topics 
in computer architecture and assembly language programming that this book does not cover. The general idea 
behind this textbook is to support a college course that attempts to teach computer design and assembly 
language programming in a ten-week course. While teaching this amount of information in single 10-week 
course barely seems possible, this textbook and various supporting materials do their best to make it possible.  

 

PART ONE: Introduction and Review 

Part One of FreeRange Computer Design introduces the various aspects of computer design. This introduction 
includes a high-level overview of computers using terms and concepts that you would find in a typical digital 
design course. In addition, if you can’t remember those terms and concepts, this part also provides a fast 
overview of the important digital concepts.  

Chapter 1: This chapter includes an overview of the course, a brief history of the course, and history of the 
MCUs used in the course. This chapter is important because it provides a context for this text by describing 
some the issues regarding computer design courses as well as other pertinent information. 

Chapter 2: This chapter provides a review of the basic building blocks (modules) of digital design. These 
building blocks include combinatorial and sequential circuits, as well as Finite State Machines (FSMs). This 
chapter is important because it describes most of the important concepts from a typical beginning digital 
design course. In particular, this chapter provides a fast overview of the topics presented in FreeRange Digital 
Design Foundation Modeling. 

Chapter 3: This chapter introduces and a relatively complete coverage of two of the most common and useful 
type of registers: shift registers and counter. This chapter covers the many types of shift registers including 
barrel shifters, universal shift registers, etc. This chapter is important because registers and their simple 
variations are extremely useful and thus often found in just about all meaningful digital designs. 

 

PART TWO: Advanced Digital Design 

Part Two of FreeRange Computer Design introduces the various hardware aspects of computer design that 
typical digital design courses often do not present. We present these topics because they are critical to 
understanding the low-level aspects of subsystems typically found in computers.  

Chapter 4: This chapter introduces Register Transfer Notation, which is highly useful in both designing and 
describing circuits. This chapter uses RTN to describe and design various classifications of data transfer 
circuitry commonly used in digital design. This chapter is important because shift registers and counters are 
extremely useful in many areas of digital design, particularly in applications requiring fast arithmetic 
operations. These devices are simple registers with extended features. 

Chapter 5: This chapter provides an introduction many of the more common and important aspects of 
structured memory. This chapter primarily involves the high-level characteristics of structured memory and 
describes them primarily in general terms. This memory introduction includes items such as standard memory 
vernacular and basic performance characteristics. This chapter is important because it provides a basic 
overview of digital memory and the operation of memory in a digital system. 

 

PART THREE: Introduction to Computers 

Part Three of FreeRange Computer Design represents our first description of computers, which we do from a 
relatively high level. Even though computers are nothing more than complex digital circuits, they come with 
their own “processes” and vernacular. The intent of this section is to show the connection between digital 
circuits and the particular digital circuit we call a computer.  
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Chapter 6: This chapter introduces the notion computers in general and how humans use computers. This 
chapter places the notion of computer design in a digital design context, leveraging what you already know 
about digital design. This chapter also places the notion of digital design into the context of computer design 
using terms associated with a beginning digital design course. This chapter is important because it provides a 
high-level overview of the computer design by placing computer design into a familiar context. 

 

PART FOUR: RISC-V Assembly Language Programming 

Part Four of FreeRange Computer Design provides the knowledge you’ll need to become a RISC-V assembly 
language programmer. We wrote this section of the book in such a way as to not include hardware details in 
the various programming topics in the chapter in an attempt to make this section of the text as useful as 
possible to people only interested in programming (and not hardware). The underlying hardware details appear 
in Part Five of the text. While separating the programming and hardware concepts of the RISC-V results in 
some repetition to those interested in both programming and hardware, we make all efforts to keep the 
repetition to a minimum.  

Chapter 7: This chapter introduces programming using assembly language and writing assembly language 
programs. This chapter also provides an overview of structured programming concepts and an overview of 
basic flowcharting techniques as they apply to structured programming. This chapter is important because it 
introduces assembly languages and associated concepts as well as basic program structure concepts. 

Chapter 8: This chapter provides a high-level introduction to assemble language programming including 
instruction set design and assembly language program structure, appearance, design and documentation. This 
chapter introduces important RISC-V assembly language program vernacular as well as a basic classification 
of instructions in the RISC-V instruction set. This chapter also provides a description of embedded systems as 
they relate to assembly language programming. This chapter is important because it describes the basic 
structure of assembly language programs and provides several well-commented assembly language example 
programs. 

Chapter 9: This chapter introduces a basic set of RISC-V instructions with detailed explanations to enable the 
reader to write basic RISC-V programs. This chapter describes three types of instructions including I/O, data 
transfer, and number crunching instructions. A later chapter introduces a more complete set of RISC-V 
instructions. This chapter is important because it represents an introduction to the RISC-V instruction set in 
such a way as to be able to write basic RISC-V programs. 

Chapter 10: This chapter introduces most of the remaining instructions in the RISC-V instruction set 
including logic-type, arithmetic-type, shift-type instructions, and a set of “auxiliary” instructions that have 
various purposes. This chapter also introduces the complete set of program flow control instructions, which we 
initially introduced in a previous chapter. This chapter also introduces bit manipulation techniques that support 
the notion of bit masking. This chapter is important because it describes some of the basic programming 
concepts and approaches beyond simple description of individual instructions. 

Chapter 11: This chapter provides highlights into accessing various RISC-V memory modules in the context 
of the RISC-V instruction set. The instruction set provides efficient and generic access to main memory, which 
allows great flexibility for programmers using the RISC-V to solve problems. This chapter is important 
because it shows the full flexibility and functionality of RISC-V memory-type instructions.  

Chapter 12: This chapter describes everything there is to know about writing and using subroutines in 
assembly language programs. Proper subroutine usage in assembly language programs is the foundation of 
good programming forms such as modular programs. This chapter is important because it describes the details 
involved in the design and implementation of subroutines in assembly languages. 

Chapter 13: This chapter describes all the information that programmers should be aware regarding interrupts 
on the RISC-V MCU. We complete the hardware description of this interrupt architecture in a later chapter. 
This chapter is important because it describes the RISC-V interrupt architecture from the standpoint of an 
assembly language programmer. 
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Chapter 14: This chapter introduces supporting topics such as memory segmentation, the various RISC-V 
assemblers, and programming efficiency issues. This chapter is important because it describes many important 
support topics associated with programming the RISC-V MCU. 

Chapter 15: This chapter provides many solved problems ranging in scope from introductory to quite 
challenging. These problems and their detailed explanation show every trick in the assembly language coding 
book. This chapter is important because it shows how to solve a wide set of problems by writing RISC-V 
assembly language programs. 

 

PART FIVE: RISC-V MCU Architectural Details 

Chapter 16: This chapter describes the various submodules of the RISC-V OTTER MCU and their relation to 
instruction execution. This chapter also describes interfacing the RISC-V OTTER MCU to external world 
items such as development boards. This chapter is important because it describes the low-level architecture 
details of the RISC-V MCU and its interfacing to the outside world with particular attention to instruction 
execution. 

Chapter 17: This chapter is the first hardware-based chapter, which introduces the hardware details associated 
with instruction implementation that are beyond the skillset of pure programmers. This chapter is important 
because it describes some of the low-level details regarding RISC-V instructions and instruction execution. 

Chapter 18: This chapter describes the hardware details associated the RISC-V OTTER MCU interrupt 
architecture. This description includes modifications to existing modules and low-level details of instruction 
implementation. This chapter is important because it describes the low-level architecture details of the RISC-V 
MCU interrupt architecture.   

Chapter 19: This chapter describes several topics typically included with computer architecture topics but not 
really part of the RISC-V MCU description. These topics include RISC vs. CISC, standard computer 
architectures, levels of memory, and seven-segment display multiplexing. This chapter is important because it 
describes some the non-architectural but still important details involving the RISC-V MCU. 

Chapter 20: This chapter introduces the timing characteristics associated with RISC-V MCU instruction 
execution. This chapter is important because it provides important insights into RISC-V MCU instruction 
execution by the use of timing diagrams. 

Chapter 21: This chapter presents problems that involve modifying the existing RISC-V MCU and support 
tools such that they support new and/or extended operations and/or instructions. This chapter is important 
because it advances your knowledge of the RISC-V MCU by outlining possible hardware architecture changes 
in response to stated design goals. 

 

The Appendix  

The Appendix provides some useful and handy RISC-V MCU information as well as fast overviews of 
Verilog. These items include:  

 Digital Design Foundation Modeling Cheatsheet 

 RISC-V OTTER MCU Architectural Diagrams 

 Finite State Machine Modeling using Verilog Behavioral Models 

 Wrapper Model for Basys3 Development Board Interfacing 

 Verilog Style File 

 RISC-V MCU Assembly Language Style File 

Glossary of Computer Design and Assembly Language Programming Terms 

This item provides a list of important computer design terminology and their relatively brief definitions.  
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Index  

This item provides fast locator for the more important terms and acronyms used throughout the text.  
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PART ONE: Introduction and Review 
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1 FreeRange Computer Design Overview 
 

1.1 Introduction 

The main purpose of this chapter is to put FreeRange Computer Design into a meaningful context. I’m hoping 
to give you this context in several ways: 1) by describing the outline of the various chapters in this text, 2) by 
describing some of the issues involved with “computer design” textbooks, 3) by providing you with a general 
overview of the course, and finally, 4) by providing a quick history of the course. While all of this is not killer 
useful information, having the proper context for your endeavors facilitates learning, which is never a bad 
thing. 

 

Main Chapter Topics 

 DESCRIPTION OF CHAPTER FORMATS: Each chapter has a similar format; this 
chapter describes the chapter format for FreeRange Computer Design.  

 OVERVIEW OF TEACHING COMPUTER DESIGN: Computer Design means different 
things to different people; this chapter describes the relatively unique approach for 
FreeRange Computer Design.  

 TEXT AND COURSE HISTORY: This text and course have had a relatively long history. 
This chapter mentions some of the finer points and acknowledges the people who did 
the work to make this course text happen and continually improve.  

 

Why This Chapter is Important 

This chapter is important because it provides a context for this text by describing some 
the issues regarding computer design courses as well as other pertinent information.  

 

1.2 Chapter Structure 

Each chapter has useful features in order to help the reader organize and digest the material in the chapter. 
Each chapter generally has the following features, though some chapters have special formats of their own.  

 Introduction: Quick motivating prose overview including a list of the main topics and the chapter 
and why that chapter is important in digital design  

 The Body of the Chapter: In case you want the whole story (with example problems) 

 Chapter Summary: The quick overview of chapter 

 Practice Problems: Including both exercises and/or design problems for the reader’s entertainment 

1.3 FreeRange Computer Design Beginnings 

This text presents a course in Computer Design and Assembly Language Programming. The original label for 
this course was CPE 229 (the lecture portion of the course) and CPE 269 (the laboratory portion of this 
course). We later changed the course delivery to a studio format, which also entailed a label switch to CPE 
233. Cal Poly first taught the original CPE 229/269 course-set Fall 2003 quarter. The previous version of CPE 
233 has developed considerably in the years it was taught (the RAT MCU), but it had several issues that made 
it rife for replacement. The new version of CPE 233 uses the OTTER MCU, or the OTR MCU, which is a 
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modern and better supported version of the course. Like all good courses, CPE 233 is under constant 
development and is well on its way to becoming a great course.  

In the late 1990’s, a bunch of old guys1 sitting around a table dreamed up a change in the CSC, CPE, and EE 
curriculum that was perceived to improve the quality of education in the respective departments. The idea was 
to do-away with EE 319 (hardware-based finite state machines and advanced digital design) and CSC 215 
(software-based 68000 assembly language programming) and compress those topics into a single course. In 
reality, both of these courses went relatively deep into their respective topics. As if this was not enough, they 
also decided to add an element of computer architecture to the course. The initial result was a highly 
specialized course that covered finite state machine design, basic computer architecture, and assembly 
language programming. We later removed the notion of finite state machine design and placed it into the 
beginning digital design course (CPE 133).  

This change in curriculum created several problems, some of which we are still dealing with today. Here are 
the gory details and status of these problems:   

1. The first problem is there is no existing book that is appropriate for the entire course. Unfortunately, 
this has resulted in a compromised learning experience for the students taking the class. The 
instructor that spearheaded the development of CPE 229/269 originally promised to provide 
teaching materials for the instructors teaching the course, but the materials provided were not only 
worthless, but an on-going joke2 amongst the students taking the course. In truth, this instructor’s 
primary focus was to use CPE 229/269 as a vehicle to write another useless textbook and 
subsequently force CPE 229/269 students to purchase the text. This instructor finally retired. He did 
finish the book, however; no surprise that no Cal Poly instructor ever used his book after his 
retirement, which stands as a testament to the overall quality of this instructor’s product and 
professionality.  

2. The second problem that this curriculum changed caused was an overlap in topics and concepts 
taught in this course for CPE and CSC majors. This is an ongoing problem, but the form of the 
problem has mutated. The issue is that CPE students are required to take CPE 315, an architecture 
course offered by the CSC department. Many professors in the CPE program have complained that 
the overlap is bad for CPE students. The truth is that CSC department chose to no longer require 
their students to take CPE 133 and CPE 233. As a result, CSC students have little or no experience 
with actual digital hardware or hardware design in general. That being the case, it’s a mystery to me 
how you can teach a junior-level computer architecture course (CPE 315) without having a clue 
about basic digital hardware. The reality is that CPE 233 exists in large part to support EE students 
and we’ve been able to fight off the notion of changing CPE 233 in order to support the 
shortcomings of another department’s curriculum. Additionally, the different skill levels in CPE 
and EE students resulted in the creation of CPE 333, which represents a continuation of the CPE 
133 and CPE 233 courses.  

3. CPE students taking CPE 233 most likely have more programming experience than EE students 
based on the notion that CPE students take CPE 123-101-202-203, while EE students only take 
CPE 101. Although this is an issue, programming only comprises about 40% of this course. 
Moreover, the programming is low-level (assembly language) and is the first time in either the CPE 
or EE curriculum that students see the material.  

1.4 Issues with “Modern Computer Design” 

If you ask a hundred people to define the notion of a computer, you will surely receive a hundred different 
replies. As you know (or as you’ll soon find out), if you search for a common and usable definition of a 
computer, you may only find a description at such a high level, that the definition is almost worthless. 

                                                           
1 I got in a lot of trouble for writing this. It’s true; the truth only hurts liars; there are a lot of hurt people in academia. 
2 As reported to me by countless students in this instructor’s class. The joke continues due to 1) the politics in the EE 
Department and CPE program, and 2) the strong resistance to any type of change exhibited by a vocal minority of EE and 
CPE faculty. The only thing that allowed change to occur in this area was the creation of CPE 233; the studio-version of 
this course allows instructors to operate independently of each other, thus somewhat protecting individuals from the 
politics.  
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Moreover, if you pick up a book on computer design (and there are hundreds of them out there), each book 
typically takes a different approach to describing what a computer is and what a computer does (and this of 
course does not include the different programming languages these computer books describe). There was a 
time (maybe in the 1950’s) where there was a definition of a computer that described actual computers more 
completely, but the ever-expanding field of computer science and computer technology quickly muddied that 
definition. 

I’ve spent a significant amount of time trying to figure out how to arrange a book on computer design such that 
it makes the topic both relatively easy to grasp and somewhat interesting to work with along the way. The main 
problem is that it is hard to describe something until you know what it does, and you generally won’t get a 
good feel for what it does until you do it, but you can’t do it until you know what you’re doing, but you don’t 
really learn things until you do them… I’m thinking you get the picture. The result of this dilemma is what you 
are reading now. My basic solution to this dilemma is to divide FRCD into five sections.  

In a perfect world, where authors write perfect books, each chapter in the book would lead nicely into the next 
chapter and no chapter would assume knowledge contained on a page after the current page you’re reading. 
I’ve divided FRCD into five parts: 1) an introduction and basic digital design review, 2) advanced digital 
design topics, 3) introduction to computer design, 4) The RISC-V from a programmers’s perspective, and, 5) 
the RISC-V from a hardware perspective. The intention of dividing the text in this manner was to ensure the 
text was useful to people who were only interested in programming the RISC-V using assembly language, 
which is why the programmer’s portion of the book bypasses all hardware notions.  

1.5 The RAT Microcontroller/Microcomputer 

The first meaningful version of CPE 233 involved developing and programming the RAT MCU.  
Microcontroller (MCU) or RAT Microcomputer. There are many ways to introduce the concept of computer 
design; the RAT MCU version of this textbook took the approach of having you design the RAT MCU using 
VHDL models and synthesizing those modules onto a FPGA-based development board. There is nothing 
overly special about the RAT MCU, but there is some worthwhile history associated with it:  

 The RAT MCU started out as a concept for a computer design course. The Cal Poly Electrical 
Engineering department was suddenly required to teach a computer design/assembly language 
course in a ten-week period, but there were no materials out there to support such a knowledge-
impacted course. The first attempt at such a processor was the ESX MCU, which I designed in 
the summer of 2004. The ESX MCU was a great learning experience, but it never went 
anywhere due to some oversights with the design. The main problem with the ESX MCU was 
that I designed it to be a subset of the Atmel AVR line of MCUs, something that felt like a good 
idea at the time but turned out to be rather pointless and stupid.  

 A really cool student (Kianoosh Salami) and I “designed” the RAT MCU in the summer of 
2009. The design simply comprised of a minimal set of instructions (we’ll discuss exactly what 
that means later) that the RAT MCU would support. Our main goal was to make the instruction 
set as small as possible but result in a meaningful, synthesizable, and useful computer. Note that 
we never designed any actual hardware: the design started out as simply an instruction set. Our 
inspiration for the RAT MCU design was partially driven by our experience using the 
PicoBlaze2 and PicoBlaze3 MCUs in an older version of the course. The PicoBlaze designs 
represent a working MCU defined with VHDL models. The PicoBlaze3 was an improvement 
over the PicoBlaze2 design; naturally, the RAT MCU is an improvement over the PicoBlaze3 
design3  

 In the Fall of 2010, I pitched the RAT MCU concept for a course to Jeff Gerfen. He apparently 
liked the concept enough because he agreed to use it for his CPE 233 course he would teach in 
the Winter 2011 quarter. At that point, I agreed to support his efforts by generating an assembler 
for the course. I wrote the assembler for the course in the Fall 2009 quarter based on the 
instruction set Kianoosh and I had previously designed. I worked with Jeff to refine the 

                                                           
3 The notion of improvement needs defining here. The PicoBlaze designs were highly optimized to create a fast MCU that 
synthesized into a small footprint. The PicoBlaze design did not use much VHDL behavioral modeling. The resulting 
model was great, but the models did not support actually understanding how a computer works. 
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assembler and add some features during the Fall 2010 and Winter 2011 quarters. Included with 
this was the “RAT Assembler Manual”, which describes the instruction set and the various 
features contained in the assembler. In reality, Jeff made the course happen. He started from on 
the course based on an instruction set and the promise of an assembler and assembler manual. 
He thus did all the major initial development work for the course, which is a significant feat that 
you cannot overstate4. When the course was first taught in Winter 2011, two students created the 
RATSim, which serves as a simulator and debugger for the RAT MCU.  

 Other instructors including Bridget Benson, Kari Haworth, Jeff Gerfen, and myself further 
developed the CPE 233 course. These changes underscore the good things that can be done 
when instructors work together and share their work, something that was unheard of in the days 
when old-fart wankers ruled the digital area of the EE and CPE departments with an iron-fist; 
dark days indeed.5  

1.6 The RISC-V OTTER MCU 

The RAT MCU started out as a great idea, but became tired over time. The main issue as I see it is that it was 
great at first, but then students became more smart and savvy. So as students progressed with their knowledge 
and ability to learn, the limitations in the RAT MCU became painfully obvious. The result is that students 
taking CPE 233 were no longer getting an optimal experience.  

Joseph Callenes-Sloan was a recent addition to the Computer Engineering part of the Electrical Engineering 
department. It was with his wisdom, knowledge and basic hard work that he developed the RISC-V OTTER 
MCU. The OTTER MCU solved some of known issues of the RAT MCU; we list a few of those issues below.  

 The RAT MCU and associated tools was a homegrown product, which meant any modifications 
required a significant amount of time and effort. We had to delay many meaningful 
modifications, sometime indefinitely, based on time constraints.  

 The RAT MCU programs were limited to 1024 instructions. This was initially not an issue, but 
later became a big issue when student skills increased and many students found this program 
size limiting.  

 The RAT MCU had no associated C compiler. As most of us know and are willing to admit, C 
is the programming language of hardware. The best approach to becoming a great hardware 
programmer is to be able to create programs at both the assembly language and higher-level 
language levels.  

The OTTER MCU is not without issues. The main issue is the lack of documentation aimed at the students 
who know nothing or very little about computer architecture. Here’s the best analogy I can think of… The 
RAT is like an old Volkswagen bug: simple and dependable, but severely limited. It gets you where you need 
to go, but you won’t be travelling in style. The OTTER is like a Porche: it also gets you where you need to go, 
but it gets you there much faster and in a more comfortable manner. If you know how to drive, you can drive 
either; but with the OTTER MCU, you’ll be able to effortlessly transition to other modern processors.  

One of the really good things about the RISC-V is that it is a modern and known computer. When you list the 
RISC-V on your resume, people will know what it is and have some idea of your skills and abilities. When 
students listed the RAT MCU on their resume, prospective employers probably thought you had a rodent 
problem.  

                                                           
4 For those people who don’t know what is involved in developing a course, here are some of the issues. In a perfect world, 
the administration would provide instructors with as much time as the required in order to present a “good” course. In 
reality, the administration provides no time at all for instructors to develop courses. Instructors are not required to develop 
courses, but good instructors don’t feel comfortable presenting bad courses. A bad course in this instance is one that does 
not present the course materials in an coherent and modern manner, which is an ongoing problem in fast-moving 
technologies such as digital electronics.  
5 And the worst part of it all was that all of the buttheads who were trying to control the course had never taught the course 
and had no intention of ever teaching the course. Why is it that people become corrupt when they find themselves in a 
position of power? 
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1.7 Issues with the CPE 233 Course  

The CPE 233 course has one main issue: it’s nearly impossible (if not impossible) to present a meaningful 
amount of material in a manner that support mastery of the topics in the time provided. The title of the CPE 
233 course is “Computer Design and Assembly Language Programming”. The main problem is that either of 
two subjects could easily be a course on their own. The problem is that we try to stuff all this material into one 
ten-week course, which turns out to be a questionable approach. It’s a mystery why this problem has never 
been adequately addresses.  

1.7.1 The CPE 233 Approach 

The approach we take in CPE 233 is somewhat unique and a little bit questionable. Because of the time 
constraints, we provide students with the architectire, meaning they don’t actually design a computer. We thus 
replace designing a computer with “here’s a computer; you must understand all aspects of this computer” with 
the hopes that if you understand the provided design, you’ll later be able to design your own computer from 
scratch. This is not an optimal approach, but it’s much better than nothing.  

Someday, someone will fix this course. I envision this course as being true computer design in that you must 
design a computer to solve a specific problem. Instead of “here’s a computer”, the course will be: “Here’s a 
problem; design a computer to solve this problem”. I’m confident this will happen; it’s only a matter of time.  
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1.8 Chapter Summary 

 

 Course History: This textbook was originally designed to support a new course in the Electrical 
Engineering Department. This new course started out as CPE 229/CPE 269, but later morphed into CPE 
233. This course replaced a course in advanced digital design and assembly language programming. This 
course and textbook is under constant development.  

 Original Course Conception: This course and subsequent support materials was originally conceived of 
by Kianoosh Salami and Bryan Mealy. The aim of the design was to have a computer with a small 
instruction set have it be large enough to be both useful, versatile and facilitate the understanding of low-
level computer design and basic assembly language programming concepts.  

 The RISC-V OTTER MCU: The MCU initially developed/implemented by Joseph Callenes-Sloan that 
replaced the RAT MCU for CPE 233 courses.  

 Course Progress: This course is a result of several instructors working together and sharing their work. 
This sort of collaboration is not typically found in academic environments due to the administration’s 
underlying approach of judging instructor’s performance on something other than an absolute standard, 
which results in instructor’s having being reluctant to share their work. In this scenario, students always 
lose. 
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1.9 Chapter Exercises 

 

1) Briefly explain why is there no great definition of a computer that satisfies everyone who may be asking 
such a question.  

2) Briefly describe why it is hard to define the notion of a computer.  

3) Briefly explain why there is no good off-the-shelf textbook for this course material.  

4) Briefly describe the five parts of this textbook.  

5) Briefly explain why this text divided into five parts.  

6) Briefly comment on where the name RAT came from.  

7) Briefly describe the main problem with the ESX MCU.  

8) Briefly describe how the RAT MCU started out.  

9) Briefly describe how the RISC-V OTTER MCU was created.  

10) Briefly describe some of the less than good issues associated with the CPE 233 course.  

11) Briefly describe some of the less than good issues associated with the RISC-V OTTER.  
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2 Digital Design Review 
 

2.1 Introduction 

The first course in digital design typically entails learning a standard set of combinatorial and sequential circuits, 
which we refer to as Foundation Modules. Despite the fact that this set of circuits is relatively small, you can 
design any possible digital circuit using them. We keep referring to these basic circuits as being in our “digital 
bag of tricks”, which means we know what these do, how they do it, and easily use them as the building blocks 
in any digital circuit. Moreover, we generally understand these basic digital building blocks at a high-level; we 
know how they operate at a low-level so we avoid designing at that low level and opt to abstract upwards and 
design at the modular level.  

This chapter provides a quick overview of digital design including combinatorial circuits, sequential circuits, and 
Finite State Machine design. For a complete overview of these topics, please consult an appropriate digital 
design text such as FreeRange Digital Design Foundation Modeling; this text is available at: 
www.unconditionallearning.com. .  

 

Main Chapter Topics 

 OVERVIEW OF IMPORTANT DIGITAL VERNACULAR: This chapter lists and defines 
some of the more important terms and concepts related to introductory digital design.   

 COMBINATORIAL CIRCUIT REVIEW: This chapter describes the basic combinatorial 
circuits that everyone should be familiar with including basic gates, half adders, full 
adders, ripple carry adders, multiplexors, decoders, comparators and parity circuits. g 

 SEQUENTIAL CIRCUIT OVERVIEW: This chapter describes the basic sequential 
circuits everyone should be familiar with including flip-flops and all the major aspects 
of Finite State Machines (FSMs). 

 APPROACHES TO DIGITAL DESIGN: This chapter describes the three basic approaches 
to digital design: 1) brute force design, 2) iterative modular design, and 3) modular 
design.  

 DIGITAL DESIGN HIERARCHY: This chapter provides a reminder of the path you’ve 
taken to arrive at the point of designing a computer. 

 

Why This Chapter is Important 

This chapter is important because it describes most of the important concepts from a 
typical beginning digital design course. In particular, this chapter provides a fast 
overview of the topics presented in FreeRange Digital Design Foundation Modeling.  

 

2.2 The Design Process 

If doing digital design was like following a recipe, everyone would be doing it and, employers would not be 
paying you the big bucks for you to do it. There is quite a bit of literature out there detailing the design process 
from many different angles; not all of it is exciting reading. The truth is that “design” is a process, which is sort 
of like a journey without needs to go anywhere. You know where you need to go, you know the tools at hand to 
get you there, and you dive in and get going. The good news is that the starting point in digital design is not 
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always at the beginning, which means you’re absolutely expected to borrow from existing designs as part of the 
design process. The other good news is that the more design youdo, the better you get at it.  

Black box modeling is the mainstay of digital design. Accordingly, two of the most basic and important digital 
design principles (modular design and hierarchical design) deal directly with black box modeling. Here are the 
first four laws of digital design as they appear in Digital Design Foundation Modeling.  

Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.  

Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles 
that require kludgy solutions, toss out the design and start over from square one. 

Mealy’s Third Law of Digital Design: Every digital design problem can have many different 
but equivalent solutions; the absolute right solution is eternally elusive.  

Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you 
think you’re going to generate the correct solution with the first pass, you’re bound for 
disappointment. The digital design process is circuit; always make going backwards a few steps 
to fix issues part of the design process. Don’t try to make your design perfect from the get-go, 
make it simple to understand so that you can fix issues as they arise.  

Digital design is not a process where you can simply find the correct formula and plug in the correct values1. The 
path to a solution (notice I did not say “the” solution) is rarely clear from the start, but the path becomes more 
familiar as you work on the problem. Working on the problem entails understanding all levels of the problem. 
The point here is that by the time you finish your design, you’ll understand all levels of the problem. When you 
first start the problem, the path to the solution may not be (is rarely) clear. You will make mistakes along the 
way to solving your problem: we expect this in all designs. The key here is to make a mistake, learn from that 
mistake such that the path to the final solution becomes clearer. The design process is thus a constant learning 
process, it’s not a grunt work thing you can do by rote. If you fall, pick yourself up and keep going. Good digital 
designers are people who know they are going to make mistakes, but have the wherewithal to quickly correct 
their issues.  

A significant portion of this book is about assembly language program, including program design and 
understanding how the computer hardware implements instructions. The design process is similar for programs. 
First, you’ll probably never get your program correct the first time you write it. Second, you learn to use the 
available tools (simulators, debuggers, etc.) to help you in the design process. You’ll for sure develop your own 
style with the goal of writing good programs in a timely and efficient manner.  

Lastly, I found this quote somewhere that I feel is perfect for digital design, programming, and any other non-
trival task you may embark on.  

"One day when I was studying with Schoenberg, he pointed out the eraser on his 
pencil and said, 'This end is more important than the other.'" 

 
-- John Cage, Silence 

 

2.3 The New Digital Paradigm: Digital Design Foundation Modeling 

We base our digital design knowledge on the Digital Design Foundation Modeling approach, or DDFM. This 
approach builds upon both modular design and hierarchical design, which are the main tenets of modern digital 
design. DDFM focuses on presenting digital design topics in the context of actual digital designs. The underlying 
goals of DDFM are to simplify the presentation of introductory digital design, and to provide a simple circuit 
model that describes all levels of digital design. 

2.3.1 DDFM Overview 
                                                           
1 This would be a good description of analog design 
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This section provides the high-level details about DDFM. The focus of DDFM is to present digital design in a 
simple and organized manner, which expedites learning the subject matter. These are the main tenets of DDFM:  

 The main purpose of digital design is to solve problems using digital circuits 

 We can best describe digital circuits in a modular and hierarchical manner 

 Digital circuits are a set of digital modules that exchange information under the control of some entity 

 We perform digital circuit design in a structured2 manner, meaning that we can model any digital 
circuit using a relatively small subset of digital modules, which we refer to as the digital design 
foundation modules. Each foundation module performs a relatively small set of simple operations. 

 We present the digital design foundation modules at a high-level by modeling the modules in terms of 
their data, control, and status signals, which allows us to use the modules in designs, while not requiring 
us to initially understand underlying implementation details.  

 We classify the digital design foundation modules as either “controlled” or “controller” circuits 

 We consider there to be four approaches to controlling a digital circuit:  

1) NO CONTROL (no flexibility in circuit behavior) 

2) INTERNAL CONTROL (controlling circuits using internal signals) 

3) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.) 

4) CIRCUIT CONTROL (controlling circuits using FSM or computer) 

 We categorize digital design approaches into three categories:  

1) BRUTE FORCE DESIGN (BFD) 

2) ITERATIVE MODULAR DESIGN (IMD)  

3) MODULAR DESIGN (MD) 

 

Figure 2.1 shows a high level generalization of a digital circuit. This figure provides a visual representation of a 
the digital circuit model we work with in this text. Figure 2.1 shows a circuit with inputs and outputs; the interior 
of the circuit contains combinatorial modules (cloud-shaped items) and sequential modules (square-shaped 
modules). The inputs to the circuit can be either data or status signal; the outputs of the circuit can be either data 
or control signals. The interior modules of the circuit communicate with each other using data, status, and/or 
control signals.  

 

Figure 2.1: A generic digital circuit containing a set of digital modules. 

                                                           
2 This is an analogy to structured computer program design 
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Figure 2.2(a) shows the standard approach to modeling digital circuits, where we classify all digital circuit 
signals as either inputs or outputs. Figure 2.2(b) and Figure 2.2(c) shows how DDFM further classifies inputs 
and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 2.2(b) 
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the 
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure 2.2(b) 
are able to 1) pass data from their data inputs to their data outputs under the direction of the “control” inputs, 
and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status outputs of the 
controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure 2.2(c) inputs the 
status signals of controlled circuits and manages the controlled circuits by outputting the appropriate control 
signals to control the controlled circuits3.  

   

(a) (b) (c) 
 

Figure 2.2: The old digital circuit model (a); models for controlled (b) and controller circuits (c). 

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We 
then consider the solution to any digital design problem as a matter of using a controller to properly control the 
dataflow through a set of controllable modules. Figure 2.3 shows an example of many circuit modules controlled 
by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of computer 
control, such as a microcontroller. Figure 2.3 includes three different module shapes showing that controllable 
modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer peripherals.  

 

Figure 2.3: Our unifying digital circuit model. 

2.3.2 The Three Approaches to Digital Design 

Part of DDFM includes categorizing digital design into three different approaches. With some combination of 
these three approaches, you can create any digital circuit. Table 2.1 below shows the pros and cons of these three 
approaches.  

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its simplicity 
limits its practicality in non-trivial designs.  

                                                           
3 We purposely omitted data signal from the controller circuit. Controller circuits can have data inputs, but we generally try 
limit controller circuit inputs and outputs to only status inputs and control outputs.  
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ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD 
removes some of the limitations of BFD, it is only applicable to a few of circuits.  

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus 
where this text expends most of its effort.  

Design Approach Pros Cons 

Brute Force Design (BFD) Really straight forward Limited by truth table size 

Iterative Modular Design (IMD) Straight forward Not applicable to all designs 

Modular Design (MD) Massively powerful Requires a working brain 

Table 2.1: Matrix explaining why Modular Design can save the world. 

2.3.3 Notes on Modular Design Techniques 

The general approach to becoming an efficient digital designer is to design on as high of level as possible. In 
terms of the three design techniques, that means you should always aim for the modular design approach, which 
necessarily incorporates all of your previously designed digital modules.  

One of the underlying themes in digital design is the use of modularity, thus modern digital design consists 
primarily of Modular Design. To put this statement in other terms, you can subdivide even the most complex 
digital circuit into a set of the relatively few standard digital circuits. You do modular design by plopping down 
black boxes and connecting them (thus forming BBDs) in intelligent ways that solve your given problem. The 
black box diagrams are of course a form of modeling, which convey various levels of information regarding the 
digital circuit. Here are a few rules you need to follow when doing modular design.  

 Be clear and concise: A messy dark box model or circuit diagram is a tragedy that hinders the 
transfer of information. Strongly consider using a ruler if you’re modeling by hand.  

 Label everything: Make sure the reader of your model does not need to make any assumptions 
about anything.  

 Provide a definition for all black boxes: Black box modeling facilitates the notion of modern 
digital design. Every box you use in your model should either be clearly defined somewhere (such 
as at another level) or be a standard digital “box”. There are many standard digital “boxes” out 
there. If you call out one of these boxes in your black box models, everyone knows what you’re 
talking about and there is no need to define it at a lower level. The catch here is that you must use 
these boxes in the exact way there were defined; if you don’t, people will not know what you’re 
trying to model. Table 2.2 shows a few examples of proper black box usage.  
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Model Comment 

 

This sort of looks like a 3-input OR gate, but having two outputs 
makes it non-standard. Being non-standard, it’s a mystery how the 
circuit assigns the outputs. This is a bad model. To make it valid 
would require that it be defined somewhere so we all know what it is.  

 

This is a true digital box. Since we know what an RCA is, and the 
inputs and outputs of the box labeled RCA match what we know about 
RCAs, we know exactly how it works. This is a valid model and there 
is no need to define it further.   

 

This is also a true digital box. If you replace the HA in a RCA with a 
FA, you’ll have the extra carry-in input as is listed in this model. 
Having this input is handy and often useful. This is a valid model. 

 

This circuit has the RCA label, but since we know RCAs to have 
multiple inputs (bundles) for the addend and augend, we’re left 
scratching our heads. You could assume it’s a RCA but you could be 
wrong. This is an invalid model.  

 

This has all the correct inputs for an RCA, but since it has the ADDER 
label, we can’t assume we know exactly what this box is doing. This is 
an invalid model. You could make this model valid by providing a 
definition for the ADDER somewhere in your design.  

Table 2.2: Some good and bad example of standard digital dark boxes. 

2.4 Important Digital Vocabulary 

If you only remember a few things from introductory digital design, you should remember the items in this 
section. These items probably won’t help you pass any specific course, but they may help you pass in interview 
because even a substandard HR person can gauge whether you know these items or whether you’re a sack of 
dead chi. As for vocabulary, there are 25 pages of vocabulary in the glossary of the FreeRange Digital Design 
textbook, consider browsing that stuff if none of these terms make sense.  

Functionally Complete: This refers to the fact that some logic gates have the ability to implement all 
basic logic functions while others do not. NAND & NOR gates are functionally complete for example, 
because a NAND gate can be used to implement an AND, OR, or an inversion function. This is not true 
for AND & OR gates so they are not considered functionally complete.  

Combinatorial vs. Sequential Circuits: The rough explanation is that sequential circuits contain 
memory while combinatorial circuits do not. In other words, a sequential circuit has the ability to 
“remember” at least one bit while combinatorial circuits do not. The better and longer explanation is 
that outputs of combinatorial circuits are a strict function of the circuit’s inputs while in a sequential 
circuit, the outputs are a function of the sequence of the circuit’s inputs. We derive the notion of a finite 
state machine (FSM) from this previous definition. Sequential circuits have at least one feedback path 
in them, which is the characteristic that gives them the notion of memory.  

Mealy vs. Moore FSMs: In a Moore-type FSM, the circuit outputs are only a function of the state 
variables. In a Mealy-type FSM, the outputs are a function of both the state variables and the external 
inputs to the circuit.  

Set-up and Hold-times: Generally speaking, in edge-sensitive devices, the non-clocking inputs to a 
device must be stable (non-changing) for a given period of time both before and after the active clock 
edge. The setup time refers to the time the inputs must be stable before the active clock edge while the 



FreeRange Computer Design  Chapter 2 

 

 - 33 -  
 

hold-time refers to the time the inputs must be stable after the active clock edge. If you violate setup 
and/or hold times, the circuit will probably not work because the circuit will be “metastable”. 
Metastability generally refers to the characteristic of the devices output as being neither high nor low 
and… stuck in the netherworld.  

Latches vs. Flip-flops: Both latches and flip-flops are 1-bit storage elements. The difference is that 
flip-flops are “edge sensitive” latches, meaning that the flip-flops outputs can only change on an active 
clock edge. The latch is level-sensitive device, meaning roughly that the outputs can change anytime.  

The first task at hand in your introductory digital design course was to learn the basics of digital design. This 
included the basic logic functions such as AND & OR, but was more specifically designed towards the gates that 
implemented these functions. The circuits you initially designed were primarily gate-level, which you abstracted 
up from the transistor level. The next part of the course used those logic gates to build the digital design 
foundation modules such as multiplexors, decoders, RCAs, etc. These are all considered combinatorial circuits. 
The next part of the course introduced sequential circuits with the introduction of memory elements such as 
latches and flip-flops. The main use of sequential circuits in the introductory course was register, which of 
course included two types of “registers with features”: counters and shift registers. Another way of looking at 
what we did was that we kept abstracting our circuit models upwards, which allowed us to model circuits at the 
modular level.  

Table 2.3 uses the term modeling in a context that you’re somewhat used to hearing. This table provides an 
overview to the circuits you used in your introductory digital design course, as well as a reference as to how you 
implemented them. In this course, we’ll continue our abstraction of circuits upwards, which requires that we use 
new techniques to represent those circuits as they necessarily become more complex. Our new tool is register 
transfer language (RTL), which we mention in Table 2.3 but define in a later chapter. 

The focus of this course is to develop a relatively complex digital circuit commonly referred to as a computer. 
There are many approaches to designing computers; this text describes one way in relatively great detail. With 
the knowledge you gain implementing this computer, you’ll be able to quickly understand the operation of other 
computer architectures, as they as are nothing other than complex digital circuits.  

 
Course 

 
Design Focus 

 
Circuit Models 

Circuit 
Implementations 

Intro 
Digital 
Design 

 

basic logic: gates, circuit 
minimization 

BBDs FPGA 

combinatorial circuits: decoders, 
MUXes, adders, parity 
generators 

BBDs, HDL FPGA 

sequential circuits: latches, flip-
flops, registers, counters, shift 
registers, FSMs 

BBDs, HDL FPGA 

Computer 
Design 

FSMs, counters, registers BBDs, HDL FPGA 

computer architecture BBDs, HDL, RTL level FPGA 

assembly language 
programming, microcontroller 

BBDs, (programmers 
model), RTL level, HDL 

FPGA 

Table 2.3: Models and circuit implementation for CPE 133 and CPE 233. 

In that we all aspire to be great digital designers, we want to be able to generate digital designs as efficiently as 
possible. While we could implement all of our designs at the gate-level, this would not be efficient. A better 
approach would be to implement designs at the “block level” or “object-level”, or what we refer to as “modular 
design”. The general theme of this design approach is to use “black-box” models of known circuit elements 
(such those listed in Table 2.3 or Figure 2.4) to model digital circuits at a relatively high level. This type of 
design is extremely efficient because so nicely supports two important concepts in digital design-land: 1) the 
concept of hierarchical design, and, 2) the ease at which we can use an HDL to implement modular designs.  
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The presence of large design libraries full of digital devices waiting for use by crafty digital designers fully 
supports the notion of modular design using HDLs. As you know, the reality in digital design land is that there 
are only a relatively few number of core digital devices out there (digital design foundation modules); you can 
use these modules to implement any digital circuit as a set of these core digital devices. This decomposition is a 
reversing of the hierarchical design process. If you are able to understand the operation of the digital design 
foundation modules, you’ll also be able to understand any digital device, regardless of its complexity.  

Figure 2.4 shows a quick overview of digital design as it relates to introductory digital design. What you should 
see from Figure 2.4 is that there aren’t that many standard digital devices (or modules) out there and the ones 
that are out there, are relatively simple devices. Digital circuits become complicated only after you toss down a 
bunch of these modules into a design; hierarchical design mitigates this complexity. Note that most of the 
modules referenced in Figure 2.4 are Foundation Modules.  

In summary, here’s all I know about digital design:  

1) Digital design is based on a relatively small set of digital devices 

2) Digital design relies heavily on various modeling approaches, particularly modular-level design 

3) Digital design modeling relies heavily on hierarchical modeling 

 

Figure 2.4: The quick digital design overview (most of which was covered in CPE 133). 

2.5 Basic Gates 

A gate is a hardware device that implements basic logic functions. We use transistors to implement gates, but 
transistors are too low level of abstraction for the needs of this text. Though we try to implement our circuits at 
the highest level possible (or reasonable for a given problem), we sometimes need to drop down to the gate-level 
in order to implement our designs. An inverter is not really a gate so we do not list it here. Figure 2.5 shows the 
list of basic gates and their various forms.  
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Gate Description 

Func 

Comp Comments 

AND Output =‘1’ when all inputs are  
‘1’; otherwise output = ‘0’ 

no  has two or more inputs 
 has AND and OR forms 
 aka: logic multiplication 

OR Output =‘0’ when all inputs are  
‘0’; otherwise output = ‘1’ 

no  has two or more inputs 
 has OR and AND forms 
 aka: logical addition 

NAND Output =‘0’ when all inputs are  
‘1’; otherwise output = ‘1’ 

yes  has two or more inputs 
 has AND and OR forms 

NOR Output =‘1’ when all inputs are  
‘0’; otherwise output = ‘1’ 

yes  has two or more inputs 
 has OR and AND forms 

XOR Output =‘1’ when all inputs are  
not equal; otherwise output = ‘0’ 

no  has two inputs only 

XNOR Output =‘1’ when all inputs are 
equal; otherwise output = ‘0’ 

no  has two inputs only 
 aka: equivalence gate 

Table 2.4: Summary of digital design gates. 
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Standard Gates 

  

AND form of AND gate OR form of OR gate 

  

OR form of AND gate AND form of OR gate 

  

AND form of NAND gate OR form of NOR gate 

  

AND form of NOR gate OR form of NAND gate 

  

XOR gate XNOR gate 

Figure 2.5: The giant summary of logic gates. 

2.6 Combinatorial Circuits 
Combinatorial circuits are one of the two types of circuits in digital design. The outputs of combinatorial circuits 
are a function of the circuit’s inputs. The following sections list the well-known digital circuits along with a brief 
description; we list most of the modules as digital design foundation modules. Please consult the appropriate text 
for full explanations of these circuits.  

2.6.1 Half Adder 

The Half Adder (HA) is generally the first somewhat meaningful in digital design. The HA is a one-bit adder 
(adds two one-bit values) and outputs a one-bit sum and a carry-out. We generally design the HA using a truth 
table (brute force design). Figure 2.6(a) shows the equations describing the HA’s two outputs while Figure 2.6(b) 
show the associated BBD. The HA is somewhat useful for all those occasions where you want to add two one-bit 
values.  
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bas   
 

baco   
 

(a) (b) 

Figure 2.6: Boolean equations describing the outputs of the HA (a), and the associated BBD (b). 

2.6.2 Full Adder 

Once you figure out that a HA is not too useful, you move onto designing a Full Adder (FA). The FA is almost 
the same as the HA but the FA has an extra input which is considered the carry-in (meaning it’s the carry in from 
a carry-out output of some other FA or HA). Figure 2.7(a) shows the equations describing the FA while Figure 
2.7(a) shows the associated dark box model.  

cibas   
 

baciacibco   
 

(a) (b) 

Figure 2.7: (a) Boolean equations describing the outputs of the FA, (b) the associated BBD.   

2.6.3 Ripple Carry Adder 

Once you realize that there is not too much opportunity out there for Half and Full adders, you generally move 
onto the ripple carry adder (RCA). The RCA is generally the first circuit you design using iterative modular 
design (IMD) noting that the 4-bit adder in Figure 2.8(a) would have required a truth table with 256 rows had it 
been designed using iterative design techniques. The IMD technique easily extends the 1-bit adding elements 
(HAs and FAs) to create multi-bit adders. Note that we can often times substitute the HA in the LSB position of 
the RCA with a FA, which gives up the ability to make larger RCAs (wider, or more bits) by connecting the 
RCAs in a cascade formation. Figure 2.8 (b) shows the BBD of a RCA while Figure 2.8(a) shows the RCA one 
level below Figure 2.8(b). The RCA in Figure 2.8(a) can include a carry-in input if we replace the HA in the 
LSB position with a FA.  

 
 

(a) (b) 

Figure 2.8: The guts of a 4-bit RCA (a), and the associated block diagram a 4-bit RCA (b).  

We consider the RCA to be a Digital Design Foundation module. The RCA is a controlled circuit; 
Figure 2.9 shows the RCA in appropriate digital design foundation notation. As you would expect from 
an adder-type circuit, the RCA adds the two input operands (A & B) and the carry to generate the SUM 
output. Note the RCA has no control inputs, which means the device always performs the same 
operation on the three data inputs. The RCA’s CO output provides status for the RCA’s addition 
operation. Table 2.5 provides a description of all the inputs and outputs to the RCA.  
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Figure 2.9: Data, control and status signals for a RCA. 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

A 
One of two multi-bit addends (or operands). The data width of the two addends is 
equivalent.    

B One of two multi-bit operands. The data width of the two addends is equivalent.  

Cin A “carry in” input.  

O
U

T
P

U
T

 
D

A
T

A
 

SUM The result of summing the three inputs: two addends and the Cin input.  

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

Co 
A “carry-out” signal; this signal shows when the summation operation has 
generated a carry. The carry is effectively the “n+1” bit of an n-bit RCA.  

Table 2.5: The foundation matrix for a RCA. 

2.6.4 Decoders 

We use the word generic decoder, or just decoder, to refer to the digital device where the values of the decoder’s 
input always produce the same values on the decoder’s output. This is a generic definition of a decoder, thus we 
refer to most decoders as “generic” if we can model them in tabular format (a truth table). The basis of all things 
digital are basic gates, which we defined using tables; we can thus consider basic logic gates as decoders because 
of their tabular definitions.  

In addition to the generic decoder, there is a standard decoder. The terms “generic” and “standard” decoders are 
terms that you won’t find in other digital design texts; we created these names to simplify the digital design 
paradigm. The standard decoder is a special type of a generic decoder and has a special relationship between the 
inputs and outputs. Figure 2.10 shows that, a standard decoder is a subset of a generic decoder. Standard 
decoders have specific uses while generic decoder usage is open-ended.   
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Figure 2.10: Venn diagram showing the hierarchy of decoders. 

Modeling digital circuits using tables is powerful because we can easily translate the tables to a hardware 
description language (HDL) models. You may have a notion of the “power of tables” from your programming 
career in that using “look-up-tables” or “LUTs”; the same usefulness of LUTs applies to hardware modeling. 
The approach in modern digital design is to allow the development tools to do the work for you. Thus, modeling 
circuits using decoders (LUTs) hands a significant portion of the circuit implementation effort to the tools. If you 
need some “logic” using an HDL, the best approach is often to model the function in tabular format.  

2.6.4.1 Generic Decoder 

The “Generic Decoder” is the name given to any combinatorial circuit that implements a combinatorial circuit 
that you can’t label as some other standard digital circuit. Often times in digital design land, you’ll need to 
implement a circuit with a combinatorial “input/output relationship”. Any time you need to implement such a 
functional relationship, attempt to represent it in a tabular format, because you can then have defined a generic 
decoder. Figure 2.11 shows a BBD of a generic decoder. There can be any non-zero number of inputs and 
outputs; the number of inputs and outputs don’t need to match.  

 

Figure 2.11: A black box diagram of a generic decoder. 

You can define two general types of tables: 1) complete tables, and, 2) incomplete tables. Both tables are equally 
straightforward to model using an HDL. We define a complete table as a table that has a row for every unique 
combination of the circuit’s inputs; a non-complete table is any table that is not a complete table. We make this 
distinction so you realize that you don’t need to completely specify every possible input combination for generic 
decoders. Additionally, HDLs have solid support for modeling incomplete tables.   

Figure 2.12 shows completely and incompletely specified tables. The table in Figure 2.12(a) has three inputs; 
because there are eight rows in Figure 2.12(a), we consider this table completely specified. The table in Figure 
2.12(b) has three inputs, but only five of those three inputs combinations have outputs. Not declaring outputs 
indicates that for the missing input combinations, the designer for some reason does not care about the outputs. 
Another approach to non-complete tables is to list the missing inputs and state the outputs as don’t cares, which 
we do in Figure 2.12(c).  
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A B C VAL 
0 0 0 011 
0 0 1 110 
0 1 0 010 
0 1 1 011 
1 0 0 111 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

X Y Z VAL 
0 0 0 011 
0 0 1 110 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

X Y Z VAL 
0 0 0 011 
0 0 1 110 
0 1 0 - - - 
0 1 1 - - - 
1 0 0 - - - 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

(a) (b) (c) 

Figure 2.12: A completely specified table (a), and an incompletely specified table (b) & (c). 

The generic decoder is one of our Digital Design Foundation circuits. We consider the generic decoder 
to be a controlled circuit; Figure 2.13 shows the generic decoder in appropriate foundation notation. The 
generic decoder models a table, so the DATA_IN inputs act as the independent variables and the 
DATA_OUT signals are the dependent variables. The generic decoder does not have either control 
inputs or status outputs. Table 2.6 provides a description of the inputs and outputs to the generic 
decoder.  

 

Figure 2.13: Data signals for a generic decoder. 

 
 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

DATA The independent variable of the look-up-table    

O
U

T
P

U
T

 
D

A
T

A
 

DATA The dependent variable of the look-up-table  

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

n/a - 

Table 2.6: The foundation matrix for a generic decoder. 

2.6.4.2 Standard Decoder 

The Standard Decoder has some specific uses in digital design; we’ll see some of those designs later in this text. 
We often label different flavors of standard decoders as DMUXes, but we’ll avoid using such terminology here. 
Figure 2.14 shows a diagram gate-level diagram of a standard 2:4 decoder. There is a binary relationship 
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between the circuit’s inputs (which are select inputs) and the circuit’s outputs. If the standard decoder has one 
input, there are two (21) outputs; if the standard decoder has two inputs, there are four (22) outputs, and so on. 
Note that the output of the standard decoders form either one-hot or one-cold codes (the circuit in Figure 2.15 
shows a one-hot code outout).  

 

Figure 2.14: The important underlying details of a standard decoder. 

The standard decoder is a Digital Design Foundation Module. The standard decoder is a controlled 
circuit; Figure 2.13 shows the standard decoder in appropriate foundation notation. The standard 
decoder has no data inputs; the only inputs are the SEL inputs, which decide the exact format of the 
DATA_OUT signals. By definition, the DATA_OUT signals form a one-hot code. Table 2.7 provides a 
description of all the inputs and outputs to the standard decoder.  

 

Figure 2.15: Control and status signals for a 2:4 standard decoder. 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

n/a - 

O
U

T
P

U
T

 
D

A
T

A
 

n/a -  

C
O

N
T

R
O

L
 

SEL The inputs that select the desired form of the output.  

S
T

A
T

U
S

 

S(3:0) The output signals chosen by the SEL input.   

Table 2.7: The foundation matrix for a standard decoder. 

2.6.5 Multiplexor 



FreeRange Computer Design  Chapter 2 

 

 - 42 -  
 

The multiplexor, or MUX, is an element that “selects” or “chooses” one of many data elements on the input to be 
passed to the output. The inputs to a MUX are the date (the things “being chosen”) and control lines (does the 
actual choosing). The control lines have the typical binary relationship to the circuit inputs in that one control 
line can choose between two (21) items to appear on the MUX outputs, two control lines can choose between 
four (22) items to appear on the circuit outputs and so on. The MUX’s data inputs can be single signals or 
bundles. Figure 2.16 shows the inner workings of a 4:1 MUX with single-bit data inputs.  

 

Figure 2.16: The well-known guts of a basic 4:1 MUX. 

The MUX is a Digital Design Foundation Modules. The MUX is a controlled circuit; Figure 2.17 shows 
the MUX in appropriate foundation notation. The SEL signal is a control input and decides which 
DATA_IN signal becomes the DATA_OUT signal. The MUX thus has a control input but has no status 
outputs. Table 2.8 provides a description of the MUX’s inputs and outputs.  

 

Figure 2.17: Data and control signals for a 4:1 MUX. 
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 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

A, B, C, D 
Data inputs to the MUX; MUXes can have any number of data inputs. One of 
these data inputs becomes the single data output.  

O
U

T
P

U
T

 
D

A
T

A
 

F A single output, which is one of the inputs as selected by the SEL signal. 

C
O

N
T

R
O

L
 

SEL 
Selects which data input appears on F. The width of the SEL signal is such that 
2SEL ≥ to the number of data inputs.  

S
T

A
T

U
S

 

n/a - 

Table 2.8: The foundation matrix for a MUX. 

2.6.6 Comparator 

The comparator is another common digital circuit. While comparators in general can come in many different 
forms, Figure 2.18 shows the general form. It is referred to as a general form because there is only one output 
(indicating whether the two inputs are equal or not). Other less general comparator forms include outputs such as 
“great than or equal”, “greater than”, etc. The classic things to remember about comparators are 1) they involve 
EXOR-type functions, and, 2) we generally design them using iterative modular design (IMD). Figure 2.18(a) 
and Figure 2.18(b) show black box models and circuit implementation of a 2-bit comparator, respectively.  

 

 

 
 

Figure 2.18: A black box model and a circuit diagram for a standard 2-bit comparator. 

The comparator is a Digital Design Foundation module. The comparator is a controlled circuit. Figure 2.19 
shows the appropriate digital design foundation notation for the comparator. Comparators always have two 
inputs, but we can choose between which comparator outputs we want to include in our design (so our 
comparator module has at least one, but not greater than three outputs). The LT output indicates when the A 
input is less than B (A<B), while the GT input indicates when A>B. The EQ output indicates that A = B.  
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Figure 2.19: Typical data, and status signals for a comparator. 

 

 Signal Name Description 
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A, B Two values to be compared; these values have equivalent data widths.  
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n/a - 
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n/a - 
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EQ, LT, GT 
Signals that indicate a relation between the two inputs A & B. EQ is asserted 
when A=B, LT is asserted when A<B, GT is asserted when A>B.    

Table 2.9: The foundation matrix for a comparator. 

2.7 Sequential Circuits 

Sequential circuits are circuits that have the ability to “remember” at least one bit. The official definition of a 
sequential circuit is that the circuit’s outputs are dependent upon the sequence of inputs. The notion of 
remembering bits give sequential circuits the notion of having “state”. And thus, the notion of finite state 
machines (FSMs) is born.  

The simplest 1-bit storage element in digital design land was the “latch” which was based on cross-coupled NOR 
and cross-coupled NAND cells. We consider latches to be “level sensitive” devices. Because we generally need 
more control over devices, we usually us another 1-bit storage element, which we refer to as a flip-flop. There 
are several types of flip-flops out there, but D flip-flops are the most common flip-flop in digital design based on 
their simplicity. Recall that the D in “D flip-flop” refers to “data”. The D flip-flop generally has a clock input; 
changes in state of a D flip-flop are synchronized to an active clock edge (either a rising or falling clock edge, 
but not both).  

2.7.1 Simple Registers  

Registers are multi-bit storage elements modeled as a parallel configuration of D flip-flops that share a common 
clock signal. When we refer to “registers”, we refer to simple registers; we refer to other common register types 
by their names: counters and shift registers. Figure 2.20 shows four D flip-flops assembled to act as a simple 
multi-bit register. In particular, Figure 2.20(a) shows the block diagram for a 4-bit register and Figure 2.20(b) 
shows the underlying circuit. The block diagram in Figure 2.20 (a) shows that this register is rising-edge 
triggered and that every flip-flop shares a common clock signal. 
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(a) (b) 

Figure 2.20: A block diagram for a 4-bit register (a), and the associated lower-level model (b).  

The register is a controlled circuit and is one of our Digital Design Foundation Modules. Figure 2.21 
shows the appropriate digital design foundation notation for the register with a basic set of control 
features. Registers typically have both data inputs and data outputs. The typical set of controls for a 
register includes synchronous load signals (LD) and an asynchronous clear input. Table 2.10 show a 
complete description of the registers input and output signals.  

 

Figure 2.21: Typical data and control signals for a register. 

 Signal Name Description 
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DATA_IN The data that can be latched into the register’s storage elements.  
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DATA_OUT 
The DATA_OUT signal is the data currently being stored in the counter’s 
storage elements.  

C
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CLK 
Registers are synchronous circuits, in that the loading of data to the register 
happens on the clock edge. 

LD 
Allows the latching (loading) of the DATA_IN signal to the counters storage 
elements. This signal is always synchronous.  

CLR 
Latches 0’s into each of the register’s storage elements; can be synchronous or 
asynchronous.  

S
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n/a -   

Table 2.10: The foundation description for a simple register. 
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2.7.1.1 Special Register Circuits: The Accumulator 

The accumulator is a useful and common circuit in digital design. The accumulator does what its name implies: 
it accumulates. In digital design is that we can only add two numbers at a time, but often we need to add more 
than two numbers. In this case, we still can only add two numbers at time, but we add the successive values to a 
“running total”. The resulting circuit is relatively simple: we need a device to store the running total (a register) 
and a device to do the adding (an RCA). Since we have flexibility in the features we add to the register, when we 
design an accumulator, we need to make sure of the following items:  

 We need to ensure we can clear the register, as anytime we’re accumulating something; we 
typically start accumulating with a register value of zero.  

 We need to ensure the width of the register is wide enough to hold the maximum possible 
value based on the width of the values we’re adding and the maximum quantity of values we 
need to add. For the sake of simplicity, the width of the accompanying RCA generally has the 
same data widths as the register, which requires bit-stuffing of the input RCA’s data-widths.  

Figure 2.22 shows a diagram of a generic accumulator. Note that some other entity needs to issues control 
signals to the counter (CLR, LD, & CLK). For this example, we’re not connecting these signals, but we do in 
later examples that use finite state machines (FSMs). Here are some important details.  

 The register has a CLR control input so that we can clear the value stored in the circuit before 
we commence accumulating. The circuit also has a LD control input, which some other entity 
provides  

 We list the output data width as “n” bits and the input data width as “m” bits. The notion here 
is that we’ll be adding a bunch of numbers of width “m”. In doing this we need to do two 
things:  

1. Ensure the output data width “n” is wide enough to handle the maximum possible value 
of the accumulation 

2. Bit-stuff the “m” width input data to match the “n” width of the output. We do this 
because we expect both inputs of the RCA to have the same data width. Figure 2.22 
indicates this bit-stuffing with the square containing the “+”. For this diagram, we are 
stuffing (n-m) bits to the DATA input.  

 

Figure 2.22: Generic circuit for an n-bit accumulator. 

2.7.2 Counters: Registers with Features 

A counter is a type of register, so it inherits all the attributes of a register. The main new “feature” of a counter is 
that it outputs a given sequence of code words, which is the “count” sequence. Counters typically synchronize 
their stepping through the count sequence to an active clock edge input to the counter. Counters can have one or 
more typical operational features, which we control with the counter’s “control” inputs. Counters can also have 
status outputs that provide external circuits information about the counter.  

Our approach is to define and describe every word and/or term you typically hear in the context of counters, and 
then do a few example problems. When you say the word counter, it has a few standard connotations that you 
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can assume are true unless told otherwise. The following list describes even more assumptions made when 
dealing with counters.  

 Because counters are registers, they are sequential circuits   

 An active clock edge synchronizes a counter’s traversing of the count sequence; there is one 
count value, or code-word, from the count sequence at each clock cycle.  

 A counter’s output represents a repeatable sequence of a given number of bits. The sequence the 
counter “counts” in does not change; the bit-width of the counter won’t change either.  

 When a counter completes a traversal through its count sequence (either in the up or down 
direction), the counter automatically starts counting over (and is thus “circular”).  

There is a set of vernacular associated with counters. Digital designer must be fluent with all the new terms 
associated with counters so they can converse with their peers and understand important things such as 
datasheets. Here are the common terms associated with counters:  

 n-bit Counter: A counter that uses n-bits to represent each of the values (or code words) in its 
count sequence.  

 Up Counter: A counter that counts up (increasing count values in count sequence).  

 Down Counter: A counter that counts only down (decreasing count values in count 
sequence).  

 Up/Down Counter: A counter that can counter either up or down according to a control input 
on the device. 

 Increment: An operation associated with counters where ‘1’ is added to the current value of 
counter.  

 Decrement: An operation associated with counters where ‘1’ is subtracted from the current 
value of counter.  

 Counter Overflow: The notion of a counter being incremented beyond its ability to represent 
values; unless otherwise stated, overflow is generally characterized as the counter 
transitioning from its largest representable value to its smallest value.  

 Counter Underflow: The notion of a counter being incremented beyond its ability to 
represent values; unless otherwise stated, overflow is generally characterized as the counter 
transitioning from its smallest representable value to its largest value.  

 Cascadeable: A characteristic of many digital devices such as counters and shift registers that 
allow you to effectively increase the overall bit-width of devices providing inputs and outputs 
such that you can easily interface the devices. One such output is the “ripple carry out”.  

 Count Enable: A signal on counters that enables the counting operation of the counter when 
asserted and disables the counting when not asserted.  

 Ripple Carry Out (RCO): A signal typically found on counters that indicate when the 
counter has reached its maximum count value (for an up counter) or minimum count (for a 
down counter). Counters often use the term RCO to indicate when the counter has reached its 
terminal count value.  

 Parallel Load: A characteristic of a counter or shift register indicating that all the storage 
elements in the device can simultaneously latch external values.  

 Circular: When counters overflow their maximum or minimum counts, we consider them to 
“overflow”. Counters are typically circular meaning that when the counter reaches the 
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maximum value, it automatically continues counting in the same direction starting at the 
minimum value4. 

The counter is a controlled circuit and one of our Digital Design Foundation modules. Figure 2.23 
shows the appropriate digital design foundation notation for the counter. This foundation module is 
more flexible (resulting in more control inputs) and thus harder to define than other foundation modules. 
For example, the only required signal for a counter is a clock, as we consider the counter a synchronous 
device; the only required information we need to know about counters is the bit-width of their internal 
storage elements. Because counters are straightforward to design and/or model in with an HDL, we 
typically only include (or connect) counter inputs and outputs as we need them.  

 

Figure 2.23: Typical data, control and status signals for a counter. 

Table 2.11 shows all the inputs and outputs that we can typically associate with a counter. Table 2.11 
essentially lists a set of features that we can apply to a counter. The two things to note about this list is 
1) that not every counter has every listed feature, and 2) actual counter implementations typically 
combine many of the control features as required into less signals than listed.  

                                                           
4 This characteristic is for an up counter; the same idea is true for a down counter.  
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 Signal Name Description 
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DATA_IN 
A counter is a register, so it can typically load data in to the counter’s storage 
elements. The DATA_IN input is the data that is loaded to the counter.  
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DATA_OUT 
A counter is a register, so the DATA_OUT signal is the data currently being 
stored in the counter’s storage elements. The DATA_OUT signal is necessarily a 
given value in the counter’s count sequence.  
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CLK 
Counters are typically synchronous circuits, in that many counter operations are 
synchronized with the active edge of the clock signal.  

LD 
As with registers, this signal controls the latching (loading) of the DATA_IN 
signal to the counters storage elements. This signal is always synchronous.  

CLR 
Latches 0’s into each of the counter’s storage elements. Can be synchronous or 
asynchronous.  

HOLD, EN 
Prevents the output from changing (HOLD) or enables the output to change (EN) 
based on other control signals (sort of the same idea) 

UP 
Directs counter to count “forward” in the sequence; the an asserted up signal 
counts forward while an non-asserted count signal counts backwards 

DOWN Directs the counter to count “backward” in the sequence.  

S
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RCO 

This signal indicates when the counter has reached the terminal value in the 
associated count sequence. For counters counting up, the terminal value is the 
max count value (all internal storage elements set); for counters counting down, 
the terminal value is the min counter value (all internal storage elements cleared).   

Table 2.11: The foundation description for a full-featured counter. 

2.7.3 Shift Registers 

A shift register is another type of register. Shift registers, and their various flavors, are useful devices because of 
their ability to quickly perform a small but useful subset of mathematical operations.  
We can decompose a shift register down to its most basic component, which we refer to as a shift register cell. 
This cell is a storage element, which we model as a D flip-flop. Figure 2.24 shows a schematic diagram of a 
generic shift register. Upon further inspection, you should discern the following:  

 We can model the n-bit shift register as a set of “n” specially connected D flip-flops. The D flip-
flops in the shift register share the same clock signal.  

 The difference between simple registers and shift registers is in the way that the individual 
storage elements connect to each other. While simple registers have D flip-flops that receive 
data from the inputs, the shift register’s storage elements receive data from interconnections 
between individual storage elements. Figure 2.24 shows that the output of one flip-flop becomes 
the input to the adjacent flip-flop in the shift register, which allows the device to “shift”.  

 The number of bit storage elements in a shift register defines shift registers. The shift register in 
Figure 2.24 represents a generic model of a shift register including the magic ellipsis in strategic 
locations. Common descriptions of shift registers include “a 4-bit shift register” or “an 8-bit 
shift register”, etc. Figure 2.24 shows a generic “n-bit shift register”.  
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Figure 2.24: A typical n element shift register. 

Figure 2.25(a) shows a schematic diagram of a 4-bit shift register while Figure 2.25(b) shows a model of the 
underlying circuitry. Figure 2.26 shows an example timing diagram for a 4-bit shift register in Figure 2.25 (b). 
Figure 2.26 contains annotations to help with the following description.  

  

(a) (b) 

Figure 2.25: A block diagram for a 4-bit simple register (a) and a model of the underlying 
circuitry of a 4-bit shift register (b). 

 

 

Figure 2.26: An arbitrary timing diagram associated with the shift register of Figure 2.25(b). 

 The schematic in Figure 2.25(b) labels each of the internal shift register signals to help describe 
the operation of the basic shift register in Figure 2.26. The “Qx” notation indicates the bit 
positions of the storage elements in the shift register. We consider Q3 the higher order bit while 
Q0 (or data_out) is the lowest order bit5. Note that data_out and Q0 are the same signal.  

 We consider shift registers to “shift” in either direction; that is, they shift to the left (“shift left”) 
or shift to the right (“shift right”). Figure 2.25 (b) shows a right-shifting shift register.   

 The notion of this circuit shifting is primarily a term of convenience and not altogether accurate. 
The “thing” being shifted in Figure 2.25 (b) is the “data”. Another way to view this is that the 

                                                           
5 We often use shift registers for mathematical operations; numbers generally have weights associated with the bit positions.  
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circuit inputs 1’s and 0’s from the left side of the circuit and passing them through to the right 
side.  

 Since this is a sequential circuit, the storage elements have a state associated with them. For the 
timing diagram of Figure 2.26, the initial state of each storage element is ‘0’, which is arbitrary.  

 On the clock edge labeled ‘1’, all of the flip-flops transfer the value on their inputs to their 
outputs. On the active clock edge, the left-most flip-flop latches “data_in”; Q3 latches into the 
second to the left-most flip-flop, etc.  

If you stand back a few paces, you can see the so-called shifting action of the shift register. The individual 
signals are shifted versions of each other; specifically, Q3 is a shifted version of “data_in”, Q2 is a shifted 
version of Q3, etc. Another way to view this is that the “data_out” signal is a delayed version of the “data_in” 
signal. In this case, Q0 is a delayed version of Q3; the delay is three clock cycles because the pulse appearing on 
Q0 is the same pulse that appeared on Q3 three clock cycles earlier. The right-shift operation (one shift in the 
right direction) is the same thing as a divide-by-two operation with truncation6.  

The shift register is a controlled circuit and one of our Digital Design Foundation Modules. We generally 
consider all shift register operations synchronous, except for the CLR input, which is sometimes asynchronous. 
Because shift registers are straightforward to model in with an HDL, we typically only include (or connect) 
inputs and outputs as we need them. The width of the SEL input sufficient to support the shift register’s 
operations. Figure 2.27 shows the foundation module for a shift register.  

 

Figure 2.27: Typical data, control and status signals for a universal shift register. 

                                                           
6 Truncation means the lowest order bit is lost; a similar operation is “round-up” where the value of the lowest order bit is 
“taken into account” and your weeds are killed at the same time.  
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 Signal Name Description 
IN

P
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D
A

T
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 DATA_IN 
A counter is a register, so it can typically load data in to the counter’s storage 
elements. The DATA_IN input is the data that is loaded to the counter.  

DBIT 
The bit that becomes the left-most bit for a right shift operation or the right-most 
bit for a left-shift operation  
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DATA_OUT 
The DATA_OUT signal is the data currently being stored in the counter’s storage 
elements.  

C
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CLK 
Registers are synchronous circuits; most operations are synchronized with the 
active edge of the clock signal.   

CLR 
Latches 0’s into the register’s storage elements; can be synchronous or 
asynchronous.  

DBIT 
The bit that shifts into the register on shift operations, which is the new left-most 
bit or the new right-most bit for shift right and shift left operations, respectively.   

SEL 
These bits select the operation the shift register performs. These operations could 
include: shift left, shift right, hold, load, rotate left and/or right, barrel shifts, etc. 
The width of this input depends on the number of possible operations.  
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n/a - 

Table 2.12: The foundation description for a universal shift register. 

2.7.4 Registers: The Final Comments  

A register is nothing more than a set of bit storage elements that share a single clock signal. In other words, 
registers are a parallel configuration of signal bit storage elements; what makes them parallel is the fact changes 
in register state are generally synchronized to some event (usually a clock edge). Registers (simple, counters, and 
shift registers) are quite common in digital design. All registers are sequential circuits, but some registers have 
more “features” than others. The Venn diagram in Figure 2.28 shows how the various flavors of registers relate 
to each other.  
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Figure 2.28: Venn diagram for the register family.  

The main difference between the many types of register is their feature set. In an attempt to show all the 
possibilities in one spot, Table 2.13 shows a possible breakdown of the register types and their relation to each 
other. Keep in mind that many of the features listed in Table 2.13 can be either synchronous or asynchronous.  

Register Type Sub-Types Features 

plain register 
 parallel load, preset, clear, load enable, 

cascadeability 

shift register 
Universal Shift 
Register (USR), 
Barrel Shifter 

parallel load, preset, clear, load enable, shift 
left/right, arithmetic shift left/right, hold, rotate 
left/right, cascadeability 

counter 
Up/Down Counters, 
Decade Counters 

parallel load, hold, preset, clear, increment, 
decrement, cascadeability 

Table 2.13: The feature progression of the register device. 

2.8 Finite State Machines (FSMs) 

The term “Finite State Machine” has many official meanings and definitions in digital-land. As you saw 
previously, any circuit that has the ability to remember something (namely bits), can be regarded as having a 
“state”. A circuit-oriented definition of a FSM is this: a circuit whose behavior can be modeled using the concept 
of “state” and the transitions between the various states in that circuit.  

We generally use FSMs for two purposes: 1) designing counters with special count sequences, and, 2) as 
controller circuits, or a circuit that control other circuits. People use FSMs in one form or another in many 
different technical disciplines and each discipline seems to have its own particular flavor of representing FSMs. 
Despite these many flavors to modeling FSM, always keep in mind that the best approach is to be clear in a way 
that expedites the transfer of information. Always remember that the state diagram is a model that visually 
describes the behavior of the FSM.  

2.8.1 High-Level Modeling of Finite State Machines 

Digital design typically classifies FSMs as one of different two types: Moore-type or Mealy-type. We opt to 
simplify this definition as follows: there is only one type of FSM, but FSMs can have one of two types of 
outputs: Moore-types and/or Mealy-type outputs. All FSMs share the same properties: the only difference is the 
two types of FSM outputs.  

Figure 2.29 shows a basic model of an FSM. We can abstract the FSM’s internal circuitry into three separate 
blocks: 1) Next State Decoder, 2) the State Registers, and 3) the Output Decoder. The output decoder can have 
two types of outputs, which we refer to as Moore and Mealy-type outputs; Moore-type outputs are a function of 
the present state of the FSM while Mealy-type outputs are a function of both the FSM’s present state and the 
external inputs. Table 2.14 provides a detailed description of the FSM’s individual modules.  
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Figure 2.29: The lower-level BBD for a generic FSM. 

Module Description and Comments 

 
State 
Registers  

The State Registers represent the memory elements in the FSM. The term register implies 
the circuit is a synchronous storage element. The state register is the only sequential module 
in an FSM; the other two modules are both combinatorial circuits. The state registers store 
the state variables of the FSM; the value stored in the state registers is the state of the FSM.   

 
Next 
State 
Decoder 

The Next State Decoder is a combinatorial circuit that provides excitation input logic to the 
state register module. The next state logic generally has two types of inputs, which provide 
the excitation inputs to the state registers: 1) the current value of the state variables (the 
present state, and, 2) the inputs from the external world. Excitation inputs to the state 
registers determine the next state of the state register. On the next active clock edge, the data 
inputs to the state registers becomes the next state of the FSM, which is why we refer to 
next state decoder as the next state logic. The external inputs to the next-state decoder 
function as status signals from the world outside of the FSM.  

 
Output 
Decoder 

The Output Decoder is a combinatorial circuit that generates the external outputs of the 
FSM. The output decoder is responsible for generating the two types of FSM outputs: 
Moore-type outputs and Mealy-type outputs. Moore-type outputs are a function of the 
FSM’s state only, while Mealy-type outputs are a function of both the FSM’s state and the 
external inputs to the FSM. The outputs from the output decoder generally serve as control 
signals to the device(s) controlled by the FSM.  

Table 2.14: A detailed description of the three main FSM functional blocks. 

2.8.2 The FSM: Symbology Overview 

Probably the hardest thing about FSMs is understanding the state diagram symbology. The good news is that it’s 
relatively simple once you work with it.  

2.8.2.1 The State Bubble 

FSMs use the state bubble to represent a particular state in an FSM. Figure 2.30(a) shows a typical state bubble. 
The following verbage lists some of the key features regarding the state bubble:  

 A state needs some way to visually delineate it from other states, which is why the state 
bubble contains identifying information. State bubbles provide the state with a symbolic name 
that identifies the purpose of that state to the human reader.  

 Timing diagrams represent the states by the time slots representing the possible states. Figure 
2.30(b) shows that the boundaries of these time slots delineated the associated active edges of 
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the FSM’s clock input, which is the clock input to the state registers.. Figure 2.30(b) show 
that the state registers are rising-edge triggered (RET) because the rising clock edge defines 
the state boundaries. 

 
 

(a) (b) 

Figure 2.30: The State Bubble and associated timing diagram. 

2.8.2.2 The State Diagram  

The state diagram is one of many methods we use to model FSMs. The main purpose of the state diagram is to 
convey meaning and understanding to the human viewer. State diagrams provide four main forms of 
information: 1) the states in the FSM, 2) the state transitions the FSM makes, 3) the input conditions controlling 
the state transitions, and, 4) the output values associated with the FSM. Figure 2.31(a) shows a fragment of a 
state diagram. The following verbage describes some of the key features of this state diagram.  

 We refer to the terminology describing how a FSM goes from one state to another as a state 
transition or just transition. State diagrams use singly directed  “arrows”, directed from the 
source state to the destination state to represent state transitions.  

 There are only two possible state transitions in a state diagram from a given state. On the active 
clock edge, a transition can occur from, 1) one state to another state (indicated by the “state 
change” label in Figure 2.31(a)), or, 2) the FSM can remain in the same state (indicated by the 
“no state change” label in Figure 2.31(a)). We refer to the “no state change” arrow as a “self-
loop”.  

 The state diagram contains no explicit clock signal; the clock signal is implied rather 
specifically listed. The only part of the clock signal we’re interested in is the active clock edge; 
the state transition arrows represent what action occurs on the active clock edge associated the 
FSM.  

 The two states in Figure 2.31(a) have unique names. In real life, you would want to give these 
more meaningful names such as something to indicate why the state exists.  

 The state names in Figure 2.31(a) give no indication how we would represent the states if we 
were to implement the FSM. In other words, the state diagram provides no commitment to the 
actual state variable assignment that disambiguates the states on a hardware level.  

 The relation between the timing diagram in Figure 2.31(b) and the state diagram in Figure 
2.31(a) is the key to understanding state diagrams in general. When we talk of state, we’re 
talking about all the time in-between the active edges of the clock. The state bubble essentially 
represents all the time between any two active edges of the system clock. The state transition 
arrow represents what happens on each of the FSM’s active clock edges. On each clock edge, 
one of two things must necessarily occur: the FSM transitions either to another state or the FSM 
remains in the same state. A state transition occurs on every active clock edge, but sometimes it 
transitions back to the same state.  

 The concept of Present State (PS) and Next State (NS) is somewhat hard to define in a timing 
diagram such as the one in Figure 2.31(b). The problem is that the present state (and hence the 
next state) is constantly changing as you travel from left to right on the time axis. If you declare 
one state as the present state, then you can declare the following state as the next state relative to 
the present state. This definition changes as you traverse the timing diagram. PS/NS tables do a 
better job of presenting present and next-state information.   
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(a) (b) 

Figure 2.31: A state diagram (a) and the associated timing diagram (b) with interesting details. 

2.8.2.3 State Transitions Controlling Conditions 

As you would guess from examining the state diagram of Figure 2.31(a), there must be some mechanism that 
decides which transition will occur from a given state on the next active clock edge. In Figure 2.31(a), state1 has 
two arrows leaving the state, which mean there are conditions associated with those arrows that decide on which 
transition occurs.  

There are two forms of information that determine the transition a FSM takes: 1) at least one of the external 
inputs to the FSM, and, 2) the present state of the FSM7. The external inputs to a FSM are generally status 
signals from the circuit the FSM is controlling. Each state has its own set of conditions that govern transitions, so 
we’re concerned on a state-by-state basis what external input conditions determine the state transitions from a 
given state. Figure 2.32 shows that we indicate the conditions governing transitions by placing the conditions 
next to the state transition arrows. On this note, there are three important things to keep in mind:  

1) The conditions associated with the state transition arrows leaving a given state must be 
mutually exclusive. This means that there can never be the same input conditions associated 
with two different transitions arrows leaving the same state.  

2) The set of conditions associated with a particular state must be complete, meaning it must 
provide a transition arrow for every possible meaningful combination of input conditions. If 
there is a set of conditions in given state not covered by the associated state transition arrows, 
the FSM won’t know what to do8. State diagrams should leave no room for guessing, if they 
do, their behavior will not be deterministic (which is an impressive way of saying your FSM 
won’t always work as you intend).  

3) If the transition is unconditional, then the state diagram indicates this by listing a “don’t care” 
symbol by that transition.   

 

Figure 2.32: How state diagrams indicate the conditions associated with state transitions. 

                                                           
7 Recall that the PS and the external inputs are the inputs to the next-state decoder.  
8 In cases such as these, the tools you’re working with will generally not tell you about such conditions and will arbitrarily 
decide what it wants to do. In general, software design tools are generally make the assumption you know what you’re doing 
and that you always do the right thing. With that assumption, the tools gladly fill in any details that you have unintentionally 
forgotten.  
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2.8.2.4 FSM External Outputs 

The external outputs from a FSM are generally “control signals” that are controlling other circuits. The state 
diagram has different states and thus the control signals output from one state are generally not the same as 
control signals output from other states, so the FSM is performing different control functions based on the 
different states.  

There are two different types of outputs in a FSM: Mealy-type outputs and Moore-type outputs. Although these 
outputs are similar in their controlling functions, they have one major difference. The outputs Moore-type 
outputs are a function of the state variables only while the Mealy-type outputs are a function of both the state 
variables and the current external inputs. Since Moore-type outputs are a function of the state variables only, we 
represent them by placing their values inside the state bubble. Figure 2.33 shows a state diagram that uses this 
approach. There can be any number of outputs represented inside the bubble.  

 

Figure 2.33: The State Bubble with associated Moore outputs. 

We can’t represent Mealy-type outputs inside the state bubble because they are a function the external inputs as 
well as the state variables. To account for these characteristics in a state diagram, we list the Mealy-type outputs 
next to the external inputs associated with the individual state transition arrows. We separate external inputs and 
outputs with a forward slash. Figure 2.34 shows an example of this approach; we comma-separate multiple 
Mealy-type outputs.   

Figure 2.34 lists two sets of Mealy-type outputs because there are two transitions from state1. The arrows are 
associated with the state transitions, which are based upon the current external inputs; the Mealy-type outputs are 
also a function of those same inputs. Since the Mealy-type outputs are a function of the external inputs, we 
represent them by placing them next to the external inputs. We always associated Mealy-type outputs with the 
state the arrow is leaving (and not the state the arrow is entering). Additionally, the Mealy-type output is 
associated with the external input, not the transition arrow as the diagram seems to show. To say the Mealy-
type output is associated with the transition arrow indicates you should rethink the issue.  

 

Figure 2.34: Representing Mealy-type outputs in a state diagram. 

In addition, we can represent both Mealy and Moore-type outputs in the same state diagram. Figure 2.35 shows 
an example of a state diagram that contains both Mealy and Moore-type outputs.  
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Figure 2.35: A state diagram that has both Mealy and Moore-type outputs. 

2.8.2.5 Non-Important FSM Outputs 

While there are times when you may need to generate a “complete” state diagram, you must remember that the 
state diagram is primarily meant for a human viewer. Combine this notion with the fact that even a modest sized 
FSM can have enough external inputs and outputs to quickly compromise the readability of the state diagram.  

There are generally many outputs from a FSM, but the state diagram does not necessarily need to assign a value 
for every output in every state. If in any state a given output is not assigned, it is assumed to be a “don’t care” in 
the context of that state, which means that output does not affect the external operations associated with that 
state. You can thus omit outputs from a given state if those outputs don’t matter for that state. It is not 
necessarily bad practice to list all external outputs for each state, but your state diagram becomes harder to 
understand.  

2.8.2.6 Non-Important FSM Inputs 

The external input conditions control the state transitions of the FSM; these conditions must be mutually 
exclusive. This seems like we require a complete set of inputs for each transition and for every state, but this is 
not the case. In real FSMs, you’ll find that not all external inputs matter in every state. In those cases, we don’t 
need to include the inputs that don’t matter next to the state transition arrow. If we include the inputs that don’t 
matter, we make our state diagrams less readable.  

The example state diagrams we’ve work with so far seem to indicate the FSM states are somehow limited in the 
number or transition arrows that can leave (or enter) the state. There is no limit, though we do need to ensure the 
conditions governing the transitions are mutually exclusive. There are a few key issues to be aware of regarding 
the transition arrows exiting a given state.  

 Your state diagram must account for every possible set of external input conditions for every 
state. For example, if your FSM has “n” external inputs, every state must necessarily account for 
2n possible combinations of those inputs in order to completely specify the FSM. In reality, the 
2n is the worst-case scenario; you often find that not all inputs matter for all states.  

 You must make sure that all conditions associated with the arrows leaving a given state are 
mutually exclusive, which means that no two arrows can have the same conditions. If two states 
had the same set of conditions, the FSM would know the correct transition.  

 You can’t assume that an FSM stays in the same state if you don’t explicitly and completely 
specify all transition arrows leaving the state. This means that if there is a condition where the 
FSM does not transition to another state, it must indicate this condition with a self-loop, which 
explicitly states the associated conditions.  

FSM are neither magical nor intelligent. FSMs do exactly what you design them to do. This means you must 
never allow the FSM to “make a decision” on its own. It’s quite easy to not completely specify a FSM and get a 
good feeling that the FSM is working properly in all of your testing. Inevitably, if you don’t properly specify the 
FSM, it will fail, and probably fail during a demo of your product to a potential buyer or investor.  
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2.8.2.7 The Final State Diagram Summary 

Figure 2.36 provides a quick overview of the relation between the FSM black box and the example state 
diagrams we’ve been working with in this section. What you should be gathering from this diagram is that 
properly designed state diagrams have a particular structure and use a particular symbology.  

 Singly directed arrows represent state transitions  

 The FSM has external inputs that govern the state transitions from a given state 

 Each transition arrow lists the external inputs that control its transition 

 The state bubbles list the Moore outputs since they are only a function of state  

 We list Mealy-type outputs with the external inputs (and hence the state transitions) since they are a 
function of both the present state and the external inputs. 

 

Figure 2.36: The relation between the state diagram and the high-level FSM. 

The good news is that once you understand FSMs, and traverse the associated learning curve, you’ll agree that 
there is not much to them. Here is everything in a nutshell.  

 The heart of the FSM is the state registers; the heartbeat of the FSM is the clock signal that 
controls the state-to-state transitions of the FSM.  

 On each active clock edge, the state of the FSM can transition to the present state (self-loop) 
or transition to a different state.  

 The next state is a function of the present state of the FSM and the external inputs, which 
form the inputs to the next-state decoder. 

 The outputs of the next-state decoder are the inputs to the state registers and thus determine 
the next state of the FSM.  

 The FSM’s external inputs are generally status signals from the outside world.  

 The FSM sends the control signals to the outside world via the output decoder.  

 The external outputs from the FSM are a function of the state variables (Moore-type) or a 
function of both the state variables and the external inputs (Mealy-type).  
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2.9 Chapter Summary 

 

 All digital circuits can be categorized as being either a combinatorial or a sequential circuit. Combinatorial 
circuits do not have memory and their outputs are a simple function of their inputs. Sequential circuits have 
the ability to store bit, thus making their outputs a function of the sequence of inputs.  

 All digital circuits, including the most complex digital circuits, comprise of a set of basic digital design 
modules. These modules include both combinatorial and sequential circuits.  

 The main combinatorial digital building block circuits are built from simple logic gates. These circuits 
include the following:  

 Half and full adders: circuits capable of adding two 1-bit values 

 Ripple Carry Adders: circuits comprised of half and full adders chained together to form “n-bit” adders.  

 Multiplexors: circuits used as signal selection circuits 

 Decoder: circuits used to establish a given relationship between the circuit inputs and output.  

 Comparators: circuits that compare two values and provides information regarding the relationship between 
the two input values; well known to be made with EXOR-type gates.  

 Flip-flops: one-bit synchronous storage elements 

 Registers: n-bit synchronous storage elements 

 Counters: n-bit register “with features” that output a count “sequence” 

 Shift Registers: n-bit register “with features” that do fast division or multiplication by two.  

 Finite State Machines (FSMs): circuits that have sequential and combinatorial elements typically used as 
controllers for other digital circuits for counters with special count sequences. The general model of an FSM 
as a circuit controller is that inputs to the FSM provide status information from modules external to the FSM 
while FSM outputs represent control signals that are used to control modules external to the FSM.  

 State Diagrams are used to visually model the operation of FSMs. State diagram use their own special 
symbology to describe FSMs.  
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2.10 Chapter Exercises 

 

1) In your own words, briefly describe what we mean by the term “digital bag of tricks”.  

2) Briefly describe the main differences between a combinatorial and sequential circuit.  

3) In your own words, describe the relation between memory of a sequential circuit and the notion that the 
outputs are a function of the “sequence” of inputs to the circuit.  

4) Briefly describe what characteristic gives a circuit the ability to store bits.  

5) Briefly describe the difference between a half adder and a full adder.  

6) Briefly explain whether it would be possible to construct a ripple carry adder using only half adders.  

7) Briefly describe how a “ripple carry adder” was given such a name.  

8) Briefly explain why is the “ripple carry adder” considered a slow adder? 

9) We consider the carryout output of an RCA to be a status output; Briefly describe how you could use the 
carryout as a data output.  

10) At any given time, how many AND gates in a multiplexor are not dead? Briefly explain your answer.  

11) In your own words, briefly describe the difference between a generic decoder and a standard decoder.  

12) Briefly describe the relationship between LUTs and generic decoders.  

13) What it the primary purpose of a parity generator?  

14) What basic digital component do parity generators, parity checker, and comparators all share.  

15) Briefly describe the difference between a flip-flop and a latch. 

16) Briefly describe the differences between a Mealy and Moore-type FSM.  

17) Briefly describe the purpose of a state diagram.  

18) Briefly describe the relationship between the number of states in a state diagram and the minimum number 
of bits in the associated FSM’s state registers.  

19) Briefly describe why the conditions associated with transitions leaving a state bubble must be mutually 
exclusive.  
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2.11 Chapter Design Problems 

 
1)  Design a circuit that continually outputs the following sequence:  
 

{…0, 2, 4, 6, 8, 10, 12, 14, 0 , 1 , 2, 3, 4, 5, 6, 7, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 2, 3…} 
 

 Use a counter controlled by an FSM in your solution 

 Provide a state diagram describing the FSM controlling the circuit 

 Minimize hardware and the number of states in your FSM 

 
 

2) Design a circuit that, upon pressing a button, continually outputs the following sequence:  
 

{0,1,2,3,3,4,5,6,7,7,8,9,10,11,11,12,13,14,15,15,0,1,2,3,3,…} 
 

 Use the up counter shown below in your circuit as well as an FSM, but don’t add any other 
hardware. In other words, your circuit should contain only two components: a FSM and the 
counter shown below.  

 Provide a state diagram describing the FSM controlling the circuit.  

 Don’t connect the button directly to the counter.  

 The button asynchronously clears the counter 

 
 

3) Design a circuit that, upon pressing a button, continually outputs the following sequence:  
 

{0,0,1,2,3,4,4,5,6,7,8,8,9,10,11,12,12,13,14,15,0,0,1,2,3,…}  
 

 Use the up counter shown below in your circuit as well as an FSM, but don’t add any other 
hardware. In other words, your circuit should contain only two components: a FSM and the 
counter shown below.  

 Provide a state diagram describing the FSM controlling the circuit 

 Don’t connect the button directly to the counter 

 The button asynchronously clears the counter 
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3 Advanced Registers 
 

3.1 Introduction 

The most commonly used circuit in digital design is the “register”. We’ve already used the term quite often in 
this text, particularly regarding finite state machines (FSMs). Recall that a main component of FSM was the 
storage associated with the state variables. This chapter describes registers with extra feature and some of their 
many various flavors and incarnations. Most of the description appearing in this chapter is at a higher-level as 
the low-level details are somewhat cumbersome and not overly useful. 

Main Chapter Topics 

 SIMPLE REGISTERS AND REGISTERS “WITH FEATURES”: This chapter defines and 
describes basic including registers with extended features that make them more 
useful in digital circuits.  

 TRI-STATE DEVICES AND TRI-STATE REGISTERS: This chapter describes tri-state 
devices and their use in tri-state registers and associated circuitry. 

 BI-DIRECTIONAL REGISTERS: This chapter briefly describes the notion of bi-
directional registers and their relation to tri-state registers.  

 SHIFT REGISTERS: This chapter describes various flavors of shift registers and 
their basic implementations as well as their common extensions and associated 
operations.  

Why This Chapter is Important 

This chapter is important because registers and their simple variations are extremely 
useful and thus often found in just about all meaningful digital designs. 

 

3.2 Registers: The Most Common Digital Circuit Ever?  

Stated as simply as possible, a register is nothing more than a multi-bit flip-flop. Flip-flops are single bit storage 
elements while registers multi-bit storage elements modeled as a given number of flip-flops sharing the same 
clock signal. When we say, “register”, we typically mean “simple register”; this works well as the more 
specialized registers have their own names. A later section introduces more advanced registers.  

Figure 3.1 shows four D flip-flops assembled such that they act as a register; Figure 3.1(a) shows the block 
diagram for a 4-bit register and Figure 3.1(b) shows the underlying circuit. Here are a few things to note about 
Figure 3.1:  

 The block diagram in Figure 3.1(a) shows a clock signal but also assumes other characteristics. 
Since we model the register with D flip-flops, there must be an active clock edge not shown in 
Figure 3.1(a). Unless otherwise stated, registers are generally active on the rising-edge of the 
clock, which is what Figure 3.1(b) shows.  

 Figure 3.1(b) shows that each flip-flop in the register shares the same clock. The result is that all 
the flip-flops latch their data simultaneously.  
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(a) (b) 

Figure 3.1: A block diagram for a 4-bit register (a), and the lower-level implementation details of 
a 4-bit register (b).  

 

3.3 Tri-State Registers  

Although the underlying theme of digital design is the notion of binary signals, there is one other common and 
useful “state” in digital-land1. Certain digital devices have the ability to have a third output in addition to the 
standard ‘1’ and ‘0’. We refer to these devices as “tri-state” or “three-state” devices2, because these devices have 
a third output known as the “high-impedance” state. The best way to refer to think about these devices is not to 
consider these devices as having a third state, but rather to think about these devices as having a magic switch 
that either allows the device to operate normally or kills the device altogether.  

The notion of high-impedance is common in both analog and digital design. There are many ways out there to 
model high impedance devices, but I prefer to model them using Ohm’s Law: V=IR, with V representing 
voltage, I representing current, and R representing resistance. For this discussion, we can consider impedance the 
same thing as resistance. If we rearrange Ohm’s Law, we obtain the R=V/I, which states that the resistance is 
directly proportional to the voltage and inversely proportional to the current. In digital circuits, the voltage is 
generally constant so we’ll only consider R and I. For the R value to be large implies that the I value to be small. 
When I is small means that there is little current flowing in a circuit. Digital circuits require current in order to 
operate, so a circuit with high-impedance means the circuit has low current, which implies the circuit is dead. 
Yet another way to model high-impedance is as a switch that turns off the current to a circuit; an open switch is 
the same as an open circuit or broken circuit, which implies the circuit is dead.  

There are many great reasons out there for you to kill your digital circuit. The two major reasons in digital design 
are to 1) save power, and 2) give your circuit the ability to share resources. The notion of sharing resources is 
important and useful.  

Although there are many tri-state-type devices out there, we can best explain them with a simple buffer. Figure 
4.7(a) shows a tri-state buffer; this circuit is simply a buffer with a control input. The control input in Figure 
4.7(a) is the “EN” input; this input controls whether the output of the device is in a high-impedance state or not. 
Another way to think of the EN input is as a switch that either turns on or turns off the circuit. Note that because 
of the way we drew the circuit in Figure 4.7(a) that the control input is active high; had the “EN” input included 
a bubble, the control input would be active low.  

Figure 4.7(b) shows a truth table that describes the operation of the tri-state device. Note that Figure 4.7(b) uses 
the term “Z” to represent high-impedance3. Figure 4.7(b) states that the buffer output is in a high-impedance 
state when the “EN” input is not asserted (EN=’0’) or the circuit is operating normally (outputs of 1’s and 0’s) 
when the “EN” input is asserted. Figure 4.7(c) shows a compressed truth table describing the circuit. Figure 

                                                           
1 It’s not really a state though… 
2 The difference between “tri-state” and “three-state” is that some company trademarked one of these terms. Be careful how 
you use the terms; lawyers are waiting in the wings.  
3 The term “Z” is how both digital and analog electronics represent high-impedance.  
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4.7(b) and Figure 4.7(c) indicate that the EN (enable) input essentially enables the input to appear on the output 
of the device as. 

 

EN A F 
0 - Z 
1 0 0 
1 1 1 

 

EN F 
0 Z 
1 A 

 

(a) (b) (c) 

Figure 3.2: A tri-state buffer (a) and associated truth tables in full and compressed form (b) and (c). 

 

Example 3.1: Tri-State Buffer Timing Diagram 

Use the following tri-state buffer diagram to complete the following timing diagram.  

  
 

Solution: Figure 3.3 shows two different forms of the solutions to Example 3.1. In reality, there are many 
different ways to represent high-impedance. What you’ll find out in digital-land is that every datasheet and every 
simulator represents high-impedance in different ways; the two approaches in Figure 3.3 are two of the more 
popular approaches.  

The upper F timing in Figure 3.3 uses bundle-related notation for showing when the signal is high-impedance. 
Note that when the EN signal is not asserted, the F output is in the high-impedance state; when the EN signal is 
asserted, the A input appears on the F output. The lower F timing shows the same characteristics as the upper 
one, but the timing diagrams shows the high-impedance output with a signal that is neither high nor low. For 
single signals (as opposed to bundles), the lower version of the F timing is more common. Even better, devices 
such as simulators that display these types of outputs typically use colors to represent the signal values such that 
the high-Z output is a different color than the normal digital signal.  

 

Figure 3.3: Two equivalent solutions to Example 3.1. 

 

The notion of tri-stating applies to many digital devices. The notion of “tri-stating” is a feature of a device and 
thus does not come free. When your particular circuit requires a tri-state device, then you use one; otherwise, you 
avoid using a device with the tri-state feature to save costs. The tri-stating needs of a circuit are most often 
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associated with circuits that share resources in an effort to reduce overall circuit size and/or costs. One 
particularly common tri-state device out in digital-land it the tri-state register.  

The term tri-state register refers to the notion that you can place each of a register’s outputs into a high-
impedance state. The tri-state control input associated with a tri-state register always controls the registers output 
in a parallel manner. In other words, the tri-state control places either all of the circuit’s output in high-
impedance state when the control is asserted, or all the registers output are in a digital state when the control 
input is not asserted. Figure 3.4 shows a circuit diagram for a typical tri-state register. We know this device is a 
tri-state register because of the triangle adjacent to the OUT signal. We also know that since this is a tri-state 
device, the EN signal is what controls whether the output is hi-Z or a normal digital output.  

 

Figure 3.4: A schematic diagram of a basic tri-state register. 

 

 

 

Example 3.2: Tri-State Register Timing Diagram 

Use the following tri-state register diagram to complete the following timing diagram. Assume the initial 
value of the OUT signal is 0xA4.  

  

Solution: Figure 3.5 shows the solution to Example 3.2. There are several particularly import thing to note about 
the solution in Figure 3.5.  

 Anytime the EN input is not asserted, the OUT signal is in its high-Z state. We arbitrarily represented 
the high-Z state with “ZZZ”, which you should not equate with the fact that this problem is boring.  

 The LD signal is effectively independent from the output. In this way, the register still loads the IN 
signal into the register regardless of whether the EN signal is asserted or not. This event occurs 
during the third rising-edge of the clock in Figure 3.5. 
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Figure 3.5: The solution to Example 3.2. 

 

One of the reason tri-state registers exist is to save resources. This is a topic we generally save for advanced 
digital design, but we’ll mention it here in case you never advance digitally. Aside from that lame attempt at 
humor, the notion of using tri-state registers for resource sharing brings up a massively important point which 
every digital designer needs to know.  

As an example of resource sharing, Figure 3.6 shows two tri-state registers in same circuit. Note in Figure 3.6 
that there is a connection between the outputs of the two registers. Because these two registers are sharing the 
same routing resources, and because both of these devices have the ability to “drive the bus”, a potential problem 
exists. Enabling both registers are simultaneously creates a situation we refer to as “bus contention”. Bus 
contention occurs when two more output devices (registers in this case) simultaneously drive their data onto the 
same lines bus line. Bus contention results in indeterminate circuit behavior and is thus something you should 
avoid. For example, if one output device drives the bus with all 1’s and another device drives the bus with all 
0’s, what would some input device see on these lines? Who knows!4  

 

Figure 3.6: A schematic diagram of a basic tri-state register. 

Working with circuits that share resources in this way certainly creates a new aspect to digital design. But all is 
not lost; the way to avoid bus contention is to make sure that no more than one output device is driving the bus 
lines at any given time. The way to “drive the bus” is to assert the enable input on the given device. Recall that 
when the tri-state outputs are not asserted, the device is essentially removed from the circuit as the devices 
outputs are providing no current to the circuit.  
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3.4 Bi-Directional Registers  

A discussion on registers would not be complete without a description of bi-directional registers. In a continued 
effort to save resources, some registers use a single bundle (or bus) to route the data into and out of a register. 
These registers retain the required control signals including load control, tri-state control, and a clock, but the 
share the input and output lines. Figure 3.7(a) shows a schematic diagram of a typical bi-directional register; 
Figure 3.7(b) shows the same register drawn on a lower level to show some of the pertinent device 
implementation details. There are a few items in Figure 3.7(b) worth noting.  

 Figure 3.7(a) represents the bi-directionality of the device with the doubly directed arrow for the Q 
bundle. In this way, the Q bundle can be either an input or an output depending on the EN control 
signal.  

 The diagram uses the standard “tri-state” upside-down triangle in conjunction with the double 
directed arrow to officially represent the bi-directionality of the device.  

 Figure 3.7(b) does not include the tri-state symbol. Figure 3.7(b) shows that you can model a bi-
directional register as a standard register with a tri-state buffer on the output. The notion with this 
circuit is that the enable signal (EN) effectively prevents the register from driving its data to the 
outside world when the EN signal is not asserted. However, despite the EN signal being unasserted, 
the register can still latch any data that some other circuit is driving onto the data lines.  

Bi-directional registers are similar to tri-state registers, but they do have a subtle difference. In tri-state registers, 
the enable input either drives the output or places the output into high-Z mode. In bi-directional registers, the 
device’s enable either drives its data onto the shared resource when the enable signal is asserted, or the device is 
“listening” to the shared resource when the enable signal is not asserted.  

  

(a) (b) 

Figure 3.7: A circuit diagram for a bi-directional register (a), and the same bi-directional register 
drawn on a lower level (b). 

Once again, this is a slightly advanced subject so we won’t provide much more than a mention of some of the bi-
directional device’s functionality. We’ll leave this subject with one final diagram. The notion of tri-stating and 
bi-directionality saves routing resources in a circuit, sometime at the cost of losing some flexibility in the circuit. 
Figure 3.8 shows two functionally equivalent circuits that advertise this resource sharing. Figure 3.8(a) shows a 
circuit with two register with tri-state outputs while Figure 3.8(b) shows a circuit with two registers with bi-
directional outputs.  
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(a) (b) 

Figure 3.8: Two functionally equivalent circuit models: (a) is the tri-state version of the circuit while 
(b) is the bi-directional version of the circuit. 

 

3.5 Shift Registers 

Basic shift registers are typically a circuit introduced in an introductory design course. They are a commonly 
used digital circuit because of their ability to do integer math simply and quickly. More specifically, a single left 
or right shift in a shift register performs a multiply or divide by two, respectively; these operations are done one 
per clock cycle. The notion here is that multiplication and division in digital circuits often requires large and 
complex circuitry; shift registers perform multiplication and division quickly, but at the cost of only being able 
to multiply or divide by two.  

We can extrapolate the operations of shift registers by noting that they can multiply or divide by powers of two. 
In simple shift register, division by integral powers greater than one require extra clock cycles as shift registers 
only perform one shift per clock cycle. Also worthy of noting here is that division by two (right shifts) cause a 
truncation of the original data as one bit of the original shift register contents is lost per right shift. In summary, 
shift registers don’t do a lot, but what they do, they do really well.  

3.5.1 Basic Shift Registers 

Figure 3.9 shows a comparison of block diagrams for a simple 4-bit register and a basic 4-bit shift register5. The 
important thing to notice from these diagrams is that the simple 4-bit register generally deals with “parallel” data 
while the basic shift register generally deals with “serial” data. What you’ll find later in this chapter is that the 
definition of these devices starts to overlap as we add more features to the devices.  

                                                           
5 Keep in mind that the block diagrams show only the very basic devices for comparison purposes, which hopefully is 
somewhat instructive.  
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(a) (b) 

Figure 3.9: A block diagram for a 4-bit simple register (a) and a basic 4-bit shift register (b). 

The operation of a shift register is simple but can be somewhat tricky when you first encounter it. Figure 3.10(a) 
shows a schematic diagram of a 4-bit shift register while Figure 3.10 (b) shows a model of the underlying 
circuitry. There is not a lot to say about Figure 3.10 as the fun stuff begins when you examine a timing diagram 
associated with this circuit.  

  

(a) (b) 

Figure 3.10: A block diagram for a 4-bit simple register (a) and a model of the underlying 
circuitry of a 4-bit shift register (b). 

3.5.2 Universal Shift Registers 

Shift registers that only shift in one direction are not overly useful in digital-land. Most shift registers do many 
more operations such as shift left, shift right, parallel load, parallel clear, hold (don’t change state), pick up the 
spare, etc. The term in digital-land for shift registers containing features such as these is “universal shift 
register”, or “USR”. There is no one definition for universal shift registers; the only thing the term means is that 
you’re dealing with some sort of shift register that does more than shift in one direction. From that point, you 
need to consult the datasheet or designer as to what exactly the device does.  
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Example 3-3: Universal Shift Regsiter Timing Diagram 

The block diagram on the right shows a model of a 
universal shift register; use this model to complete 
the timing diagram listed below. Consider the 
following:  
 
 SEL = “00”: hold 
 SEL = “01”: parallel load of D_LOAD data 
 SEL = “10”: right shift; DL_IN input on left 
 SEL = “11”: left shift: DR_IN input on right 
 All operations are synchronized to the rising 

edge of the CLK signal.  
 Propagation delays are negligent.  
 Initial D_OUT value is 0x45 

 

  

Solution: The first step in any problem involving a sequential circuit is to establish the initial state of the storage 
elements. This problem states that the initial value of D_OUT value is 0x45; this value is the initial state of the 
shift register.  

From there, a good approach to problems such as these is to list what actions the SEL signal is selecting 
throughout the timing diagrams. Figure 3.11 shows a partially annotated timing diagram highlighting the 
operations selected by the SEL signal. Note that we synchronize all annotations with the rising clock edge.  

 

Figure 3.11: A black box diagram of the universal shift register. 
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Figure 3.12 shows the final timing diagram. As you can see, most of the changes in the DR_IN, DL_IN, and 
D_LOAD signals have no effect on the final output. The important thing to do for this problem is to verify for 
yourself that each of the values in the D_OUT is correct.  

 

Figure 3.12: A black box diagram of the universal shift register. 

 

3.5.3 Barrel Shifters 

One of the common shifting-related operations out there is a “barrel shift”. The operation of barrel shifters is 
straightforward as it’s simply an extension of simple shifting operations. While simple shift registers only 
performed one shift per clock cycle, barrel shifters are effectively capable of performing more than one shift per 
clock cycle. As you would imagine, barrel shifters can shift either left or right.  

The key to understanding barrel shifters is realizing the main reason they exist. Keep in mind that shift registers 
contain “bits” which generally represent binary numbers. The notion of shifting left and right are associated with 
multiplying by two (left shift) or dividing (right shift) by two. Thus, barrel shifters are then associated with 
multiplying and dividing by “powers of two” (such as 4, 8, 16, 32, etc.). What these operations provide are 
super-fast (namely, one clock cycle) multiply and divide operations. As you continue in digital stuff and/or 
computer programming, you’ll find that multiplying and dividing binary numbers is relatively time consuming 
relative to other computer operations (such as logic operations). Barrel shifters provide a cheap and fast, 
although somewhat limited alternative.  

We commonly use barrel shifters in arithmetic applications where we do not require 100% accuracy of results. 
For example, there is always a big push to have your circuit perform “integer-based math” because working with 
integers is much less “computationally expensive” than working with other options such as “floating point 
numbers”. A good example of this is with non-professional cameras such as the ones on your cell phones. 
Because we partially judge cameras on these devices by their operational speed (such as how fast you can take 
pictures6), they generally use integer math. Using integer math causes you to lose some precision, but your eyes 
will never know the difference. All you know is that your tiny hand-held device is able to take high definition 
movies and do so without significant delay. Big wup. 

Table 3.1 shows two examples barrel shifting operations. Both of these examples use an 8-bit value; the top 
example is the value before the active clock edge while the bottom value is the value after the active clock edge. 
The examples show both a starting and ending point for the barrel shifting operation described by the particular 
row in the table. The (a) row shows a 2x right barrel shift that arbitrarily inputs 0’s on the left side of the register. 
The (b) row shows a 2x left barrel shift that arbitrarily inputs 1’s from the right side of the register. The 
operation in the (a) row represents a divide by two; the operation in the bottom row is one the many open 
mysteries in this world.  

                                                           
6 In reality, there is a significant amount of processing taking place for even the most basic digital photograph.  
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 Description Example 

(a) 
barrel shift right 2x; stuff in a two 0’s from 
the left side.  

 

(b) 
barrel shift left 2x; stuff in a two 1’s from the 
right side. 

 

Table 3.1: Examples of possible barrel shifting operations. 

The examples in Table 3.1 are arbitrarily barrel shift of “2x”. This syntax refers to the notion that the barrel 
shifter is “shifting two times” in one clock cycle. The truth is that it is only shifting one time, which implies there 
are connections each shift register element and the element that is two shift register elements away from the 
current element. As you can probably imagine, the barrel shifter requires the proper signal routing in order to 
accomplish this shift. As a result, barrel shifters out in digital-land are typically limited by the different flavors of 
barrel shifts (such as “2x”) and shift directions that they can perform. Barrel shifters in these applications are 
typically associated with specific mathematical operations and truly don’t have the general need to perform 
every possible shift length. Recall that for every barrel shift requires extra routing resources, which are generally 
not cheap in digital-land.  

3.5.4 Other Shift Register-Type Features 

Two more of the common shifting operations are rotates and arithmetic shifts. These operations are also simple 
in their basic states7. Rotate operations can be useful in many applications, though there is not one slam-dunk 
great example I can think of; in theory, these operations fall into the category of “bit tweaking”. Arithmetic shift 
operations are similar to simple shift operations but can work better with signed binary numbers.  

Rotate operations include rotate left or a rotate right with the actual shifting occurring on the active clock edge. 
The notion with rotate-type shifts is that no bits from the original register values are lost by “shifting them out” 
of the register as was the case with simple shift registers. Specially, for a rotate right operation, the LSB of the 
register becomes the new MSB while all other bits are shifted one position to the right. For a rotate left 
operation, the MSB of the register becomes the new LSB while all other bits in the register are shifted one 
position to the left.  

 Description Example 

(a) 
rotate right; the LSB is transferred to the 
MSB; 

 

(b) rotate left; the MSB transfers to the LSB. 

 

Table 3.2: Examples of rotate-type shifts.  

                                                           
7 The truth is that it can get really ugly out there. You many need to combine operations with as “barrel rotates” or “barrel 
arithmetic shift”, or some type of shift to enhance your bowling skills. We won’t go there in this chapter.  
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Arithmetic shifts are similar to simple shifts in their ability to perform mathematical operations8. The key 
different is that arithmetic shifts work with signed binary number and preserved the “signedness” of the value 
they operate on. For an arithmetic shift left operation, the value of the sign bit does not change because of the 
shift. Thus, the left shift operation retains the sign of the number as well as the ability to perform fast 
multiplication with the left shift operation. For an arithmetic shift right operation, we both retain the sign bit as a 
sign bit and propagate the sign bit to the right with each shift. This sounds somewhat strange, but it truly both 
retains the sign of the value in the register as well as performing a fast division operation. I suggest working 
through a few examples on your own.  

 Description Example 

(a) 

An arithmetic shift right of a positive number 
in 2’s complement form; the operation copies 
the sign bit from sign-bit position to the next 
bit on the right with each shift. This is a divide 
by two on a signed number (positive).  

(b) 

An arithmetic shift right of a negative number 
in 2’s complement form; the sign bit is copied 
from sign-bit position to the next bit on the 
right with each shift (the sign bit remains 
unchanged). This is a divide by two on a 
signed number (negative).  

(c) 

An arithmetic shift left on a positive value in 
2’s complement form. The left shift does not 
alter the sign; all other bits shift left and the 
operation arbitrarily stuffs a ‘0’ into the LSB 
position. The bit adjacent to the sign bit shifts 
left into nowhere land. This is a multiply by 
two on a signed number (positive). 

 

(d) 

An arithmetic shift left on a negative value in 
2’s complement form. The left shift does not 
alter the sign bit; all other bits shift left and 
the operation arbitrarily stuffs a ‘0’ into the 
LSB position. The bit adjacent to the sign bit 
shifts left into nowhere land. This is a 
multiply by two on a signed number 
(positive). 

 

Table 3.3: Examples of many flavors of arithmetic shifts. 

 
  

                                                           
8 When you read this paragraph, recall that we represent signed binary numbers using 2’s complement notation, AKA, 
“diminished radix complement” notation.  
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3.6 Chapter Summary 

 

 Registers: A register is a sequential circuit that can be considered nothing more than a parallel combination 
of single-bit storage elements. These storage elements are modeled as a given number of D flip-flops that 
share a common clock signal and possibly other control signals typically associated with D flip-flops (such 
pre-set and clear signals). The register is typically used to “latch” (and thus remember) an n-bit wide set of 
data on the active clock edge of the device.  

 Tri-State Registers: Tri-state registers contain tri-state buffers on the register’s output. The tri-state 
registers effectively allow the register to either place its data onto a shared routing resource with the tri-state 
outputs enabled, or effectively remove itself from the circuit altogether with the tri-state outputs disabled. 
When the tri-state register’s outputs are disabled, the circuit is “high-impedance”, or “high-Z” state. An 
extra input signal is typically used to control the circuit’s tri-state outputs. The driving notion behind tri-
state register is to share, and thus save circuit routing resources, but come at the expense of overall circuit 
flexibility.  

 Bi-Directional Registers: Bi-directional register are registers that are tri-state registers that are configured 
at a low-level to appear to have shared input and output lines. Bi-directional registers also represent attempts 
to save circuit routing resources.  

 Shift Registers: Shift registers are in many ways similar to simple registers; their primary difference is with 
the inputs to the individual shift register storage elements. Shift registers are designed such that the data 
output from one shift register element becomes the data input to a contiguous element. IN this way, data is 
said to be “shifted through” the shift register. In general, there is one “shift” per clock cycle. Shift register 
operations are often used to implement fast but limited mathematical operations with single right shift being 
a divide-by-two and a single left shift being a multiply by two.  

 Universal Shift Register: A type of shift register that performs more operations than a simple shift register. 
These operations can typically include both a shift left and a shift right, a parallel load, a preset and/or clear. 
Somewhere in here could also be arithmetic shift operations and various forms of rotate operations.  

 Barrel Shifters: A type of shift register that performs multiple shifts on a single clock edge. In reality, 
barrel shifters are wired such that they can shift multiple bit locations in one clock cycle, and probably do 
not perform multiple shifts. Barrel shifters are useful for mathematical operations including multiplication 
and division by powers of two.  
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3.7 Chapter Exercises 

 

1) List three different types of registers.  

2) The notion of a latch is generally associated with a one-bit storage element. Briefly describe whether it is 
possible to have a multi-bit latch, and briefly describe the difference between a multi-bit latch and a register.  

3) Briefly describe whether you can discern whether a register’s control inputs are synchronous or 
asynchronous from looking at a schematic diagram.  

4) Briefly describe why the third state in a tri-state register is not really a state.  

5) Briefly explain the main benefit of using tri-state devices in your circuit.  

6) Briefly explain the notion of using shared resources in a digital circuit.  

7) Shift registers are known for doing “efficient integer math”. Briefy explain why this is so.  

8) Briefly explain why universal shift registers have no real solid definition.  

9) Briefly explain why the hardware footprint for barrel shifter is larger than the footprint for a simple shift 
register.  

10) Briefly explain the notion of bits being lost with a shift operation but not being lost with rotate operation.  

11) Briefly explain whether it would be possible to use an arithmetic shift on an unsigned number.  

 

12) Using the block diagram on the right to complete the 
timing diagram provided below. Consider the register 
to be rising-edge triggered and ignore all propagation 
delay issues. 

 
 

 
 

 
13) Using the block diagram on the right to complete the 

timing diagram provided below. The LD input must 
be asserted in order for the register to load the input 
signal. Consider the register to be rising-edge 
triggered and ignore all propagation delay issues.  
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14) Using the block diagram on the right to complete the timing diagram 

provided below. The LD input must be asserted in order for the register 
to load the input signal. The CLR input is an asynchronous input that 
clears the register when asserted and has a higher precedence than the 
LD input. Consider the register to be rising-edge triggered and ignore all 
propagation delay issues.  

 
 

 
 

 
15) Use the following tri-state register diagram to complete the following timing diagram. Assume the initial 

value of the OUT signal is 0xA4.  
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16) Use the following tri-state register diagram to complete the following 
timing diagram. Assume the initial value of the OUT signal is 0xBA. 
Consider the register to be rising-edge triggered and ignore all 
propagation delay issues.  

 

 

 
 

17) Use the following tri-state register diagram to complete the 
following timing diagram. Assume the initial value of the OUT 
signal is 0xBA. Consider the register to be rising-edge triggered 
and ignore all propagation delay issues.  

  

 

18) Using the block diagram on the right, provide a schematic 
diagram detailing how you would use this device to create 
a 32-bit register with all the same features listed on the 8-
bit device.  
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19) Use the following tri-state register diagram to complete the following timing diagram. Assume the initial 
value of the OUT signal is 0xA4.  

 

 

 

 
 

 
 
 
 

18) Use the block diagram on the right to complete the timing diagram 
below. Consider the circuit to be a 4-bit shift register (shifts from 
right-to-left) that is active on the rising-edge triggered of the clock 
signal. Consider the line labeled “Q” to represent the 4-bit value 
stored by the shift register and the “data_out” output to represent 
the value of the highest order bit stored by the shift register. 
Assume the initial value stored by the shift register is 0xC. Ignore 
all propagation delay issues with this circuit 
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19) The block diagram on the right shows a model of a 
universal shift register; use this model to complete the 
timing diagram listed below. Consider the following:  

 
 SEL = “00”: hold 
 SEL = “01”: parallel load of D_LOAD data 
 SEL = “10”: right shift; DL_IN input on left 
 SEL = “11”: left shift: DR_IN input on right 
 The rising edge of the CLK signal synchronizes all shift 

register operations  
 Propagation delays are negligent.  
 Initial D_OUT value is 0xAB 

 

 

 
 

 
 

20) Complete the following timing diagram using the following USR characteristics. Assume 
that all operations are synchronized with the rising edge of the clock signal. Assume that 
propagation delays are negligent. Be sure to state any other assumptions you need to 
make in order to complete this problem. Assume the 0x39 is the initial value stored by 
the shift register. Assume “D_OUT” is an 8-bit output representing the value stored by 
the shift register.  

 
 SEL = “00”: rotate right 
 SEL = “01”: rotate left 
 SEL = “10”: divide by 8 (bit stuff 0’s) 
 SEL = “11”: multiply by 8 (bit stuff 0’s) 
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21) A FSM can be used to generate a shift register. For this 
problem, provide a state diagram that could be used to 
model a 2-bit shift register. Consider the Q output to be a 
2-bit bus that indicates the result of the synchronous 
shifting action. Consider the DIN input as the bit being 
shifted into the shift register (shifts left to right). Consider 
the RESET input to be an asynchronous input that takes 
precedence over all other inputs. When the HOLD input is 
asserted, the Q output does not change.  

 
 

 

22) A FSM can be used to generate a shift register. For this 
problem, provide a state diagram that could be used to 
model a 3-bit shift register. Consider the Q output to be 
a 3-bit bus that indicates the result of the synchronous 
shifting action. Consider the DIN input as the bit being 
shifted into the shift register (shifts left to right). 
Consider the RESET input to be an asynchronous input 
that takes precedence over all other inputs.  
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23) The following diagram shows a circuit that is used to perform a serial-to-parallel conversion on the 
OP_A and OP_B input and then perform a mathematical operation. In other words, two four-bit 
numbers will be provided serially (LSB first) on the OP_A and OP_B inputs. The two tables below 
describe the MUXes and the Universal Shift Register (USR).  

 
 Provide a state diagram that could be used to control the circuit such that it performs   A - B   

and registers the result in REG_ACC (A & B are the parallelized versions of the OP_A & 
OP_B serial data). The serial to parallel conversion will initiate when the signal GO (not 
shown) is asserted. Minimize the number of states in your design. State any other assumptions 
you deem necessary. 

 

MUX description 
 

if (sx = 0) then  
   out <= in;   
else  
   out <= not 
in;  
end if;  

Assumptions: 
 

 LSB is first to arrive in serial bit 
stream 

 DR_IN = right side input to shift 
register 

 DL_IN = left side input to shift 
register 

 CLK signals are connected 

 All setup and hold times are met  

 All Shift register operations are 
synchronous 

 

Shift Register 
Controls 

SEL Operation 

0 0 hold 

0 1 
parallel 

load 
1 0 shift right 
1 1 shift left 
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24) The following diagram shows a circuit that can perform a mathematical operation. The two tables 
below describe the MUXes and the Universal Shift Register (USR). The registers have a 
synchronous load input (LD). Provide a state diagram that could be used to control the circuit such 
that it performs the operation listed below. Minimize the number of states you use in your solution. 

 
 If a GO signal is received (GO is not shown in diagram), the following operation is generated 

and the result appears on the output: OP_OUT =  (OP_B - OP_A)  ÷  16  
 

MUX description 
 

if (sx = 0) then  
   out <= in;   
else  
   out <= not 
in;  
end if;  

Assumptions: 
 

 DR_IN = right side input to shift 
register 

 DL_IN = left side input to shift 
register 

 CLK signals are connected 

 All setup and hold times are met  

 All Shift register operations are 
synchronous 

 Registers (non-USR) have 
synchronous load inputs (LD) 

 

Shift Register 
Controls 

SEL Operation 

0 0 hold 

0 1 
parallel 

load 
1 0 shift right 
1 1 shift left 
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PART TWO: Advanced Digital Design 
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4 Chapter: Register Transfer Notation 
 

4.1 Introduction 

Digital design is always abstracting things upwards in an effort to increase the efficiency of representing circuits. 
As we move on describing computer circuits, we need to come up with a new, higher-level of abstraction for 
representing circuits. The solution to this dilemma is what we refer to as register transfer language (RTL) or 
synonymously, register transfer notation (RTN). This notation, or language, uses a simple syntax that provides a 
clear and concise description of a circuit. A set of register transfer language (RTL) statements can completely 
describe a digital system in a high-level manner, which is why it is so useful in computer design. Conversely, we 
can also describe a digital system by a set of RTL statements.  

 

Main Chapter Topics 

 REGISTER TRANSFER NOTATION INTRODUCTION: This chapter introduces the notion 
of register transfer notation (RTL). This chapter also discusses the motivations behind 
RTL and the most accepted syntax or RTL form.  

 MICROOPERATIONS: This chapter classifies and describes basic operations that you 
can do with register and their relation to elementary operations.  

 DATA TRANSFER CIRCUITS: This chapter describes three main types of data transfer 
circuits and provides examples of their usage, advantages, and disadvantages. 

 

Why This Chapter is Important 

This chapter is important because register transfer notation is highly useful in designing 
and/or describing computer operations because it provides a compact form to describe data 
transfers and the signals that control them.  

 

4.2 Register Transfer Notation Specifics 

Before we go here, there is one important fact that you need to keep in mind. RTL is not like an HDL in that it is 
not a compiled or interpreted language. With an HDL, there are many syntax-type rules you need to follow in 
order for your code to synthesize. The same is not true for RTL: the rules (if there really are any at all) are lax. A 
good analogy to this lack of rules is with the labeling of the inputs, outputs, and states of the state diagrams. The 
guiding principle in drawing state diagrams was to simply make it readable and understandable to anyone who 
has some idea of what the state diagram is modeling. Similar to state diagrams, since there is not absolute syntax 
that you can draw upon, so you must be clear with the convention you use to write RTL equations. Equation 4. 
shows an example of the general form of an RTL statement. 

 [conditions : ]  destination register  source register [,destination register  source register, …] 

Equation 4.1: The general form of a RTL statement. 

The notation in Equation 4. reads as follows: the contents of the source register is transferred to the destination 
register. Here are the important points to realize regarding this notation:  
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 There can be conditions associated with these transfers (as indicated by the italics in the far left of 
Equation 4.) which allow the transfers to occur. We aptly refer to the left-pointing arrow as the 
replacement operator. 

 There can be multiple transfers associated with one RTL statements.  

 A clock signal is rarely (if ever) included in RTL statements. The transfer is understood to occur on 
the active clock edge associated with the system, thus the system clock synchronizes all 
microoperations.  

 The result of this transfer does not generally change the contents of the source register (and if it did, 
the RTL statement would list it).  

 The register transfer operations listed in one RTL statement happen in parallel. In the context of 
digital circuitry, this means all the transfers happen on the same system clock edge.  

 

Example 4.1 

Draw a circuit that would implement the following RTL statement:  R1  R2 

Solution: Once again, there is an interesting relationship between a RTL statement and the underlying hardware. 
This problem tells you what needs to be done and it is your job to design a circuit that does it. The RTL 
statement provides a guideline on what the underlying hardware should be able to do. If the hardware you 
generate can do it, you’ve got a right answer, but certainly not the only answer. In other words, there are 
generally many solutions to a given problem such as this one. There is usually a preferred solution based on the 
most efficient circuit so you should always strive for that option.  

The thing to notice about the given RTL statement is that it lists two registers. Your final circuit therefore has at 
least two registers. Also, note that there needs to be a path so data can flow from the R2 register to the R1 
register. These two facts spell out the answer to the example. Churn them around in your head and you’ll arrive 
at the circuit shown in Figure 4.1(a). The width of the data signals has been arbitrarily set to eight for this and 
subsequent examples.  

The data line labeled A represents the output of the R2 register from Figure 4.1(a). Since this signal is a bus, we 
use the shorthand notation to represent all of the signals on the bus as listed in Figure 4.1(b). The “0x” notation is 
C programming language notation that indicates the numbers that follow it are in hexadecimal format (thus 
representing the eight bits of the signal). Figure 4.1(b) shows that we represent the state of the eight bits on the 
signals labeled A and B with this notation. Figure 4.1(b) shows that the signals change on each clock edge. We 
show this dependency by using the arrows pointing from the rising clock edge to the changing data in the B 
signal. The values on the A signal are arbitrary as are the times they change; what’s more important is that you 
understand the timing and data transfers. Note that the value of the A signal changes midway between the two 
clock pulses but the new condition is not transferred to the B signal until the rising clock edge comes along.  

 
 

(a) (b) 
Figure 4.1: Solution and timing diagram for Example 1. 
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Example 4.2 

Draw a circuit that would implement the following RTL statement:  C1: R1  R2 

Solution: This problem is similar to the previous problem but with a slight modification in the RTL statement. 
Note that in this RTL statement, there is a dependency. In other words, data is transferred from the output of 
R2 into the R1 register only if the C1 signal is asserted. Most RTL statements have some type of dependency 
but most are more complex than this as you’ll see in the final example. The circuit in Figure 4.2(a) provides 
the functionality specified by the given RTL statement. Note that the R1 register contains a LD input, which 
enables the parallel loading of data into R1 on the active clock edge.  

The timing diagram shown in Figure 4.2(b) is more instructive for several reasons. First, the C1 input is 
somewhat dependent upon the clock. The thought here is that the active clock edge causes a change in some 
other circuit that has on output that is currently driving the C1 input. Imagine that this signal is a Moore-type 
output from some FSM (control unit). Note that both the rising and falling edges of C1 are synchronized with 
the clock edge (with some delay included). The state of the C1 signal at the first clock edge is low so the data 
is not loaded from R2 to R1. Remember, both the C1 signal needs to be high and the rising edge of the clock 
must be present in order for the load to occur. The data on the A signal is arbitrary; the initial value of the B 
signal is arbitrarily place in an unknown state but becomes known after the rising clock edge.  

 
 

(a) (b) 
Figure 4.2: Solution and timing diagram for Example 2. 

 

 

 

Example 4.3 

Draw a circuit that implements the following RTL statement:    C1,C2: R1  R2, R2  R1 

Solution: This problem is slightly different from the previous problem. This type of RTL statement shows that 
more than one data transfer can happen simultaneously as indicated by the comma-separated equations on the 
right side of the colon. The left side of the colon indicates a more complex condition that allows the data 
transfers to happen. Figure 4.3(a) shows the circuit having this functionality. Note that the comma-separated 
conditions of “C1,C2” say that both C1 and C2 need to be asserted in order for the transfers to occur. The and in 
this statement can be nicely implemented as an AND gate as shown in Figure 4.3(a). Figure 4.3(b) shows an 
accompanying timing. This circuit swaps the data between the R2 and R1 registers.  

One other important matter to concern yourself with in Figure 4.3(b) is the relation between the CLK signal and 
the C1 signal. The diagram lists that the state change in the C1 signal is caused by the CLK signal. The 
underlying and unspoken detail here is that some other circuit in the system (that is not listed) is going to change 
the state of the C1 signal. In other words, the C1 signal could be considered the output of some FSM that is 
subsequently a function of another unmentioned input.  
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(a) (b) 
Figure 4.3: Solution and timing diagram for Example 3. 

 

 

 

Example 4.4 

Draw a circuit that is able to implement the following RTL statements. Assume you have a 
standard n-bit register available to you that has a LD (load) input.  

R2 R1 R1 : C2C1,

R2  R1  R2 : C2  C1




 

Solution: The best approach to take when approaching these circuits is to start listing what you know about 
the problem. We list the things you should realize about this problem below; Figure 4.4(a) shows the final 
circuit.  

 The “+” operator on the right side of the colon represents addition. If this operator had appeared in 
the left side of colon, it would have represented an OR operator. The presence of an addition operator 
implies that you have some hardware capable of performing the operation. In this case, the hardware 
is a simple adder, such as an RCA. The typical adder adds two n-bit numbers and outputs the results.  

 The circuit requires two registers. You know this because you see that there is an R1 and an R2 but 
no other registers.  

 The output of each register is going to be added. This means that the outputs of the registers must be 
the inputs to the adder. 

 The result of the addition must be made available to the inputs of both the R2 and R1 register. This 
means the adder output is a source that has two destinations: the input of the R1 and R2 registers.  

 There is some extra controlling logic required to enable the loading under the appropriate conditions. 
This includes the AND gate and an EXOR gate.  

Figure 4.4(b) shows a timing diagram associated with the circuit solution of Figure 4.4(a). There are a few things 
to notice in this diagram:  

 All transitions occur on the rising clock edge.  

 Output data from the adder is transferred to the R2 register on the first rising clock edge (and not the 
second rising clock edge) because the conditions of C1 and C2 satisfy the loading logic for the 
register (the XOR gate).  
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 Output data from the adder is transferred to the R1 register when the state of signals C1 and C2 satisfy 
the logic for the load input of the R1 register (second rising clock edge only).  

 

  

(a) (b) 

Figure 4.4: The solution for Example 1 (a) and an associated timing diagram (b). 

 

4.3 Microoperations and Data Transfers 

Microoperations are elementary operations that are performed on data stored in one or more registers. Note that 
the registers themselves have the ability to perform elementary operations. When a register performs one of these 
elementary operations, it is considered to be performing a microoperation. With this definition, we can state that 
any time data stored in a register changes, it is the result of a microoperation. For example, the data in a simple 
register changes when we clear the register or load a new value. Another example, then the output of a counter is 
incremented, it is a result of a microoperation. This means that the control inputs to our register-type circuits 
(simple registers, counters, and shift register) control what microoperations that particular circuit can perform.  

Although we mentioned several types of microoperations in a previous chapter, we’ll introduce more 
microoperations in this chapter and we’ll divide them into specific types. The types we list are somewhat 
arbitrary in that they do not include every possible microoperation possible on any piece of hardware. 
Additionally, some of the microoperations we list can fall into more than one of the listed types. The following 
classification then is mostly for instructional purposes so don’t try to read too much into it. The four major types 
of microoperations can be classified as follows:  

 Transfers – data is not changed as data passes from one register to another 

 Arithmetic – some arithmetic function is performed on data in registers 

 Logic – some logical-type bitwise manipulation is performed on data in the registers 

 Shift – the change in register data can be characterized by a shift in the data 

 

4.3.1 Transfer Microoperations 

Equation 4.2 shows a typical transfer microoperation represented by an RTL statement. In this equation, the 
contents of register R2 are transferred to register R1 under the condition that X is asserted. This transition, as are 
most all microoperation represented by RTL, is synchronized to some clock edge.  

X : R1  R2 

Equation 4.2: A typical transfer microoperation. 
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4.3.2 Arithmetic Microoperations 

Table 4.1 shows some of the more popular arithmetic microoperations. The most important thing to remember 
about the microoperations listed in Table 4.1 is that writing the equation means that you can either currently 
perform the operation (the hardware, in this case some arithmetic circuit, exists) or you’ll soon be able to 
perform the operation (you’re designing the hardware capable of performing the given function).  

Arithmetic Micro-ops Worthy Comment Hardware Possibilities 

!Cin : R1  R2 + R3 

Addition; source registers are not 
changed; assumes there is some 
circuitry that is capable of doing 
the addition; the values of R2 and 
R3 do not change.  

The output of R2 and R3 is directed to 
the input of an adder. The output of the 
adder is connected to the input of R1.  

!Cin : R1  R2 + R1 
Addition; one source is 
destination; the value of R2 
generally does not change.  

The output of R2 and R1 are connected 
to the input of an adder. The output of 
the adder is connected to the input of 
R1.  

!Cin : R3  R3 + R3 Addition; doubling circuit 

The output of R3 is connected to both 
inputs of an adder. The output of the 
adder is connected to the input of R3.  

1  R4  R3  R2 :Cin   Subtraction; the 2’s compliment 
thing (R2 = R3 - R4); 

The output of R3 and the complimented 
output of R4 connects to the input of an 
adder. The Cin input of the adder 
(considering an RCA) is set to ‘1’ and 
is included in the addition.  

R5   R5  
Complement contents of R5 (1’s 
complement) 

The output of R5 feeds into a row of 
inverters; the output of the inverters 
feed back to the R5 inputs.  

Cin : 1R5   R5   
2’s complement negation (multiply 
by -1); value is R5 becomes -R5  

The compliment of R5 and ‘0’ are 
connected to the inputs of an adder. The 
Cin input is set to ‘1’.  

R1  R1 + 1 Increment R1; R1 register changes The magic increment input of a counter.  

Cin : R1  R2 + 1 
Add 1 to R2 and store result in R1; 
the value of R2 does not change.  

The output of R2 is added to 0 and the 
Cin input is a ‘1’.  

R1  R1 – 1 
Decrement R1; R1 Register 
changes 

The standard decrement operation of a 
counter.  

R2  R1, R1 + 1 
Assign R1 to R2; the R1 value 
increments. 

The output of counter R1 is latched to 
register R2. At the same time, the value 
in the R1 register is incremented.  

Table 4.1: Some popular arithmetic microoperations. 

4.3.3 Logic Microoperations 

There are a handful of logic microoperations that provide useful tools for manipulating the data in registers. 
Logic operations are generally considered to be bitwise in nature, meaning that the associated logic operator is 
applied to each of the bits in the registers on a one-to-one basis. Table 4.2 shows some of the more common 
logic microoperations. 
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Logic Micro-ops Worthy Comment Hardware Possibilities 

R5   R5  

Logical bitwise complement (1’s 
complement); complement the current 
value of R5 and return the new value to 
R5; The current value of R5 changes.  

The output of register R5 is 
complimented and fed to the 
inputs of R5.  

R2   R5  

Logical bitwise complement (1’s 
complement); complement the current 
value of R2 and store the result in R5; The 
current value of R2 does not change.  

The output of register is 
complimented and becomes the 
input of the R5 register.  

R0  R1 AND R2 
Logical bitwise AND of R1 and R2; the 
result is stored in R0; the current values of 
R1 and R2 generally do not change.  

The output of R1 is ANDed with 
the output of R2; the result 
becomes the input to R0.  

R1  R1 AND R2 
Logical bitwise AND of R1 and R2; the 
result is stored in R1; the current value of 
R2 generally does not change.  

The output of R1 is ANDed with 
the output of R2; the result 
becomes the input to R1. 

R3  R1 OR R2 
Logical bitwise OR of R1 and R2; the 
result is stored in R3; the current values of 
R1 and R2 generally do not change. 

The output of R1 is ORed with the 
output of R2; the result becomes 
the input to R3. 

R1  R1 XOR R2 
Logical bitwise Exclusive OR of R1 and 
R2; the result is stored in R1; the current 
value of R2 generally does not change.  

The output of R1 is EXORed with 
the output of R2; the result 
becomes the input to R1. 

Table 4.2: Some popular logic microoperations. 

4.3.4 Shift Microoperations 

Here is the list of basic shift-type operations: 

1. Simple shifts: The simple shift would include single shifts in either the left or the right direction. We 
refer to this shift as simple because the shifts that follow are somewhat less simple.  

2. Rotates: The rotate operations (rotate left and rotate right) either feeds the MSB to the LSB (on a left 
shift operation) or the LSB to the MSB (on a right shift operation). All other bits shift accordingly.  

3. Arithmetic shifts: The arithmetic shift is for operations where the bits stored in the register are 
considered to be a signed number. In this case, the MSB is considered the sign bit and its present state 
must be preserved in both the left and right shift operations.  

4. Barrel shifts: A barrel shift essentially performs more than one simple shift (in any one direction) in 
a single clock cycle. The distance of the barrel shift is arbitrary but is indicated in the RTL equation 
with the “Xx” notation (where the capital X represents the effective number of bit shifts). These shifts 
are actually quite useful since they provide a fast multiplication and division (depending on shift 
direction). The only catch here is that the divisions and multiplications need to be by a factor of two. 
We can use the barrel shift to instantly scale a mathematical result thus saving clock cycles that you 
would need to expend to do the shifts (multiplication or division) on separate clock cycles.  
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Shift Micro-ops Worthy Comment Worthy Picture 

R0  sr R0 
shift right of R0; result is store in R0; 
some undetermined valued is feed in 
to the left side of the register.   

R2  sl R2 (r-0) 
shift left of R2; feed in ‘0’ from right 
side 

 

R2  sr R2 (l-1) 
shift right of R2; result stored in R2; 
feed in ‘1’ from left side 

 

R2  rr R2  
rotate right; the LSB is transferred to 
the MSB;  

 

R2  rl R2  
rotate left; the MSB is transferred to 
the LSB.  

 

R2  bsr2x R2 (l-0) 
barrel shift right 2x (two simple 
shifts); result stored in R2; feed in ‘0’ 
from left   

R3  bsl2x R3 (r-1) 

barrel shift left 2x; result stored in R3; 
feed in ‘1’s from right. This would be 
the same as two simple shift lefts that 
fed a 1 into the right.  

 

R4  asl R4 (r-0) 

arithmetic shift left; sign bit is copied 
from left side with each shift; ‘0’ is 
fed into the right side of the register; 
this is essentially a multiply by two on 
a signed number.  

 

R5  asr R5 

arithmetic shift right; sign bit is not 
altered any shift; the sign bit is copied 
from the MSB to the MSB -1 on each 
right-shift; this is essentially a divide 
by two on a signed number. 

 
 

 

Table 4.3: Some popular shift-type microoperations. 

One important thing to notice about the RTL equations written in Table 4.3 is that none of them contain 
conditions. Generally speaking, there will be some unit in your computer that handles all of these functions. The 
way you would officially tell the unit to perform a given function is to tweak the proper control signals (such as 
“select-type” signals). These control signal values should appear in the RTL statements above. The above 
equations do not because our discussion was primarily an introduction.  

The last comment on the RTL matter is fact that only conditions appear on the left side of the colon. You need to 
remember this because the “+” operator sometimes represents a logical OR and at other times represents 
addition. An OR operation is considered a condition and can appear on the left side of the colon. However, an 
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addition operation could not be construed as a condition and would never appear on the left side of the colon. 
Therefore, a “+” operator has special context in RTL equations. For example, for the equation in Equation 4.3, 
the “+” operator on the left side of the colon represents an OR operation while the “+” operator on the right side 
of the colon represents an addition operator. If ever in doubt, feel free to spell it out absolutely clearly in written 
English, with footnotes, or with arrows.  

 K1 + K2 : R1  R2 + R3 

Equation 4.3: Equation showing "+" operator but having two different meanings. 

 

4.4 Data Transfer Circuits 

As you can tell by now, a functional datapath passes data around in a useful manner. We need to get into some of 
the specifics of how the data is passed around; that is, we need to look at the underlying hardware and 
understand exactly how things are done so that we can orchestrate such transfers. There are roughly four 
different circuit styles for transferring data around:  

1) MUX-based transfers  

2) bus-based transfers 

3) tri-state bus-type transfers 

4) open collector  

 

4.4.1 MUX-Based Data Transfers 

Figure 4.5(a) shows a typical circuit that performs MUX-based data transfers. The table in Figure 4.5(b) includes 
some example microoperations and the control signals required to perform those operations. We use the Sx 
signals to control the two MUXes and the LDx signals are used to control the loading of data into the various 
registers. We assume the width of the bus for this example and the other examples that follow to be of generic 
width “n”. All transfers are synchronized on the rising edge of the clock. Below are a few other things to note 
about this circuit; Table 4.4 shows the bit control information in RTL form. 

 If a register does not need to be loaded for a particular microoperation, the LD signal is held low. The 
state of the corresponding MUX control signal is therefore a “don’t care” but is listed as ‘0’.  

 Most often, conditions of “don’t care” are not included in the RTL statement. In general, for a given 
RTL statement, you should specify all associated signals to leave no room for testy ambiguity.  

 Each signal source contains one and only one destination.  

 The fact that the data signals in this example are of “width n” implies that they are bundles. In 
computerland, the word bus is an overused and ambiguous term; the word bundle is a better term.  
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Microoperation S1 S2 LD1 LD2 

R2  R1 0 0 0 1 

R1  R2 1 0 1 0 

R2  R1, R1  R2 1 0 1 1 

R2  R1, R1  R1 0 0 1 1 
 

(a) (b) 

Figure 4.5: A circuit for MUX-based transfers (a) and control signals necessary to perform the listed 
microoperations (b). 

 
 

Microoperation S1 S2 LD1 LD2 RTL 

R2  R1 0 0 0 1 12:2,1,2 RRLDLDS   

R1  R2 1 0 1 0 21:2,1,1 RRLDLDS   

R2  R1, R1  R2 1 0 1 1 21,12:2,1,2,1 RRRRLDLDSS   

R2  R1, R1  R1 0 0 1 1 11,12:2,1,2,1 RRRRLDLDSS   

Table 4.4: The table from Figure 4.5(b) with associated RTL statements. 

4.4.2 Bus-Based Data Transfers 

Although MUX-based transfers are versatile, they can be a waste of hardware. The versatility comes from the 
fact that you can perform just about any action you can dream up, but it comes as the cost of extra hardware. 
Bus-based transfers are similar to MUX-based transfers but are not quite as versatile. Figure 4.6(a) shows a 
circuit for bus-based transfers. The microoperations in Figure 4.6(b) are the same ones listed in Figure 4.6(a). 
Here are a few things to note about this circuit:  

 This bus-based circuit has less hardware than the MUX-based circuit. This ends up being a trade-off 
with functionality as is noted in the next bulleted item.  

 Due to the limited hardware connections (compared to the MUX-based transfers), one of the desired 
microoperations cannot be done. Bummer! 

 This is called a bus-based transfer because there is one bus that had one source but multiple 
destinations. Note that in the MUX-based transfers, each source had only one destination. 
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Microoperation S LD1 LD2 
R2  R1 0 0 1 
R1  R2 1 1 0 
R2  R1, R1  R2 Can’t be done 
R2  R1, R1  R1 0 1 1 

 

(a) (b) 

Figure 4.6: A circuit used for bus-based transfers (a); control signals to perform microoperations (b). 

 
 

Microoperation S LD1 LD2 RTL Statement 

R2  R1 0 0 1 12:2,1, RRLDLDS   

R1  R2 1 1 0 21:2,1, RRLDLDS   

R2  R1, R1  R2 Can’t be done bummer! 

R2  R1, R1  R1 0 1 1 11,12:2,1, RRRRLDLDS   

Table 4.5: The table from Figure 4.6(b) with added RTL statements. 

4.4.3 Tri-State Bus-Based Transfers 

These transfers are centered about the use of a tri-state buffer as in Figure 4.7(a). The name tri-state comes from 
the fact that the output of the buffer can have three possible states as is shown in Figure 4.7(b). Two of the three 
states are the now infamous 1’s and 0’s while the other state is the high-impedance state signified with the letter 
Z. When the circuit goes into the high-impedance state, no current flows through the device. Any time there is 
not current flowing through a conductive path, the path is considered an open circuit. In this case, if there is an 
open circuit, the device is effectively removed from the circuit. A better wording for this would be that the 
device has no significant effect on the circuit since no one is physically removing the device from the circuit. 
The EN (enable) input essentially enables the input to appear on the output of the device as in indicated with the 
truth table and compressed truth table of Figure 4.7(b) and Figure 4.7(c), respectively.  

The hearts of tri-state bus transfers are registers that contains tri-state buffers on the output of the devices. In 
other words, each of the bits stored in the register contains its own tri-state buffer. The EN input is connected to 
each of the tri-state buffers in the register and controls each of the output bits in parallel. As is shown in the 
circuit of Figure 4.8(a), we indicate registers with tri-state outputs with the triangles on the outputs.  
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EN A F 
0 - Z 
1 0 0 
1 1 1 

 

EN F 
0 Z 
1 A 

 

(a) (b) (c) 

Figure 4.7: A tri-state buffer (a) and associated truth tables in full and compressed form (b) and (c). 

The circuit in Figure 4.8(a) has one major difference from the two previous circuits. The differences between 
each the three types of transfers we’re looking at are highlighted in Table 4.6. The fact that tri-state buses 
generally have more than one source means that there is possibility of bus contention. Bus contention occurs 
when two more output devices (registers in this case) drive their stored data onto the bus line at the same time. 
This results in indeterminate circuit behavior, so you should definitely avoid it. For example, if one output 
device drives the bus with all 1’s and another drives the bus with all 0’s, what would some input device see on 
these lines?  

The way to avoid bus contention is to make sure that no more than one output device is driving the bus lines at 
one time. The way to drive the bus is to assert the EN input on the registers so only one of these should be 
asserted at any one time. When the device is not asserted, the device is essentially removed from the circuit 
(although the inputs of the device are generally able to latch data).  

Transfer Type Interesting Bus Characteristic for Buses 

MUX-based one source  - one destination 
Bus-based one source - multiple destinations 
Tri-state bus-based multiple sources - multiple destinations 

Table 4.6: The major differences between transfer types. 

Figure 4.8(a) shows the resulting circuit. The microoperations listed in Figure 4.8(b) are the same 
microoperations for the previous types of data transfers. Once again, as you can see from the circuit diagram of 
Figure 4.8(a), there seems to be less hardware in the circuit as compared to MUX-based and bus-based transfers. 
As is shown in Figure 4.8(b), one of the RTL statements is still not possible. The most important thing to note 
from the table in Figure 4.8(b) is the fact that for any given RTL statement, only one of the register enables is 
active at a time. If more than one enable signal was active on a given bus line, there would be bus connection  

 

 

Microoperation EN1 EN2 LD1 LD2 
R2  R1 1 0 0 1 
R1  R2 0 1 1 0 
R2  R1, R1  R2 Can’t be done 
R2  R1, R1  R1 1 0 1 1 

 

(a) (b) 

Figure 4.8: A circuit for tri-state bus-based transfers (a); signals controlling the microoperations (b). 
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Microoperation EN1 EN2 LD1 LD2 RTL Statement 

R2  R1 1 0 0 1 12:2,1,2,1 RRLDLDENEN   

R1  R2 0 1 1 0 12:2,1,2,1 RRLDLDENEN   

R2  R1, R1  R2 Can’t be done unkempt 

R2  R1, R1  R1 1 0 1 1 1,12:2,1,2,1 RRRLDLDENEN 
 

Table 4.7: The table from Figure 4.8(b), with associated RTL statements. 

And finally, there is an alternate method that is commonly used to draw the circuit of Figure 4.8(a). A somewhat 
shorthand notation for the tri-state bus transfer circuit of Figure 4.8(a) is shown in Figure 4.9. These two circuits 
are equivalent but note that the circuit of Figure 4.9 is much nicer to look at. The double arrows on the bus lines 
indicate that the lines are both inputs and outputs.  

 

Figure 4.9: An alternative method to draw the circuit shown in Figure 4.8(a). 

 

Example 4.5 

Using the circuit shown in Figure 4.10(a), write the RTL equations that would accomplish the following 
list two sets of tasks: (write two different equations).  
 

1) Transfer R1 to R2; increment R1 

2) Transfer R2 to R1 

Solution: Once again, there are a few quick things to notice about this circuit:  

 Each of the registers has tri-stated outputs. This requires that the registers have enable signals, which 
must be asserted in order to drive that register’s data on to the bus. This also means that only one of 
the enable signals (EN1 and EN2) better be asserted at one time.  

 The R1 register has a CNT_EN input, which roughly stands for count enable. This implies that the R1 
register is a counter. Looking at the first required transfer indicates an increment operation (Rx  Rx 
+ 1) which, by using the logic of the previous problem, requires an adder. However, since this register 
is a counter and counters typically count up one value at a time in a synchronous fashion, all you need 
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to do is assert the count enable to induce the required increment operation. In this case, assume that if 
the count is not asserted, the value stored in the register does not change.  

Here are the required RTL equations:  

R2R1 :EN2,EN1,LD2LD1,,CNT_EN

1R1R1 R1,R2 :EN2EN1,LD2,LD1,CNT_EN,




 

Figure 4.10(b) shows the associated timing diagram. One important thing to notice about this timing diagram are 
the transfers that occur on the first rising clock edge. On that clock edge, the data in the R1 register transfers to 
the R2 register; at the same time, the data in the R1 register increments. Keep in mind that these diagrams 
represent actual circuits. At the instance of the rising clock edge, the data transfers from R1 to R2. Since 
CNT_EN is asserted, the increment of the count is also initiated on the clock edge but its effect does not happen 
in time for the incremented data to be transferred to the R2 register.  

The above increment operation is typical in digital circuits. It’s particularly important in basic computer circuits 
because a counter is used to “sequentially step through a stored program”. Generally speaking, the output of the 
counter is used as an address to access an instruction in instruction memory. Once one instruction is read, the 
counter is incremented and then points at the next instruction in memory. We’ll be looking at this in more detail 
in a later set of notes.  

  

(a) (b) 

Figure 4.10: The circuit for Example 3 (a), and an associated timing diagram (b). 
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4.5 Chapter Summary 

 

 Register transfer notation (RTN) provides a shorthand approach to both designing and describing circuits. 
RTN does not have absolute standards; each RTN approach may be different from other RTNs. RTN 
represents a continued abstraction to higher levels of design in order to facilitate designing and 
understanding relatively complex circuits.  

 RTN generally deals with the transfer of data from one register (the source register) to another register (the 
destination register). T 

 Microoperations are elementary operations that are performed on data stored in one or more registers. We 
can describe the operation of many sequential circuits in terms of the various microoperations they are able 
to perform. There are many types of microoperations, but we generally attempt to categorize in order to 
support understanding their functions. Some of the more popular types of microoperations include transfers, 
arithmetic, logic, and shift operations.  

 The key of a working computer is the ability to transfer data from a source to a destination (generally 
register to register, register to circuit, or circuit to register). We generally attempt to classify type of data 
transfers in order to support our understanding of them. The most common transfer circuits include MUX-
based, bus-based, and tri-state-based circuits. Each of the circuits has their advantages and disadvantages.  
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4.6 xxxxChapter Exercises 

 
 
 

1) For this problem, complete the  following two tasks:  
 

 Write the minimum number of RTL statements that will transfer X to REGB and Y to REGA 
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2) For this problem, complete the  following task:  
 

 Write the minimum number of RTL statements that place B into REGA and C into REGB 
 

 
 
 
 

3) For this problem, do the following task:  
 

 Write the minimum number of RTL statements that will transfer X to REGA and Y to REGB. 
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4) For this problem, do the following task:  
 

 Write the minimum number of RTL statements that will transfer A to REGA and C to REGB. 
 

 
 
 
 

6) For this problem, do the following task:  
 

 Write the minimum number of RTL statements that will transfer Y to REGB and X to REGA 
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7) For this problem, do the following task:  
 

 Write the minimum number of RTL statements that will transfer X to REGA and Y to REGB. 
 

 
 
 

8) For this problem, provide the proper control signals that would allow the following RTL statements to 
occur. Complete the timing diagram below based on your provided control signals.  

 
clock 
cycle 

RTL 

1 RA  RA AND RB 
2 RA  RA + RA    ; addition 
3 RB  RA - RB 

4 
RA  rr RB           ; rotate right 
B 

 

 

ALU_OP Operation 

00 logical AND of A & B 
01 rotate right B input 
10 subtract B from A 
11 add B to A 
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9) The following diagram shows a circuit that can perform a mathematical operation. The two tables below 
describe the comparator and the Universal Shift Register (USR). Provide a state diagram that could be used to 
control the circuit such that it performs the operation listed below. Minimize the number of states you use in 
your solution. 
 

 If a GO signal is received (GO is not shown in diagram), one of the following two operations 
occur:  

 
 If  (OP_A * 4)  ≥  (OP_B * 4) then:   REG_A  (OP_A * 4);   REG_B  (OP_B * 4);  

 
 otherwise:    REG_B  (OP_A * 4);   REG_A  (OP_B * 4);  

 

Comparator description 
 

if (A > B) then GT <= 
‘1’; 
else GT <= ‘0’;  
   
if (A = B) then EQ <= 
‘1’; 
else EQ <= ‘0’; 
   
if (A < B) then LT <= 
‘1’;  
else LT <= ‘0’; 
 
  

Assumptions: 
 

 DR_IN = right side input to shift 
register 

 DL_IN = left side input to shift 
register 

 CLK signals are connected 
 All setup and hold times are met  
 All shift register operations are 

synchronous 
 Registers (non-USR) have 

synchronous load inputs (LD) 
 

Shift Register 
Controls 

SEL Operation 

0 0 hold 

0 1 
parallel 

load 
1 0 shift right 
1 1 shift left 
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10) The following diagram shows a circuit that can perform a mathematical operation. The information below 
describes the Universal Shift Register (USR) and memory timing. Provide a state diagram that could be 
used to control the circuit such that it performs the operation listed below. Minimize the number of states 
you use in your solution. Assume a 100MHz clock (10ns period) and a memory access time (tacc) of 25ns.  

 
 If a GO signal is received (GO is not shown in diagram), the following operation occurs:  

 
 DOUT  (B_DAT) ÷ 8  

 

 Memory Timing 
 

 
  

Assumptions: 
 

 DR_IN = right side input to 
shift register 

 DL_IN = left side input to 
shift register 

 CLK signals are connected 

 All setup and hold times are 
met  

 All shift register operations 
are synchronous 

 Registers (non-USR) have 
synchronous load inputs 
(LD) 

 

Shift Register 
Controls 

SEL Operation 

0 0 hold 

0 1 
parallel 

load 
1 0 shift right 
1 1 shift left 
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11) For this problem, perform the following:  
 

 Write the minimum number of RTL statements that will transfer Z to RB and Y to RA. 
 

 
 
 
12) The following diagram shows a circuit that can perform a mathematical operation. The information below 

describes the Universal Shift Register (USR) and memory timing. Provide a state diagram that could be 
used to control the circuit such that it performs the operation listed below. Minimize the number of states 
you use in your solution. Assume a 100MHz clock (10ns period) and a memory access time (tacc) of 25ns.  

 
 If a GO signal is received (GO is not shown in diagram), the following operation occurs:  

 
 DOUT  (B_DAT) ÷ 8  

 

 Memory Timing 
 

 
  

Assumptions: 
 

 DR_IN = right side input to 
shift register 

 DL_IN = left side input to 
shift register 

 CLK signals are connected 

 All setup and hold times are 
met  

 All shift register operations 
are synchronous 

 Registers (non-USR) have 
synchronous load inputs 
(LD) 

Shift Register 
Controls 

SEL Operation 

0 0 hold 

0 1 
parallel 

load 
1 0 shift right 
1 1 shift left 
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13) For this problem, perform the following:  
 

 Write the minimum number of RTL statements that will:  
i.increment REG_B and store in REG_A 

ii.add REG_B to REG_B and store in REG_A 
 

 
 
 
 
14) For the following problem, assume the SEL inputs to the shift register (SR) cause the following operation 

in the SR. Assume ”SR” refers to a shift register while “sr” refers to a shift right operation.  
 

SEL RTL Operation 

000 SR  D_LOAD 
001 SR  bsl2x SR (r-0) 
010 SR  bsr2x SR (l-0) 
011 SR  sr SR (l-0) 
100 SR asr SR 
101 SR asl SR (r-0) 
110 SR  others => ‘0’ (loads all zero’s) 
111 SR  SR; (hold) 

 
(a) transfer 5X into RC (unsigned) 
(b) transfer 1.5X into RC (unsigned) 
(c) transfer 2X into RC (signed) 
(d) transfer 0.625X into RC (unsigned) 
(e) transfer 4X+2 into RC 
(f) transfer 2X-1 into RC 
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15) Write the minimum of RTL statements that will implement the following data transfers. Assume the 

upper-most values on the MUX and decoder start with 0 and work down to 1 and 3, respectively.  
 
a) Transfer RE to RD 
b) Transfer RB to RC 
c) Transfer RA to RC as well as RA to 

RD 
d) Transfer RD to RC and RB to RA 
e) Design a FSM that could implement 

the set of transfers listed in a), b), 
c), and d).  

 

 
 

16) Use the following circuit to complete the accompanying timing diagram. Register RA is a counter with a 
count enable input. The initial value (in hex) on each register is RA=AA, RB=BB, RC=CC, and RD=DD. 
Consider the rising edge of the clock to be the active edge.  
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17) Using the circuit provided, write the minimum number of RTL statements that will implement the 

following data transfer. Consider the circuit elements with Rx labels to be registers with load inputs LDx 
(listed) as well as clock inputs (not listed). Data is loaded into the registers only on the active clock edge. 
The clock signal is not shown.   

 
 Increment the value in RB and load the result into RA  
 Add RA to RB and store the result in both RA and RB 
 Decrement the value in RB and store the result in RB 
 Transfer the value in RA to RB 
 Clear RA and set RB (make all the bits 0 and 1, respectively) 
 Load the -1 into RA 
 Design a FSM that would decrease the value in RB by three and store the result in RA.  
 

 
 
18) Using the circuit provided, write the minimum of RTL statements that will implement each of the 

following data transfers. Consider the circuit elements with Rx labels to be registers with load inputs LDx 
(listed) as well as clock inputs (not listed). Data is loaded into the registers only on the active clock edge. 
The clock signal is not shown.   

 
A)  

 Sets RD 
 Transfer RC to RD 

 

B) 
 Clear RC 
 Transfer RA to RB 
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19) Design a circuit that can implement each of the following two RTL statements. Use busses where 
necessary. All registers are synchronous and contain a control input (LOADx). Registers may also contain 
other control inputs where necessary.  ENx signals are used to control tri-state outputs. Use and any other 
hardware you deem necessary. The “+” symbol represents an arithmetic addition.  

 

      
RD  RB  RC),  (RB  RD :LOADB LOADD, ENB,

RD  RC  RC), (RA   RD : LOADCLOADD, ENA,




  

 
 
20) Design a circuit that could implement the timing diagram shown below. Each of the “registers” in the 

design is 8-bits wide. You are not responsible for setting the listed initial values. Use any hardware you 
want. There are three clock cycles shown; provide an RTL statement describing the microoperations that 
occur at each clock edge. 

 

 
 

 
 

 
 
 



FreeRange Computer Design  Chapter 5 

 

 - 112 -  
 

5 Structured Memory: RAM and ROM 
 

5.1 Introduction  

The previous chapters dealt with basic memory elements in digital design, but on a relatively small scale (flip-
flops and registers). While those types of memory are important, you typically find other types of memory in 
digital systems. We classify flip-flops and registers as “incidental” memory; this chapter introduces the notion of 
“structured1” memory, which has significantly more storage capacity than incidental memory. You must learn a 
new set of skills and vernacular when you deal with structured memory; this chapter discusses some of the more 
basic aspects of memory. 

Main Chapter Topics 

 OPERATIONAL OVERVIEW OF MEMORY: This chapter provides an overview of 
the basic operational and performance characteristics of memory as well as 
common terminology associated with memory.  

 MEMORY TYPES: This chapter introduces the two accepted main types of 
memory, RAM and ROM, by describing their differences and similarities.  

 MEMORY INTERFACE METRICS: This chapter describes the basic interface issues 
involved in structured memory device.   

 STRUCTURED MEMORY MAPPING & MEMORY SYSTEMS DESIGN: Memory 
systems are typically designed as many individual memory units as opposed to 
one single unit. This form of design requires a unique high-level perspective of the 
system and uses standard digital devices in their implementations. This chapter 
provides an overview and introduction to structured memory system design.  

 

Why This Chapter is Important 

 This chapter is important because it describes the basics of concepts associated with 
large memory devices such as well as working with and interfacing with those 
devices.  

 

5.2 Memory Introduction and Overview 

There are many different types of memory out there; most of them are beyond the scope of a basic digital design course. If 
you ever need to work with a new memory device, you’ll be ready because you’re familiar with the basic operation of 
structured memory.  

Before we start, we need to make one clarification. Often time when we discuss the notion of memory, we sometime use the 
terms “data” and “information” interchangeably. In most cases, this is no big deal, but you need to understand there is a 
distinct difference. In the context of digital design, data is nothing more than a bunch of 1’s and 0’s, while information 
relates to the interpretation of the 1’s & 0’s. We often refer to data as having information content; there is actually a unit 
used to measure the information content of data2. It is up to the user to interpret data as having certain information content or 
not. For example, consider a memory unit; if the stored data represents instructions to a computer, then you could consider 

                                                           
1 I’ve adopted this term from the notion of “regular structures”, which roughly refers to larger semiconductor devices that 
have a large and repeated structure that is dedicated to a single purpose. In this case, the purpose is memory.  
2 Somewhat unfortunately, we use the term “bit” to measure the information content of data. This metric is a function of 
probability and is not related to the “binary digit” definition of bit that we use in this text.  
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the data to be information. On the other hand, if you have a memory that you have never written to, the memory is still full 
of 1’s and 0’s, but the data has no meaning.  

5.2.1 Basic Memory Operations: READ and WRITE 

The two operations associated with memory are reading and writing. The notion of a “memory read” or “reading from a 
memory” refers to the action of retrieving data currently stored in memory. Retrieving data specifically means that you’re 
copying the data from memory to another place, but not changing the data in memory. The notion of a “memory write” or 
“writing to a memory” refers to the action of placing new data in memory, which means you are changing the data stored in 
memory. Reading and writing memory are the copying of data from memory (reading) and the transfer of data into memory 
(writing), respectively.  

5.2.2 Basic Memory Types: ROM and RAM 

There are many different flavors of memory in digital-land; each of these memory types has their own acronym describing 
them. Despite this relatively high number of memory types, we classify all of them as either RAM or ROM, which are 
acronyms for random access memory and read only memory, respectively. These terms are rather misleading, particularly in 
regards to the attributes of modern memory. In an effort to classify memories as either RAM or ROM, these two acronyms 
have rather loose definitions. Here is the information embedded in those acronyms.  

 The notion of a “read only memory”, or ROM, implies that you’ll only be reading from a memory, and 
never writing to it. Because the memory is a “read only” memory, you can only retrieve data from that 
memory; you cannot “easily”3 alter the data in that memory.  

 The notion of a ROM brings up the issue of whom or what put the data into the ROM. This starts 
delving down into the various sub-types of ROM; we don’t want to go there because we want to keep 
this discussion general. Writing to a ROM is a “special” operation performed by “something”. All we’re 
interested in is that there is data in the ROM.  

 The term random access refers to the fact that it requires the same amount of time to access (either 
reading or writing) each “chunk” of memory stored in the device. While this notion seems rather 
simple, not all memory devices fall into the category of “random access”. The two most obvious 
notions of non-random access memories are “hard drives” and “tape drives”. The time required to 
access data in your hard drive is different depending on the physical location of the data on the disk and 
the current location of the read/write heads. Recall that the hard drive is a mechanical storage device 
that requires motors to move a physical device (the read/write head) radially across the spinning media 
to access the data. If the heads are close to the data, it requires less time to access the data than if the 
heads must move a long way to access the data.  

 Although the term ROM refers to read only memory, ROMs are also random access devices. Thus, you 
can access any of the chunks of data stored on a ROM in an equal amount of time.  

 All memories have the notion of being either volatile or non-volatile. If a particular memory is volatile, 
the data stored in that memory is lost when you remove power from that circuit. Conversely, the data in 
non-volatile memory is not lost when you remove power. We generally accept that RAMs are volatile 
and ROMs are non-volatile.  

Despite all these misleading terms and acronyms associated with structured memory, RAM and ROM do have accepted 
definitions. Table 5.1 lists these accepted differences and similarities.  

Memory Type Random Access Operations Volatility 

RAM yes read & write volatile 

ROM yes read non-volatile 

Table 5.1: Accepted attributes of RAM and ROM. 

                                                           
3 Meaning that many types of ROM can be written to; we’ll not discuss those cases.  
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5.3 Software Arrays vs. Hardware Structured Memories 

The notion of structured memory is not as new as it seems, as there is a direct analogy to the use of arrays in programming 
languages. Recall that an array in computer programming is a data structure that allows you to store values and later 
access those store values.  

Accessing values in an array: This operation is analogous to a read of a memory. In computer 
programming, when you access a value in an array, your program must provide an index that indicates 
which value in the array you want to access. The array “returns” the requested value without changing 
that value in the array. In hardware, the circuit must provide value (the address) that indicates which 
address in the memory you want to read from. The memory then outputs that value; the read operation 
does not change the value.  

Changing values in an array: This operation is analogous to a write of memory. In computer 
programming, when you place a new value into an array, your program must provide an index that 
indicates which value in the array you want to change. The array then replaces that value with the new 
value. In hardware, they circuit must provide a value (the address) that indicates which value in the 
memory you want to write to and the new data. The memory then changes the value at that address to 
the new value.  

5.4 Memory Operation Details: Reading and Writing 

Figure 5.1 shows a high-level diagram of a generic memory device. We can classify the various signals associated with 
interfacing with a memory device into three categories: address lines, data lines, and control lines4. The following is a 
general overview of these lines. In general, the widths of these bundles are associated with the specific capacity attributes 
of the memory; we deal with those issues soon.  

Data Lines: The data lines are a set of signals that route the bits you’re writing or reading into or out of 
the memory device. The arrow associated with the data lines has an arrowhead on each end, which 
signifies that data on those particular lines can travel either into the memory (for read operations) or out 
of the memory (for write operations)5. The data lines can be either serial or parallel; the bundle notation 
in Figure 5.1 means the data lines are parallel. Figure 5.1 happens to show only one set of data lines; 
memories often separate input and output data lines.  

Address Lines: The address lines are a set of signals that provide the memory with a “location” within 
the memory to write to or read from. The address lines are the method that the memory uses to 
differentiate between chunks of memory on the interior of the device.  

Control Lines: The control lines are a set of signals that determine and direct the various operations 
associated with the memory. The best example of the responsibility of the control lines are with RAM 
devices that are both readable and writeable; the control lines allow the user to control which operation 
occurs. The underlying notion of control lines is that simple memories have few control lines; more 
complex memories have more control lines6.  

We soon delve further into the details of memory interfacing; for now, you can consider the general interfacing operation 
of a memory read as: 1) give the memory an address, 2) tweak the control lines, and 3) wait for the data. For memory 
writes, you generally 1) give the memory an address, 2) give the memory the data, 3) tweak the control lines, and 4) wait 
for the data to write to memory.  

                                                           
4 In this context, the notion of “lines” refers to a bundle of wires or signals. You often hear the term “lines” associated with 
standard bundles such as “data”, “address”, and “control” lines.  
5 But not both directions at the same time.  
6 In an effort to increase memory capacity while keeping physical size small, interfacing some modern memories have 
become rather complicated and thus have a relatively large number of control signals.  
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Figure 5.1: A general diagram of a memory integrated circuit. 

5.5 Memory Specification and Capacity 

When working with memory and memory systems, the two most important pieces of information are the capacity and the 
speed of the memory. The memory capacity refers to how much data the memory can store while the memory speed refers 
to how fast you can access (read or write) that data.  

People in digital-land describe memory capacity in many different ways. As is typical in any human oriented pursuit, people 
attempt to make their “thing” sound better than it really is; the same idea applies to memory capacity specifications. While 
these statements are not lies, they are misleading. You, the digital designer must see through the smoke and hand waving 
and understand the characteristics of the memory you’re working with.  

We know that memory stores bits, and these bits are stored at certain addresses within the memory, but memories are rarely 
bit-addressable. In other words, specific memory devices only allow you to access larger chunks of data. If you need to read 
or write a single bit, you must start with the minimum chunk of addressable data specified by the device. Making memory 
bit-addressable would create an inefficient device, so memories generally compromise by providing data only in chunks.  

Memories usually store data in groups of bits, which we refer to as a word. The official definition of a word is the smallest 
addressable unit (or chunk of bits) in a memory. This term is important because we typically described memories and 
memory systems in terms of words rather than bits. Referring to memory in terms of words is the honest approach.  

Figure 5.2 shows a diagram of a generic memory including some typical memory characteristics. The metrics in the diagram 
are typical of most memory devices. Here is an overview of the most important aspects of Figure 5.2 while Table 5.2 
summarizes all the gory details.  

 The “2m x S” notation is how we state the capacity of a memory. The underlying notion is that we are 
modeling the memory as a two-dimensional grid, as the “x” in “2m x S” indicates.  

 Everything having to do with memories relates to binary. The term “m” refers to the width of the 
address bus or number of address lines, which is the number of memory chunks that a memory can 
access is two raised to the number of address lines. The true capacity of a memory (the amount of data 
it can store) relates to the number of address lines. 

 The term “S” is the width of the data bus or data lines, or the word width for the memory. Datasheets 
often state this metric in bits, but should state it in word capacity.  

 The total word storage capacity for the memory is how many words the memory can store. For this 
particular memory, the word storage capacity is thus 2m.  

 The total bit storage capacity for the memory is a product of the number of words and the number of 
storage locations in the memory. Thus the bit storage capacity is given by 2m x S.  

 We don’t include a bundle width indication on the control lines in order to keep the discussion general. 
The notion of 2m x S is common; the control lines for memory modules tend to vary greatly across 
different devices.  
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Figure 5.2: A diagram of memory indicating notions of storage capacity. 

 

capacity (in bits) = 2m x S 

Equation 5.1: Closed form formula for memory storage capacity in bits. 

 

Symbol Definition 

m Bit-width of address bus 

S Bit-width of data bus (word size) 

2m Memory capacity in words 

2m  x S Memory capacity in bits 

Table 5.2: Summary of memory definitions and properties. 

5.6 Memory Interface Details 

This section examines the control lines and their relation to the data and address lines for basic read and write 
operations on a generic memory. Recall that a memory write transfers a word to be stored in memory while a 
memory read prompts a memory to output the contents of memory. The reading and writing of memory is 
controlled by the “control lines” of the memory device. Every memory has its own method of reading and 
writing; specifically, each memory has its own protocol for tweaking the control lines in such a way as to obtain 
the desired function from the memory device.  

Memory Writes: For a memory write operation, you provide the memory with data that 
overwrites data currently stored in the memory. The information on the address lines provides 
the location of where the word is stored. The bits on the data lines provide the data that we 
transfer and store on the memory device. The write operation overwrites the data currently 
stored at the address indicated by the address lines.  

Memory Reads: For a memory read operation, you prompt the memory device to output the 
data currently stored at a specific location in memory. The information on the address lines 
provides the location in memory of where you want to read from. Thus, the address lines 
provide the memory location of the word that transfers out of the memory; the transfer occurs 
by placing the data at the specified address onto the data lines. Read operations don’t alter 
values stored in the memory device. 
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Steps for Memory Writes Steps for Memory Reads 

Apply the information representing the 
memory location of where you desire to store 
the given word to the address lines. 

Apply the information representing the actual 
data bits to be written to the data lines. 

Tweak the control lines to make the write 
operation occur. 

Wait for data to write  

Apply the information representing the 
memory location of where you desire to 
retrieve the given word to the address lines. 

Tweak the control lines to make the read 
operation occur. 

Wait for valid data to be output 

Table 5.3: Summary of generic steps required for memory reads and writes. 

5.7 Memory Performance Parameters 

When we speak about memory devices, we’re talking about actual physical electronic devices. This means that 
read and write operations require finite amounts of time to happen. Most of the associated performance 
parameters are outside the scope of this discussion, but some are basic enough for an overview here.  

Figure 5.3 shows a BBD for a simple RAM. This RAM has two control inputs: CLK and WE, where WE is a 
common acronym for write enable. The BBD for this RAM does not completely describe how the device 
operates; you need more information, as we use this device in several examples. Here is what we need to know 
about the device in Figure 5.3:  

 The RAM in has an asynchronous read. This means that the RAM outputs the requested data 
as soon as it is physically capable after it receives a new address value; the read operation is 
not dependent upon the clock signal. The WE enable remains unasserted for read operations.  

 The RAM in has a synchronous write. This means that write operations are synchronized with 
the active edge of the clock, which we assume is the rising edge in this example. The device 
initiates the write operation when it detects an asserted WE signal at the same time as a rising 
clock edge. The write operation requires a finite amount of time to complete.  

 

Figure 5.3: A typical control sequence for a memory read operation. 

Figure 5.4 and Figure 5.5 show generic timing diagrams associated with typical read and write operations, 
respectively. For this device, the number of address and data lines does not matter for this discussion 

Figure 5.4 shows a timing sequence for a memory read operation. Because the reads are synchronous, we don’t 
need to show the CLK input. The one control input of interest is the WE, which remains unasserted for the read 
operation. Once a valid address appears on the ADDR input, the RAM outputs the data at that storage address 
after a finite amount of time, which we refer to as the read access time.  
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Figure 5.4: A typical control sequence for a memory read operation. 

Figure 5.5 shows a timing sequence for a memory write operation. Because this RAM has synchronous writes, 
we include a CLK signal in the timing diagram. The writing of new data to the RAM is initiated by two control 
signals: CLK and WE. For a write to initiate, the WE control input must be asserted when a rising edge appears 
on the CLK input. The physical writing of data to the RAM occurs a finite amount of time later, which we refer 
to as the write cycle time.  

 

Figure 5.5: A typical control sequence for a memory write operation. 

We use three main parameters to describe memory performance, which states how fast you can read from 
memory (read access time), how fast you can write to memory (write cycle time), and roughly how much data 
you can pass back and forth to and from the memory (bandwidth). Figure 5.4 and Figure 5.5  show graphic 
examples of the read access and write cycle times, respectively. The list below provides a more detailed 
description of these three performance parameters.  

Memory Read Access Time: The minimum time required to access a word from memory. This is the 
amount of time measured from the application of a valid address to the address lines to the 
appearance of the valid data on the data lines.  

Memory Write Cycle Time: The minimum time required to write a word to memory. This is the 
time measured from the application of a valid address lines to the completion of the internal 
operations required to successfully store the data in memory. 

Memory Bandwidth: The maximum data transfer rate for a memory device. Since both read and 
write operations require finite amounts of time, it’s worthwhile knowing the amount of data that we 
can physically transfer to and from memory in a given amount of time.  
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As with just about everything in digital-land, the faster something can operate, the more highly regarded that 
devices. This is maybe even more so true with structured memory devices as they are typically a major 
component in many digital systems, particularly computer systems. Moreover, in many digital systems, more 
than one device in the system must access memory. Often times more than one device must simultaneously 
access memory; this situation creates what we refer to as a bottleneck. This condition is undesirable in the one or 
more devices must wait to access memory7. The notion of “waiting” in digital-land means your device is 
probably doing nothing, thus probably lowering the overall throughput of your system. Roughly speaking, the 
faster your memory operates, the less chance of a bottleneck; or the less problematic that bottleneck is if you had 
a slower memory.  

Any time you work with a new memory device, you’ll find yourself concerned with the above parameters. 
Probably one of the most informative items regarding working with memory devices is the associated timing 
diagram, which you can find in the associated datasheet. There is almost a special language used to specify all 
the timing parameter associated with memory devices, once you start working with memories, you’ll quickly get 
the hang of things.  

 

Example 5.1: Design #1: RAM Summation 

Design a circuit that sums the values in a 16x8 RAM. Assume some external device previously 
placed the data into the RAM. The summation begins when a GO signal asserts. The final sum 
remains on the circuit’s output until another assertion of the GO signal. Assume the circuit 
contains numbers in unsigned binary format. Provide two levels of BBDs for your solution as 
well as a state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. 
Also, state how many clock cycles your circuit requires to complete the operation. Minimize 
the amount of hardware you use in your design. 

Solution: The first step in your solution is drawing the top-level BBD. The problem statement generally states 
the exact characteristics of outputs in problems such as these (though sometime not overly explicit), but this 
problem requires some extra thought and calculation. We need to show the width of the output, which represents 
a summation of the 16 values in the RAM. The width of the data in the RAM is 8-bits, and we know they are 
unsigned values. This means the largest value of the sum is 16 x (28-1). We could break out the calculator, but 
it’s better to note that we’re working with powers of two, so the maximum summation is 24 x 28, or 212. 
Therefore, the width of the summation is 12 bits. Figure 5.7 shows the top-level BBD for this problem. 

 

Figure 5.6: The top-level BBD for this example. 

The next step in the solution is to create an inventory of the modules our solution requires. The following is an 
outline of our thought process.  

 We know this problem has a RAM because the problem description says so.  

 Any RAM we work with in this text uses the output of a counter to provide an address input to the 
RAM. Many different circuits or modules can provide the address inputs, but the simplest approach 
for this text is to use a counter output provide the address.  

                                                           
7 There is a notion of “multi-port” memories. These memories typically allow some type of parallel operation such that two 
devices can simultaneously read from two different memory locations. These types of memories become expensive and 
certainly exercise the inherent trade-offs in digital systems designs.  
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 The circuit also is summing all the values in the RAM. Because the RAM can only output one 
value at a time, we need a circuit that keeps a running total of the RAM’s stored values. This calls 
out for an accumulator, which is a combination of an RCA and a register. The accumulator’s 
register provides a persistent output.  

 Something must control this circuit, and this control is non-trivial, which calls out for a FSM.  

 

Figure 5.7: The lower-level BBD for this example. 

Figure 5.7 shows the final circuit for this problem; meaningful commentary follows the diagram. 

 The counter always counts up when it’s not loading.  

 We need to zero-extend the RAM data to make it 12 bits, which makes the RAM output compatible 
with the output of the accumulator’s register, and the other input to the RCA. We use the square 
symbol with a “+” in the center to do this (which is arbitrary).  

 We had to include an annotation stating that the counter’s CLR input has precedence over the UP 
control input.  

 

Figure 5.8 shows the state diagram for this example; here are a few items of interest to note about the state 
diagram.  

 We drew the state diagram using two states, which requires treating CLR as a Mealy-type output. 
This approach was arbitrary, but it saved drawing an extra state.  

 In the “wait” state, the register’s LD input is disabled; we enable it while the circuit is summing.  

 We always disable the RAM’s WE input as this problem requires no writing to the RAM. 

 The FSM remains in the “sum” state until the counter asserts RCO.  

 

Figure 5.8: The state diagram associated with this example. 
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The FSM controls both the LD and CLR inputs, while the UP input of the counter is hardwired to always count 
up. The GO signal is a form of external control. This circuit thus has external, circuit, and internal controls.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle 
causes the FSM to transition from the “wait” state to the “sum” state. The summing operation for this circuit thus 
requires 17 clock cycles.  

 

 

 

Example 5.2: Design #2: Minimum Value & Address Displayer 

Design a circuit that finds the smallest value in a 16x8 RAM. Assume some external device 
previously placed the data into the RAM. The summation begins when a GO signal asserts. 
The circuit’s output shows the minimum value as well as the address where that value resides 
in RAM. Both the value and the address remain on the circuit’s output until another assertion 
of the GO signal. Assume the circuit contains numbers in unsigned binary format and that 
every value in the RAM is unique. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also, 
state how many clock cycles your circuit requires to complete the operation. Minimize the 
amount of hardware you use in your design. 

Solution: This is another problem that requires iterating through all the values in a RAM. In this case, the circuit 
outputs the minimum value in RAM as well as the address of that minimum value. Figure 5.9 shows the top-
level BBD for this solution.  

 

Figure 5.9: The top-level BBD for this example. 

The next step in the solution is to create an inventory of the modules our solution requires. Here is the general 
thought process.  

 The problem description states that the circuit contains a RAM; we then know that the circuit then 
uses a counter to generate an address for the RAM. There are 16 values in the RAM, so the width of 
the counter’s output is 4-bits.  

 The circuit needs to store two values: the smallest value in the circuit and the location in RAM of 
the smallest value. These values both need to be persistent after the algorithm completes, so we 
know that the circuit requires two register. The register storing the smallest value is eight bits while 
the register storing the address of that value is four bits.  

 This circuit needs to do continual comparisons to find the smallest value, so we also require an 8-bit 
comparator.  

 In an effort to make this circuit generic, we first pre-load the 8-bit register with the minimum 
possible unsigned 8-bit value. The first step in the algorithm is then to load “all 1’s” into the 
register that holds the minimum value, which we do in order to reduce the complexity of the overall 
circuit. This is somewhat of a trick, but it is something you see often. 
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 We use a MUX to select what value appears on the minimum value register’s DATA input. We first 
need to load the register with the maximum 8-bit value; after that, we need to be able to load the 
register with the current RAM value when the comparison result dictates.  

 We need to state that CLR has precedence over the UP input for the counter, and that the CLR input 
has precedence over the LD inputs for the two registers.  

 

Figure 5.10: The lower-level BBD for this example. 

Figure 5.11 shows the state diagram for this example. Although it looks quite busy, it’s actually very structured, 
as the following items indicate.  

 We model the LD1 and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We did 
this in order to save a state in the state diagram.  

 When the GO signal asserts, the FSM clears the address register and counter, and loads the 
minimum value register with the largest possible 8-bit unsigned binary value.  

 This circuit does not write to RAM, so we always disable the WE signal.  

 The “search” state appears busy, but it’s actually structured. Two things are happening. First, when 
the LT signal is not asserted, we don’t load any new values to either register (LD1 & LD2 are not 
asserted). When the LT signal is asserted, we load the current address (the output of the counter) to 
the address register, and load the current RAM data output to the minimum value register. One of 
these two operations always happens no matter whether the RCO signal is asserted or not. When 
the RCO signal is asserted, that means the counter’s output is at its maximum value and we must 
terminate the algorithm by transitioning back to the “wait” state.  

 There are four arrows leaving the “search” state; each of these arrows has the four different possible 
combinations of the RCO & LT inputs. 
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Figure 5.11: The state diagram associated with this example. 

The FSM controls both the LD and CLR inputs for both registers, while we hardware the UP input of the counter 
to always count up. The GO signal is a form of external control. This circuit thus has external, circuit, and 
internal controls.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle 
causes the FSM to transition from the “wait” state to the “search” state. This circuit thus requires 17 clock cycles 
to locate the minimum value for the circuit.  

 

 

 

Example 5.3: Design #3: Value Event Counter 

Design a circuit that finds the number of times the value 0x47 appears in a 16x8 RAM. 
Assume some external device previously placed the data into the RAM. The search for the 
given value begins when a GO signal asserts. The circuit’s output persistently shows the 
resultant count value until another assertion of the GO signal. Assume the circuit contains 
numbers in unsigned binary format. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also, 
state how many clock cycles your circuit requires to complete the operation. Minimize the 
amount of hardware you use in your design. 

Solution: This is another problem where we need to carefully choose the width of the output value. This problem 
asks that we count the number of value in the RAM that are equivalent to 0x47. The greatest count is when all 
the values in the RAM are 0x47, which is a count of 16. We thus require an output data width of five bits. Figure 
5.12 shows the top-level BBD for this problem.  

 

Figure 5.12: The top-level BBD for this example. 

The next step in the solution is to create an inventory of the modules our solution requires; here is our module 
inventory thought process.  

 We know the circuit requires a RAM, so we know the circuit then uses a counter to generate an 
address for the RAM. There are 16 values in the RAM, so the counter’s output is 4-bits wide.  
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 We are looking for the value of 0x47, which means we need to compare the data at each RAM 
location with that value. Our circuit thus requires a comparator.  

 We must determine the number of times the 0x47 appears in the RAM, so the first thought may be 
that our circuit requires an accumulator. We could use an accumulator, but we can satisfy our 
circuit’s needs with an event counter, which is a counter that increments when it detects a certain 
event. The event we are detecting is the presence of 0x47 in the RAM.  

 We need a FSM to control our circuit.  

 

Figure 5.13 shows the lower-level BBD for our solution. Here are a few interesting items in that BBD:  

 The comparator hardwires one the “event” value to one of its inputs.  

 We don’t need to provide a note for the event counter regarding the precedence of the LD and CLR 
inputs; the FSM handles that aspect of the circuit.  

 The CLR signal on the two counters are physically the same signal.  

 The DATA input to the RAM is hardwired to zero; when we find the value of 0x47 at a particular 
address, the circuit writes 0x00 to that address location.  

 

Figure 5.13: The lower-level BBD for this example. 

Figure 5.14 shows state diagram for our solution. The state diagram looks rather busy, but once again, it is nicely 
structured. If you see and understand that structure, the state diagram seems relatively simple. Here the full story:  

 We model the LD and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We did 
this in order to save a state in the state diagram.  

 This WE input is always disabled in the “wait” state. The state of the WE signal in the “scan” state 
depends on the EQ input, where it writes a new value to RAM when the EQ is asserted, or does not 
change the RAM contents otherwise. We thus model the WE input as a Mealy-type output in the 
“scan” state and as a Moore-type output in the “wait” state.  

 The “scan” state has four arrows leaving the state, where each arrow represents one combination of 
the two inputs (RCO & EQ).  

 When the RCO is not asserted, the circuit either increments the count and clears that corresponding 
address in RAM, or it does nothing; it then transitions back to the scan state. When RCO is 
asserted, it performs the exact two actions, but the FSM then transitions to the “wait” state.  
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Figure 5.14: The state diagram associated with this example. 

The FSM controls the LD, CLR, and WE inputs for the counters and RAM. The GO signal is a form of external 
control. Thus, this circuit has both circuit an external control.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first clock cycle 
causes the FSM to transition from the “wait” state to the “search” state. This circuit thus requires 17 clock cycles 
to locate the minimum value for the circuit.  

 

5.8 Memory Mapping  

You can typically find the notion of memory mapping in microcontroller (MCU) and microprocessor-based 
(MPU) systems. The idea is that different areas of memory are typically used for different purposes in most 
digital systems. The notion of a MCU or MPU-based system generally implies that the system is becoming 
relatively complex. The segmenting of memory, or the designation of certain parts of memory to specific 
purposes, aids in the overall understanding of the system. This makes it well work looking at in this chapter.  

The notion of memory mapping is an exercise in the study of binary and hexadecimal numbers. Even a simple 
digital system is large enough not to deal with binary values and ranges, so we quickly convert to hexadecimal 
notation to describe memory mapping. The use of hex notation is not complicated, but it is somewhat of a 
language all its own. The good news is that once you see a few tricks and work with it for a while, you’ll for sure 
find it rather straightforward.  

The main idea behind memory mapping is to use multiple smaller chunks of memory space to create a larger 
memory space. The larger memory space is not “full” in all cases, as there may be areas of memory space that 
have no physical memory. Under these conditions, the thing we’re most interested in is the address ranges 
associated with a particular chunk of memory as it relates to the larger chunk of memory. The best approach to 
understanding these issues are with a few example problems. It grinds down to a binary math problem, which 
heavily implies tweaking around with powers of two.  

Before we proceed, let’s show some important numbers regarding binary number ranges and their hexadecimal 
representations. Table 5.4 shows the relation between the number of address bits of a given memory and the 
associated address range. The first column in Table 5.4 shows the number of address bits associated with a given 
memory while the other three columns show the zero-based address ranges possible from those given address 
bits. Note that the decimal representations quickly become barely perceptible. We don’t even bother writing out 
the binary equivalents, as we would quickly inundate your brain with 1’s and 0’s.  

There are a few other important things to realize about Table 5.4 The “Address Range” column provides the 
associated address range in an 8-digit hexadecimal format. Note the maximum address in any range is associated 
with all the address bits being at a ‘1’ value. This subsequently provides the “1→3→7→F” format associated 
with the first non-zero digit reading from left to right. Also note for both the third and fourth columns of Table 
5.4 that the number ranges double as you proceed downwards in the table. This is a by-product of the underlying 
binary nature of memories.  
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# of 
Address 

Bits 

Decimal 
Range 

Address 
Range 

(hexadecimal) 

Abbreviated 
Range 

1 0-1 0-00000001 - 
2 0-3 0-00000003 - 
3 0-7 0-00000007 - 
4 0-15 0-0000000F - 
5 0-31 0-0000001F - 
6 0-63 0-0000003F - 
7 0-127 0-0000007F - 
8 0-255 0-000000FF - 
9 0-511 0-000001FF - 
10 0-1023 0-000003FF 0-1K 
11 0-2047 0-000007FF 0-2K 
12 0-4095 0-00000FFF 0-4K 
13 0-8191 0-00001FFF 0-8K 
14 0-16383 0-00003FFF 0-16K 
15 0-32767 0-00007FFF 0-32K 
16 0-65535 0-0000FFFF 0-64K 
17 0-131071 0-0001FFFF 0-128K 
18 0-262143 0-0003FFFF 0-256K 
19 0-524287 0-0007FFFF 0-512K 
20 0-1048575 0-000FFFFF 0-1M 
21 0-2097151 0-001FFFFF 0-2M 
22 0-4194301 0-003FFFFF 0-4M 
23 0-8388607 0-007FFFFF 0-8M 
24 0-16777215 0-00FFFFFF 0-16M 
25 0-33554431 0-01FFFFFF 0-32M 
26 0-67108863 0-03FFFFFF 0-64M 
27 0-134217727 0-07FFFFFF 0-128M 
28 0-268435455 0-0FFFFFFF 0-256M 
29 0-536870911 0-1FFFFFFF 0-512M 
30 0-1073741823 0-3FFFFFFF 0-1G 
31 0-2147483647 0-7FFFFFFF 0-2G 
32 0-4294967295 0-FFFFFFFF 0-4G 

Table 5.4: Number of bits and associated number ranges. 

 

Example 5.4: Memory Mapping with Two Devices 

Show the address ranges in both binary and hexadecimal associated with the use of two 64x8 
memories to form one 128x8 memory.  

Solution: The first part of this solution is to draw a diagram to enhance our understanding of the sparsely worded 
problem. Figure 5.15 shows a diagram we’ll use to solve this problem. As you can see from Figure 5.15, we’ve 
virtually attached two 64x8 memories, which as the effect of forming a 128x8 chunk of memory8.  

                                                           
8 We could have created a 64x16 memory, but that is a topic we’ll deal with in a later section.  
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Figure 5.15: The diagram associated with Example 5.4.  

The first thing to note is that a 64x8 memory uses 6 bits for its address lines. Indexing 6 bits into Table 5.4 
shows that associated range is 0→3F, or “000000”→”111111”. The using two of these memories would create 
twice the capacity of a 64x8 memory, for an overall memory capacity of 128x8. In other words, you can model 
two 64x8 memories as one 128x8 memory. Indexing into Table 5.4, you can see that a 128x8 memory is 
associated with seven address bits. The only difference between these two memories in the 128x8 configuration 
is the most significant bit of the virtual 7-bit address; the six lower bit ranges are essentially equivalent. The final 
address value for the lower-order memory in Figure 5.16 is thus ‘0’ appended to the 64x8 range while the final 
address value for the higher-order memory is ‘1’ appended to the 64x8 range. In other words, pasting two 
memories together requires some other mechanism for differentiating between the two memories, which we do 
quite easily by adding one more bit in the most significant bit position.  

Figure 5.16 shows the final solution to this example problem. The hexadecimal numbers on the left side of the 
diagram show the range of associated address values; the numbers on the right side show the binary equivalent to 
the hexadecimal values. This is a massively important diagram for several reasons. First, note how the 1-bit 
values change on the memory boundaries: the MSB becomes a ‘1’ and the other bits all become ‘0’. Secondly, 
notice that the original 6-bit ranges are the same for both the lower and higher-order memories.  

 

Figure 5.16: The final solution to this example.   

 

 

 

Example 5.5: Memory Mapping with Four Devices 

Show the address ranges in both hexadecimal and binary associated with the use of four 8Kx16 
memories to form one 32Kx16 memory.  

Solution: The good news is that this problem is similar to the previous example. The first step in this problem is 
to draw a diagram to help up see what exactly the problem is asking us to do. Figure 5.17 shows a block diagram 
that is modeling four 8Kx16 individual memories as one 32Kx16 memory. 
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Our next step is to examine Figure 5.17 and figure out some of the metrics we’ll need to use to complete this 
problem. First, an 8K memory requires 13 address lines while a 32K memory requires 15 address lines. What 
this tells us is that the most significant two bits in the 15-bit address are what we’ll need to use to differentiate 
between the least significant 13 bits. Also from Figure 5.17 is the notion that the 13-bit range for an individual 
memory is [0x0000,0x1FFF]. We’ve seen this problem before; each 8Kx16 chunk of memory has a different 
upper two bit; these bits are “00”, “01”, “10”, and “11”. Yep, it’s that binary sequence yet again. We complete 
this problem by pasting this set of bits in front of the address range values given for the 8K memory: 
[0x0000,0x1FFF]. Figure 5.18 shows the final solution to this problem with gory details included.  

 

Figure 5.17: The diagram associated with this example..  

 

 

Figure 5.18: The final solution to this example.  

 

5.9 Memory Organization 

Discrete memory devices do not come in every possible configuration and capacity. This means if you need 
some type of special capacity, you’re going to need to synthesize it from various memories of smaller capacities. 
The architecture of the overall memory created from smaller memories is what we refer to as memory 
organization. If a digital system you are working with has a specified memory capacity but it is created from 
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many smaller memories, you immediately know the capacity of the memory but you don’t necessarily know 
anything about the organization of memory.  

The most appropriate title for this section would be something like: “using many smaller memories to create a 
larger memory”, but that title would run across two lines. The choice of “memory organization” attempts to 
reflect the notion that many times you’ll need to satisfy your particular memory needs by configuring many 
smaller memory devices in a system such that it creates some particular form of a larger memory. You could use 
many different approaches to doing this; this section outlines only one major approach. 

If you need to create a larger capacity memory from a many smaller capacity memories, you can do it in two 
basic ways: 1) increase the number of words that the memory can store, or 2) you can increase the effective 
width of the words stored in that memory. You could also do both, but we’ll not deal with such problems in this 
section. The two subsections within this section deal with increasing word size and increasing the number of 
words store.  

5.9.1 Extending Memory Word Length 

Extending word length is the most straightforward approach to building larger capacity memories. The fun starts 
when we extend the number of addressable words in the next subsection. Extending word length is more 
straightforward because it only requires special circuit configuration and but typically does not require additional 
circuitry as does extending the addressable memory space. The best approach to explaining the concept of 
extending word length is through an example problem.  

 

Example 5.6: Extending Memory Word Length  

Show a circuit diagram that uses two of the following listed 256x8 RAMs to effectively create one 
memory with a 256x16 capacity. Assume the memory has bi-direction data lines. The control signals 
CS, OE, and WE are the chip selects, output enable, and write enable, respectively.  

 

Solution: This problem is straightforward because we don’t need to tweak the address lines in order to address 
all the possible words in the 256x16 memory. Figure 5.19(a) shows one possible architecture for the solution to 
this example. Here are the worthy things to note from the solution.  

 The two 256x8 RAM devices share all the same control lines as both RAMs always need to act 
simultaneously for both reads and writes.  

 The final circuit comprises of the two 256x8 RAM sharing the address lines. This is possible because 
the overall number of words for the larger capacity memory does not change.  

 The money shot of the solution lies in the interpretation of the outputs of the two 256x8 RAMs. The 
output of each 256x8 RAM becomes half of the final data width for the 256x16 RAM. In other 
words, each 256x8 RAM contributes eight bits to the final 16-bit output of the 256x16 RAM. 

 The schematics in Figure 5.19(a) and Figure 5.19(b) are functionally equivalent. Sometimes it is 
clearer or easier to draw the schematic one way rather than the other.  
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(a) (b) 

Figure 5.19: Two different ways of representing a 256 x 16 memory. 

 

5.9.2 Extending Memory Address Space 

Although using multiple memories to extend the data width of an aggregate memory is straightforward, using 
multiple memories to extend the overall address range can be slightly tricky. This section describes these issues 
and provides some options for solutions.  

Figure 5.20 highlights the main issue involved with extending address space in a multiple memory system. For 
this problem, we don’t consider extending the data width. As you can see from Figure 5.20, the issues lie in how 
to handle the addressing needs of the individual memories. Figure 5.20 shows four MxN memories; we intend to 
include these four memories into one system. The resulting memory space is thus 4MxN. In order to have 
sufficient address space to address the 4MxN overall memory, we must increase the number of address lines on 
the system by two. In this way, the two extra address bits are sufficient to address one of the four internal 
memories.  

One important thing to notice about Figure 5.20 is that the individual memories have tri-stated outputs. The 
characteristic helps define the overall problem: When we present the memory system with an “M+2” address, we 
need only one of the internal memories to drive their data onto the data lines. We somehow need the “M+2” 
address lines to effectively apply an address that addresses the full memory space but only actuates one of the 
internal memories. We only want one internal memory activated because the internal memories are sharing one 
set of data lines.  
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Figure 5.20: An overview of the extending address space dilemma. 

Figure 5.21 facetiously shows an overview of our approach to the extending memory space. The approach we’ll 
take is to insert circuitry into the “Magic_CKT” module. This module is then responsible for translating the full 
“M+2” address space into m address lines and an appropriate number of control lines. We’ll of course need at 
least two control lines, but there could be more depending on the control requirements of the internal memories. 
We’ll present some relatively straightforward examples highlighting an approach based on relatively simple 
control requirements of the internal memories.  
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Figure 5.21: An overview of the solution to the extending address space dilemma. 

 

Example 5.7: Extending Memory Address Space  

Use as many of the following RAMs as you need to create a memory with a 512x8 capacity. 
Assume the CS input is an active-low chip select that “turns off” the device, which leaves the data 
outputs in a high-impedance state. The WE and OE are the write enables (writing) and output 
enables (reading), respectively. Also, provide a memory map that shows the address space 
accessible by each of the underlying memories.  

 

 

 

Solution: Figure 5.22 shows the first part of the solution to this problem, which is to draw a black box diagram 
of the final solution. In order to create an address space that accesses 512 memory locations, we need nine 
address lines. Since the underlying memories can address 256 memory locations, we’ll need two of these 
memories to access the required 512 locations.  
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Figure 5.22: The black box diagram for the solution to this problem.  

Relative to Figure 5.22, we’ll need to add circuitry that divides the address lines between the lines that are 
common to the each 256x8 device and the extra lines required for the larger memory configuration. For this 
problem, we’ll have eight address lines for the underlying memory devices and one extra address line to 
differentiate between the underlying memories based solely on the “8+1” address lines. The approach we’ll take 
is to insert a standard 1:2 decoder to handle the extra address line. Standard decoders are ideal devices for this 
application as they have only one active output at any given time. Figure 5.23 shows the final circuit solution to 
this problem. Here is some happy information regarding the solution in Figure 5.23. 

 The decoder in Figure 5.23 is a standard 1:2 decoder with active-low outputs. We chose a decoder with 
active-low output in order to have those outputs properly interface with the active-low CS inputs of the 
individual memory devices. This standard decoder has only one active output a time; being that the 
outputs are active-low, we can consider the outputs of the decoder as “one-cold”9. This configuration 
provides the controls to enable only one memory device at a time. The input to the 1:2 decoder thus 
becomes the most significant bit in the overall 9-bit address. When the input to the decoder is ‘0’, the 
decoder actuates the top memory; when the input to the decoder is ‘1’, the decoder actuates the lower 
memory. Recall from the problem statement that when the memory’s chip select is not active, the 
device effectively provides high-impedance to the data lines.  

 The two memory devices share the lower eight address lines. Once again, the CS signal determines 
which memory device is active based on the ninth address line (the input to the decoder).  

 The two memory devices share the OE and WE lines. The notion here is that some outside device 
utilizes these controls as required. There are generally no loading issues associated with these signals as 
only one memory device is actuated at a given time.  

 The total number of address lines is independent of the size of the standard decoder. The characteristic 
that determines the minimum size of the standard decoder is the number of memory devices internal to 
the overall memory system. In other words, the standard decoder’s responsibility is to use the 
appropriate address bit(s) to actuate the proper memory associated with all the address lines.  

                                                           
9 For example, a decoder with one-cold outputs has one output at a ‘0’ state and all other outputs at a ‘1’ state.  
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Figure 5.23: The final circuit solution to this example. 

The final part of this solution is to generate of memory map that shows the overall memory space as well as the 
addresses associated with the underlying memory modules. The solution to this part of the problem is similar to 
the memory space discussion of a previous section. Figure 5.24 provides the final solution to this example with 
some supporting notes to follow.  

 In accordance with Figure 5.24, the nine-bit addresses for the overall device start at all 0’s and end 
with 0x1FF, or all 1’s.  

 Figure 5.24 shows the addresses of the underlying memories in both hexadecimal and binary. Note 
that the binary addresses have a space inserted in the number to highlight the notion that the ninth 
address bit is used to delineate between the two memories.  

 

Figure 5.24: The memory map associated with this example. 
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Example 5.8: Extending Memory Address Space with More Devices 

Use as many of the following RAMs as you need to create a memory with a 32Kx8 capacity. 
Assume the CS input is an active-low chip select that “turns off” the device, which leaves the data 
outputs in a high-impedance state. The WE and OE are the write enables (writing) and output 
enables (reading), respectively. Also, provide a memory map that shows the address space 
accessible by each of the underlying memories.  

 

Solution: The first thing to note is that this problem is very similar to the previous example problem. That being 
the case, the first step in this problem is to draw a diagram of the final high-level object. Figure 5.25 shows the 
high-level schematic diagram associated with this problem. The first thing we see is that we need four devices 
with 8K worth of memory space to create a memory with 32K addressable memory locations. This means that 
we’ll need four 8Kx8 devices in the final circuit. Using Table 5.4 we see that a memory with 32K memory 
locations requires 15 address lines.  

 

Figure 5.25: The black box diagram for the solution to this example.  

The biggest similarity between this problem and the previous problem is with the use of a standard decoder to 
handle the “magic_ckt” in Figure 5.21. The standard decoder in this problem is slightly different in that it needs 
to choose between four different memories. This simply requires that the final circuit use a 2:4 standard decoder 
in place of the 1:2 decoder of the previous problem.  

Figure 5.26 shows the final solution to the circuit portion of this problem. Note that this solution is similar in 
overall structure to the solution of Figure 5.23, with the main difference being that we now need to choose 
between four discrete memory devices instead of the two devices. A standard 2:4 decoder easily handles this task 
by effectively using the two most significant bits of the 15-bit address lines as the select inputs to the standard 
decoder.  

The memory map in Figure 5.27 shows the second part of this solution. Figure 5.27 highlights the mechanics of 
this solution with the binary numbers on the right side of the memory map. As you can see, each of the lower 13-
bits for the individual memories are the same; only the two most significant memory bits differentiate the 15-bit 
address. As you would expect, since the circuit must choose between activating one of four memory devices, the 
circuit must use a minimum of two bits for this task.  
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Figure 5.26: The circuit diagram solution for this problem.  

 

 

Figure 5.27: The memory map associated with problem.  
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Example 5.9: Circuit Design for a Memory Map  

Design a circuit that implements the following 
memory map. Show two solutions to the problem, 
1) Using only 2:4 standard decoder, and 2) using 
only one 1:2 standard decoder. Use two of the 
8Kx8 RAMs listed below in your design. Assume 
the CS input is an active-low chip select that “turns 
off” the device, which leaves the data outputs in a 
high-impedance state. The WE and OE are the 
write enables (writing) and output enables 
(reading), respectively.  

 

 

 

 

 
 

Solution: This problem is slightly different in that it does not use the entire memory space listed in the problem 
description. In other words, the memory space has is divided into four sections, but only two of those sections 
contain active memory. Because there are only two sections with active memory, the solution only requires the 
use of a 1:2 standard decoder. We’ll do this problem in two different ways in order to highlight the differences in 
using standard decoders of different size. 

Figure 5.28 shows the most straightforward solution to this problem, which is to use a 2:4 decoder. The good 
thing about this solution is that each address in the 32K address space associated with the memory map is 
unique. The second part of this problem describes this issue further. The downside of the solution in Figure 5.28 
is that the 2:4 standard decoder is partially unused. This implies the device is probably physically bigger than it 
needs to be, which may or may not be an issue10. Another possible upside of this solution is that is facilitates a 
later possible expansion of the memory map in that all the support hardware is in place; expansion would thus be 
a matter of dropping other 8Kx8 memory devices.  

Figure 5.29 shows the solution for part 2) of this example. This solution replaces the 2:4 standard decoder from 
the part 1) solution with a 1:2 standard decoder. The upside of this solution is that it uses a smaller decoder. The 
possible downside of this solution is that each memory location in each 8Kx8 RAM is accessible using two 
different addresses. The problem results from effectively no longer using the ADDR(13) in the circuit solution. 
Because the solution is not using this address, the address bit is effectively a “don’t care”. As a result, the 
addresses of 0x1FFF and 0x17FF effectively access data from the same location in the lower-order 8Kx8 
memory. In other words, for this solution, 0x1FFF and 0x17FF access memory location 0xFFF in the lower-
order memory. While this certainly is an issue to consider, it may or may not be a problem for your particular 
system.  

The main possible problem with this particular circuit design is that the memories may be driving the data bus at 
times where the memory is not being access. Recall that this is a relatively simple memory that uses the chip-
select input signal to actuate the memory; when the memory is not actuated, the memory outputs are effectively 
in a high-impedance state.  

                                                           
10 Keep in mind that if you plan on modeling the 2:4 decoder with VHDL and then synthesizing it, the synthesizer will 
probably mitigate the size issue of the standard decoder.  
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Figure 5.28: The black box diagram solution for solution for this example part 1). 

 

 

Figure 5.29: The black box diagram solution for this example part 2).  
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Example 5.10: Modeling a Memory Map  

Design a circuit that implements the following 
memory map using a 3:8 standard decoder. Use 
three of the RAM devices listed below in your 
solution. Assume the CS input is an active-low chip 
select that “turns off” the device, which leaves the 
data outputs in a high-impedance state. The WE 
and OE are the write enables (writing) and output 
enables (reading), respectively.  

 

 

 

 

 
 

Solution: This problem presents a slightly different twist beyond the previous problems. The memory map is not 
full and the memories in the memory map are not contiguous. Neither of these characteristics are a big deal, they 
do present some interesting challenges. Thus, Figure 5.30 shows the first step to this solution, which is to draw 
the black box diagram of the high-level final circuit.  

The most useful piece of information presented in Figure 5.30 is the notion that the circuit requires 16 address 
lines. We know this from examining the memory map in the problem statement. What we look for in problems 
like this the minimum number of address bits required to solve the problem. The worst case in the problem is the 
address with the most number of bits. In this problem, we can see that 0x4000 and 0x5FFF only require 14 bits, 
but every other listed address requires 16 bits. Thus, our final circuit requires 16 bits for the address lines. 
However, be sure to keep in mind that we won’t be using every address in the 16-bit range, which is why we did 
not state any memory capacity information in the circuit diagram of Figure 5.30.  

 

Figure 5.30: The black box diagram solution for this example. 

The next part of this solution is broken into two parts. The best approach to first list the all the address ranges in 
both hex and binary for both the segments that include memory as well as the segments that are not associated 
with a memory device. The 8K address space requires 13 bit; the “magic_CKT” portion of the circuit handles the 
other three bits. In all likelihood, we’ll be able to handle the “magic_CKT” portion of the circuit using a 3:8 
standard decoder as stated in the problem. Figure 5.31 shows the result of this step.  

Figure 5.31 conveniently shows the 16-bit addresses divided into 3-bit and 13 bit segments in the binary address 
listing. From this listing, you can see that the hex address values from the problem statement fall on 8K 
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boundaries. This is good news as this allows us to easily use the 3:8 standard decoder in the solution. The 
important information in Figure 5.31 includes an accounting for every address in the 16-bit address space. Note 
that a 16-bit address space is associated with a 64K memory. Since we’re implementing this memory with eight 
8K memory device, there should rightly be eight 8K segments in Figure 5.31. The truth is that some of unused 
segments represent more than one 8K with of address.  

For example, the first segment listed in Figure 5.31has no associated memory. This address range scans two 8K 
segments worth of memory, a fact that Figure 5.31 does not explicitly show. In reality, the first segment in the 
first address range covers 0x0000 through 0x1FFF while the second 8K segment covers 0x2000 through 
0x3FFF. The other two ranges that do not have memory only cover one 8K segment.  

The important thing to note in Figure 5.31 is that in the binary numbers associated with the memory, the range of 
the least significant 13 bits of the address is always 0x0000 to 0x1FFF. This means that the most significant 
upper three bits differentiate between the 8K memory spaces. We know that a 64K memory can be created from 
eight 8K memories; in this problem, we’re only interested in the 64K space while the total memory capacity is 
only 24K. The most significant three bits in the binary address of Figure 5.30 then become the inputs to the 
associated 3:8 standard decoder. Figure 5.32 shows the final solution to the first portion of the problem.  

 

Figure 5.31: The full memory map (all addresses listed) for this example.  
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Figure 5.32: The black box diagram solution for first part of this problem.  

The potential problem with the circuit solution in Figure 5.32 is the notion that the 3:8 standard decoder is vast 
overkill for the problem. The problem could have used a 2:4 standard decoder since it only needed to control 
three memories. On the other hand, if we had used a 3:8 decoder, it would have required extra circuitry in 
addition to the decoder in order to make the address actuate the correct memories.  

Figure 5.33 shows the block diagram for the solution to the second part of this example. You can see from this 
diagram that our mission is to design a circuit that implements the “GEN_DEC” portion of the circuit. As the 
name of the box implies, our solution is simply a generic decoder. This decoder has three inputs and three 
outputs; the inputs are the most significant address lines while the outputs actuate the appropriate discrete 
memory when the 16-bit address conditions are correct.  

The solution to the second portion of the problem is approaching trivial once you realize all two things. First, the 
solution is a generic decoder. Second, the information presented in Figure 5.33 provides us with all the 
information we need to create the required generic decoder. Note that in Figure 5.32, the standard decoder 
actuates on output only when the inputs are “010”, “100”, and “110”. More specifically, “010” actuates CS2, 
“100” actuates CS4, and “110” actuates CS6. If none of these three addresses is selected on the input lines, the 
module’s outputs turns off all the discrete memory devices.  



FreeRange Computer Design  Chapter 5 

 

 - 142 -  
 

 

Figure 5.33: The black box diagram for the second part of the solution to this example.  

 

 

 

Example 5.11: Generating a Memory Map From a Circuit 

Provide a memory map that you could use to describe the following design. Make sure 
to provide the starting and ending addresses for each memory and non-memory 
segment.  

 

 
 

 

Solution: This problem is the same old memory mapping problem but in the reverse order. This problem 
provides a circuit and you are responsible for generating a memory map. The first thing to notice about this 
problem is that there are three 8K memories in the circuit. The second thing to notice is that the problem uses a 
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standard 3:8 decoder for the “magic_CKT” part of the circuit. Thus, the inputs to the standard decoder are 
effectively the three most significant address bits (15:13), which implies the circuit can possibly address up to a 
16-bit address space. The problem only uses 3/8 of the total possible address space, or 24K.  

Each 8K RAM shares the same 13 bits of address lines. This means the address range for any 8K RAM by itself 
is 0x0000→0x1FFF, with the standard decoder handling the other three bits. The best approach to take for this 
problem is to note that the 64K address space is divided in to eight 8K segments, but the circuit uses only three 
of the possible eight segments. The first used segment is associated with the three most significant address bits of 
“000” as indicated by that RAM’s chip select being connected to the ‘0’ output of the standard decoder. This 
makes the range for the first segment 0x0000→0x1FFF. The next 8K segment is not used; the starting address of 
this unused segment is one greater than the last valid address associated with the previous segment, or 0x2000. 
The ending address of this unused segment is 0x1FFF greater than 0x2000, or 0x3FFF.  

You can continue this same type of analysis for all the other segments in the problem. The only slightly tricky 
thing to note is that the segments associated with 3-4 and 6-7 represent two 8K segments, which means the range 
effectively has 16K worth of segment space, or 0x0000→0x3FFF. After you realize all of this, the problem 
becomes somewhat of a math problem. Figure 5.34 shows the final solution to this problem with the addresses 
listed in both hexadecimal and binary for your viewing convenience.  

 
Figure 5.34: The final memory map for this example.   

 

5.10 Digital Design Foundation Notation: RAM  

We consider the RAM to be a Digital Design Foundation module. The RAM is a controlled circuit. Figure 5.35 
shows the digital design foundation notation for the counter. This foundation module is both data inputs and data 
outputs, both of which are the same width. We use a simple device for the foundation model and consider read 
operations to be asynchronous and write operation to be synchronous. The WE signal controls whether the 
device is reading or writing, where WE is asserted for write operations and unasserted for read operations. We 
consider ROMs to be a subset of RAMs; ROMs are not able to write. Table 5.5 shows the foundation description 
for the RAM.  
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Figure 5.35: Typical data, control and status signals for RAM. . 

 

 Signal Name Description 

IN
PU

T
 

D
A

T
A

 

DATA_IN Data to be synchronously written to RAM. 

O
U

T
P

U
T

 

D
A

T
A

 DATA_OUT Data stored in the RAM at the address given by the ADDR input.  

C
O

N
T

R
O

L
 

CLK The CLK signal synchronizes the writing of data to the RAM 

ADDR 
The RAM stores the value of IN_DATA at the address associated with the value 
of ADDR on the active clock edge (synchronously) when the WE signal is 
asserted. 

WE 
When asserted, allows the loading of DATA_IN to the RAM location specified 
by ADDR, which is a write operation. When unasserted, the RAM outputs the 
data stored at the location specified by the WE input.  

S
T

A
T

U
S 

n/a - 

Table 5.5: The foundation description for a RAM. 
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5.11 Chapter Summary 

 

 Memory is a form of a sequential circuit, but we further divide memory into two categories: “incidental 
memory” and “structured memory”. Incidental memory refers to items such as flip-flops and registers 
(relatively small) while structured memory refers to larger capacity regular structures.  

 There are many type of memory in digital-land, but we can roughly classify them all as either ROM or 
RAM. ROM is “read only” memory while RAM is “random access” memory. Both of these memories have 
the random access attribute in that all of the data on the devices is accessible in the same amount of time. 
ROMs are considered non-volatile while RAMs are not. RAMs can be both written to and read from while 
ROM can only be generally read from.  

 The notion of reading from a memory, or a memory READ, consists of making the data within the memory 
at a given address available to entities external to the memory. Memory reads generally do not alter the data 
stored in the memory. The notion of writing to a memory, or a memory WRITE, consists of overwriting data 
contained in the memory at a given address with data provided by some entity external to the memory.  

 Interfacing with memory generally requires tweaking one the three types of I/O associated with memory. 
The three types of memory I/O are address lines, data lines, and control lines. The address lines provide an 
index into the memory and allow access to a particular chunk of data stored in memory. The data lines 
provide a path for data to flow into (write) or out of (read) memory. The control lines provide a structured 
approach to read from and/or writing to the memory device.  

 Memories are generally rated by the capacity (how many bits they can store) and the speed (how fast you 
can read and/or write the memory). The term “word” is used to refer to the smallest chunk of memory 
available at a given address in the memory. Memory capacity can be stated in bits or words; any other 
approach is suspect as it can be misleading 

 Memories typically store two raised to an integral power number of words. The integral power in this case is 
the number of address lines on the memory. The number of address lines is sometimes referred to as the 
width of the address bus.  

 Memory speed is rated by how fast you can read from it and/or write to it. The term “read access time” 
refers to how fast you can read from a memory. The term “write cycle timing” refers to how fast you can 
write data to a memory. The term “memory bandwidth” refers to the maximum amount of data going to and 
coming from a particular memory in a given amount of time.  
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5.12 Chapter Exercises 

 

1) In your own words, describe what is meant by the term “random access” in the context of computer 
memories 

2) In your own words, describe what is meant by the term “volatile” in the context of computer memories.  

3) In your own words, describe the accepted functional differences between RAM and ROM.  

4) In your own words, explain how read and write access times affect the bandwidth of a given memory.  

5) Describe a circuit situation where having a large memory bandwidth would be important.  

6) Faster memories are typically more expensive than slower memories. Speculate on why you feel this would 
be the case.  

7) A given RAM capacity is specified as 1Kx24. 

a) List the capacity of this RAM in both bits and bytes.  

b) List the number of address lines this RAM would contain.   

8)  A given RAM capacity is specified as 1Kx32.  

 List the capacity of this RAM in both bits and bytes.  

 List the number of address lines this RAM would contain.   

9) A given RAM capacity is specified as 8Kx32. 

 List the capacity of this RAM in both bits and bytes.  

 List the number of address lines this RAM would contain.   

10) A given RAM capacity is specified as 16Kx24. 

 List the capacity of this RAM in both bits and bytes.  

 List the number of address lines this RAM would contain.   

11) Fill in the missing information in the following table.  

Memory 
Specification 

Address Bus  
Width 

Memory Capacity in 
Bits 

Memory Capacity in 
Bytes 

256 x 8    
256 x 24    
1K x 16    
2K x 8    
8K x 32    

32K x 12    
64K x 16    
256K x 8    
1M x 16    
4M x 32    
8M x 8    

64M x 48    
128M x 32    

 

12) Show the address ranges in both binary and hexadecimal associated with the use of two 256x8 memories to 
form one 512x8 memory. 
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13) Show the address ranges in both binary and hexadecimal associated with the use of two 4Kx8 memories to 
form one 8Kx8 memory. 
 

14) Show the address ranges in both binary and hexadecimal associated with the use of four 4Kx8 memories to 
form one 16Kx8 memory. 
 

15) Show the address ranges in both binary and hexadecimal associated with the use of four 128Kx8 memories 
to form one 512Kx8 memory. 
 

16) Show the address ranges in both binary and hexadecimal associated with the use of eight 1Kx8 memories to 
form one 8Kx8 memory. 

 
 

17) Show a circuit diagram that uses the following 
listed RAM to effectively create one memory 
that is 256x24. Assume the memory has bi-
direction outputs. The control signals CS, OE, 
and WE are the chip selects, output enable, and 
write enable, respectively. 

 

 

 

 
 
 
 

18) Show a circuit diagram that the following RAM 
to effectively create one memory that is 
16Kx16. Assume the memory has bi-direction 
outputs. The control signals CS, OE, and WE 
are the chip selects, output enable, and write 
enable, respectively. 

 

 

 

 
 
 

19) Show a circuit diagram that the following RAM 
to effectively create one memory that is 
64Kx16. Assume the memory has bi-direction 
outputs. The control signals CS, OE, and WE 
are the chip selects, output enable, and write 
enable, respectively. 
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20) Show a circuit diagram that the following RAM 
to effectively create one memory that is 
256Kx16. Assume the memory has bi-direction 
outputs. The control signals CS, OE, and WE 
are the chip selects, output enable, and write 
enable, respectively. 

 

 

 

 
 
 
 

21) Show a circuit diagram that the following RAM 
to effectively create one memory that is 
1Mx32. Assume the memory has bi-direction 
outputs. The control signals CS, OE, and WE 
are the chip selects, output enable, and write 
enable, respectively. 

 

 

 

 
 
 
 

22) Use as many of the following RAMs as you need to 
create a memory with a 2Mx8 capacity. Assume the 
CS input is an active-low chip select that “turns off” 
the device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write 
enables (writing) and output enables (reading), 
respectively. Also, provide a memory map that 
shows the address space accessible by each of the 
underlying memories. 

 

 

 

 
23) Use as many of the following RAMs as you need to 

create a memory with a 4Mx8 capacity. Assume the CS 
input is an active-low chip select that “turns off” the 
device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write enables 
(writing) and output enables (reading), respectively. 
Also, provide a memory map that shows the address 
space accessible by each of the underlying memories. 
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24) Use as many of the following RAMs as you need to 
create a memory with an 8Kx8 capacity. Assume the 
CS input is an active-low chip select that “turns off” 
the device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write 
enables (writing) and output enables (reading), 
respectively. Also, provide a memory map that 
shows the address space accessible by each of the 
underlying memories. 

 

 

 

 
 
 
 

25) Design a circuit that implements the following 
memory map. Show two solutions to the problem, 1) 
Using only 2:4 standard decoder, and 2) using only 
one 1:2 standard decoder. Use two of the 16Kx8 
RAMs listed below in your design. Assume the CS 
input is an active-low chip select that “turns off” the 
device, which leaves the data outputs in a high-
impedance state. The WE and OE are the write 
enables (writing) and output enables (reading), 
respectively. 

 

 

 

 

 

 
 

26) Design a circuit that implements the following 
memory map. Use only a 3:8 standard decoder. Use 
three of the 16Kx8 RAMs listed below in your 
design. Assume the CS input is an active-low chip 
select that “turns off” the device, which leaves the 
data outputs in a high-impedance state. The WE and 
OE are the write enables (writing) and output enables 
(reading), respectively. 
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27) Design a circuit that implements the following 
memory map. Show the solution Using only one 3:8 
standard decoder. Use three of the 16Kx8 RAMs 
listed below in your design. Assume the CS input is 
an active-low chip select that “turns off” the device, 
which leaves the data outputs in a high-impedance 
state. The WE and OE are the write enables (writing) 
and output enables (reading), respectively. 

 

 

  

 

 
 
 

28) Complete the memory map below that describes the following design. Make sure to provide the starting and 
ending addresses (hex or binary) for used each memory device. Assume the CS input is an active-low chip 
select that “turns off” the device, which leaves the data outputs in a high-impedance state. The WE and OE 
are the write enables (writing) and output enables (reading), respectively. 
 

  

 
 

 
 

 
 

29) Design a circuit that implements the following 
memory map. Show a solution using only one 3:8 
standard decoder. Use four of the 16Kx8 RAMs 
listed below in your design. Assume the CS input is 
an active-low chip select that “turns off” the device, 
which leaves the data outputs in a high-impedance 
state. The WE and OE are the write enables (writing) 
and output enables (reading), respectively. 
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30) Design a circuit that implements the following 

memory map. Show a solution using only one 3:8 
standard decoder. Use four of the 8Kx8 RAMs listed 
below in your design. Assume the CS input is an 
active-low chip select that “turns off” the device, 
which leaves the data outputs in a high-impedance 
state. The WE and OE are the write enables (writing) 
and output enables (reading), respectively. 
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31) Design a circuit that implements the following 

memory map. Show a solution using only one 3:8 
standard decoder. Use five of the 8Kx8 RAMs listed 
below in your design. Assume the CS input is an 
active-low chip select that “turns off” the device, 
which leaves the data outputs in a high-impedance 
state. The WE and OE are the write enables (writing) 
and output enables (reading), respectively. 

 

 

 

 

 

 
 
 
 

32) Provide a memory map that 
you could use to describe 
the following design. Make 
sure to provide the starting 
and ending addresses for 
each memory and non-
memory segment. 
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33) Provide a memory map 
that you could use to 
describe the following 
design. Make sure to 
provide the starting and 
ending addresses for 
each memory and non-
memory segment. 

 

 

 
 
 
 
 

34) Complete the memory map 
below that describes the 
following design. Make 
sure to provide the starting 
and ending addresses (hex 
or binary) for used each 
memory device. Assume 
the CS input is an active-
low chip select that “turns 
off” the device, which 
leaves the data outputs in a 
high-impedance state. The 
WE and OE are the write 
enables (writing) and 
output enables (reading), 
respectively. 
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5.13 Chapter Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the number of states in the associated state diagrams 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 Explicitly state whether state diagrams have Mealy or Moore outputs where appropriate 

 Disregard all setup and hold-time issues 

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X 
can change no more than once per clock period.  

 State all forms of control for your solution.  

1) Design a circuit that upon the pressing of a button, determines how many values in a 16 RAM are negative, 
and displays that value until another button press. The RAM contains 8-bit signed numbers in RC format.  

2) Design a circuit that upon the pressing of a button, finds the maximum value in a 16x8 RAM, and displays 
that value until another maximum value is found after another button press. The RAM contains 8-bit 
unsigned numbers.  

3) Design a circuit that upon the pressing of a button, finds the minimum value in a 16x8 RAM, and displays 
that value until another minimum value is found after another button press. The RAM contains 8-bit 
unsigned numbers.  

4) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM are evenly 
divisible by eight, and displays that value a button press restarts the process. The RAM contains 8-bit 
unsigned numbers.  

5) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM have a 
value of 15 or less, and displays that value until a button press restarts the process. The RAM contains 8-bit 
unsigned numbers. Don’t use a comparator in this problem.  

6) Design a circuit that upon the pressing of a button, sums all the values in a 16x8 RAM and displays that 
value until a button press restarts the process. The RAM contains 8-bit unsigned numbers.  

7) Design a circuit that upon the pressing of a button, determines if the value in a 16x8 RAM are in ascending 
order. If they are in ascending order, the circuit turns on an LED; otherwise it leaves the LED unlit. The 
circuit does this each time a button is pressed. The RAM contains 8-bit unsigned numbers.  

8) Design a circuit that upon the pressing of a button, determines how many bits are set in a in a 16x8 RAM 
and displays that number on the output. The circuit does this each time a button is pressed.  

9) Design a circuit that reads all the values in a 16x8 RAM. If the value is less than 26, the circuit changes that 
value to 0x00. The circuit does this each time the button is pressed. The RAM holds unsigned binary values.  

10) Design a circuit that upon the pressing of a button, determines how many values value in a 16x8 RAM are 
even parity and how many values are odd parity. The circuit does this each time a button is pressed.  

11) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit counts the number of values in each even address location in a 
16x8 RAM that are evenly divisible by 8 and stores that count in a register. 

12) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit finds the minimum value in a 16x8 RAM. Upon completion, the 
circuit continually outputs both the minimum value and the RAM address of that value until another GO 
signal is detected. The RAM contains unsigned 8-bit values. 
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13) Provide the hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit counts how many values in each even address location in a 16x8 
RAM are evenly divisible by 8. Consider address “0000” to be an even address location.  

14) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit stores the largest value in a 16x8 RAM into an 8-bit register. 

15) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit sums the values in each memory location of a 16x8 RAM if they 
are less than 63 and stores the result in a register. The final result should not be changed until another GO 
signal is detected. The RAM contains unsigned 8-bit values. 

16) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit counts number of values in each memory location of a 64x8 RAM 
that are less than 32 and stores that count in a register. The final result should not be changed until another 
GO signal is detected. The RAM contains unsigned 8-bit values. 

17) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit sums the values in two 8x8 RAMs and outputs that sum until it 
receives another GO signal. Design your circuit for either minimum operating time or minimum hardware; 
state which approach you are taking. The RAM contains unsigned 8-bit values. 

18) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit finds the maximum value in a 16x8 RAM, and then clears that 
value in RAM. Upon completion of this operation, the circuit waits for another GO signal. The RAM 
contains unsigned 8-bit values. 
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PART THREE: Introduction to Computers 
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6 The Basic Computer in High-Level Terms 
 

6.1 Introduction 

The purpose of this chapter is to describe the notion of “computers” at a high level using terms associated with 
computer programming and basic digital design. We’re assuming you have experience with both basic digital 
design concepts and basic computer programming concepts1. This is an important chapter as it gives you a 
meaningful roadmap for the stuff you’ll be learning from this text and the associated laboratories. As you may or 
may not know, FreeRange Digital Design Foundation Modeling is my book on digital design; it is available for 
free download from www.unconditionallearning.com.  

 

Main Chapter Topics 

 HIGH-LEVEL OVERVIEW OF COMPUTER ARCHITECTURE: This chapter provides a 
high-level overview of computer architecture, which provides a context for the 
information in this text.  

 COMPUTER PROGRAMMING CONTEXT: This chapter provides a context for the act of 
programming computers in terms of hardware, software, and the human destine to 
interact with them.  

 LEVELS OF PROGRAMMING: This chapter describes the various levels possible for 
programming computer.  

 COMPUTER PROGRAMMING CONTEXT: This chapter provides a context for the act of 
programming computers in terms of hardware, software, and the human destine to 
interact with them.  

 

Why This Chapter is Important 

This chapter is important because it provides a high-level overview of the computer 
design by placing computer design into a familiar context.  

 

6.2 High-Level View of Learning “Digital Stuff” 
Why are we doing this? Why did you bother learning about basic digital design and basic computer 
programming concepts? I hope that the answer is not because you want to get a job making the big bucks2. The 
good answer is that you have a strong desire to have some external device help you solve problems. Herein lays 
the major difference between your first course in digital design and this text.  

6.2.1 Solving Problems with Digital Circuits 

Whether you know it or not, the thing you did in your first digital course was to learn how to design digital 
circuits that could solve problems. There are many ways to solve problems, designing digital circuits to solve 

                                                           
1 FreeRange Digital Design Foundation Modeling is a viable text describing a relatively high-level approach to learning 
digital design. You can find this text and a complete set of learning materials at the following website:  
unconditionallearning.com.  
2 It may actually be the case, but don’t admit it to anyone.  
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them is just one of those ways. Note that the advantage of designing digital circuits to solve problems was that 
the digital circuit forming your solution works really fast.  

The general way you solved problems with digital circuits was that you received a problem you needed to solve, 
then you designed a digital circuit to solve that problem. Then you were given another problem to solve, and 
then you had to design another digital circuit to solve that problem. The point is that you designed a different 
circuit to solve each problem; we often refer to these specific circuits as one-off solution because they only solve 
one problem. While there is nothing inherently wrong with this approach, one could argue that there is a better 
approach, particularly as the number of problems you need to solve using digital circuits increases. This is 
because that hardware you designed to solve any particular problem has little chance of being able to solve other 
problems. In other words, you circuit was roughly speaking single purpose.  

The good thing to note here is that your digital circuit was probably the “fastest acting” approach you could have 
taken, which means after you design the circuit (which may have taken awhile), the circuit operated relatively 
fast.  

6.2.2 Solving Problems with Computers 

Solving problems with digital circuits is great if you have the time to design a new circuit every time you need to 
solve a new problem. The truth is that you’ll not always have the time to design such circuit, especially as the 
solutions become more complex. The solution is to design a relatively generic digital circuit that you can use to 
solve many different problems without having to redesign the circuit each time you have a new problem. The 
solution is thus to design a digital circuit called a computer. Roughly speaking, the general construction of that 
big digital circuit (the computer) does not change. What does change for this approach is the “program” you 
write for that computer. In rough terms, the program provides a means of controlling the other part of the digital 
circuit in such a way as to solve the given problem. In this way, you don’t have to continually change the digital 
circuit to solve problems, you now only need to change the program.  

6.2.3 Final Problem Solving Overview 

You now know two ways to use digital circuits to solve problems. Either you can design a new circuit with each 
new problem (inherently a hardware solution) or you can design a generic digital circuit (a computer) and write a 
new program to solve a given problem (inherently a software solution). Each approach has its pros and cons. But 
wait, it gets better. If you have the good fortune of being tasked to solve a problem using a digital circuit, there is 
nothing stopping you from using a computer-type circuit with supporting circuitry. I believe they call this co-
design; it’s definitely an art in itself. Think about it, if you can offload some of your processing tasks to external 
hardware, you’ll be able to use a more “simple” computer (which most often means less hardware, slower clock 
speed, etc.). It’s a long story.  

6.3 What is a Computer? 

In truth, if you ask a 100 people what a computer is, you’ll most likely receive 100 different replies. The working 
definition for a computer that we’ll go with for now is this: a computer is a device that sequentially executes a 
stored program. This so-called “device” is generally some special set of hardware that someone has configured 
to interact in a useful way with the stored program. The underlying factor is here is that as a result of executing a 
program, we’ll end up with some useful result. The hardware in the computer is generally not changeable, but we 
change the “result” by changing the program. We consider the program to be software; this software executes on 
the computer’s hardware. This definition of a computer works for now; we’ll be adding to it in later chapters.  

The only thing that a computer can provide us with is data: 1’s and 0’s; it’s up to the user to interpret this data in 
such a way as to make the 1’s and 0’s into actual information. The real purpose of a computer is to process the 
data according to the directions contained in a stored program and return something useful in the form of bits. In 
the end, a computer may be nothing more than a device that twiddles bits, which allows us to model a computer 
with the standard block diagram in Figure 6.1.  
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Figure 6.1: General model of a computer. 

The three blocks in Figure 6.1 deserve some explanation, as these are common terms in the world of computer 
design. We’ll delve more into these later, but for now, here’s a short overview.  

 The processor is a generic term for a module that inputs data, does something to it (such as 
processes it), and delivers the result somewhere. The processor is the “brains” of the computer, 
which means its main responsibility is to crunch data as required by the program stored in 
memory and being executed by the computer. 

 The memory is one of the few words in computer design that is not an acronym. The memory 
holds data that allows the computer to operate properly. In short, the memory module, at the very 
least, stores the program the computer is executing. In reality, there are many other pieces of 
“memory” in a computer; we’ll get to those later.  

 The I/O is short for Input/Output. For any computer to be useful, it needs to communicate with 
the outside world. In a generic sort of way, the computer receives input data from the outside 
world (input such as a keyboard press or sensor data) and then delivers some result back to the 
outside world (output such as display device or audio device).  

Outside of the modules in Figure 6.1, the other important item is the directed arrows. In this overly simplified 
drawing, the arrows indicate that the processor connects to the memory and the I/O, which indicates that it is 
exchanging data with these devices. Likewise, the memory connects to the processor and the I/O. Note that only 
the I/O connects to the outside world.  

Figure 6.1 lists a computer model that provides an opportunity to present one of the most commonly used words 
in the world of computer design. Namely, Figure 6.1 provides a description of a computer architecture. The 
word architecture is the commonly accepted method of describing the hardware of a computer at a relatively 
high level. More specifically, the computer architecture depicts the arrangement and interconnection of a 
computer’s functional blocks. Figure 6.1 shows the architecture at quite high level but it does actually provide 
much useful information.  

One of the problems with the use of the words “computer architecture” is that it is not specific to any one level 
of describing a computer. This is the same notion as a “model” of something: there can be many ways to model 
something; we base the appropriateness of any model on how well it delivers the information we’re interested in. 
This is why when you hear someone use this term, you can never be sure exactly what level of description they 
are referring to.  

6.4 You and the Computer 

Assuming that a given computer has already been designed, you’re either a computer user or a computer 
programmer or both (and both at the same time). The most basic interaction with a computer is for you to “use” 
the computer. This roughly means that you’re interacting with a physical device that some computer is 
controlling.  

Figure 6.2 shows a model of this simple interaction using a cheesy diagram. In Figure 6.2, “You: the user” is 
interacting with the computer. This means that somehow you are providing the computer with data. This data 
may come from typing on a keyboard of some type of sensor data such as a heart monitor. We model this 
interaction in Figure 6.2 with an arrow directed away from “You: the user” and going into the box label 
“Computer”. Note that the Figure 6.2 model of a computer only show an interior box label “memory”, which 
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emphasizes the notion that we consider the computer be “running” because it is executing a set of instructions (a 
program) stored in its memory.  

For the computer to be actually useful, it must return data to you. This data could take on any forms such as a 
visual display, a blinking LED, a buzzing, etc. The computer generates the data it provides you with and outputs 
that data by the running program; the program most likely under constant influence by your input as “You: the 
user”. Yes, a simple model indeed. You embody this model about a bajillion times each day, but who’s 
counting?  

 

Figure 6.2: A basic model of an eerie human-like face interacting with a computer. 

You don’t always have to be a simple user of a computer; you can also write computer programs. Figure 6.3 
shows a diagram that models you as the programmer (labeled “You: the programmer”). There are several steps 
for you to program the computer.  

 The first step is that you have to write a “computer program”. The notion here is that you use some 
type of “computer language” and some form of software (such as a text editor) to write your 
computer program. The “computer language” is generally some sort of text that is syntactically 
structured so that the next step in the process can understand it.  

 The second step translates the computer program to something that the computer (particularly the 
underlying hardware) can understand and use. You generally write the program in a language you can 
understand, and then you input it into another piece of software that translates the instructions in the 
computer language you’re using into a stream of 1’s and 0’s, which computer’s underlying hardware 
can understand. Recall that the computer itself is a digital device and thus can only understand 1’s 
and 0’s; software such as a compiler or an assembler translate your programs to 1’s and 0’s.  

 The third step is get the 1’s and 0’s that make up your program into the memory of the computer and 
start the program running. We’re going to leave this step outside this conversation due to the notion 
that there are many ways to do this and we want to keep speaking in generalities. 

 

Figure 6.3: A basic model of an eerie human-like face writing a program to execute on a computer. 

6.5 Computer Architecture: For the Hardware People 

We’ve agreed that a computer is a piece of hardware that executes a stored program. We went over some high-
level details regarding the operation of a computer in a previous section. In this section, we’ll leverage your 
current knowledge of digital design, which allows us to delve deeper in to the basic computer model of Figure 
6.1. Figure 6.4 expands on the computer model of Figure 6.1 by listing the useful sub-modules for some of the 
computer’s basic blocks. The goal of this new computer architecture is to provide you with more high-level 
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insight into how a basic computer operates. We’ll do this by describing the basic block in Figure 6.4 in more 
detail.  

The I/O Module: This module did not change from the previous computer model. One interesting 
item to note is that the model in Figure 6.4 has the I/O module only connected to the processor. This 
is arbitrary; different architectures would have different interconnects but this model attempts to 
keep things generic.  

The Memory module: A typical digital circuit can contain many types of memory ranging from flip-
flops to large structured memory devices (such as RAM & ROM). The memory module in Figure 
6.4 contains two memories:1) instruction memory, and 2) “data” memory. As we spoke of earlier, 
the instruction memory stores the program that the computer executes. The data memory stores 
“data” that the computer requires to obtain required results. We use the term “data” memory to 
mean many things, all of which are outside of the context of this discussion. In short, computers 
generally store data in various places as a means to obtaining the required result.  

The Processor module: We divide the processor module into two separate sub-modules: the CPU 
and the Control Unit.  

 The Control Unit is responsible for reading an instruction and sending out the appropriate 
control signals to the other hardware modules in the computer that are responsible for executing 
that instruction. Note that the arrow points from instruction memory to the Control Unit for the 
instruction and from the Control Unit to the CPU with control signals. The Control Unit is 
typically a finite state machine (FSM), no different from the ones you studied in an introductory 
digital design course. The Control Unit is responsible for making sure the right things happen at 
the right time (and in the correct sequence) to implement the computer’s instructions.  

 The acronym CPU stands for Central Processing Unit. The CPU “processes” data under control 
of the Control Unit, which is in turn following orders from the instructions in instruction 
memory. As with many FSMs, the Control Unit receives status of various operations from the 
CPU as Figure 6.4 indicates with an arrow directed from the CPU to the Control Unit. One of 
the main sub-modules of the CPU is the ALU, which stands for Arithmetic Logic Unit. The 
notion of the ALU is somewhat antiquated in that a typical ALU does more than simple 
arithmetic and logic instructions. The term CPU is also antiquated; in days gone by, hardware 
was expensive and there was typically only one piece of hardware that did all the number 
crunching/bit manipulation and had a “central” location in the hardware. Processing in modern 
computers typically happens in different places, not in one place.  

  

Figure 6.4: A more detailed computer basic computer architecture. 

6.6 Computer Architecture: For the Programmer People 

You’re either a user of a computer or a programmer of a computer (you can be both at the same time). If you’re a 
computer programmer, you’ll need to understand the computer architecture you’re programming as well as the 
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tools you have for programming and ensuring that program works properly. These two items fall under the 
notion of the “programmers model” (sometimes referred to as the programming model) and the “instruction set”. 
This section describes these two items in terms that you should be familiar with from your previous digital 
design and computer programming experience.  

If the field you end up going into has something to do with computer design or low-level computer 
programming, you’ll always need to learn about new computers, namely, 1) their basic construction, and 2) how 
to program them. When learning about a new computer, the two items you initially look at are the programmer’s 
model and the instruction set. We go in-depth into these topics later, but for now, we only provide a brief 
overview.  

6.6.1 Programmer’s Model 

The Programmer’s Model is a high-level view of the hardware resources that the programmer can utilize using 
the various computer instructions that make up their programs. Note that while a computer is comprises of a 
relatively significant amount of hardware, the programmer cannot control all of that hardware. Also, note the 
programmer controls the hardware by writing “instructions” that the computer will execute; the instruction set 
lists the instructions available to the programmer.  

6.6.2 Instruction Set 

While the programmer’s model shows the resources available to the programmer, the instruction set allows the 
programmer to use those resources. In other words, the instruction set is what the programmer uses to create an 
actual program. Every different computer has a different instruction set because the underlying hardware is 
different and there is a different set of instructions that control that hardware.  

6.6.3 Computer Instructions 

So what exactly is an instruction? As with everything else in a computer, it is nothing more than a set of bits. 
These bits act as control signals that implement or allow certain data processing operations to occur in a 
computer. Although it is possible for us humans to write strings of 1’s and 0’s and use them to represent 
directives (instructions) to the hardware that makes up the computer, it’s not the most efficient approach to 
programming a computer. Computers are complex monsters; we must constantly do what we can to make them 
easier to understand, design, and eventually use; writing programs using ones and zeros does not mitigate the 
overall complexity of controlling the computer.  

6.7 Programming Language Levels 

If you’re reading this sentence, you’ve probably programmed a computer. If you’ve programmed a computer, 
you certainly must have some notion of the low-level details of what you were actually doing as you 
programmed that computer. In case you did not know what you were doing, this section aims to give you a quick 
overview of the big picture regarding the programming of computers.  

Once again, the bit patterns that are associated with the instructions control the operation of a computer. You can 
write a computer program at one of three different “levels”; these levels are 1) “machine code”, 2) “assembly 
code”, 3) and some “higher-level language”. This section describes these levels including the information of 
Figure 6.5. 

6.7.1 Machine Code 

We refer to programs in the form of 1’s and 0’s as machine code or machine language; it’s the lowest level of 
programming. A program written in machine code is nothing more than a set of 1’s and 0’s arranged in bit-
patterns that direct the operations that the underlying architecture should perform. The good part about writing 
programs using machine code is that there is no need to use other software (not including a text editor) as a 
precursor to writing a program. The downside of this approach is that programs are nearly impossible to write 
and completely unreadable. There probably was a day when all programmers had to use machine code to write 
all their programs, but that was back when dinosaurs were biting each other while they were programming their 
dinosaur computers. Although every program that anyone ever writes eventually ends up as machine code, the 
programs rarely start that way anymore.  
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6.7.2 Assembly Language 

The next level up in the programming hierarchy from machine code is assembly language programming. In an 
assembly language, we replace the bit-patterns that form the instructions by mnemonics, which generally 
describes in shorthand notation the operation the computer should perform. Each of these mnemonics (and some 
other associated information) is associated with some specific set of 1’s and 0’s. People sometimes refer to 
assembly language as a “symbolic machine code”, which advertises the fact that assembly language is still low 
level. The set of mnemonics for a given computer is generally what we consider the instruction set for that 
computer. 

The upside of using assembly language programming over machine code is that mnemonics bring a level of 
understandability to the code as opposed to attempting to use your human brain to interpret endless strings of 1’s 
and 0’s. The downside, (if it we consider it one) is that you need another piece of software referred to as an 
“assembler” to translate the assembly language instructions to machine code. The downside of assembly 
language programming is that every different computer architecture (the computer hardware) necessarily has a 
different assembly language. Although writing code in different assembly languages is not that complicated once 
you know one assembly language, it does, however, have a slight learning curve.  

In the end, it’s still all about using the assembly language instructions to crunch bits. The reality is that the 
flavors of bit-twiddling are limited (in other words, you can only do so many things with bits). This means that 
once you know one assembly language (and have a grasp of generic programming concepts), you can relatively 
quickly and easily switch to another by simply learning the syntax and instruction set of the new assembly 
language. For example, every instruction set has an instruction that rotates a value in a register: in one assembly 
language, the accompanying mnemonic may be ROR and in another language, the same function would be RR. 
Same function, different mnemonic.  

6.7.3 Higher Level Languages 

The next step beyond assembly language programming is to use some type of higher-level language (HLL). 
Because each assembly language instruction generally performs only a basic operation, assembly language 
programs can quickly become long (many lines of assembly instructions) when the program is implementing a 
relatively complex set of operations. One possible solution to producing long programs is switching to coding 
the programs using a HLL. When you use a HLL, each line of code in the HLL can represent many lines of 
assembly code, which leads to shorter and arguably more understandable programs. When you use a HLL, you 
must use a compiler to translate the HLL code into machine code. Most likely, the compiler first converts the 
HLL code to assembly code before the final translation to machine code.  

Using a HLL has one distinct advantage over assembly code: once you know one HLL, you can write code for 
any architecture without know anything about the underlying assembly language, assuming you have the correct 
compiler. This effectively lessens the learning curve for switching processors and generally makes your HLL 
code independent of the computer architecture your programming. One major downside of HLLs is that the code 
is not necessarily as efficient as it would be if a human generated the assembly code. 
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(a) (b) (c) 

Figure 6.5: The three different levels in which you can program a computer. 

6.8 The Digital Design Hierarchy 

This text is about moving towards designing a computer. You’ve come a long way down the digital path to get to 
this point and here is a reminder of some of the more important milestones along the way. It all started with your 
first digital design course. Computer design represents what the next step in the natural progression of your 
“digital education”. Here is a brief reminder of the progression:  

 The typical digital design course starts with number systems including a strong emphasis on 
binary number systems and various methods to represent information in binary form (binary 
coded decimal, 2’s complement, signed and unsigned numbers, etc.). Although this was not 
digital design, we’ll be using many of these concepts directly because we have a sincere interest 
in the ways computers store and interpret bit patterns.  

 Next came the basics of digital design: AND, OR, NOT functions and gates. This quickly got into 
the design of basic combinatorial circuits with way too much emphasis on reducing Boolean 
equations before circuit implementation. The circuits that we implemented at this point were 
generally pointless but they provided an enjoyable academic exercise.  

 Next, we placed the basic gates in certain configurations in order to obtain certain functionality. 
This allowed us to abstract our designs to a higher level in order to avoid talking about working 
with low-level things such as gates as much as possible. The resulting devices were more complex 
than gates but the complexity was manageable because you understood the basic functionality of 
the circuit from a high level. These more complex devices included such things as MUXes, 
decoders, adders, comparators, etc. You may have forgotten how these devices are structured, but 
you hopefully remember how the devices operate. For example, the mention of the word “MUX” 
brings to my mind a form of data selection. It probably doesn’t bring to mind a circuit any more 
complex than a block box.  

 The concept of basic memory arrived with the introduction of sequential circuits. Our main use of 
sequential circuits was with registers and their various forms such as counters and shift registers. 
We used these memory devices to construct finite state machines (FSMs). The FSM has one 
primary function: it’s a circuit that controls other circuits. We later added the notion of structured 
memory, which was our definition for memory models designed specifically to store large 
amounts of data.  



FreeRange Computer Design  Chapter 6 

 

 - 165 -  
 

This progression represents part of the big picture: these were all tools we can use to design and understand a 
basic computer. Note that many times along this progression, we constructed circuits out of small boxes, placed 
the small boxes into another box, and gave it a new name. This embodies the general approach of computer 
design and the understanding of complex digital circuits of any type: the hierarchical approach. We’ve applied 
this approach from early on in your beginning digital design course in that we studied gates rather than the 
underlying transistors that implemented them. We extended this approach with slightly more complicated 
circuits which were a special assembly of gates (decoders, MUXes, etc.). And in the end, it was this hierarchical 
approach that allowed us to understand complex circuits by abstracting upwards. For example, the concept of a 
4:16 standard decoder with a chip enable is easy to comprehend while the transistor-level circuit that implements 
this functionality would fill a page and would not be at all pleasurable to look at.  

This hierarchical concept becomes even more important as we move into computer design. We consider a 
computer to be nothing more than a very complex state machine. The problem is that even the simplest computer 
has so many possible states that the techniques we’ve used to design and analyze state machines are essentially 
worthless if we try to apply them directly to computer design. Because of this, we necessarily need to take a 
different approach to designing sequential circuits such as computers, namely, the hierarchical approach. In 
particular, it’s a top-down approach to the design of computers, which entails describing at a high-level the 
functional blocks in a computer.  
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6.9 Chapter Summary 

 

 A computer is a device that sequentially executes a stored program. Note that this is one of many definitions 
for a computer; this definition is quite high-level. 

 A computer is comprised of three main subsections: the memory, the input/output, and the processor. The 
processor crunches data based on instructions stored in memory; the input/output allows the computer to 
interact with the outside world.  

 You as a human interact with computer as either a user or a programmer, or both. You the programmer write 
programs using a text editor; some other piece of software translates your program into machine code or 
machine language, which is the only language a computer can actually understand.  

 The programming side of a computer is defined at a relatively high level using the Programmer’s Model and 
the Instruction Set. The Programmer’s Model shows the resources that the programmer can control using the 
computer’s Instruction Set.  

 Programmers can program computers at three different levels: 1) machine code, 2) assembly code, and 3) a 
higher-level code. The application you’re working on and your immediate supervisor generally dictate what 
level you’ll be programming at.  

 The notion of “digital design” could mean many things. The idea is that you can perform digital design at 
one of many different levels. As you progress towards more complicated digital designs, and particularly 
computer designs, you’ll be designing at higher levels of abstraction. Though it would be possible to design 
an entire computer at the transistor level, no one actually does it as design computer at the transistor level 
because designing at higher levels of abstraction is much more feasible and cost effective.  
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6.10 Chapter Exercises 

 

1) In your own words, define the word “computer”.  

2) Briefly describe the main purpose of any digital circuit, including a computer.  

3) List the pros and cons of using a computer to solve problems as opposed to designing a dedicated digital 
circuit.  

4) List and briefly describe the function of the three main modules of a computer.  

5) Briefly describe what is meant by the term “computer architecture”.  

6) Briefly describe why there is no one absolutely correct model for any digital circuit.  

7) Briefly describe the main use of a computer architecture.  

8) Briefly describe what is meant by the term “computer instruction”.  

9) Briefly state the purpose and relationship between the programmers model and the instruction set.  

10) The programmers model does not show all of the hardware associated with a computer, only a subset of the 
associated computer hardware. Briely describe why some of the computer hardware is not included in the 
programmers model.  

11) Briefly describe why there so many different assembly languages out there.  

12) Briefly describe why computer instructions are represented using mnemonics.  

13) Briefly describe what makes it relatively easy to learn a new assembly language once you know one of 
them. 

14) Briefly describe why programming using machine code is nearly impossible.  

15) Briefly describe the distinct advantage does using a higher-level language have over using an assembly 
language. 

16) I claim to have designed a portable assembly language; briefly state why you would be skeptical of such a 
statement.  

17) Briefly describe a possible advantage that programming using assembly language has over programming 
using a higher-level language.  

18) Briefly describe the three levels of programming.  

19) Briefly describe what is meant by the notion of a “digital design hierarchy”.  

20) Briefly describe why it is that you can use a high-level module without understanding the low-level 
implementation details.  
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PART FOUR: RISC-V Assembly Language Programming  
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7 Assembly Language Introduction 
 

7.1 Introduction 

Assembly language programming is overwhelming once you first see it. First, it is programming, but 
programming that is different from languages such as C and Python. Second, you have to learn the “instruction 
set” and a bunch of assembly language “tricks” to be able to successfully and efficiently program in assembly 
language. Third, you probably need to become familiar with many hardware concepts regarding the computer 
associated with the assembly language you’re setting out to learn1. There is a lot to learn, but most all of the stuff 
you need to learn is relatively simple (once you see what is going on).  

The problem with teaching assembly language programming is that there is no good place to start. It seems 
everything you need to know is based on something else you need to know, but if you’re just starting out, you 
don’t know anything. This chapter chooses to start somewhere; the stuff you learn in this chapter helps you learn 
the more detailed stuff in later chapters. This chapter also reviews a standard structured approach to designing 
assembly language programming. As the programs you write become more complex, it becomes important for 
you to take a healthy and sane approach to designing and writing programs.  

 

Main Chapter Topics 

 BEGINNERS VIEW OF ASSEMBLY LANGUAGE: This chapter gives a generic 
overview of assembly languages in a context that just about anyone can understand.  

 PROGRAMMING LANGUAGE LEVELS: This chapter put assembly language 
programming into a proper context of the different levels of possible for 
“programming a computer”.  

 ASSEMBLY LANGUAGE: GOOD OR BAD: This chapter describes some the good and 
bad points of using programming at the assembly language level.  

 AN APPROACH TO WRITING ASSEMBLY LANGUAGE PROGRAMS: This chapter 
provides an outline of the appropriate approach to writing assembly language 
programs.  

 FLOWCHARTS: This chapter provides motivational verbage that highlights the 
advantages of using flowcharts and describes the basic symbols associated with 
flowcharting.  

 

Why This Chapter is Important 

This chapter is important because it introduces assembly languages and associated 
concepts as well as basic program structure concepts.  

 

7.2 Bits to Mnemonics and Back Again 

We generally model a computer as a device that sequentially executes a set of stored instructions. We use the 
individual instructions to control the various subsystems in the computer in such a way as to produce a 
meaningful result. In the end, we view computers operations as simply the pushing around of bits (1's and 0's). 

                                                           
1 You actually don’t need to be familiar with the computer hardware, but it will help you create all around great assembly 
language programs.  
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Computer instructions are nothing more than bits that instruct the computer to perform predefined operations, 
which control the bit pushing.   

We refer to the computer instructions at the bit-level as a machine language or machine code. As you could 
imagine, dealing with an endless stream of bits is overwhelming for the average human brain. The solution is to 
replace the machine language with assembly language. An assembly language is a simple upward translation of 
the machine language where we represent the bit patterns that form the instructions by mnemonics. We design 
the assembly mnemonics in such a way as to convey the purpose of the instruction as it relates to the function 
that it causes the computer hardware to perform. The upside of this translation from bits to mnemonics is that the 
purpose of an instruction is much easier to envision and understand for humans. The downside the bits-to-
mnemonic translation is that the translation needs to be undone in order for the computer to execute the 
instructions. A software program known as an assembler translates the assembly code to machine code.  

Controlling a specific computer architecture in such a way as to do something useful requires a specific machine 
language, and hence, an accompanying assembly language, for that architecture. This means there are as many 
different assembly languages out there, as there are different sets of computer hardware, or computer 
architectures. Computers generally differ by the number and type of operations, the “size” of data they work 
with, and the way and number of ways they store the data. From a high level, computers are generally able to 
carry out essentially the same functionality, but they must do so within the limits of their underlying computer 
architecture. The programmer exercises the basic functionality of a computer by using the assembly language 
associated with a particular computer and the assembler associated with that assembly language. 

7.3 Programming Language Levels 

The bit patterns that make up the instructions are what controls computer: computers understand nothing other 
than bits. Although it is possible to write programs using the bit-patterns directly, this approach is too tedious to 
make is useful and there are approaches that are more “useful” as well. The methods used to program computers 
are generally broken into three general levels: 1) machine code, 2) assembly code, 3) and higher-level languages. 
This section describes these levels; additionally, Figure 7.1 shows a graphic of these levels. 

 

 

 

(a) (b) (c) 

Figure 7.1: The visual choice to programming from a user's perspective. 

7.3.1 Machine Code 

Machine code is the lowest level of programming, meaning the level closest to the actual hardware. A program 
written in machine code is nothing more than a set of 1’s and 0’s, which we arrange in bit-patterns that control 
the operations that the underlying architecture can perform. The good part about writing programs using machine 
code is that there is no need to use other software (not including a text editor) as a precursor to writing a 
program. The downside of this approach is that programs are completely unreadable, as the look like a mind-
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boggling stream of 1’s and 0’s. There probably was a day when all programs had to be written in machine code, 
but that was sometime in the prehistoric computer era when the earth was ruled by computersaureses. Although 
every program that is ever written eventually ends up as machine code2, programs rarely start that way.  

7.3.2 Assembly Language 

The next level up in the programming hierarchy from machine code is assembly language programming. In an 
assembly language, we replace the bit-patterns that form the instructions by mnemonics that loosely indicate the 
operation the instructions perform in the underlying computer hardware. The upside of using assembly language 
programming over machine code is that mnemonics bring a level of understandability to humans reading the 
code. The downside, (if you can consider this one) is that you need another piece of software referred to as an 
assembler to translate the assembly language instructions into machine code. The assembler is rarely an overly 
complicated piece of software based on the notion that assembly languages are generally highly constrain in their 
structure compared to higher-level languages. The downside of assembly language programming is that every 
different computer architecture (the computer hardware)  necessarily has a different assembly language. 
Although writing code in different assembly languages is not that complicated once you know one assembly 
language, any new assembly language has a learning curve, with a steepness that depends on the overall 
complexity of the assembly language3. 

7.3.3 Higher Level Languages 

The next step upwards beyond assembly language programming is to use some type of higher-level language 
(HLL). Because each assembly language instruction generally performs only a basic operation, assembly 
language programs can quickly become long (many lines of assembly instructions) when the program requires a 
relatively complex set of operations. One possible solution to producing long programs is switching to coding 
the programs using an HLL.  

When you use a HLL, each line of code in the HLL can represent many lines of assembly code, which leads to 
shorter and arguably programs that are more understandable to humans. When you use a HLL, you must use a 
compiler to translate the HLL code into machine code. Most likely, the software first converts the HLL code to 
assembly code before the final translation to machine code. Using a HLL has one distinct advantage over 
assembly code: once you know one HLL, you can write code for any computer architecture without know 
anything about the underlying assembly language assuming you have the correct compiler. This effectively 
flattens the learning curve for switching processors and makes you HLL code architecturally independent of the 
underlying hardware. The official technical term for this is HLLs are portable while assembly languages are not 
portable. The only downside of HLL is that the code is not necessarily as efficient as it would be if a human 
generated the assembly code. Compilers are good, but humans who know what they’re doing (meaning they 
understand the assembly language and underlying hardware) are better.  

7.4 Assembly Languages: The Goodness of “Low-Level” 

Through the years, assembly languages have received some rather bad press. Most people who have worked with 
assembly languages find that assembly language programming can be tedious, primarily because the programs 
tend to be “long” when they are actually performing a useful task. The length of assembly programs appears to 
be long because they generally only have one “simple” instruction per line of text in the source code.  

On the other hand, working at a low-level has several distinct advantages over using a higher-level language. 
Moreover, programming using a higher-level language without knowledge of the computer architecture that you 
intend to execute the code on can be outright inefficient in some cases. Here are some of the many benefits of 
programming in assembly: 

 Assembly language programming inherently provides an overview of the underlying 
computer architecture. Therefore, writing programs using assembly language are essentially a 
simultaneous lesson in computer programming and computer architecture. 

                                                           
2 More specifically, if someone executes the program on a computer.  
3 The notion here is that an assembly language instruction can be very simple or very complicated. Simple instructions, such 
as basic bit tweaking, are not a big deal. But, more complicated hardware can be designed to do many things with a single 
instruction. In this case, you’re going to have to spend more time reading the manual.  
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 Assembly language programming requires that the programmer have source code 
organizational techniques in order to produce viable (readable, understandable, maintainable) 
source code. The programmer can control the potential “length” of assembly language 
programs by using modular programming techniques. Learning and applying these techniques 
helps improve the quality of source code you write at any level.  

 Assembly language programming can ensure certain portions of the code operate efficiently. 
Even if you are primarily writing in a higher-level language, there may be portions of the code 
that can be “coded by hand” to make sure the machine code is as efficient as possible4.  

 There is a common argument that modern compilers are as efficient as a human (an intelligent 
one) programming in assembly language. I don’t believe this as it sounds more like a 
marketing ploy for a compiler company than it does true science. If you’ve ever dealt with 
optimizing the code generating step in a writing a compiler, you’ll understand the inherent 
limitations in the process. Without doubt, there are some efficient compilers out there, but it is 
highly unlikely that they all fall into the “good as a human” category. 

 Assembly language programming helps the programmer develop a true appreciation for the 
higher-level languages. The more complicated the task, the more you’ll want to move to a 
higher-level language for bulk of your programming needs. But then again, maybe not, as you 
should never put 100% trust in a compiler.  

 Assembly language programming builds character. Yes, recent research has proven this true 
in practically every known case. 

There are well over 5000 different microcontrollers out there in the real world, which implies there are about the 
same number of different assembly languages. This number does not include the various proprietary 
microcontrollers and other projects that were never were released to the public. The question that should be 
asking yourself now is: “With so many assembly languages out there, what are my odds of ever using the one 
we’re about to learn?” This is a good question. The answer is that you’ll probably never see the any given 
assembly language that you work with ever again. But here’s the truth: working with an assembly language for 
the first time can be challenging, but the skills and knowledge you gain in the process easily transfers to other 
assembly languages and in general makes you a better programmer.  

What makes all assembly languages similar is that they all do the same thing: they manipulate bits. The only 
difference between any two assembly languages is exactly how the underlying hardware manipulates the bits and 
how the bits are stored, which are characteristics governed by both the instructions available to the programmer 
and the underlying hardware. To come up to speed quickly when learning a new assembly language, you simply 
need to understand the basic programming resources, which allows you to use them effectively. The quickest 
way to do this is by perusing the Programmers Model and the Instruction Set: 

 Programming Model: The programming model is the programmer’s view of the computer: it 
shows what hardware resources are available for the programmer to use. These resources 
primarily include registers and other types of memory. Another useful definition for the 
Programming Model is the set of registers that the instructions in the associated instruction set 
can manipulate. 

 Instruction Set: The instruction set lists the set of operations that the hardware can perform under 
control of the programmer. 

One interesting point here is that there is no mention of the actual architecture of the device. There is also no 
mention of the external interface of the device. These are interesting points because they highlight the fact that 
the discussion of assembly languages generally means that we are abstracting our approach to the device to a 
higher level. The general thought here is that we are now going to be writing assembly language programs. We 

                                                           
4 The standard trick here is to use a “profiler” to determine the typical executional characteristics of a program. As you may 
find out one day, programs usually spend most of their time executing a small subset of program’s instructions. Therefore is 
you want to speed up your program without spending a lot of time doing so, you rewrite the higher-level code in these 
sections using assembly code. In this way, you get your program speed-up without having to recode your entire program.  
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generally assume that some other fine person implemented the device in some type of hardware setting and has 
setup the environment so that all we have to do is provide the working source code. 

7.5 Problem Solving with Programming 

In the rush to complete your assignment for your instructor or supervisor, you can easily lose track of what it is 
you’re attempting to accomplish. In the worst cases, you find yourself mired with either the low-level details 
while ignoring the big picture, or you completely grasp the big picture while being unaware of the important 
low-level details you’re probably passing over. In the end, if you want to be a successful programmer, you need 
to answer “yes” to the following questions:  

1) Did you write your program in a reasonable amount of time?  If you answer “no”, you need to 
realize that you can’t spend forever writing the program… at some point you have to call it done.  

2) Does your program work properly in all possible cases?  Of course if you answer “yes” to this 
question, it means that you’ve course tested the poop out of your program  

3) Can someone else easily understand and/or reuse your code?  If you answer “no” to this questions, 
then you’re either a bad programmer or you’re into creating job security for yourself.  

The key to ensuring that you answer “yes” to all of these questions is to keep your programs as simple as 
possible. Why? Because complex programs, if they work at all, are well known to be fragile. A fragile program 
is like an academic administrator’s ego: you constantly worry about breaking it if you accidentally do anything 
wrong. Yes, the program running on your smart phone is a result of millions of lines of code and is seemingly 
complex, but that’s not the point. If you can decompose even the most complex program into simple building 
blocks, then the program is by definition simple5. The key to writing good programs is writing simple, well-
structured code (see section 7.6).  

After you’ve been programming in assembly for a while, you’ll find that you’ve probably developed your own 
coding style and your own approach to the entire “problem solving” package. Recall that the reason you’re 
writing any program is to solve some problem. When you first start out programming, particularly using an 
assembly language, you should take a nicely disciplined approach. This section describes a high-level approach 
to the entire problem solving process, not just the program writing part of the approach. Though this is certainly 
not the only approach you can take, it’s the approach you should take until you have developed your own 
successful assembly language programming style.  

There are three basic requirements you must meet before attempting to solve problems by writing assembly 
language programs: 1) Understand the instruction set, and, 2) understand basic programming constructs and 
techniques, and 3) understand the underlying hardware architecture. These two items are somewhat detailed and 
we provide more information in the following verbage.  

1) Understand the Instruction Set: What this means exactly is that you must understand every aspect of 
the instruction set if you plan to write viable problems. This is totally possible because there generally a 
relative few number of instructions for a basic architecture and most of the instructions are relatively 
simple 6. Some of the aspects you need to be familiar with are:  

a. Peculiar aspects of individual instruction: Different instructions have different ways of doing 
things. The push for the efficiency in the underlying hardware can make some instructions 
very confusing and hard to understand. For example, how the hardware forms memory 
addresses in instructions that reference memory.  

b. Forms of instructions: We generally divide the various instructions in an instruction set into a 
smaller subset of instructions that share the same instruction formats; each of these formats 
manipulates the underlying hardware in the same manner.  

c. How instructions use registers: Different instructions use different number of registers and use 
those registers differently.  

                                                           
5 So when your phone freezes of does something stupid... probably bad code. Please don’t blame the hardware.  
6 This statement is even more true with RISC architectures.   
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2) Understand the Underlying Hardware Architecture: You of course must intimately familiar with the 
Programmers Model, but that often is not enough to write good programs. You must also understand the 
how the various modules in the architecture do the things they need to do to implement the instructions 
in the instruction set. We’re trying to be good programmers here, but that can only happen if we have a 
basic understanding of digital the digital circuitry that forms the computer.  

a. Space limitations on various memory elements: Computers have a finite number of memory 
elements, with emphasis on finite; hardware designers typically cut corners in order to save space 
(reduce overall hardware) and power consumption. The savvy programmer needs to understand the 
limitations in order to effectively solve the problem at hand.  

b. Digital tricks: The hardware is capable of doing many things, though some of them are not obvious. 
Two example of this would be to use shifting for divides/multiples by two, and, the various tricks 
to manipulate bits: set, clear, toggle, and hold.  

c. Input/Output architecture: Computers can handle input/output operations in a few common but 
different ways. Programmers need to various I/O architectures to write efficient programs.  

d. Interrupt architecture: Computers generally interface with the outside world according to the 
programs they are running. If you need to interface with the computer, there are ways to have the 
computer stop what it’s doing and deal with your requests. All computers do it, but they do it in 
different ways; you need to be familiar with those ways.  

 

3) Understand Basic Programming Techniques and Constructs: You must understand basic 
approaches to programming in order to write code. One of the many good things about assembly 
language programming is that there are only a few constructs you need to know. Even though there are 
only a few constructs you need to know, the most complicated assembly language program (a well-
written one, that is) is a conglomeration of these constructs. The basic items we’re referring to are:  

a. iterative constructs (loops): The two types of iterative constructs are loops when you know in 
advance how many times you’ll iterate (based on a count) and when you don’t know how many 
times you’ll iterate (based on a condition). Either of type of iterative constructs can be further 
classified as a “while loop” or a “do-while” loop.  

b. if/else constructs: The if/else construct is the basic decision-making program flow construct in 
assembly language programming.  

c. bit manipulation and bit masking: Computers “handle” bits in only four different ways, which 
programmers must be well-versed with. Additionally, bit masking is one of the basic techniques to 
operate on bits, which is generally what you’ll find yourself doing on a microcontroller7.  

 

4) Understand the “Toolchain”: There will be several “tools” you need to be familiar in order to run 
your code on actual hardware. These tools are essentially the various software packages that allow your 
solution go from an idea to a working computer that solves the problem. Here are a few of those items 
(assuming we’re writing assembly language programs and having them run on a programmable logic 
device, or PLD):  

a. The text editor: Knowing the features in text editors helps you write programs in an efficient 
manner.  

b. The Assembler: This software translates your assembly language program code to a set of 1’s and 
0’s that your hardware understands.  

                                                           
7 Recall that microcontrollers are generally designed to control other pieces of hardware. This means they must read 
individual “status” inputs and respond by sending out “control” outputs to the items the MCU is controlling. 
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c. The PLD Computer Aided Design Tools: These tools allow you to model and synthesize your 
computer hardware such that you can execute the programs you wrote.  

 

Once you’ve met the basic requirements, you’re then ready to solve the problem by writing an assembly 
language program. The three basic steps to writing assembly language programs are:  

1) Understand the Problem: This is an important step because if you don’t understand the problem, there 
is no way you’ll generate a viable solution8. The general idea here is that you’ll get a high-level picture 
of the problem, which starts your brain thinking a path to the solution, which is of course the next item.  

2) Generate a Path to the Solution: The notion of generating a path to the solution involves writing 
designing an algorithm that will solve the problem using the given parameters. In reality, there is no 
way you can solve the entire program with one giant plop: your brain does not work that way, and 
computer programming (as of this writing) does not work that way either. You’ll be designing an 
algorithm, and there are two standard approaches to algorithm design:  

a. Pseudo Coding: Pseudo code is an unstructured semi-written-language approach to describing a 
path the solution. We’ll not cover this approach in this text, but it truly is helpful and something 
that all programmers should know.   

b. Flowcharts: The flowchart provides a visual description of the basic flow of your program. 
Flowcharting describes program flow by using a few basic shapes. We dedicate the bulk of this 
chapter to flowcharting, so we’ll opt not to say much here.  

3) Translate the Path to Assembly Language Code: Once you’ve mapped out your algorithm, you must 
then translate the algorithm into the actual assembly language instructions that will implement that 
algorithm on a given processor. For this step, you’ll need to meet the two requirements of solving 
problems using assembly language.  

 

A few comments regarding all these new rules and things:  

 You can’t step item #1; you need to understand the problem before you can solve it.  

 You can skip step #2, but you shouldn’t. In addition, if your program is anything other than simple, you 
won’t be skipping step #2 if you plan to actually generate a viable solution to the problem.  

 You can’t do step #3 if you don’t have a solid understanding of the instruction set.  

 

7.6 Structured Programming 

The official definition of a simple program is one that we can decompose into simple parts. A consequence of 
this definition is that if we can’t decompose our programs into simple parts, it’s a complex program. There are 
many concerning issues with complex programs including the fact that they suck. Let’s face it; if you’re not a 
disciplined programmer, you’re going to be writing spaghetti code, and you’re going to hate life as much as your 
boss or instructor hates you. Here are some more specific issues regarding complex programs:  

 They have a lower probability of working in all cases, or working at all 

 They’re hard to understand,  maintain , and modify  

 It is hard or impossible to reuse part of the programs  

The approach you should take to programming is to write “structured code”. The basis of writing structured code 
is to realize that you can categorize any code you can possible write into one of three “structures”: 1) the 
sequence construct, 2) the if-then-else construct, and, 3) the iterative construct. In other words, your code is 

                                                           
8 You’ll generate a bunch of code, but it will generally be worthless. You may get lucky, but engineers don’t rely on luck; 
only administrators rely on luck (and a wild show of waving hands) to solve problems.  
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either 1) doing something or going somewhere else to do something, or, 2) doing something conditionally, or, 3) 
doing something repeatedly. These constructs become easier to understand after you see them modeled with a 
flowchart.  

If you’re truly writing structured programs, your code is going to be a series of these three constructs. In other 
words, you should be able to decompose your program into a set of these three structures. Disclaimer: just 
because you’re writing structured code does not guarantee that the program is going to work properly, as there 
are other issues regarding computer programming that you need to contend with. The payoff is that structured 
code is essentially the most cost effective approach to creating and maintaining a working program. Even if your 
program does not initially operate as expected, structured code helps you expedite debugging and testing your 
program. Structured programming has the added benefit of helping new programmers learn to work with the 
instruction set and develop their own great programming style.  

7.7 Motivational Discussion of Flowcharting 

You can view the writing of any useful software (or firmware) as a solution to some problem. In other words, 
any worthwhile program that was ever written was done in order to do something useful. We can characterize 
this usefulness as providing a meaningful result; we can further characterize the solution as being an algorithm.  

An algorithm is a computational or logical method of producing a desired result. Flowcharts are useful because 
they facilitate the development and visual representation of algorithms. The flowchart is the software analog to 
the black block diagrams  (BBD) we use to describe hardware subsystems. Recall that hardware block diagrams 
are able to quickly convey an understanding of the circuit at hand. You’ll find that flowcharting an algorithm 
serves the same purpose: flowcharts quickly convey the basic operation of an algorithm. Another way to look at 
it is that BBDs model hardware while flowcharts model algorithms; programmers can then use the flowcharts as 
a guide to generating their programs. Keep in mind that both flowcharts and block diagrams worked well with 
hierarchical design to further promote understanding of the items they model.  

A flowchart has two basic purposes. It is the best idea to consider it a design tool, which is how we’ll be 
emphasizing it here. But being that flowcharts present a graphical representation of the order in which operations 
are carried out by programs, we can also consider them a great documentation tool that provides another 
description of your program in addition to the code (well commented code) itself. The use of flowcharts as a 
documentation tool is a by-product of proper program design. The flowchart is a great aid for anyone who needs 
to design a program; when the program is complete, the flowchart automatically becomes a great documentation 
item for anyone who later needs to understand your program. In the end, the flowchart is great design tool and 
documentation tool.  

We can judge any piece of program code by the following qualities (with lots of overlap among these qualities): 
modularity, reusability, understandability, readability, modifiability, and extendibility. If you can write code that 
contains all of these qualities, you win the big prize of having reliable code. In the real world, you’ll mostly 
likely be working on a team of people who all in one way or another is contributing to the production of a given 
product that is running some program. As you can imagine, it’s a big piece of software since there are so many 
people are working on it. In this case, if even one small part of the code does not contain all of the above 
qualities, the code will spawn many problems that have a strange tendency of never going away. Problems that 
don’t go away will create a lifetime of problems for anyone and everyone who has any dealings whatsoever with 
the project. The result is an unmaintainable, unmanageable, and worst of all, unreliable piece of software crap 
that people will continuously marvel at the fact that it ever works at all. And most likely the moment it fails will 
be at a customer demo.  

Flowcharting supports all the qualities of good source code. So if the discussion above has not convinced you 
that you should use flowcharts in your program design and subsequent documentation, just do it anyway. 
Someday you’ll thank yourself for building a sound foundation of solid programming practices.  

The overall purpose of flowcharts is to quickly present information regarding a process or algorithm (particularly 
one code using a programming language). In addition to this goal, here are a few other fun items about 
flowcharts to keep in mind:  

 There are many options so as how to generate flowcharts, we’ll stick with the basic symbols. 
You can add the bells and whistles later as you see fit.  
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 There is no “right” method to do flowcharts. In that they are tools to help you design and/or 
document your work, you’ll need to provide your own definition of “right”. A good place to 
start, however, is with the basic concepts presented here.  

 If your flowchart meets the overall goal stated above, you have a good flowchart. Part of this 
definition of “right” should be the level of detail that your flowcharts provide. You many need 
to have several flowcharts for one section of code where each of the flowcharts would present 
data at a different level. Flowcharts do quite well presenting various levels of detail.  

 Don’t hesitate to present “flowcharts within flowcharts” because as you’ll see, they nest quite 
nicely. The only rule you should follow is that any single flowchart should contain about the 
same level of detail (note the ambiguity of the word “about”). If you need to change that level 
of detail, you should start a new flowchart.  

 Consider keeping flowcharts as generic as possible. For example, describe an algorithm using 
generic programming operations that could be used for any hardware. Once your flowcharts 
start calling out specific items such as loop iteration counts and hardware specific items such 
as regsiters, the flowchart becomes less usable when and if the hardware changes. 
Additionally, if you make the flowchart generic, it can remain unchanged with minor changes 
in the algorithm.  

 

7.7.1 The Basics of Flowcharting 

Table 7.1 shows the a few basic symbols that we typically use in flowcharts. When you see flowcharts in various 
places, you’ll be seeing other symbols also, but these other symbols represent bells and whistles. As far as 
structured programming goes, the symbols in Table 7.1 represent the basic functionality of sequential programs, 
so the discussion in this chapter sticks with those symbols. We’ll start continue this discussion by looking at the 
flowcharts as they relate to some of the basic programs we’ve written so far. We’ll look at a few examples of 
flowcharts supporting basic programming constructs. We’ revisit them when we have some actual assembly 
language coding experience in a later chapter. 
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Symbol Description 

 
Flow lines and flow arrows: the directed line segment indicates a 
sequence that the program follows. These lines guide the reader 
through the other flowcharting symbols in the correct order.  

 

Process: The rectangle symbol indicates that the algorithm 
performs the operation or process listed in the rectangle. All 
process symbols have only one exit flow line but can have 
multiple entry points.  

 

Predefined Process: These are a special type of process symbols 
that we generally use to specify a process that is predefined (such 
as a subroutine) or defined in some other location.  

 

Decision: The algorithm determines program flow by the 
condition specified inside the diamond. The decision symbol has 
only two exit flow lines, which are either yes, or no. Decision 
boxes and have multiple entry points.  

 

Terminal: specifies the beginning or end of a program or 
subroutine.  

 

Off-Page Connection, Entry: This symbol indicates that a given 
flow line continues on another page. We generally fill these 
symbols these symbols with a short label such as “A” that 
matches the off-page exit connection.  

 

Off-Page Connection, Exit: This symbol indicates that a given 
flow line continues on another page. We generally fill these 
symbols with short labels that match the off-page entry 
connection. . 

Table 7.1: The basic symbols used in flowcharting. 

7.8 Structured Programming Revisited  
We gave a motivation blurb regarding structured programming in an earlier section; we now need to fill in a few 
of the details. Recall that the notion of structured programming is that we can decompose any well-written 
program in to a conglomeration of three basic structures: 1) the sequence structure, 2) the if-then-else structure, 
and 3) the iterative structure. As you’ll see, we use two or more of the basic flowcharting main symbols to model 
each of these structures: the process box, the decision box, and associated flow lines. Not surprisingly, 
flowcharts are probably the best way to define/understand these three basic structures.  

7.8.1 The sequence Structure 

The sequence structure is a set of two or MORE process boxes placed in a series and considered as a new 
“higher-level” process box. Figure 7.2(a) shows the basic model of a sequence structure using standard 
flowcharting symbols. The notion of a sequence should seem familiar, as it is simply a form of abstracting to a 
higher level. The main characteristic of a sequence structure is that it begins at one point and ends at another, 
which is simply a way of stating that the sequence structure has on entry point and one exit point. If a structure 
has more than one entry point or more than one exit point, then it is not a sequence structure and necessarily not 
a part of structured programming. In this case, you can possibly model it as a sequence structure if you further 
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decompose the objects using standard structures. In Figure 7.2(a), the solid boxes are the lower-level items and 
the dotted box is the higher-level item. 

7.8.2 The if-then-else Structure 

The if-then-else structure represents a decision point: the program decides to take one path or another based on 
some condition in the program. Figure 7.2(b) shows the basic model of an if-then-else structure using standard 
flowcharting symbols. To be a true if-then-else structure, the two paths must eventually merge after the 
execution of the chosen path completes. This characteristic assures that the if-then-else structure is similar to the 
sequence structure in that the if-then-else structure has one entry point and one exit point. Keep in mind that a 
variation of the if-then-else structure is the if-then structure. In this case, the structure either does something or 
does nothing, as compared to the if-then-else structure that does something or does something else. A specialized 
form of the if-then-else structure is the in-case-of structure, commonly known as a case structure. This is similar 
to the notion in higher-level languages of using if-then-else statements or case statements to implement the same 
functionality.  

7.8.3 The iterative Structure 

The iterative structure models a set of instructions that repeatedly performs the same process until the structure 
makes the decision to exit the structure. Figure 7.2(c) shows the basic model of an iterative structure using 
standard flowcharting symbols. The iterative structure is independent of the terminating condition, meaning that 
the terminating condition can be any condition supported by the exact form of the underlying language’s flow 
control statement. Similar to the sequence and if-then-else construct, the iterative construct has one entry point 
and one exit point.  

 

 
 

 

 
 

 

 
 

(a) (b) (c) 
 

Figure 7.2: Models for (a) a sequence structure, (b) an if-then-else structure, and c) an iterative structure. 

Figure 7.3 shows flowcharts modeling the two types of iterative loops: the while loop and the do-while loop. 
Recall that the do-while loop always executes the associated process at least one time, which is does by 
executing the process before it checks the terminating condition. The while-loop checks the terminating 
condition before executing the associated process and thus can exit the loop before executing the process. Figure 
7.3(a) shows a flowchart modeling the while loop and Figure 7.3(b) shows the flowchart modeling the do-while 
loop.  
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(a) (b) 

Figure 7.3: Example flowcharts modeling a while loop (a) and a do-while loop (b). 

7.9 The Truth about Software  

Software is definitely mysterious. Have you ever seen a program running? There’s a program running the 
machine that's keeping your grandmother alive during her hospital stay… do you know who wrote that program? 
Do you know how extensively the person or people who wrote that program actually tested that program? Did 
the person in charge of that software think of every possible test scenario before they released the code? Should 
you be worried about all this stuff? I’m not sure what the answers are, but if you were worried about whether all 
the software that runs the world is really working correctly, you’d probably need to take lots of medication to 
make it through the day.  

If you’re reading this sentence, you’re probably embarking on learning to write assembly language. Yep, it’s real 
fun to make the LED blink or the numbers count, which sure seems trivial but is really rather important. 
Someday you’ll graduate and find yourself on a team developing a new product. You’ll be surprised how 
instantly that team starts depending on you to write good code for their next product; you will sort of wish you 
started writing good code from the get-go if you haven’t already. When you see your company’s product on the 
shelf or flying through the air, are you going to be worrying about whether your code really works or not?  

7.9.1 Software Quality 

Does your software work properly? How would you know if you did not extensively test it? Do you think your 
boss is going to ask you if you extensively tested your code? No, they will not ask you; they’ll more than likely 
assume that you did because that is part of being a good programmer. What they’re going to be asking you is if 
your software is completed or not. If you ask for more time to test it properly, no one will consider you a team 
player and you’ll probably be soon laid off and then be hired as an academic administrator.  

In reality, the testing and debugging of your software is most likely going to require more time than it required 
you to get to that point (which includes planning and writing the software). In most jobs, you’ll barely have 
enough time to design and write the software before the release date; testing is not usually a high priority. Sad to 
say that the only thing that has a lower priority than testing software is actually documenting that software.  

Your mission is still to write good code. Good code is going to work, and if it doesn’t work, it’s going to be easy 
to debug. Code that is easy to debug is presents a shorter path to getting the code to work. But let’s be real here: 
all the testing in the world won’t guarantee that your code will work 100% of the time. What testing will show 
you is that your code has bugs; testing is not going to show you that your code does not have bugs. All is not lost 
here; there are a few simple rules to follow to help you write good code. If you’re conscientiously striving to 
write good code, your code will be in a constant state of improvement. If you learn from your mistakes, you 
won’t be making those mistakes again.  

7.10 Writing Good Programs  

There are many great books out there describing various techniques you can use to write good programs. 
Because you are probably a student in an academic environment, you generally don’t get a chance to experience 
the normal “real world” approach and accompanying expectations of writing real software. In academia, the 
main goal of your software is to complete the assignment at hand. In this case, you know full well that your 
program is probably being graded by a robot, which means most of the corners you cut attempting to submit the 
assignment before the due date go unnoticed by any other human.  
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There are several problems with writing code in an academic environment. First, courses in academia typically 
place way too much emphasis on completing the assignment at any cost. Your program does what it should in 
that it made the robot grader happy, but at what cost? Your code may be crappy, unreadable, unorganized, 
unmaintainable code—the robot doesn’t care. Because no human outside of yourself ever sees the code to inform 
you of your diminished code quality, you develop bad habits that you may never break. In addition, in academia, 
you generally have the choice of obtaining any grade outside of an F and still attain success on the assignment 
and pass the class. If truth, if you apply the same approach outside of academia9, you’d be fired rather quickly, 
and then later be hired as an academic administrator.  

There is a right way to write code. Though you may not always have the time to take this approach, you know 
you should be taking this approach. We all strive to be lucky enough to have the time and/or resources to embark 
on writing good programs. There is much more to writing good programs than plopping down some instructions. 
The final word here is that writing good code is a process that extends well beyond regurgitating instructions 
and/or expressions; enjoy the journey.  

1) Know how to write proper code: There is more to programming than simply writing code. Anyone can 
write good code, but it’s truly a learning process. The main problem in academia is that lazy professors 
don’t take the time to ensure their students are writing good code. The typical lazy professor typically 
verifies the code appears to be working (or has a robot check to see if it’s working) and quickly moves on to 
check-off the next program.  

a) Make your code look good: Good-looking code is code that looks good standing ten feet back. In truth, 
most people (non-robots) who look at your code are only going to take a cursory glance it; people rarely 
take the time to determine if your code is actually good or not. Just like most everything else in life, 
people make a snap judgement based primarily on appearances: if you code looks good, it must be 
good. Therefore, if you’re not writing good code, the least you can do is make it look good.  

b) Write structured programs: Structured programs are easier to “get working”, understand, maintain, and 
most importantly, debug. To be able to write structured programs, you must understand the three basic 
structured programming constructs: 1) sequences, 2) if-then-else, and 3) iterative constructs.    

c) Know the entire instruction set: If you don’t know the instruction set, you’ll never be able to write good 
assembly language programs. If you writing in a higher-level language, knowing the underlying 
assembly language instruction set helps you write “better” code10.  

d) Know the tools: There are various tools that help you write good code in an efficient manner. 
Assemblers and compilers have various options to help you write code that it more understandable and 
more portable. Simulators/debuggers often have many features that are not overly obvious to help you 
ensure your code is working properly.  

e) Look for examples of good code: If you strive to write good code, you’ll become more and more aware 
of what good code actually is. You’ll then look at other people’s code for examples of what to do and 
what not to do. Learn by experience, including other people’s11.  

 

2) Write simple code: Simple code has many things going for it, though job security is not one of them. Good 
programmers know and understand the notion that there is a certain eloquence and beauty to good code; it’s 
a characteristic that defies description. If you’re trying to impress people with your code, strive to impress 
them with the simplicity of your code. You may not impress your butthead friends and colleagues with your 
code, but other good programmers will be totally impressed and adopt some of your coding practices.  

a) Write understandable code: the assembler does not care what your program looks like, but other 
humans do. Understandable code is easier to get working properly, including the eventual debug part of 
the process. If you pass crappy code along to colleagues, they’ll quickly lose respect for you 

                                                           
9 Keep in mind this level of incompetence ensures you a promotion if you’re an academic administrator.  
10 But if you’re writing in a higher-level language, often times you’re doing it for its portability characteristics, so you may 
not know what anything about the underlying hardware.  
11 As quoted to me by Keith Swanson in 1980. Thanks Keith.  
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programming abilities. Be sure to find an approved style file and make you code look like the code in 
the style file (or preferably, better).  

b) Comment your code: Use comments to primarily state “why” your code is doing something is generally 
more important than stating “what” your code is doing. Avoid commenting on things are obvious. Keep 
comments brief, but be sure to add extra comments for code that is doing something strange of patently 
unobvious.  

c) Use labels in your code: Labels cost nothing but do provide a vehicle for making your code more 
understandable. Labels are generally short mnemonics that quickly transfer information; use labels as a 
special form of commenting. Don’t worry, we’ll talk about labels in an upcoming chapter.  

d) Use white space: In fact, use a liberal amount of white space. Everything, including comments, 
directives, and instructions should be properly and consistently indented. Use blank lines to delineate 
separate ideas in the code stream. Also, use blank lines to delineate subroutines.  

e) Write modular code: Possibly the main attribute of simple code is that it is modular. Modular code is 
easier to write, understand, reuse, debug, and maintain. The main vehicle for modules in assembly 
language programming is subroutines. Each subroutine should have a header that describes the purpose 
of the module, and what resources the subroutine changes.  

f) Don’t write tricky code: Well, sometimes you have to in the name of efficiency… However, if you do 
write tricky code, make sure you comment the code with an excruciating amount of detail.  

g) Write portable code: The notion of portable code means that if something in the underlying hardware 
changes (either the MCU of external hardware controlled by the MCU); your code will require little or 
no modification in order to work properly. Try not to write code that requires intimate knowledge of the 
hardware, or keep such knowledge to a minimum (and well commented). Use directives defined in the 
initial portion of your code to define constants used by the hardware.  

h) Use look-up-tables (LUTs) when possible: You can’t say enough good things about LUTs. Always be 
on lookout for instances in your code where a LUT is appropriate (makes your code clearer and/or more 
efficient).  

i) Write “bullet-proof code: Though it is somewhat beyond the scope of this text, write code that going to 
work in every possible setting, including multi-threaded environments. Don’t rely on the calling code to 
do the right thing; always do the right thing in each section of code you write.  

j) Write code with testability in mind: Someone, possibly you, is going to have to debug and/or 
understand your code, so structure you code with testability in mind, include commented code, self-
commenting labels in the code, and relatively simple code.  

k) Write code knowing that the requirements will change: Not only will the requirements change, they will 
change before you’ve completed your assigned task. It’s generally fairly easy to predict such changes; 
you don’t need to be psychic, but it helps. They call this “feature creep”.  
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7.11 Chapter Summary 

 

 An assembly language is a set of mnemonics that represent operations that the associated computer can 
perform. These mnemonics represents 1’s and 0’s, which are “assembled” by an assembler, which outputs 
machine code (the 1’s and 0’s). Assembly language programs are written using the instruction mnemonics.  

 We can write computer programs at three different levels 1) machine code (low-level), 2) assembly 
language (medium-level), or 3) a higher-level language (high-level). No intelligent person writes programs 
using machine code as this approach is too tedious. Assembly language programs can become long due their 
relative low level compared to higher-level languages. Writing programs in higher-level languages is 
relatively efficient as the compiler typically generates many lines of assembly code for one line of higher-
level code.  

 Assembly languages are associated with specific hardware architectures. If you switch computer hardware, 
you necessarily need to switch assembly languages. Higher-level languages are portable in that if you switch 
computer hardware, you simply need to use a different compiler on the higher-level code.  

 There are many good reasons why you may want to use an assembly language over a higher-level language. 
Writing assembly language generally allows the knowledgeable programmer to generate code that is more 
efficient than a typical compiler. Assembly language programming also requires the programmer to be 
somewhat knowledgeable about the underlying computer architecture.  

 Assembly languages essentially tell the underlying hardware how exactly to push bits around. There are 
only so many things you can do with bits, so learning a new assembly language after you know one is 
relatively easy, as it mostly requires learning a new syntax and becoming familiar with the associated 
programmers model.  

 Writing programs to solve problems is an art form. However, those learning the art can get a good start by 
not losing sight of the problem being solved and by following this simple set of guidelines.  

 Structured programming using basic constructs assembled in a workable manner to write programs. 
Programs that are not properly structured often end up becoming “spaghetti code”, and are essentially, giant 
pieces of crap.  

 Flowcharts provide a simple approach to program design and program documentation.  

 Flowcharts as a design tool give programmers a visual representation of program flow, which is important in 
assembly languages as they can quickly become long and complicated.  

 Flowcharts as a documentation aid will help others quickly understand the intended purpose and flow of 
your assembly language source code.  

 Flowcharting is based on a few simple symbols including program flow, process, predefined process, 
decision, and terminal.  

 The three basic structured programming structures are the sequence, if-then-else, and iterative constructs. If-
then-else constructs include case-type constructs while iterative constructs include both do-while and while 
constructs.  

 Your software is going to have bugs; the best you can hope for is to keep the number of bugs and the 
damage the bugs cause to a minimum.  

 Verification and debugging of programs usually takes longer than the actual planning and writing of 
programs.  

 Writing good programs is an art form. If you’re not an artist, you can follow a basic set of guidelines to 
prevent your code from becoming crappy.  
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7.12 Chapter Exercises 

 

1) Briefly describe why you can model a computer as a device that “pushes bits around”. 

2) Briefly describe how an assembly language program is converted into machine code. 

3) Briefly describe the general purpose of instruction mnemonics.  

4) Briefly describe why it is that every program ever written and executed on a computer ends up at the 
machine code level.  

5) Briefly describe what the term “computer architecture” refers to.  

6) Briefly describe whether it would be possible to have two different assembly languages be associated with 
the same computer architecture.  

7) Briefly describe whether it would be possible to have two different computers use the same assembly 
language.  

8) Briefly describe why is it is that assembly language programs can quickly become long. 

9) Briefly describe what an assembler is and what it does.  

10) Briefly describe what a compiler is and what it does.  

11) Briefly describe why assembly language programmers need to stay organized with their coding style.  

12) Briefly describe why it is important for assembly language programmers to understand the hardware 
associated with the computer they are writing assembly language for.  

13) Briefly describe why compiler and assemblers are good at knowing there is an error in the code but much 
less good at figuring out the exact error.  

14) Briefly describe why it is that a compiler will never be as good at optimizing code as a good and 
knowledgeable human.  

15) Briefly describe why it is that you must learn a new assembly language if you move to a different computer 
architecture.  

16) Briefly describe what’s the best way to increase the operating speed of a large program written using a 
higher-level language and compiled?  

17) Briefly describe why it is that programming in a higher-level language is more portable than programming 
at the assembly language level.  

18) Briefly describe the three general differences between different computer architectures.  

19) Briefly surmise why it is that assemblers are “free” more often than compilers.  

20) In your own words, describe the main purpose of an algorithm.  

21) What is the hardware analog to a programming flowchart?  

22) What are the two main purposes of flowcharts?  

23) Briefly describe what the notion of a generic flowchart refers to.  

24) Briefly describe why it is a good idea to keep your flowcharts as generic as possible.  

25) I suddenly got the idea to use a start symbol rather than a diamond symbol for a decision point in my 
program. Briefly describe why this is a bad idea.  

26) Briefly describe why it is important to write assembly language code that not only works, but also looks 
good.  

27) Briefly describe whether you know good-looking code actually works properly by just looking at the code.  

28) Briefly describe why it is important to ocassionally examine other people’s assembly language code.  
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29) Briefly describe the likelihood that you’re going to need to extensively test your assembly language code.  

30) Briefly describe the likelihood that you’ll actually have time to extensively test your assembly language 
code.  

31) Briefly describe why it’s a good idea to always make your assembly language code as simple as possible.  
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8 Introduction to RISC-V Assembly Language Programming 
 

8.1 Introduction 

Assembly language programs are not complicated, but they are somewhat different from higher-level language 
programs you’ve written. There are many approaches you can take to learning to write assembly language 
programs; the approach we’ll take in this chapter attempts to get you writing programs as quickly as possible. 
This chapter does not attempt to tell you everything you’ll ever need to know about every RISC-V instruction in 
the instruction set. What we’ll do instead is arbitrarily tell you only what you need to know to enable you to 
write and understand basic assembly language programs. Once you have a basic grasp of writing programs, we’ll 
delve into more of the details regarding writing RISC-V assembly language programs.  

The heart of assembly language programming is the instruction set associated with the computer that you’re 
planning on programming. Each assembly language instruction comprises of a set of 1’s and 0’s that magically 
somehow control the associated computer’s hardware. The notion of the precise 1’s and 0’s that make up the 
instruction is low level, so we don’t cover them in this chapter. All of these issues fall under the category of 
“instruction set architecture”, or ISA. 

 

Main Chapter Topics 

 INSTRUCTION SET DESIGN: This chapter covers some of the high-level details 
associated with designing an instruction set from scratch.  

 ISA DESIGN ISSUES: This chapter covers discusses a few of the important design 
parameters associated with ISA design.  

 ASSEMBLY LANGUAGE PROGRAM STRUCTURE: This chapter outlines the basic 
and preferred structure of assembly language programs including comments, 
assembler directives, and assembly language source code.  

 INTRODUCTION TO EMBEDDED SYSTEMS: This chapter presents the notion of an 
embedded system as it relates to basic assembly language programming. 

 COMPUTER OVERVIEW: This chapter once again describes the “big picture” in the 
context of the RISC-V MCU instruction set and programming model.  

 INSTRUCTIONS OVERVIEW: This chapter presents high-level views of instructions 
by describing their general purpose and high-level classifications.  

 RISC-V MCU INSTRUCTION VERNACULAR: This chapter describes some of the 
commonly used vernacular describing assembly the RISC-V MCU ISA and 
associated programming model.   

 

Why This Chapter is Important 

This chapter is important because it describes the basic structure of assembly 
language programs and provides several well-commented assembly language example 
programs.  
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8.2 Instruction Set Architecture Design Issues 

There are people out there who spend their entire lives delving into the low-level details of instruction sets and 
particularly, instruction set architectures (ISAs). We’re not going to go too deep into the subject in this textbook, 
but we’re going to mention some of the most basic ISA design principles. This is one of those issues where 90% 
of the work in ISA design goes into the final 10% of the design. What this means is that you can generate a 
“good” ISA without a super-significant amount of work; most of the work (the 10% part) involves squeezing as 
much performance out of your ISA as possible. We won’t go there.  

The approach we take in this text is to allow someone else to do the thinking for us. The result is that the RISC-
V is a very well thought-out instruction set, which is the result of the fact that RISC-V is an open-source 
architecture. The RISC-V is efficient, effective, and highly functional. Possibly the best part about RISC-V is 
that it is highly extensible, which means we can use it for a beginning class in computer architecture, and later 
use the same ISA for more advanced courses.  

8.2.1 Instruction Set Design 

There are most definitely some great theories on instruction set design out there in computerland. The good news 
is that all of the good stuff was inserted into the RISC-V ISA. The many engineering decisions made along the 
way add the sparkle to the RISC-V ISA.  

If you had to declare the big issues in instruction set design, you would most likely find them related to the type 
of computer you’re designing. Don’t lose sight of the big picture: you’re solving problems with a digital circuit. 
To make your solution non-generic (meaning that you can use the same circuit to solve many problems), you 
decided that your digital circuit will be a computer. You now have a choice: design the computer yourself or use 
some off-the-shelf solution.  

The big issue is that if you design the computer yourself, you can design it with your specific needs in mind. 
Your design will thus be specific purpose: it does a great job of solving your problem, but probably a not so 
good job being able to solve “just any problem”. On the other hand, it you use some off-the-shelf computer, that 
computer is most likely going to be a general-purpose computer design. It probably won’t solve your problem as 
good as your specific computer design, but will do a good job on a wide set of problems.  

General-Purpose Computer: If you’re designing a general-purpose computer, then you don’t 
really know exactly how people will use the computer. It is therefore your job as the ISA 
designer to provide enough instructions to do “just about anything”, which means you’ll be 
including instructions that do generic/typical operations associated with computers/computer 
hardware. You’re essentially guessing what instructions programmers and/or compiler writers 
will find useful; it’s an educated guess, but it’s still a guess.  

Specific Purpose Computer: If you’re designing a specific purpose computer, you’ll know 
exactly how people will use that computer. Designing a specific purpose computer is generally 
an easier task than designing a general-purpose computer because there is typically no 
“guessing” involved as to what the computer needs to do. In this case, you include only the 
instructions you know you will use, thus your computer may not be able to do everything a 
general purpose computer does, but it will perform your specific task better (faster, less 
hardware) than the general purpose computer. Keep in mind that you’re going to need to write 
your own assembler and/or compiler to support your computer design. 

 

8.3 ISA Driven Computer Hardware Designs 

How do you go about designing a computer? Are there some rules somewhere that you follow? It there a list of 
tasks somewhere that you follow and then magically have a computer once you’ve completed the tasks? I truly 
don’t know the answer to these questions. What I do know is the computer design approach taken by the RISC-
V. But first a story. Way back in grad school I took a course in the MPEG standard at the time1. The general 
process was to encode the movie in a compressed format, then decoding it to watch the movie. The standard did 

                                                           
1 MPEG is a standard used to compress and encode motion pictures.  
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not describe the encoder though: it only described the decoder. I found that shocking at the time. The reason it 
only defined the decoder was to give designers ultimate flexibility in how they designed the encoder; the only 
constraint was that whatever they encoded must be able to be decoded by the any MPEG compliant decoder. 
This story seems pertinent because it relates to the RISC-V MCU computer design.  

If you think about it, you may not realize what came first: the hardware or the instruction set. The truth is that the 
instruction set came first. All subsequent designs are based on the ISA description. Thus, compilers, assemblers, 
and most importantly for us, the actual RISC-V computer hardware is based on one directive: to do whatever it 
takes to support the RISC-V ISA. Thus, the ISA came first. The result of this is that the RISC-V MCU hardware 
is unique. It was primarily an implementation of one person’s ideas to support the RISC-V ISA. The reality is 
that two different people would probably come up with different designs for the same problem. The only 
requirement here is that the hardware designs must be able to implement the instructions in the ISA.  

For this text, we give you the computer hardware design, thus you don’t have to design hardware yourself. The 
approach taken by this text is to say: “here is the hardware that will implement the RISC-V ISA: it is your 
mission to completely understand the hardware, particularly how it implements the given ISA”. It’s very doable, 
but not trivial. On one hand, it’s only a digital circuit, comprising of standard digital modules that you’re used to 
working with. On the other hand, the hardware implements a modestly complex computer. The intended learning 
mission for you is to develop an understanding of the hardware as it relates to the ISA, which then provides you 
with the tools such that you can design your own ISA and supporting hardware. You’ll thus be able to provide 
the complete computer-based solution to any problem you face.  

8.4 RISC-V MCU Assembly Language Program Structure 

This may be your first experience with assembly language, so you may be totally lost at this point. This section 
aims to provide you with a quick overview of assembly language, programs written in assembly language, and 
the items provided by running the assembler on your program. This is a quick overview; we go into more detail 
in later chapters.  

8.4.1 The Assembly Language Program 

Figure 8.1 shows a simple assembly language program. The program does not do much, but it does contain all 
the important parts of a program written in assembly language. We follow Figure 8.1 with a description of the 
important parts of the program with a level of detail that supports your current knowledge of the RISC-V ISA.  

(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

#----------------------------------------------------------------------------- 
# Program: example_program 
#  
# This program inputs a value, toggles all bits, and outputs the  
# value. This program performs these tasks repeatedly.  
#  
#----------------------------------------------------------------------------- 
.text                                 # indicate segment with directive 
                                      # 
init:     li     x10,0xC0008000       # initialize input port address 
          li     x11,0xC000C000       # initialize output port address 
            
main:     lw     x15,0(x10)           # get data from input port 
          xori   x15,x15,-1           # toggle all bits in the data 
          sw     x15,0(x11)           # output data to output port  
          j      main                 # branch and repeat 

Figure 8.1: A simple assembly language program.  

There are three basic parts to any assembly language program: 1) comments, 2) assembler directives, and 3) the 
assembly language source code. The only thing you need to make your program run is assembly code, but the 
other parts of your program are important for writing good assembly language programs.  

8.4.1.1 Comments 

Comments increase the readability and understandability of your programs; you should always use comments if 
these two qualities are important to you. Comments represent “messages to humans”; more specifically, 



FreeRange Computer Design  Chapter 8 

 

 - 189 -  
 

comments represent messages from the human writing the code to some other human who may be reading the 
code. RISC-V code indicates comments with pound signs (“#”).  Here are some other fun facts about comments.  

 The assembler ignores all the text on a given line after the pound sign 

 The pound sign can appear anywhere on a line of code 

 There are no “block comments” in RISC-V; each commented line must include a pound sign.  

 The code in Figure 8.1 uses comments in two different ways: to describe “big” things such as 
the overall functioning of the program, and to describe “little” things such as the purpose of a 
particular line of code.  

8.4.1.2 Assembler Directives 

As the name implies, assembler directives give the programmer some measure of control over the operation of 
the assembler. This means that assembler directives are messages from the programmer to the assembler. The 
code in Figure 8.1 contains only one directive, which is on line (08). Typical assemblers generally have a large 
set of directives available for the programmer, and the various directives come in different forms. We’ll address 
the topic of assembler directives in a later chapter.  

8.4.1.3 Assembly Code 

What makes an assembly language programs a program is the fact that it contains code. The code is the various 
assembly language instructions. The code in Figure 8.1 contains six assembly language instructions (no need to 
worry about what they do). The instructions themselves appear indented towards the right. Other things to note 
are as follows:  

 Assembly code only contains one and only one assembly instruction per line. This imposes a 
fixed structure on assembly language programs that don’t exist in higher-level language 
programs. 

 The various assembly instructions contain a different number of operands.  

8.4.1.4 Labels 

Labels are an important part of any program because they serve two purposes, and often serve both of these 
purposes at the same time. They are thus both useful to humans reading the program, and also to the assembler. 
These labels typically appear quite commonly in assembly language programs. They are actually somewhat like 
directives in that they are messages to the assembler. Labels are hard to classify what they are as they are not 
instructions, but they are a “part” of some instructions; but even though they are part of some instructions, they 
not increase program size. Labels can also can act as comments, because they don’t actually do anything other 
than provide information to the human reader. This will make more sense when we start writing actual programs 
in a later chapter.  

 Lines (10) and (13) contain labels, which are on the beginning of the lines that contain assembly 
language programming code. Labels always appear starting in the first column of the assembly 
code and are always terminated with a colon.  

 The label on line (10) serves purely as a comment for human readers. It differs from the label on 
line (13) because that label is part of the instruction on line (16). This is a common use of labels 
where main goal is to increase the readability of code for humans without increasing code space.   

 The label on line (13) is basically required because it appears as part of the instruction on line 
(16), thus the instruction relies on that label.  

8.4.2 Important Assembly Language Program Formatting  

The assembly language programmer has the ability to make the most eloquent assembly language programs 
possible. These are not “rules”, but it something everyone should follow. You can argue that all you care about is 
the whether the program works or not, but there is much more to the story. Your mission is to both make the 
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program work, and to make the program readable and understandable to other humans. A few things to note 
about the code in Figure 8.1:  

 The code contains a “file header” or “file banner” describing the contents of the file. The notion 
here is that the code for the program is stored in a file.  

 The code has many different forms of alignment. The code aligns just about everything: 
instructions, the first operands in the instruction line, the comments associated with each 
instruction, and the comments associated with the file header.  

 Lines (09) and (12) have nothing on them, but this “whitespace” effectively delineates the 
various parts of the program. You should always use whitespace to delineate “ideas” in your 
code. Whitespace does not make your programs longer in the context of computer instructions; it 
just makes code program text longer.  

8.4.3 The Actual Program  

People new to assembly language programs often have experience with writing higher-level language programs. 
The typical higher-level language program runs the associated code, then stops running. The programs we 
consider in this course are typically associated with “embedded systems”; one major characteristic of an 
embedded system program is that the run, and keep running, and never stop running (unless you remove power 
from the underlying hardware).  

The program in Figure 8.1 does not have the ability to “stop running”. Note that the program in Figure 8.1 takes 
the form of an endless loop, the instruction on line (16) is an unconditional branch instruction which direct the 
program to start executing instructions appearing earlier in the program. An interesting thing to note about the 
RISC-V ISA is that there is no instruction that directs the computer to “stop executing instructions”. Most ISAs 
associated with microcontrollers likewise do not contain instructions that “halt” the processor.  

8.4.4 Visual Description of Program 

The assembly language code for the program can appear intimidating to people new to assembly language. To 
help sooth these fears and worries, we can of course describe programs with flowcharts. This is a simple program 
so we don’t expect the flowchart to be overly complicated. Figure 8.2 shows a flowchart the models the 
operation of the program in Figure 8.1. A few things to note here:  

 This is “a” flowchart, and not the flowchart. There are many ways to represent this program 
using a flowchart, this is one of them.  

 The flowchart has a start terminal symbol, but no ending symbol, which models the notion that 
these programs always run. You’ll later see that the instruction set does not have any instructions 
that stop the hardware from executing instructions.  

 The flowchart shows that the initialization portion of the code only executes once because the 
first process symbol is outside the loop.  

 We included a medium level of detail in the flowchart. For example, we stated “initialize port 
addresses”, but we did not say which ones and their associated addresses.  
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Figure 8.2: A flowchart modeling the operation of this example program. 

8.5 What the ISA Really Does 

We keep talking about the ISA (instruction set architecture), but what does it really do? We’re setting out to use 
the computer to solve a problem. We’ll use an off-the-shelf ISA and implement a computer that supports that 
ISA. The ISA is the blanket term for the set of instructions that control the underlying hardware of the computer. 
Figure 8.3 show a basic high-level description of the underlying hardware, including the three accepted standard 
modules of a computer. We can thus classify all of our instructions according to what they do to the underlying 
hardware. Here is roughly what the set of instructions in the instruction set do in the context of the diagram in 
Figure 8.3. The bullets below roughly represent the arrows in Figure 8.3. 

 Some instructions use the I/O block, which allow us to obtain data from and provide data to the 
outside world 

 Some instructions use the microprocessor to crunch bits 

 Some instructions store data in the memory block 

 Some instruction get data from the memory block 

 Some instructions do nothing except determine where in the program to go in order to do the 
next thing the program needs to do 

 

Figure 8.3: The basic computer model at a lower level. 

When we describe the operations of the instructions at a high level, they seem rather simple. They are simple, 
but they can seem daunting because there seem like there are so many of them. Always remember that there’s 
not that much to do in the computer hardware; it becomes a matter of understanding what your program needs to 
do and how to do it in the context of the underlying hardware. As you’ll see as you become more familiar with 
the instruction set (or ISA), most of the instructions share many similarities. The devil is always in the details.  
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8.6 RISC-V MCU Assembly Language Basics 

Before we start on assembly language, let’s review the big picture. There are many details here; we need to start 
out on the same page.  

8.6.1 The Big Picture 

Recall that our aim is to use a computer to solve a problem; we’ll need to program the computer in order to do 
that. We can program the computer at three different levels, but we’ll be describing programming an assembly 
language level, which is one step above programming using machine code level and one step below the 
programming using a higher-level language.  

We can model computers at many levels, but let’s review the highest level in the context of assembly language 
programming. Figure 8.4 shows a high-level model of a computer that you’ve seen before and will work for us 
here. What we have is a model of hardware that the computer instructions will eventually control such that it will 
solve a problem for us. Generally speaking, our computer will read in data from the outside world (via the I/O 
module), that data will be crunched around in some intelligent way (via the Processor module), and then the 
result is output back to the outside world (vial the I/O module). All this stuff happens under control of a program 
(set of instructions) that is stored on the computer (in the memory module). Along the way we may need to store 
temporary calculation values in the listed memory model, thus the memory stores both data and instructions.  

The RISC-V MCU has a set of instructions that we’ll use to program the computer. Relative to the description in 
the previous paragraph, we can divide our instructions into the following categories. This is a high-level 
description, but it supports our high-level architecture diagram in Figure 8.4. 

 Instruction that pass data between the computer and the outside world 

 Instructions that pass data between the various memory modules  

 Instruction that crunch data 

 Instructions that control the basic flow of the program 

 

 

Figure 8.4: General model of a computer. 

Let’s drop down a level to the instruction set architecture (ISA) level and the Programming Model (or 
Programmers Model). Recall that the instruction set is the instructions that control the hardware listed in the 
Programming Model. There is much more hardware in the RISC-V MCU, but we programmers don’t have direct 
control over that hardware via the instruction set. The only thing we’re interested in at this point is the 
instruction set and the hardware we can control with it. The notion here is that if we can properly control the 
hardware (using programs, which are full of instructions from the instruction set), we’ll be able to solve the 
problem at hand. Figure 8.5 show the RISC-V MCU ISA (a) and the programming model (b).  
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Program Control   
jal   rd,imm jal   imm j     imm 
jalr  rd,rs1,imm jalr  rs jr    rs 
call  imm  tail  imm 
ret mret  
beq   rs1,rs2,imm beqz  rs1,imm  
bne   rs1,rs2,imm bnez  rs1,imm  
blt   rs1,rs2,imm blez  rs1,imm bgt  rs1,rs2,imm 
bge   rs1,rs2,imm bgez  rs1,imm bgt  rs1,rs2,imm 
bltu  rs1,rs2,imm bltz  rs1,imm bgt  rs1,rs2,imm 
bgeu  rs1,rs2,imm bgtz  rs1,imm bgt  rs1,rs2,imm 
Load/Store (& I/O)   
lb    rd,imm(rs1) lbu  rd,imm(rs1) sb   rs2,imm(rs1) 
lh    rd,imm(rs1) lhu  rd,imm(rs1) sh   rs2,imm(rs1) 
lw    rd,imm(rs1)  sw   rs2,imm(rs1) 
Operations (crunch)   
addi   rd,rs1,imm add   rd,rs1,rs2  
 sub   rd,rs1,rs2 neg   rd,rs1 
xori   rd,rs1,imm xor   rd,rs1,rs2 not   rd,rs1 
ori    rd,rs1,imm or    rd,rs1,rs2  
andi   rd,rs1,imm and   rd,rs1,rs2  
slli   rd,rs1,imm sll   rd,rs1,rs2  
srli   rd,rs1,imm srl   rd,rs1,rs2 sgtz   rd,rs1 
srai   rd,rs1,imm sra   rd,rs1,rs2 sltz   rd,rs1 
slti   rd,rs1,imm slt   rd,rs1,rs2 snez   rd,rs1 
sltiu  rd,rs1,imm sltu  rd,rs1,rs2 seqz   rd,rs1 
Axillary   
nop auipc  rd,imm lui    rd,imm 
csrrw  rd,csr,rs1 csrw   csr,rs1  
la     rd,imm li     rd,imm mv     rd,rs 

 

 

(a) (b) 

Figure 8.5: The Instruction Set (a) and the Programming Model (b). 

We use the instructions in Figure 8.5(a) to control the hardware resources listed in Figure 8.5(b). Note from 
Figure 8.5(a) that we classified the instruction in heading that indicate what the operations the instructions 
perform. Also from Figure 8.5(b), we can see that we have some different hardware to control. Even if you’re 
only going to be a programmer, you need to have a basic understanding of the hardware listed in Figure 8.5(b)2. 
One thing to note in Figure 8.5(b) is that all the resources the instruction set has direct control over is memory of 
some sort. We can see from Figure 8.5(b) that we have the following memory resources.  

Register file: This is 32 32-bit general purpose registers can use to crunch and/or store numbers 

Program Counter: this is a register that hold that address of the instruction in Memory that the 
computer is currently executing  

Memory: This stores sets of bits such as computer instructions and various forms of information 
including data and address information. The “stack” is a special area in memory that we’ll 
describe later.  

Now that we have a more accurate description of the actual RISC-V MCU hardware, we can provide a better 
description of how the instructions control the computer such that we obtain our desired result. We’ll provide 
this description in the context of the instruction classifications of ISA in Figure 8.5(a). Remember, this is a quick 
overview; we provide more details later.  

8.6.1.1 Program Control 

Programs don’t generally run from the “beginning” to the “end”, which is another way of saying they don’t 
execute the instructions from memory one after the other, then stop. Typical programs go from executing 

                                                           
2 We’re trying to keep the hardware as separate as possible from the software; later chapters in this text deal with the more 
detailed hardware aspects of the RISC-V MCU. To be a good programmer, you need to have at least a basic understanding of 
the underlying hardware of the computer your program will execute on. If you have this understanding, you programs will be 
operate “more better” than if you don’t have any knowledge of the underlying hardware.  
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instructions from one area of memory to another, so there need to be instructions that support this operation. We 
refer to this type of instruction as program control instruction because these instructions alter the normal 
sequential execution of instructions.  

We classify program control instructions as “branch” instructions, as they can cause program execution to jump 
from one area of program memory to another area (not sequential execution). We further classify these 
instructions as “conditional” and “unconditional” branch instructions. The notion of condition means that we go 
somewhere else if the conditions are correct; otherwise, we continue on to execute the next instruction in 
program memory. Unconditional branch instructions always go somewhere else. The RISC-V jump-type 
instructions always go somewhere else (such as in a subroutine call); the conditional branch instructions may or 
may not so somewhere else based on some condition of the hardware (such as in an if/else) construct.  

8.6.1.2 Load & Store 

This is classic computer vernacular that you need to become familiar with. Loading refers to reading something 
out of memory and writing the data to another memory location such as a general-purpose register (loading). 
Storing refers to copying something from somewhere such as a general-purpose register and writing that data to 
memory (storing). We have 32 registers to work with, and we try to do most of our number crunching with 
registers because they are “faster” than working with memory (a topic for another section). When we run out of 
registers but still need extra storage, we must load and store data from memory.  

The RISC-V MCU of course has I/O. There are several approaches that computers use to perform I/O; the RISC-
V MCU uses what we call “memory mapped” I/O. Because of this, we don’t need instructions dedicated to doing 
I/O. However, what we need to do is use the load instructions for inputting data from the outside world, and use 
the store instructions for outputting data to the outside world. This works by configuring the hardware to not do 
normal memory access operations when certain memory addresses are access (once again a topic for another 
chapter).  

8.6.1.3 Operations 

Computers, and particularly the CPUs in computers, are responsible for “crunching” numbers, or doing special 
“bit manipulations”. These operations include operations such as adding, subtracting, ANDing, ORing, shifting, 
etc. The RISC-V MCU has a set of instructions dedicated to crunching numbers. The important thing to note 
here is that we can only do number crunching using registers. This means if you have numbers in memory that 
need crunching, you first must load them from memory to the registers.  

8.6.1.4 Auxillary 

There are also a set of instructions that are hard to place in any of the previous classifications, so we refer to 
them as the auxillary instructions. Most of these instructions “set up” the hardware to do the right thing when 
other instructions are executed. These will make more sense when we describe them in a meaningful context.  

8.7 Instruction Types 

We consider the RISC-V MCU to have two types of instructions, which we refer to as “base instructions” (or 
just instructions) and “pseudoinstructions”. The hardware only understands the base instructions, but we can use 
pseudoinstructions to make our programs more understandable to the human reader. The assembler is 
responsible for converting pseudoinstructions into base instructions. Someone designed the RISC-V MCU 
instructions to be very versatile; as a result, we can use those instructions to perform special operations; we give 
these operations new mnemonics of their own and call them “pseudoinstructions”. Figure 8.5(a) uses shading to 
indicate pseudoinstructions.  

The assembler is responsible for translating the pseudoinstructions into real instructions, or a “set” of real 
instructions. There are two types of pseudoinstructions: ones that translate into one real instruction, and ones that 
translate into two real instructions. 

8.7.1 Instruction Formats: High Level 

We generally consider instructions to “operate” one thing; we thus refer to the things the instructions operate on 
as the “operands”. The different instructions in the RISC-V MCU ISA require a different number of operands to 
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do their work, depend on what the instruction needs to do. Figure 8.6 shows examples of the various numbers of 
operands associated with a few example instructions. Generally speaking, the operands are data that exist 
somewhere, such as in a register or memory, though there is more to it than that. We once again get into the 
details in a later section.  

# of 
Operands Example Comment 

0 ret Pseudoinstruction; translates one instruction  

1 call   imm Pseudoinstruction; translates two instructions 

2 lui  rd,imm Real instruction 

3 and   rd,rs1,rs2 Real instruction 

Figure 8.6: Examples of various numbers of instruction operands.  

8.7.2 Instruction Operand Addressing 

This is a common term when dealing with assembly languages, so common that we often forget what it really 
means. ISAs have “addressing modes”, which is a technical way to state how the instruction specifies where to 
find the data associated with a given operand that the instruction uses. Once again, think back to the 
programming model for the RISC-V MCU; there are resources that instructions can manipulate, but the 
instructions need to be able to specify the exact location of those operands. Table 8.1 shows examples of RISC-
V MCU addressing modes.  

Address Mode Instruction Form Comment 

immediate jal   rd,imm Uses an immediate value as an operand  

register add   rd,rs1,rs2 Uses register locations to specify operands 

indexed lbu   rd,imm(rs1) Uses in immediate and value and register 
contents to generate operand  

Table 8.1: Various addressing modes and descriptions.  

8.8 Instruction-Related Terminology 
We’re almost to the point of learning some of the details associated with instructions. When you read about the 
instructions associated with any computer hardware, you typically run into a common “vernacular” that the 
documentation uses to describe that hardware. The same is true for the RISC-V MCU. This section describes that 
vernacular in enough detail to help you understand the lower-level details once we get there.  

8.8.1 Changing Stored Values 

All instructions in the ISA change the value of at least one stored item listed in the programming model. Figure 
8.7 shows the RISC-V MCU programming model, which once again shows there are three main classifications 
of what the instructions can change:  

General Purpose Registers: There are 32 general-purpose registers that instructions access to 
store data that is not stored in Memory.  

Program Counter (PC): the program counter contains the address in memory of the instruction 
that the computer is currently executing. The PC advances “normally” in sequential instruction 
access, but can also load new values to support program control instructions such as jump and 
branch instructions.  

Memory: Memory changes primarily when we store values into it (write operations). There are 
two ways to transfer non-instruction data into memory 1) copy data from a register (a store 
operation), and 2) input from the outside world (an input operations). Similar, there are only two 



FreeRange Computer Design  Chapter 8 

 

 - 196 -  
 

ways to copy data in memory to some other area: 1) copy data from memory to a register (a load 
operation), and 2) output data from memory to the outside world (an output operation).  

Control and Status Register (CSR): we’ll discuss this in further detail later 

 

 

Figure 8.7: The RISC-V MCU programming model.  

8.8.2 Alternate Register Names 

Figure 8.7 shows the 32 general purpose registers. These registers form the basis of number crunching in the 
RISC-V MCU. Although we consider these registers to be general purpose, by convention in the RISC-V MCU 
specification, we consider some of these registers to have alternate purposes, so we give these registers 
alternative register names. The different register names once again make your program more understandable to 
humans reading your code. The assembler is responsible to interpreting register names and generating the correct 
machine code for all instructions. You can use either form of register names in your program, but you should use 
the ones that make the most sense. Table 8.2 shows the registers listed with their standard “x#” designation and 
their alternate definition. Here is some information to know about these alternate definitions:  

 Register x0 is hardcoded to 0 (the number zero). You can read from this register, but you can’t 
write to it.  

 Several registers are special for reasons of varied importance. For this reason, x1 and x2 should 
not be considered general purpose (meaning, don’t use them). We’ll tell you the reasons later 
when it makes more sense.  

 The acronym “ABI” stands for “Application Binary Interface” and is common in the RISC-V 
documentation. We use it here, but may never use it again.  

 Many of the ABI registers have standard alternative uses besides x1 & x2. We’ll talk about 
those later as well.  

reg ABI reg ABI reg ABI reg ABI 
x0 0 x8 so/fp x16 a6 x24 s8 
x1 ra x9 s1 x16 a7 x25 s9 
x2 sp x10 a0 x18 s2 x26 s10 
x3 gp x11 a1 x19 s3 x27 s11 
x4 tp x12 a2 x20 s4 x28 t3 
x5 t0 x13 a3 x21 s5 x29 t4 
x6 t1 x14 a4 x22 s6 x30 t5 
x7 t2 x15 a5 x23 s7 x31 t6 

Table 8.2: Official and alternate general-purpose register names.  

8.8.3 Source and Destination Designations 

Many of the RISC-V MCU instructions both access and change register values. The general approach is that 
instructions may access data in one or two registers, and use that data to alter the data in another register. We 



FreeRange Computer Design  Chapter 8 

 

 - 197 -  
 

refer to the registers that instructions access but do not changed as source registers; we refer to the registers that 
instructions change as the destination register. There can be more than one source register but there is never 
more than one destination register (some instructions don’t have destination registers). Instructions use special 
definitions when referring to source and destination operands. Table 8.3 shows examples of instructions and their 
operand specification and usage. Note that in Table 8.3, we use the vernacular “rd” and “rsx” to designate 
destination and source operands, respectively. Don’t worry about what the instructions do; you only need to 
consider the form and names of the operands.  

Instruction Form Comment 

jal   rd,imm No official source operand designation; we 
consider the “imm” value to be a “source” 

add   rd,rs1,rs2 Two source operands listed as rs1 & rs2.  

lbu   rd,imm(rs1) One source operand; the “imm” value is part 
of the source operand calculation  

addi   rd,rs1,imm One source operand; we consider the “imm” 
value to be a “source” operand 

Table 8.3: Example instructions showing source and destination operands.  

 

8.9 Embedded Systems Programming 

As we get closer to talking about actual programming, let’s describe the ultimate goal. Most assembly language 
programs end up in some embedded system. An embedded system is a computer-based system that requires no 
outside user intervention in order for it to run properly. This means the system fires up into a working state and 
stays working for as long as the system remains powered. Note that this is different from what you may be 
familiar with in your higher-level language programming courses. The programs you wrote in those courses 
typically did something relatively useful, and then “ended”. The notion of most embedded systems is that the 
program they are running never ends, unless of course you remove power from the circuit. The reality of 
embedded systems is that they just sit there waiting to react to inputs or conditions from the outside world.  

8.9.1 Software vs. Firmware 

Often times when you’re generating source code, a question of semantics often arises. When you are writing 
code, are you writing “software” or are you writing “firmware”? Regardless of the particular hardware you’re 
writing the code for, some portion of memory in the computer you’re programming is dedicated to the storage of 
your program. The instructions that make up your program tell the computer exactly how to process data and 
what to do with the data it processes. If the user can change program memory, we consider the program stored in 
memory as software and we refer to the computer system a general-purpose system. If the user cannot change 
the program in program memory, we consider the program as firmware, as it was written for a single purpose 
computer3.  

Another way to view the software vs. firmware argument considers the target platform. In other words, if you’re 
design code that can run on any computer, you’re probably writing software. If your program only runs on a 
specific piece of hardware, then you’re probably writing firmware. I remember this by thinking about a program 
that blinks an LED or writes to a display on a given board. The odds are slim that another piece of hardware will 
have that same display or same LED, which makes the code you wrote hardware specific, which means it’s 
firmware. If your program runs on every PC in the world, then you’ve written software.  

                                                           
3 The reality is that most people use the term software in reference to true software or true firmware. In most cases, this is OK 
because you know what the person using this term intended because of the context it was used in. The term firmware, on the 
other hand, is never used to mean software. The biggest mistake that people generally make is that they think that firmware 
has a direct connection to assembly language programming. The reality is that firmware can be in the form of assembly 
language or a higher-level language (or both). Don’t fall into this trap.  



FreeRange Computer Design  Chapter 8 

 

 - 198 -  
 

Many people mistakenly conclude that they are writing firmware if they simply writing their source code using 
an assembly language. According to the definitions of firmware and software, you can write firmware using 
either assembly language or a higher-level language. Likewise, you can also write software using either 
assembly language or a higher-level language.  
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8.10 Chapter Summary 

 

 The act of designing an instruction sets is an independent action of designing the hardware that will be able 
to execute those instructions.  

 There are three main parts of an assembly language program: 1) comments, 2) assembler directives, and 3) 
the assembly source code. Comments are messages from the programmer to other humans attempting to 
understand the code. Assembler directives are message from the programmer to the assembler. The 
assembly source code is messages from the programmer to the underlying computer hardware. 

 Labels in assembly language programming act as both messages to the assembler and messages to other 
humans, depending on how the programmer decides to use them.  

 Meaningful assembly source code is neat, structured, and highly organized. It’s easy to write crappy 
assembly language code, but a much better idea is to follow some basic formatting rules to make you source 
code highly readable and understandable. One the best approaches to generating good source code is to use 
comments to describe what you’re doing and delineate different sections of the code. All languages have 
associated style-files that show what good assembly code looks like; be sure to access the style-file 
associated with any assembly code you work with.  

 The instructions in a computer control the computer hardware in meaningful ways. This roughly means that 
the instructions control the flow of data through the computer in order to help the computer obtain a 
meaningful result. A typical computer has relatively many assembly language instructions, but those many 
instructions can be divided into just a few groups based on what the instructions do in the hardware.  

 Assembly code is often associated with embedded systems programming. In typical embedded systems, the 
associated program never terminates. Likewise, the RISC-V instruction set has no instruction that stops 
execution of any running program.  

 We can divide the source code for any given assembly language program into various sections, which are 
standard in embedded systems programming. The two sections discussed in this chapter are, 1) the 
initialization code, and, 2) the main code. Every assembly language program should have these two sections 
clearly labeled.  
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8.11 Chapter Exercises 

 

1) In terms of instruction set design, briefly describe the two types of computer that someone may ask you to 
design.  

2) In terms of instruction set design, briefly describe why it is “easier” to design a specific purpose computer as 
opposed to a general-purpose computer.  

3) Briefly describe why the design of an instruction set is an independent function of design hardware that 
could implement that instruction set.  

4) What is the range in the number of operands that RISC-V instructions can have?  

5) List and briefly describe the three parts of an assembly language program. 

6) An assembly langue program must include assembly code; briefly describe the main purpose of the other 
two parts of an assembly language program.  

7) The three parts of an assembly language programs provide “messages” to various entities. Briefly describe 
those entities and the associated messages.  

8) What is the first comment that every assembly language source code file should contain.  

9) Briefly describe why it is that embedded systems program rarely terminate unless you power-down the 
hardware.  
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9 Assembly Language Programming Operations 
 

9.1 Introduction 

I’ve been at this juncture before: how am I supposed to teach assembly language programming? A few comments. 
First, it’s hard to teach anything when not in the correct context. The correct context is that we generally write 
programs to solve problems. Even though we know that computers solve problems, we don’t know how to write 
assembly language programs, so we can’t solve any problems yet. We know there are bunches on instructions, and 
we’ve probably programmed using a higher-level language, but assembly language is significantly different and 
it’s hard to make the connection between this strange new language and problem solving. Second, so much of the 
information you need to program in assembly language is based on other information that you don’t know yet.  

The solution is to start somewhere. If it seems strange at first, please know that it will seem less strange as you 
understand more and start writing actual assembly language programs. My feeling is that you should read a lot of 
stuff relatively fast in order to get a feel for the material, then go back and read it slowly so that you completely 
understand the material.  

 

Main Chapter Topics 

 INPUT/OUTPUT: This describes the various approaches in to performing input and 
output operations, with an emphasis on memory mapped I/O, which is the approach 
the RISC-V architecture uses.  

 INTRODUCTION TO INSTRUCTIONS: This chapter introduces the first set of basic 
RISC-V commonly used in assembly language programs, including data transfer and 
bit-crunching instructions.  

 MEMORY ACCESS INSTRUCTIONS: This chapter introduces the instructions that the 
RISC-V MCU uses to access main memory.  

 MICROCONTROLLER INPUT/OUTPUT: This chapter describes the basic forms of 
input/output architectures, with an emphasis on memory-mapped I/O.  

 

Why This Chapter is Important 

This chapter is important because it represents an introduction to the RISC-V instruction 
set in such a way as to be able to write basic RISC-V programs.  

 

9.2 Basic Instructions and Usage 
Recall that a computer is roughly a device that inputs data, churns it around, and then outputs it. This being the 
case, the approach we’ll take to introducing assembly language programming is to start with instructions that input 
and output data, and instructions that crunch data. Our goal here is to present some basic functionality in order to 
be able to present/describe the remainder of RISC-V instructions in a more meaningful context. This is going to be 
easier than it sounds. We’ll start with a data transfer instructions and then move onto data crunching instructions.  

9.2.1 The First Data Transfer Instruction 

The heart of the RISC-V data crunching mechanism is the set of registers, which we refer to at the register file (or 
reg file). What you’ll see is that all data crunching operations in the RISC-V involve the registers. For this 
discussion, the most basic data crunch is the transfer of data from one register to another, with some crunching in 
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between. For this operation, we don’t actually crunch the data, but we do move the data around, which is an 
operation we actually do quite a bit in assembly languages.  

We chose this data transfer because it illustrates two points. First, we see our first assembly language instruction, 
which we find out is actually a pseudoinstruction. Second, we examine the base instruction the assembler uses to 
implement the pseudoinstruction.  

9.2.1.1 The mv Pseudoinstruction 

Transferring data from one register to another is probably the most basic operation on the RISC-V MCU. We use 
the mv instruction to make register-to-register transfers, with the notion that we’re “moving” data from one register 
to another (hence, the symbolic name “mv”). Table 9.1 shows most of the useful forms of information regarding 
the mv instruction. Here is some other information about Table 9.1:  

 The Instruction Form column shows the basic form of the instruction, where rd is the destination 
register and rs1 is the source register. Some instructions have two source registers, which is why we 
attach a ‘1’ to the rs.  

 The RTL column shows what the instruction does using register transfer language. Notice that the 
RTL form highlights the painful notion that the data is transferring from the right operand to the left 
operand1. 

 Table 9.1 also provides two examples of the instruction as it could appear in a program. You can 
see that we replace the rd and rs1 registers from the Instruction Form column with actual RISC-V 
MCU register names. The second example uses alternative register names with the mv instruction 
where t3 and a4 are equivalent names of x13 and x28, respectively.  

 For the top example in Table 9.1, executing the instruction copies the data in register x11 into 
register x10. The data in x11, the source register, does not change. The data in x10 changes2 
because it is loaded with the data from the source register x11. Executing this instruction results in 
the loss of information in x10. 

 
Instruction Form RTL Examples 

mv    rd,rs1 rd ← rs1 mv    x10,x11   # copy x11 into x10 

mv    a4,t3     # copy t3 into a4 

Table 9.1: An overview of the mv instruction. 

Every instruction in the RISC-V MCU instruction set has an extended description in the associated assembly 
language instruction manual. Table 9.2 shows the entry for the mv instruction. The information provided is all 
the pertinent information regarding the mv instruction. Here are the important things to note about Table 9.2:  

 The RTL has a different form, which uses the rd, and rs1 values as indexes into what appears to 
be an array named “X”. This array notation refers to the register file, thus the array in question is 
zero-based and has 32 elements (0→31), which is C (and thus Verilog) notation. Prepare to 
become accustomed to the syntax.  

 There is an extended written description for the instruction, which says what we’ve already been 
saying in the previous verbage.  

 The “Usage” information provides more information in the example. The example reminds us that 
all the registers in the reg file are 32 bits. Note that we place an underscore in the middle of the 

                                                           
1 This is not overly intuitive, but is typical in assembly languages based on the notion that early MCUs first used this right-to-
left notation and most everyone else followed.  
2 Data in x10 will not change if the data in x11 is equivalent to the data in x10 before the instruction executes. I hate to be 
nitpicky, but I thought you’d like to know.  
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eight hex characters, which is an artifact from Verilog that we adopt to make the hexadecimal 
string more readable.  

 The extended description also has a “See Also:” area, which list related instructions.  

 Most importantly, we see that the mv instruction is actually a pseudoinstruction, which is 
significant for several reasons. First, the extended description provides no instruction type or 
instruction format that we see in base instructions. Second, we become interested in which base 
instruction the assembler replaced the mv instruction with to make this work. It so happens that the 
assembler replaces this instruction with an addi instruction, which we’ll talk about next.  

 

mv move (pseudoinstruction – addi) 

RTL: X[rd] ← X[rs1] Form:  mv    rd,rs1 

Description: The mv is a pseudoinstruction based on the addi instruction. The mv instruction copies the contents of the 
source register rs1 into the destination register rd. The contents of the source register do not change. The mv 
instruction is equivalent to the following instruction: “addi      rd,rs1,0”.  

 

Usage: 

      mv    X10,X11      # copy the contents of source register X11 into  
                         #  destination register X10 
                         #   X10=0x021F_3B0D  X11=0345_668A   (before exec) 
                         #   X10=0x0345_668A  X11=0345_668A   (after exec) 

See Also: addi 

Table 9.2: The description of the mv instructions from the RISC-V MCU assembler manual. 

 

Example 9.1: mv Code Fragment 

Write a fragment of RISC-V assembly language code that does the following three operations:  

1) Copies value in register x20 to register x21 

2) Copies value in x31 to x2 

3) Clears the value in x10 

Solution: Figure 9.1 shows the solution to this example. There are several particularly important things to note 
about this solution:   

 The code is only a fragment; it’s not a program or a subroutine. Additionally, the choice of registers 
used in this example is arbitrary, except for the x0 register (see comment below).  

 The mv instruction on line (02) copies the value in register x20 to register x21. The previous value in 
register x20 is lost because the instruction overwrites it with the value in x21. The instruction does not 
change the value in x21. Yes, this does feel backward in that the instruction copies the operand on the 
right into the operand on the left. This is an artifact from early computer days but is common practice 
in most computer hardware documentation.  

 The mv instruction on line (04) copies the value in x31 to x2. The previous value in x2 is lost; the 
value in x31 does not change.  
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 The instruction on line (06) clears the value in x10 because the value in register x0 is always zero. We 
have a choice of instructions when clearing register values, but using the mv instruction is the best 
approach to setting any register value to zero.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    mv   x21,x20         # copies value in x20 to x21  1) 
   
    mv   x2,x31          # copies value in x31 to x2  2) 
     
    mv   x10,x0          # clear value in x10 (make zero)  3) 
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.1: Solution for this example. 

 

9.2.2 The Second Data Transfer Instruction 

The mv instruction provided a means to transfer data from one register to another register. While, this is useful, it’s 
not always what programmers need to do. Another major form of data transfer is from an immediate value to a 
register. We perform this data transfer using the li instruction. Table 9.3 shows an overview of the li instruction. 
The high-level view of this instruction is relatively simple so we won’t provide an in-depth description.  

Instruction Form RTL Examples 

li     rd,imm rd ← imm li    x10,0x23          # put 0x23 in x10 

li    x12,0x1100C000    # put 0x1101C000 in x12 

Table 9.3: An overview of the li instruction. 

The li instruction is similar to the mv instruction in that it is a pseudoinstruction. There is an important difference, 
which is worth knowing to programmers. While the assembler instruction always translates the mv instruction to a 
single base instruction (addi), the assembler translates the li instruction to either one or two base instructions. 
The assembler translates the li instruction to an addi instruction if the associated immediate value can be 
represented using 12 bits (the width of the immediate field in the addi instruction). If the associated immediate 
value can’t be represented using 12 bit, the assembler translates the li instruction to two base instructions (addi 
& lui). Table 9.4 shows the assembler manual entry for the li instruction. Here are a few things to note 
regarding the li instruction: 

 Programmers should remain aware of the fact that the size of the immediate value in the li 
instruction determines how many base instructions the assembler uses to represent the li 
instruction. The notion here is that we always try to write programs that are both space efficient and 
time efficient; reducing the number of instructions in our programs generally does both.  

 Yes, there are some underlying details involved with the actual encoding of the li instruction. Note 
that we opted to not describe the lui instruction as part of our li instruction overview. The good 
news is that we can use the li instruction without worry because the assembler makes the one vs. 
two-instruction decision for us once it determines the size of the imm value operand in the li 
instruction.  
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li load immediate (pseudoinstruction – addi) 

RTL: X[rd] ← imm Form:   li    rd,imm 

Description: The li instruction writes an immediate value to the destination register rd. This is an 
pseudoinstruction and is equivalent to the following instruction: “addi    rd,X0,imm” if the immediate value can 
be represented with the 12-bit immediate field in the addi instruction, or a combination of two instructions (addi & 
lui) if the immediate can’t be represented by a 12-bit immediate value.  

 

Usage: 
      li   X9,1023   # write an immediate value into destination register X9    
                     #     X9=0x021F_3B8A                  (before exec) 
                     #     X9=0x0000_03FF                  (before exec) 

See Also: addi, lui 

Table 9.4: The assembler manual entry for the li instruction. 

 

Example 9.2: li Code Fragment 

Write a fragment of RISC-V assembly language code that does the following three operations:  

1) Loads the value -1 into value in register x10  

2) Places the value 0x134FADE8 into register x28  

3) Copies the value -0x34 into register x17 

Solution: Figure 9.2 shows the solution to this example. And yes, there are several particularly important things to 
note about this solution:   

 This code fragment provides three examples of a li instruction, yet the problem states three different 
accepted forms of vernacular to describe the problem.  

 The instruction on line (2) places 0xFFFFFFFF into x10. The RISC-V uses 2’s complement notation 
for representing negative numbers. The assembler makes the translation from signed decimal in the 
code to 32-bit 2’s complement in the actual hardware.  

 The instruction on line (4) places the 32-bit hex value into register x28; no need for fancy translations 
here.  

 The instruction on line (6) places the 2’s complement representation of -52 (-0x34) into register x17. 
The actual value placed in x17 is 0xFFFFFFCC, which is -52 in 2’s complement notation. The 
assembler handles all the base conversions for us relatively mathematically challenged humans.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    li   x10,-1          # copies value in x20 to x21 
  
    li   x28,0x134FADE8  # copies value in x31 to x2 
     
    li   x17,-0x34       # clear value in x10 (make zero) 
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.2: Solution for this example. 

 

9.2.3 The First Data Crunching Instruction 



FreeRange Computer Design  Chapter 9 

 

 - 206 -  
 

The first instruction we looked at was a data transfer instruction, which turned out to be a pseudoinstruction. When 
we look deeper at the mv instruction (or read the assembler manual description), we see that when we use a 
pseudoinstruction such as mv, the assembler replaces it with a base instruction. In this case, the assembler replaces 
the mv instruction with the addi base instruction.  

We refer to the addi instruction as an “immediate” instruction because one of the operands is an immediate 
value and it uses that operand to calculate the value it places in the destination operand. The mnemonic for 
the instruction includes the word “add” which indicates to humans that this instruction is adding two values. 
The “i” at the end of mnemonic indicates that one of the operands appears in the instruction as an immediate 
value rather than being located in a register. Table 9.5 shows preliminary information about the addi 
instruction with several examples. The important issues in Table 9.5 include:  

 The instruction form column shows the instruction using both immediate and register addressing. 
One of the source operands is rs1, where the “r” implies that the data is in a register. The other 
operand is “imm”, which implies the other operand is provided in the instruction as a number. The 
destination operand, rd, once again has an “r” prefix, which means the instruction places the result 
of the addition into the destination register.  

 The RTL column shows that the instruction adds the two source operands (rs1 & imm) and 
“transfers” the result to the destination register. The addi instruction does not change the source 
operands and can only change the destination operand.  

 The four examples show typical usage of this instruction as it would appear in a source code listing.  

1) The first example uses a “0x” prefix to indicate that we are listing the immediate value in 
hexadecimal. The example instruction only lists two hex characters in an effort to save space, 
but could have listed more characters. As you see later, there are limitations on the magnitude 
of the immediate value for this instruction.  

2) The second example uses alternate register names and specifies the immediate value in 
decimal. Note that the assembler interprets numbers without escape character prefixes (such 
as “0x”) as decimal.  

3) The third example shows that the destination register can also be the source register3. In this 
example, unlike the other examples, the value in the source register does change because the 
source and destination registers are the same. We use this example extensively in assembly 
language programming because it represents a decrement of register x15.  

4) The fourth example is of special interest to us because when we use the mv pseudoinstruction, 
the assembler translates that instruction to something like this example (only the destination 
register name is different). The instruction completes a “move” by using zero as an immediate 
value; when we add zero to the source register, it does not change the value in the source 
register and the result of the addition is stored in the destination register. In other words, the 
instruction copies the value in the source register to the destination register.  

                                                           
3 Use of a source register as a destination register is very common in assembly languages. It’s easily described in hardware, but 
we’ll save that description for another chapter.  
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Instruction Form RTL Examples 

addi    rd,rs1,imm rd ← rs1+imm addi   x12,x11,0x75  # add 0x75 to x11; 
                     #  store result in x12 
 
addi   a2,t1,34      # add 34 to t1; store  
                     #  result in a2 
 
addi   x15,x15,-1    # add -1 to x15; store  
                     #  result in x15 
 
addi   x20,x25,0     # transfer x25 value to x20 

Table 9.5: An overview of the addi instruction. 

The addi instruction also has a complete description in the assembler language instruction manual. We’ve 
included the entry for the addi instruction in Table 9.6. There is some very important information in the addi 
instruction description that was no in the mv description based on the fact that addi is a base instruction while mv is 
a pseudoinstruction. Here are the important differences:  

 We know that the instruction adds a register value to an immediate value, but there is more to it than 
that. The registers are 32 bits wide, but the magnitude of the immediate value is limited to 12 bits, 
which we can see from the image in the “instruction format” row. Additionally, the assembler 
interprets the 12-bit immediate value as a signed value, which means the assembler is going to 
interpret the left-most bit of the 12-bit value as a sign bit. Because the instruction is doing 32-bit 
arithmetic, the hardware sign extends the 12-bit value to create a 32-bit value before it does the 
addition, which the RTL description states with the “sext(imm)” notation 4. 

 The Instruction Format row contains two types of information worth noting. First, the addi 
instruction is an “I-type” instruction, which is one of the six instruction formats used in the RISC-V 
ISA. The row also shows an image of the underlying bit values for the instruction. Recall that the 
assembler translates each mnemonic such as “addi” and associated operands into machine code. 
The image in this row shows the associated machine code for this instruction. From that machine 
code, you can see that there is only 12 bits available to encode the immediate value associated with 
the instruction. Also, some areas have numbers in them (opcodes) and some areas have labels in 
them (field codes); these are hardware issues that we don’t need to be aware of as programmers and 
we’ll thus discuss them in the hardware portion of this text.  

                                                           
4 The use of “sext” is common in the RISC-V documentation and we always interpret this as sign extension. Recall there is also 
a notion of zero-extension. 
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addi addition with immediate 

RTL: X[rd] ← X[rs1] + sext(imm) Forms:   addi    rd,rs1,imm   

Description: The add instruction performs an addition operation on the operand rs1 and the immediate value and stores the 
result in the destination operand rd. The instruction overwrites value in the destination operand; the source operand is not 
affected unless it specifies same register as the destination. The 12-bit immediate value is sign-extended before addition. 
Both source operands are treated as signed values in 2’s complement format. The addi instruction ignores any arithmetic 
overflow resulting from the operation. 

 

Instruction 
Format 
(I-type)  

  

Usage: 

     addi  X10,X11,0x0DC  # addition of values in X11 to 0xDC 
                          # result stored in X10; X11 is not affected. 
                          # X10 = 0x0000_0045  X11 = 0x0000_0024    (before exec) 
                          # X10 = 0x0000_0100  X11 = 0x0000_0024    (after exec) 

See Also: add, sub 

Table 9.6: The description of the addi instruction from the RISC-V MCU assembler manual. 

 

Example 9.3: addi Code Fragment 

Write a fragment of RISC-V assembly language code that does the following three operations:  

1) Add the value 0x12345678 to register x29 and store the result in x11 

2) Increment the value in register x15 

3) Decrement the value in register x22 

4) Subtract the value of 30 from register x12 and store the result in x8 

Solution: Figure 9.3 shows the solution to this example. And yes, of course, there are several particularly 
important things to note about this solution:   

 This code fragment provides four examples of typical addi instruction usage but uses some new and 
interesting wording.  

 The instruction on line (2) adds 0x12345678 to the value in register x29 and stores the result in register 
x11. The instruction does not alter the value in x29 but does alter the value in x11.   

 The instruction on line (4) adds 1 to the value in x15, which is a classic “increment” operation. This 
instruction uses x15 as both a source operand and destination operand, which is typical in assembly 
language programming.  

 The instruction on line (6) subtracts 1 from the value in x17 (same as adding -1), which is a classic 
“decrement” operation. The assembler handles all the knarly 2’s complement details.  

 The instruction on line (8) subtracts 30 from the value in x12 and stores the result in x8. The 
instruction does not alter the value in x12. The assembler does the all the 2’s complement conversions 
for us wimpy human programmers.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    addi   x11,x29,0x12345678   # adds 0x12345678 to value in x11 
  
    addi   x15,x15,1            # increments value in x15 
     
    addi   x17,x17,-1           # decrement value in x17 
 
    addi   x8,x12,-30           # subtract 30 from x12; store result in x8 
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.3: Solution for this example. 

 

9.2.4 Memory Related Data Transfer Instructions 

One of the three computer subsystems is “the memory”. When we refer to memory in the RISC-V MCU 
architecture, we refer to the larger structured memory, or the “main memory”. There are other memory resources 
such as the program counter, the register file, the control unit, etc., but when we say “memory” in the context of 
the RISC-V MCU, we are generally referring to the large memory.  

Since this section of the text deals with programming, we prefer to deal with the RISC-V MCU programming 
model, which we show in Figure 9.4. The programming model shows the resources available to the programmer, 
which the programmer can control using instructions in the instruction set. As you can see in Figure 9.4, all of the 
instruction-controllable features in the RISC-V MCU are sequential elements. Additionally, Figure 9.4 also shows 
that main memory serves two purposes: stores the program (PROGRAM) and stores data (STACK & DATA). The 
diagram lists the overall size of main memory as 16k x 32, but there is more to that number, which we’ll discuss 
shortly.  

 

Figure 9.4: The RISC-V MCU programming model.  

9.2.4.1 RISC-V Main Memory 

The main memory in the RISC-V OTTER serves two purposes: part of it stores the program, and other parts of it 
store data. The non-program storage part of memory also supports hardware related items such as the stack and 
heap, which are items we deal with in a later section. Memory is memory; there is nothing inherently special about 
it other than the fact that is stores data. The implication here is that we can use instructions to write to that memory 
and read from that memory, which are actions that fall under the category of data transfers. Recall that storing data 
is a write operation that changes a value in the memory, while loading data is a read operation that does not change 
any data in the memory.  

The RISC-V main memory is quite specialized. It’s a memory in the sense that you can read from it and write to it, 
but it’s special in the way is stores/access program memory and data memory. Most of these details are out of the 
scope of the programming section of this text, so we save them for another chapter. The overall size and 
accessibility of memory are two issues that we need to mention here, as programmers need to be aware of the 
details.  

The main memory stores both instructions and data. When we state the capacity of main memory, we generally do 
so using two different metrics. All RISC-V MCU instructions are 32-bits wide, so all memory accesses associated 
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with instruction memory output are 32-bits. This being the case, we often refer to main memory as being 16k x 32; 
this means the memory can hold 16k instructions with each instruction being 32 bits wide. On the other hand, the 
main memory also stores data. The “data” portion of the memory is byte addressable, which means we can access 
(read and write) individual bytes. Because of this, it sometimes makes more sense to speak of the memory capacity 
in terms of bytes, or 64k x 8. Note that the overall bit capacity is the same, but we refer to it using two different 
metrics depending on context.  

9.2.4.2 Accessing Main Memory Data 

There are two things you can do with memory, read it and write it. In computer terms, we refer to reading data as 
“loading” data, which generally means we read data from memory and copy it somewhere without changing the 
data in memory. We refer to writing data as “storing” data, which generally means we copy data from somewhere 
and overwrite some data currently in memory. The notion of instructions that access data include two types of 
instructions: load instructions that read data from memory, and store instructions that write data to memory. Here 
are the two most important things to note about load and store instructions in the RISC-V ISA:   

1) Load and store instructions always involve registers. More specifically, load instructions read data 
from memory (a read operation) and copy that data into a register (the value in memory does not 
change, the value in the register does). Store instructions copy data from a register into memory (a 
write operation), which necessarily changes that value in that specific memory location but does not 
change the source register.  

2) Once again, memory is memory, so any read or write operation (load or store) means we’ll need to 
provide an address to read or write from. Additionally, if we’re writing to memory (store), we need 
to also provide the data. For read operations (loading), we need to provide a destination to copy the 
read data to. Yes, memory has control signals also, but the underlying hardware takes care of those 
details for us programmers.  

Loading and storing information from/to memory on the programming level is not much different from the same 
actions on the hardware level. While we don’t have to worry about the underlying control signals, we are 
responsible for specifying an address of the data in memory we’re accessing, and a place to put that data (loading) 
or a place to get the data from (storing). The RISC-V ISA uses special notation for accessing memory; this notation 
is similar for both load and store instructions. The similarity is that the instructions specify the memory address in 
the same way; the differences are that the load and store instructions specify a destination or source register, 
respectively. Table 9.7 provides an overview of the load and store-type instructions. Here are the important things 
to note in Table 9.7:  

 Both instructions use the same specific syntax to allow the programmer to specify the memory 
address for the memory access instruction. The memory address is a summation of the “imm” value 
(immediate) and the source register (rs1). In the case of memory access instructions, the base 
register is a source register. The base register holds a 32-bit value, but the assembler encodes the 
imm value as a signed 12-bit value, so the imm value is sign-extended before the hardware adds it to 
the base address. This of course means that the immediate value can be a negative number, which 
we’ll see later in some actual examples.  

 The left-most operand in the load-type instruction is the destination register, which is the register 
where the instruction copies the data from memory into. The left-most operand in the store-type 
instruction is a second source register, which holds that data that will be copied into the memory at 
the address specified by the right-most operands.  

 Both forms of memory access instructions use what we refer to as “indexed addressing”. The notion 
here is that the imm value is an index, which uses the rs1 source operand as an “initial address”. We 
typically refer to the imm value as an offset and address source operand as the base address. This 
type of addressing mode is common in assembly languages.  
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Load-type instructions Store-type instructions 

  

(a) (b) 

Table 9.7: Overview of the load and store-type instructions. 

There are five types of load instructions and three types of store instructions in the RISC-V ISA. In order to keep 
this discussion simple and uncluttered, we’ll only be discussing the lw (load word) and sw (store word) 
instructions in this section. Table 9.8 shows an overview of these two instructions including examples.  

Load 

Instruction Example Comment 

lw    rd,imm(rs1) lw    x7,-4(x22) Loads word from memory address = (-4 + value in x22) into x7 

Store 

sw    rs2,imm(rs1) sw    x5,0x34(x8) Stores contents of x5 into memory address = 52 + value in x8) 

Table 9.8: An overview of lw and sw instructions. 

 

Example 9.4: Code Fragment Using lw & sw Instructions 

Write a fragment of RISC-V assembly language code that does the following three operations:  

1) Copies the data in main memory address 0x0000F004 to x13 

2) Copies the value in register x16 to the main memory address stored in x18  

3) Copies the word two words past the main memory address in x20 to x31 

4) Stores the value in x18 to main memory address 0x24  

Solution: Figure 9.5 shows the solution to this example. And yes, there are several particularly important things to 
note about this solution:   

 This code fragment provides four examples of a sw & lw instructions, yet three of the problems do not 
use the words “load” or “store”. Typical MCU vernacular.  

 The instructions on lines (02-03) takes care the of part 1). For this problem, we need to first get the 
address value into a register, which we do on line (02); using x10 was an arbitrary choice. The 
instruction on line (03) then copies the word at the address in x10 into x14, there is a zero offset value 
provided, so the effective address is what is in x10. The instruction does not change the value in x10 
after the instruction on line (02). Note that this operation required two instructions based on the 
magnitude of the address: 0x0000F004 can’t fit into the 12-bit immediate value associated with the lw 
instruction.  

 The instruction on line (05) store the word in x16 into memory at the address in x18. Note there is a 
zero offset value, which means the value in x18 is the effective address.  

 The instruction on line (07) copies the value from eight greater than the address in x20 into x31. In this 
case, the instruction uses the offset to advance the value 8 past the address in x20; the instruction uses 
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“8” because that represents two “words” worth of data based on the number of bytes in two words 
(which is 8). The underlying RISC-V hardware generates the effective address by adding the value of 8 
to the value in x20.  

 The instruction on line (09) stores the value in x18 into address 0x24. In this case, the immediate 
value, 0x24, is the effective address because the instruction uses x0 as the base register.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    li    x10,0x0000F004    # copies value in x20 to x21 
    lw    x13,0(x10)        # load data at address x10 into x13 
 
    sw    x16,0(x18) 
    
    lw    x31,8(x20)        # copies value in x31 to x2 
     
    sw    x18,0x24(x0)      # clear value in x10 (make zero) 
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.5: Solution for this example. 

 

9.3 Input/Output (I/O) 

The architectural diagram Figure 9.6 represents another model of a basic computer system. You can see that the 
microprocessor is able to communicate with the other blocks in the computer system. For this section, we are 
mainly interested in how the microprocessor communicates with the outside world in the context of the RISC-V 
MCU instruction set. Keep in mind that the only reason that computers are useful is because they are able to 
communicate with the outside world. It’s true that computers crunch data really fast, but this speed would be 
useless if it were not able to transfer data such as results to and from the external environment. Lastly, also keep in 
mind that there are many hardware aspects to this communication that we’re omitting from this section and leaving 
for our hardware-related discussion of the I/O. 

Communications with the outside world occur through the I/O block as Figure 9.6 indicates. The microprocessor is 
responsible for crunching data and the memory is responsible for storing the program and intermediate results. The 
I/O block is typically a placeholder of sorts; the block does not necessarily imply external hardware is involved. 
Once again, there is a lot to this story; but limit the discussion to what we need to know for this section and cover 
the full details later.  

 

Figure 9.6: Generic computer architecture diagram. 

There are actually several main types of standard approaches for computers to communications with the outside 
world, including, 1) Programmed I/O, 2) Interrupt Driven I/O, and 3) Direct Memory Access (DMA). Below is a 
brief description of each.  

1) Programmed I/O:  Programmed I/O falls into one of two main categories: Port mapped and 
memory mapped. These two categories are similar from a programmer’s perspective; their main 
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differences lie in the underlying hardware implementation. We refer to this approach as 
“programmed” I/O because true input or output happens as a result of the program issuing a 
dedicated input or output instruction. The main thing to keep in mind about performing I/O is that 
the MCU is getting (input) from something or giving (output) to something; therefore, the program 
must both state what it is you’re getting or giving and which external devices you’re getting it 
from (input) or giving it to (output). An output-type instruction provides both a source of data 
internal from the computer to output to the outside world, and some type of specification as to 
which external device to output that data to. Similarly, an input instruction provides a destination 
within the microprocessor to receive data from the outside world as well as a specification of 
which external device to receive that data from.  

Each external device (both input and output devices) has a unique value, which we typically refer 
to as an “address” or “port address” that the programmer uses to specify which external device the 
I/O instruction is intending on communicating with. The differences between port mapped and 
memory mapped I/O lies in how exactly you specify the external device you’re performing the I/O 
with (the source for inputting and the destination for outputting). The next two items describe 
those differences in more detail.  

a) Port Mapped I/O: Port mapped I/O uses a “port number”, or “port ID”, or “port_id” to 
specify the external device associated with the given I/O instruction. The port_id is simply a 
number; roughly speaking, the external hardware uses (or, “decodes” maybe be a better word) 
the port_id to “activate” a given I/O device. In this way, every I/O device necessarily has a 
unique port_id number. The port_ids are a function of the hardware; if you’re writing 
assembly code for a given piece of hardware, someone must tell you, the programmer, the 
specific port_ids for the I/O devices associated with your given system. We consider 
architectures that use port mapping as having separate address space for I/O, which may 
seem strange, but makes sense when after you read about memory mapped I/O. Finally, 
typical port mapped architectures have dedicated instructions for I/O, such as IN and OUT 
instructions for input and output operations, respectively.  

b) Memory Mapped I/O: In contrast to port mapped I/O, memory mapped I/O does not have 
dedicated IN-type and OUT-type instructions. The memory-mapped approach uses memory 
access instructions to handle I/O. As you may guess, memory access instructions must 
provide an address in memory of the item you’re trying to write or store (output) or trying to 
read or load (input). In a memory-mapped architecture, the hardware designer configured the 
hardware such that if you read or write from memory using a “special address” associated 
with an external device, you’re not really reading or writing memory; you’re actually 
inputting data from or outputting data to a particular external device, respectively. Each I/O 
device has its own unique address similar to port address in port mapped I/O. In memory-
mapped systems, we consider the I/O to be sharing the address space with the data memory 
(recall that port mapped systems have a separate I/O space). Once again, the hardware 
designer must provide the programmer with the address values associated with various I/O 
devices; you would not know the addresses otherwise.  

2) Interrupt I/O: There are some special issues associated with programmed I/O. In rough terms, the MCU 
is not always inputting or outputting data: it only does so when it needs to. The problem is figuring out 
when it needs to or not. If you don’t use interrupt-driven I/O, the MCU needs to expend clock cycles to 
determine when it needs to do I/O. The problem arises when dealing with input. Many peripheral 
devices require that you “get data from them” when they’re ready to give the data to you. The problem 
is that you generally do not know when such devices are ready to give you data, so the only solution is 
to constantly ask these devices if they’re ready to give you data; we refer to this process as polling. The 
reality is that if your processor is stuck polling something waiting for a response, it means your 
processor is not available to do other things, possibly other really important things5. Another way to 
look at this is that it is a waste of processing power. Wasting processor power is actually not a big deal 
unless there is some other important task that needs doing while you’re polling.  

                                                           
5 Such as restart some dude’s heart… 
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Instead of the processor constantly asking if an input device is ready to provide data, or an output 
device is ready to receive data, it’s better (in terms or processing efficiency) to have the devices tell the 
processor when they’re ready to act. Having devices communicate directly with the processor happens 
via the interrupt mechanism on a given MCU. When a device is ready to communicate with the MCU, 
we generally refer to this as the external device is “requesting service” from the MCU. We refer to this 
mechanism as an “interrupt” because the processor stops what it is currently doing (stops executing the 
code it is currently executing) in order to take care of the device requesting service. This mechanism 
actually switches processing to a different set of instructions when the MCU receives an interrupt. 
When the external device, or “peripheral”6 is satisfied, the MCU returns to the code it was executing 
before it received the interrupt. This is a topic for another chapter; we mention it here for clarity.  

3) Direct Memory Access (DMA): The final type of I/O is another form of I/O that does not require an 
excessive amount of processing power from the processor. This type of I/O is generally associated with 
large data transfers between memory and peripherals (as you may have gathered from the name). The 
idea here is that the processor limits its involvement with transfers. The concept of DMA is relatively 
simple but is more complex in cases where you need to actually design the system that implements it or 
program the device that controls it. 

We can characterize the three types of I/O by what device is in control of handling I/O. For programmed I/O, the 
MCU is in charge. With interrupt driven I/O, some external device is in control. With DMA, some device external 
to the MCU is also in control with “help” from the MCU. Which device is in control of the MCU’s resources is a 
hot issue in the wonderful world of embedded systems.  

9.3.1 RISC-V Memory Mapped I/O  

The RISC-V MCU uses memory mapped I/O. This means that the RISC-V uses memory access instructions to 
perform I/O. More specifically, the RISC-V MCU uses load instructions to perform input and store instructions to 
perform output. What makes a load or store instruction into a memory access instruction is the value of the address 
associated with the instruction. When working with MCUs, there is always a notion of memory address space, 
which MCUs typically defines by providing a memory map.  

Figure 9.7 shows the memory map for the RISC-V MCU. This memory map is important for both programmers 
and hardware people as it shows how the MCU uses the memory spaces associated with the 32-bit addresses or 
“address space”, used by the RISC-V MCU. Figure 9.7 shows that memory addresses 0x11000000 or above are 
associated with the I/O. What you can also see from Figure 9.7 is the notion that the address ranges from 
0x0000000 to 0x0000FFFF refer to actual memory (we’ll discuss the stack, data, and code segments in another 
chapter). It is thus up to the programmer to utilize the address space via the load and store instructions to properly 
access I/O or memory. Keep in mind, the assembler acts on the memory address as written, and does not know 
hardware details such as the difference between memory access and I/O.  

The port addresses for I/O devices have generally been setup by some hardware designer. In other words, they are 
a function of the underlying hardware. For any given piece of hardware that the RISC-V may be running on, the 
hardware designer (or someone with a similar title) needs to provide the programmers with the port addresses such 
that programmers can properly access external hardware, which means properly perform I/O.   

                                                           
6 Devices in digital systems are often referred to as peripherals. This is nothing more than saying that there is a module there 
that is communicating in some way with the processor.  
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Figure 9.7: The RISC-V MCU memory map. 

9.3.2 RISC-V Input & Output Instructions 

This is where it starts to get really confusing. The problem is that we run into vernacular issues once we start 
reusing instructions for more than one purpose. What we have now is input that uses a load instruction, which is 
associated with memory read. Then we have output that uses a store instruction, where the store instruction is 
associated with a memory write. I still toil with this when I use this vernacular. Table 9.9 provides the big 
overview of this vernacular.  

Instruction Operation  Comment 

lw (load)  Memory read Copies data from memory to register 

 input Copies data from outside world to register 

sw (store) Memory write Copies data from register to memory 

 output Copies data from register to outside world 

Table 9.9: Overview of dual purpose load and store instructions. 

We’re ready to look at the actual input and output instructions. Table 9.10 shows the lw instruction used as an 
input and the sw instruction used as an output. Here is some more pertinent information regarding Table 9.10:  

 The instructions can specify any register for source and/or destination. The registers in the example 
are arbitrary.  

 The immediate field associated with both the lw and sw instruction limits the size of the offset. The 
immediate value for both instructions is limited to a 12-bit value, which the assembler interprets as a 
signed value.  

 The base register is a 32-bit value used in the address calculation. The examples in Table 9.10 
assume that the proper data is currently in the base register before hardware executes the lw or sw 
instructions.  
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Instruction Operation  Comment 

lw   x10,0(x23) input 
Inputs data from the port address calculated by adding the 
offset (0) plus base register (x23) into register x10.  

sw   x11,0(x24) output 
Outputs data in register x24 to the port address calculated by 
adding the offset (0) plus the base register (x24)  

Table 9.10: Overview input (load) & output (store) instructions 

We’re ready to show most of the instructions we’ve introduced into actual code. We’re not yet to the point of 
writing actual programs, but we can write “fragments” of programs to illustrate a few points. We’ll do this by way 
of example problems. Here is our first example program having to do with programming.  

 

Example 9.5: Load & Input Code Fragment 

Write a fragment of RISC-V assembly language code that loads a word from memory address 
0x3F4 to register x21, and also inputs a word from port address 0x11008000 to register x16. 

Solution: Figure 9.8 shows the solution to this example. There are several particularly important things to note 
about this solution:   

 RISC-V assembly language uses the “#” symbol for comments; the assembler ignores everything 
following this symbol. There are currently no block-type comments in RISC-V.  

 The code appears strikingly nice. We’ve aligned the instructions themselves. We’ve aligned the first 
operand for each instruction. We’ve aligned the comments. We included white space (blank lines) 
between what we feel are different types of instructions on line (4) and line (6). Everything we’ve 
done with the code takes advantage of the fact that the assembler ignores white space. You can’t see 
it, but we also wrote this code without using tabs, using spaces to indent various items7.  

 When we think “input”, which means input from devices external to the RISC-V MCU, we 
immediately think “load”, which means we need to issue some type of load instruction. Because it’s 
input, some hardware person (or the problem specification) needs to provide us the programmer with 
a port address that we can use to access the input data. The problem description did in fact provide 
us with a port address.  

 The fragment uses two li instructions on lines (02-03) to load values (considered immediate values) 
into two registers. The assembler translates the first li instruction on line (02) into a lui & addi 
instruction because the immediate value can’t be represented using 12-bits. Because the second li 
instruction has an immediate value that we can represent using 12-bits, the assembler translates that 
instruction into an addi instruction.  

 For this problem, we don’t care about the values in x21 & x16 because the two lw instructions 
overwrite them.  

 The form of the two lw instructions on line (05) and line (07) are identical not including the different 
register definitions. Despite looking the same, they are distinctively different. The first lw 
instruction on line (05) performs a memory read while the second lw instruction on line (07) 
performs an input operation. The difference between these two instructions is based solely on the 
value of the address. In the case of the first lw instruction, the address is 0xFFFF or less, which 
makes it a true memory access. In the case of the second lw instruction, the address is 0x11008000, 

                                                           
7 It’s a bad idead to use the tab key when writing code. Different editors (such as those of someone else working on the code) 
and different printers interpret tabs differently. Use the spacebar for indentation and make sure your editor does not 
automatically insert the tabs instead of spaces.  
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so the instruction performs an input operation. Note that the assembler does not know the difference; 
the differences are actually only known to the hardware.  

 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    li   x15,0x11008000    # put 0x11008000 value into x15  
    li   x20,0x3F4         # put 0x3F4 into x20 
     
    lw   x21,0(x20)        # copy value from mem address 0x3F4 to x21 
 
    lw   x16,0(x15)        # input value from port address 0x11008000 to x16  
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.8: Solution for this example. 

 
 

 

Example 9.6: Store & Output Code Fragment 

Write a fragment of RISC-V assembly language code that stores a word in register x29 into memory 
address 0x774; the fragment should also output the data in register x18 to port address 0x1100C000, 
and also inputs a word from port address 0x11008000 to register x16. 

Solution: Figure 9.9 shows the solution to this example. There are several particularly important and informative 
things to note about this solution:   

 The code is similar to the previous set of code in appearance: everything looks great standing two 
meters away. You can’t say enough about having good-looking code, particularly when people 
automatically thing good look code works good8. This is also a fragment of code and not a complete 
program.  

 The code first loads address values into registers using li instructions on line (02-03). One of the 
address values is greater than 0xFFFF so it is necessarily a port address (line 02). The other address 
is a valid memory address because the address is less than 0x00010000.  

 The code on lines (02-03) falls into the category of “initialization code”; we do our best to put values 
into registers that we use often and leave them there without changing them. We try to do it this way 
because these two li instructions don’t really do anything useful, so we want to execute them as 
little as possible.   

 The sw instruction on line (05) performs a memory write operation because the address that is being 
“written to” is less than 0x00010000. We also use a new notation in the comment, which is an array 
notation of sorts, to indicate that the instruction uses the value in x11 as an index into memory.  

 The sw instruction on line (07) performs an output operation, which means it sends the value x18 to 
the outside world (meaning some external device not part of the RISC-V MCU. The RISC-V 
hardware interprets the fact that the address is greater than0xFFFF and essentially implements an 
output operation as opposed to a memory write operation.  

                                                           
8 The also automatically think that bad looking code works poorly. Write good looking code.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    li   x10,0x1100C000    # put 0x11008000 value into x15  
    li   x11,0x774         # put 0x3F4 into x20 
     
    sw   x29,0(x11)        # write value x29 to mem[0x0774] 
 
    sw   x18,0(x10)        # output value in x18 to port address 0x1100C000  
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.9: Solution for this example. 

 

9.3.3 Load and Store: The Complete Story 

Our main mission in this chapter is to give you a general feel for the RISC-V ISA and how “things are done” in 
RISC-V. If you continue in your career with computer-type stuff, you’ll probably find that although computers all 
roughly do the same stuff, they have a different “feel” for how they do things. When you’re learning your way 
around a new architecture, you definitely need to learn both items.  

In order to keep things as simple as possible, we’ve up to this point only presented a subset of the load and store 
instructions in the RISC-V instruction set. The idea behind the other versions of the instructions is the same, so 
we’ll quickly describe these new instructions in this section. Keep in mind that load and store instructions comprise 
of eight of the 40 or so instructions in the RISC-V ISA, which underscores the notion that there are many 
similarities between instructions in the ISA.  

Table 9.11 shows the complete set of load and store instructions in the RISC-V ISA. These instructions differ in 
several different ways, which we of course list below. The main “idea” behind the load and store instructions and 
their relation to memory and I/O remains the same as our previous discussion.  

1) The load and store instructions operate on three different sizes of data. The main memory in the 
RISC-V MCU is byte addressable, which means a byte is the smallest size of data we can access in 
main memory. Although the main memory is byte addressable, memory access instructions can also 
access halfwords (two bytes) or words (four bytes) with a single instruction9. 

2) When we issue a store instruction, the instruction causes the main memory to deal with the required 
width of the instruction based on the exact instruction (sw vs. sh vs. sb). In other words, when you 
store a value from a register, the main memory in hardware only store the proper amount of data 
from the register, which is the lower byte for the sb instructions, the lower two bytes for the sh 
instruction, or the entire register contents for the sw instruction.  

3) Loading words into register from memory is different from storing words. When you store a word, 
you always for from a register (or a known part of a register) to memory, so there are no “extra 
bytes” to worry but. When you load a halfword or a byte from memory into a register, there is a 
question of what to do with the extra bytes. For example, when you load a byte (8 bits) in to a 32-bit 
register, where do not place that byte and what do you do with the bytes in the register that you don’t 
have data for?  

First, the data from memory always fills the right-most bytes in the register, which means when you 
load a byte, the hardware places it into the right-most  of the four bytes in the register. Second, what 
happens to the extra bits when you load a byte or halfword? The answer depends on which 
instruction you use. There are two types of load instructions for loading data lengths other than 
words, which are lb & lbu, and the lh & lhu pairs. The difference, for example, between the lb 
and lbu is what the hardware does with the unused bytes. For the lb instruction, the hardware 
considers the byte a signed value and then sign extends the three unspecified bytes, which means 
copying the sign bit of the byte into all the other 24 bits in the register. For the lbu instruction, the 

                                                           
9 We use the word access to mean both reading and writing to memory.  
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hardware considers the byte to be an unsigned value and zero-extends the value to fill the register, 
which means it placed 24 0’s into the unused bits10. 

Load 

Instruction Example Comment 

lb    rd,imm(rs1) lb    x8,0(x11) 
Loads byte into x8; upper 3 bytes are sign extension of byte; 
Memory address = 0 + value in x11 

lbu   rd,imm(rs1) lbu   x7,14(x23) 
Loads byte into x7; upper 3 bytes are zero extension of byte; 
Memory address = 14 + value in x23 

lh    rd,imm(rs1) lh    x8,4(x21) 
Loads 2-bytes into x8; upper 2 bytes are sign extension of half word  
Memory address = 4 + value in x21 

lhu   rd,imm(rs1) lhu   x6,2(x23) 
Loads 2-bytes into x6; upper 2 bytes are zero extension of half word  
Memory address = 2 + value in x23 

lw    rd,imm(rs1) lw    x7,-4(x22) Loads 4-bytes into x7; Memory address = -4 + value in x22 

Store 
sb    rs2,imm(rs1) sb    x5,3(x6) Stores right-most byte of x5 into memory address = 3 + value in x6 
sh    rs2,imm(rs1) sh    x4,34(x7) Stores lower 2 bytes of x4 into memory address = 34 + value in x7 
sw    rs2,imm(rs1) sw    x5,0(x8) Stores contents of x5 into memory address = 0 + value in x8 

Table 9.11: Overview of the complete set of RISC-V load & store instruction. 

 

Example 9.7: Loading and Storing with Different Data Sizes 

Write a fragment of RISC-V assembly language copies the word value at the address given in x10 to 
four registers starting at x20. Each register should receive one byte of the word data at address x10. 
Consider the bytes of the word value to be unsigned values. Don’t use any shift-type instructions in 
your solution.  

Solution: Figure 9.10 shows the solution to this example. Yet another expressive example; here’s the stuff that 
allow you to impress your friends at parties:  

 The problem states that you need to take the individual bytes from memory and store them as bytes 
in consecutive registers starting at x20. There are several ways to do this but we’ll use the approach 
that leverages the different versions of memory access instructions.  

 The problem states to divide up a word in memory into byte in registers. The problem also states that 
we want the bytes in the registers to be unsigned. We have five different flavors of load instructions, 
including one for words (lw), halfwords (lu & lhu), and bytes (lb & lbu).  

 Our approach for this solution is to issue four lbu instructions, which we do on lines (02-05). Note 
that we use the same base address for each of the lbu instructions (x10), but we increment the offset 
portion of the instruction by ‘1’ with each instruction. This advances the address one byte greater 
than the base address in x10. Recall that the memory is byte addressable, which is why we increment 
the offset by ‘1’ with each instruction.  

                                                           
10 The same stuff happens for the lhu and lh instructions, but we won’t bore you with the details again.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
    lbu   x20,0(x10)    # left-most byte of word goes into x20 
    lbu   x21,1(x10)    #  
    lbu   x22,2(x10)    #  
    lbu   x23,3(x10)    # right-most byte of word goes into x23     
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 9.10: Solution for this example. 

 

9.3.3.1 Load & Store Instructions Relation to I/O Data Widths 

When dealing with I/O, the widths of the input and output data become somewhat of an issue. The issue is the fact 
that the RISC-V load and store instructions handle only a limited range of data widths, namely words, halfwords, 
and bytes. The notion of I/O is that we need to communicate with peripherals outside of the RISC-V MCU, which 
generally means we need to deal with the peripherals on their terms. For example, if you’re RISC-V MCU is 
driving 12 LEDs (thus an output), we need 12 bits to control those LEDs. Note that 12 bits is bigger than a byte 
and smaller than a halfword.  

The first thing to note is that you need to deal with I/O according to the configuration of the hardware you are 
working with. For example, if you had to drive 12 LEDs, designer can configure the hardware many different 
ways, though two of the ways represent the most common approach. The following is a description of these two 
approaches; you’ll want to compare and contrast these to get a feel for how to properly utilize such outputs.  

1) Configure the hardware to associate the 12 signals driving the LEDs with a single port address. In 
this way, driving the LEDs with an output instruction (a store) would require that you use a sh 
instruction at the very least. In this way, you could drive all 12 LEDs with one output instruction.  

2) Configure the hardware to associate eight LEDs with one output port address and four LEDs with a 
different output port address. In this way, driving all 12 LEDs would require issuing at least two 
output instructions. The best approach in this case would be to issue two sb instructions.  

One issue you that you may need to consider with the second option is what happens to the entire unused bit when 
where there is a size mismatch between the data width offered by the instruction (byte, halfword, word) and the 
width of the actual output. In this case, you can probably assume that someone has configured the hardware such 
that you can issue any instruction with a larger width and it would work. For example, when you issue a sb (store 
byte) instruction to drive four LEDs, what happens to the missing LEDs? This is actually more of an issue when 
inputting data of widths that don’t match the instruction widths. In these cases, you definitely need to be aware of 
how the associated hardware configuration. For example, when you input four bits using an lbu instruction, you’ll 
get a register filled with 32 bits, and you can probably be sure the lower four bits are the data you’re trying to 
input, but what is the other data.  

In the end, you hope someone has both configured the hardware in an intelligent manner, and that they let you the 
programmer know how they configured that hardware. As a programmer, you should try to match data widths with 
your I/O instructions the best you can even though it may not matter. For example, if you’re inputting five bit, 
issue a lb or lbu instruction, even though the hardware may do the same thing using an lh, lhu, or lw 
instruction.  

 

9.4 The First Program Flow Control Instruction 

Our working definition of a computer was a digital device that sequentially executes a programmed stored in 
memory. We’ll get into more details later, but what this generally means is that the hardware executes an 
instruction stored in memory, then executes the next instruction stored in memory, etc. Note the “sequentialness” 
of instruction execution in this definition. Programs would quickly run out of instructions if sequential execution of 
instructions were all that the computer could do. In reality, computer hardware “can be directed” to execute any 
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instruction in memory. The truth is that some instructions have the ability to direct the computer hardware to 
execute an instruction that is not necessarily the next instruction in program memory.  

The notion of the next instruction that the computer executes falls under the topic of program flow control. We 
refer to instructions that have the ability to direct instruction execution to an instruction other than the next 
instruction as program flow control instruction. In RISC-V computer lingo, there are two types program flow 
control instructions: jumps and branches11. Both of these instruction have the ability to send program flow to 
somewhere other than the next instructions; the difference between these instructions is that jump instructions 
always cause a change in program flow while branch instructions can cause a change in program flow, but only 
under certain conditions. The RISC-V vernacular here is that jump-type instructions cause a change in program 
flow control unconditionally while branch instruction conditionally cause a change in program flow control.  

This section briefly introduces a jump-type instruction, which is the final instruction we need to start writing actual 
RISC-V assembly language programs. A full description of RISC-V program flow control instructions appears in 
Section 10.3.  

9.4.1 Introduction to Program Flow Control 

The only way to stop a RISC-V assembly language program from running (once you start it) is to turn off the 
power. You’ll find that there is not “stop” of “halt” instruction in the RISC-V instruction set. The intent of many 
computer programs is to always run, which generally means to keep monitoring input and waiting for an indication 
that the computer needs to so some task based on that input12. To successfully keep a given program running (or 
executing in a meaningful way), the program must somehow direct program flow from the last instruction in the 
program to some other instruction in the program. We use program flow control instructions to accomplish this 
redirection.  

The most simple program flow control instruction is the j pseudoinstruction. This instruction translates to a jal 
instruction, but we’ll save the underlying details for another section. What we’re interested in at this time is a 
simple unconditional branch instruction so we can start writing complete programs. Table 9.12 shows the details of 
the j pseudoinstruction; we’ll quickly use this in a simple program to explain its actual usage.  

Instruction Form 
Equivalent Base  
Instruction(s) Example Usage Comment 

j      label jal    x0,label  j     label Jump to instruction 
associated with label  

Table 9.12: The basic unconditional branch pseudoinstruction.   

 

Example 9.8: Our First RISC-V Assembly Language Program 

Write a RISC-V assembly language program that continuously reads data from port address 
0x11003300 and outputs the data to port address 0x11005500.  

Solution: Figure 9.11 shows the solution to this example. Since this is our first complete program, we’ll describe it 
in a painful amount of detail:  

 This problem is nice in that it contains the three main parts of an assembly language program (four 
parts if you include labels) 1) comments, 2) directives, and 3) instructions.  

 There is nothing special about the port addresses called out by the problem other than the fact that 
they are 32-bits values. The RISC-V address space is 32 bits with requires we always provide port 
addresses as 32-bit values.  

                                                           
11 As you’ll see later, subroutine calls and return from subroutines in RISC-V are both a type of jump instruction. 
12 This is the classic embedded systems model.  



FreeRange Computer Design  Chapter 9 

 

 - 222 -  
 

 The choice of registers x10, x11, and x20 in the solution was arbitrary; we could have used other 
registers instead.  

 The program starts with an informative file header (or file banner) that describes the purpose of the 
program. Always include file headers; we sometimes don’t include them in this text as a space-
saving manner. The comments on lines (00-03) represent the file banner.  

 An assembler directive appears on line (04). This is the “.text” assembler directive that roughly 
indicates the text that follows are all instructions. We’ll deal more with assembler directives and 
memory segmentation in a later chapter.  

 All assembly language programs require some of initialization code at the start of the program. Line 
(06) represents the start of the initialization code. Note that we use an “init” label to indicate that the 
code that follows is some type of initialization code. The program does not use the “init” label in any 
way; it serves only to indicate to human readers of the code the general purpose of that section of 
code. This label, as with all labels, does not increase the size of the program eventually stored in 
program memory.  

 The purpose of the initialization code is to place the port addresses into a register, which we must do 
because the I/O instructions in RISC-V use registers to generate absolute memory address. We use 
the li (load immediate) instruction on lines (06 & 07) to put the I/O port addresses into memory.  

 The lw instruction on line (09) inputs the data from the input port to register x20. The sw instruction 
on line (10) outputs the data in register x20 to the output port.  

 The j instruction on line (11) is the program flow instruction. This instruction directs program 
execution to some other executable instruction in the program. Note that no instructions follow the j 
instruction, so there is no “following” instruction program execution can sequentially flow to. The 
only possibility is to direct program flow to some other instruction in the program. The fact that the 
argument of the j instruction is “main” directs the program flow back to the instruction following 
the “main” label. We cover the details of exactly how the computer does this in a later chapter. Thus, 
the j instruction essentially ensures that the program never runs out of instructions to execute by 
directing program flow to some other valid instruction in the program. Wildly exciting! 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x11003300 and output that data to port address 0x11005500.  
#--------------------------------------------------------------------------- 
.text  
 
init:   li    x10,0x11003300    # input port address 
        li    x11,0x11005500    # output port address 
         
main:   lw    x20,0(x10)        # input data 
        sw    x20,0(x11)        # output data 
        j     main              # repeat I/O sequence 

Figure 9.11: Solution for this example. 

Figure 9.12 shows a flowchart that models the operation of this program; here are a few things to note about this 
amazing flowchart:  

 The flowchart shows the basic flow of the program without providing any assembly language 
specific details. Making flowcharts generic in this way makes them arguably more maintainable. 
For example, if the flowchart was specific to port addresses and registers associated with the 
RISC-V OTTER MCU, the flowchart would be harder to read and thus less usable if the hardware 
changed.  

 The program contains no conditional branch instructions so the flowchart does not contain any 
decision symbols.  
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 The flowchart almost has a process block for each instruction, but note there are no process block 
for the unconditional jump instruction on line (11). Because the branch instruction (jump) in 
unconditional, we represent it with flow lines.  

 

Figure 9.12: A flowchart modeling the operation of this example program. 

 

 

 

Example 9.9: Input, Modify, & Output Data 

Write a RISC-V assembly language program that continuously reads data from port address 
0x1100DD00, adds 47 to that data, then  and outputs the data to port address 0x1100DF00. Don’t 
worry about overflow in the addition instruction.  

Solution: Figure 9.13 shows the solution to this example. Since this is our second complete program, we’ll opt not to 
repeat the level of detail from the first program; here are the main differences to make yourself aware of:  

 What we need to do in this program is modify each piece of input data before we output it. We add 47 to 
the input data on line (11) as the problems requests. We use the addi instruction to do this because we are 
adding a constant value to the input value. The instruction adds 47 to the value in x20 and then stores the 
result in x20. In this case, the value in x20 is always modified.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x1100DD00, adds the value 47 to that data, and then outputs 
# that data to port address 0x1100DF00.  
#--------------------------------------------------------------------------- 
.text  
 
init:   li    x10,0x1100DD00    # input port address 
        li    x11,0x1100DF00    # output port address 
         
main:   lw    x20,0(x10)        # input data 
        addi  x20,x20,47        # add 47 (an immediate value) to the data 
        sw    x20,0(x11)        # output data 
 
        j     main              # repeat I/O sequence 

Figure 9.13: Solution for this example. 

There are a few ways to do this problem in real life, but to do so, we must know more instructions. The addi in 
this chapter added an immediate value to a register and stored the sum in another register. There is also an add 
instruction in the RISC-V instruction set that adds values from two registers and stores that value in another 
register. Figure 9.14 shows an alternative solution to this example that uses an add instruction; here are some 
worthy comments regarding that solution, noting that most of this solution is similar to the previous solution.   
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 Since we’ll be using an add instruction to add 47 to the input value, we first must put 47 into a register; 
we do this with an li instruction on line (08). We need to do this because the add instruction is a 
register/register instruction; the addi instruction was a register/immediate instruction.  

 We use the add instruction rather than the addi instruction on line (12). The addi instruction required us 
to always add a constant value to the input data; using the add instruction with the extra register operand 
allows us to effectively add a variable value to the input data, which we could do by changing the value in 
x15 somewhere in the program after it has been initialized.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x1100DD00, adds the value 47 to that data, and then outputs 
# that data to port address 0x1100DF00.  
#--------------------------------------------------------------------------- 
.text  
 
init:   li    x10,0x1100DD00    # input port address 
        li    x11,0x1100DF00    # output port address 
        li    x15,47            # place the value 47 in a register 
         
main:   lw    x20,0(x10)        # input data 
        add   x20,x20,x25       # add 47 (from register) to the data 
        sw    x20,0(x11)        # output data 
 
        j     main              # repeat I/O sequence 

Figure 9.14: An alternative solution for this example. 

 

 

 

Example 9.10: Input Multiple Data, Modify, & Output Data 

Write a RISC-V assembly language program that continuously does the following: reads data from 
port address 0x1100CC00 two times (two different pieces of data), adds that data from those two 
inputs together, then outputs the data to port address 0x1100EE00. Use an add instruction rather 
than an addi instruction in your solution. Don’t worry about overflow in the addition operation.  

Solution: Figure 9.15 shows the solution to this example. Since this solution is similar to previous solutions, we’ll only 
describe the significant differences:  

 The main difference in this problem is that we need to read two pieces of data and sum that data before 
we output it. We read the data from the same input port, but we need to place it in two different 
registers, which we do on lines (10-11).  

 We add the data using a register/register-type add instruction on line (12). This instruction adds the 
values in x10 and x11 and then stores the sum back into x10. Though it may seem like we’re reusing 
registers in this instruction, this is typically the way we do it. We could have stored the sum in a 
different register, but the way we did it in this examples saves us from reusing another register. Having 
32 registers sounds like a lot, but unused registers become scarce when coding complex algorithms.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously does the following: reads  
# data from an input two times, sums the two input values, then outputs the  
# data to an output port.  
#--------------------------------------------------------------------------- 
.text  
 
init:   li    x20,0x1100CC00    # input port address 
        li    x21,0x1100EE00    # output port address 
         
main:   lw    x10,0(x20)        # input first piece data 
        lw    x11,0(x20)        # input second piece of data 
        add   x10,x10,x11       # sum two input value to register x10 
        sw    x10,0(x21)        # output data 
 
        j     main              # rinse, repeat 

Figure 9.15: Solution for this example. 

Figure 9.16 shows a flowchart modeling the operation of this program. This flowchart resembles previous 
flowcharts so we’ll omit any extra verbage for this problem.  

 

Figure 9.16: A flowchart modeling the operation of this example program. 
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9.5 Chapter Summary 

 

 Transferring data between storage elements is probably the most common operation in microcontrollers. We 
can group the RISC-V instructions based on where they transfer data to and from.  

o mv: transfers data from register to register 

o li: transfers data from an immediate value to a register 

o Load-type instructions (lw, lh, lhu, lb, lbu):  transfer data from memory to register (memory 
access) or from external devices to register 

o Store-type instructions (sw, sh, sb): transfers data from register to memory (memory access) or 
from register to external devices. 

 Input/Output operations are what make computers useful. The three main type of I/O are programmed I/O, 
Direct Memory Access (DMA), and interrupt driven I/O. The two main types of programmed I/O are port 
mapped and memory mapped I/O (MMIO)  

 The RISC-V MCU uses memory-mapped I/O, which means that load and store instructions (memory access) 
also perform I/O operations. The RISC-V assembler does not know whether a particular load of store 
instruction will perform a memory access or an I/O operation; the underlying RISC-V hardware implements 
the correct instructions based on the effective address of the load and store instruction. If the effective address 
is within a range specified by the hardware designer, the load/store operation is an I/O; otherwise, the 
operation is a memory access.  

o Load-type instructions: used for memory reads and input 

o Store-type instructions: used for memory writes and output 
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9.6 Chapter Exercises 

 

1) What is the difference between pseudoinstructions and base instructions?  

2) All data crunching instructions involve which particular module of the RISC-V architecture. Hint: this module 
is part of the programmers model.  

3) Briefly describe the primary difference between the mv and li instructions. 

4) Name and briefly describe the three types of I/O used by computers.  

5) li is a pseudoinstruction that the assembler translates to either one or two base instruction. Briefly describe 
what determines how many base instructions the compiler will use.  

6) Briefly describe why there are signed and unsigned load-type instructions but not signed and unsigned store-
type instructions.  

7) Briefly explain how pseudoinstructions are converted to base instructions.  

8) Name and briefly describe the two types of programmed I/O.  

9) Who or what decides whether a particular computer architecture will use memory mapped I/O or port mapped 
I/O.  

10) For any given MCU-based circuit, who is responsible for “setting up” the port addresses?  

11) Briefly explain if there is any way for a programmer who knows nothing about hardware to discern port 
addresses without being told directly?  

12) Briefly explain why instruction sets such as the RISC-V instruction set have no need for “halt” or “stop” 
instructions.  
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9.7 Chapter Programming Problems 

 

For the following problems:  

 Minimize the amount of instructions in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code 

 

1) Write a RISC-V assembly language program that continuously reads a word of data from port address 
0x1100A000 and outputs that data to port address 0x1100B000.  

2) Write a RISC-V assembly language program that continuously reads a word of data from port address 
0x1100C000, adds the value 0x434 to the input value, and then outputs the data to port address 0x1100D000.  

3) Write a RISC-V assembly language program that continuously reads a word of data from port address 
0x11000020, adds the value -45 to the input value, and then outputs the result to port address 0x11000030. 
Don’t worry about overflow (or underflow) from the addition operation. 

4) Write a RISC-V assembly language program that continuously reads signed halfword data from port address 
0x1100C000, doubles that input value, and then outputs the result to port address 0x1100D000. Don’t worry 
about overflow from the mathematical operation. 

5) Write a RISC-V assembly language program that continuously reads unsigned halfword data from port address 
0x1100FF00 two times, doubles each of the two input values, sums the results of the doubling operation, and 
then outputs the result as a word to port address 0x1100EE00. Don’t worry about overflow from the addition 
operation.  

6) Write a RISC-V assembly language program that continuously reads unsigned byte data from port address 
0x1100AA00 three times, sums those input values, then outputs the result an unsigned word to port address 
0x1100AB00. Don’t worry about overflow from the addition operation.  

7) Write a RISC-V assembly language program that continuously reads word data from port address 0x11001000 
two times, multiplies each of those values by three, sums the results, and then outputs the final result to port 
address 0x11002000. Don’t worry about overflow from the addition operation.  

8) Write a RISC-V assembly language program that continuously reads word data from port address 
0x1100DDD0 eight times, sums the inputs and then outputs the result to port address 0x1100EEE0. Don’t 
worry about overflow from the addition operation.  

9) Write a RISC-V assembly language program that continuously reads signed byte data from port address 
0x11001111 four times; the program subtracts one from the first input value, two from the second input value, 
three from the third input value, and four from the fourth input value, sums the results, and outputs the result 
as a signed halfword to port address 0x11002222. Don’t worry about overflow (or underflow) from the 
addition operations.  

10) Write a RISC-V assembly language program that continuously reads signed halfword data from port address 
0x11001000 two times, multiplies each of those values by two, and outputs the two results as words to port 
addresses 0x11002000 and 0x11002002, respectively. Don’t worry about overflow from the addition 
operation.  
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10 Instructions, Constructs, and Bit-Level Manipulations 
 

10.1 Introduction 

We can model assembly language programming as an exercise in pulling “things” out of an assembly language 
“bag of tricks” in a structured manner in able to solve our given problem. The notion here is that there is 
generally not that much you can do with assembly languages compared to higher-level languages. My feeling is 
that the most complicated part of learning to program in an assembly language is learning and keeping track of 
the various “tricks”. These so-called tricks, are not really tricks; they’re actually simple operations that would 
take you extra time to be aware of if someone did not point them out to you.  

Assembly language programs are simple because they are inherently limited in their ability to do things. The 
result of this simplicity is that programs use the same programming constructs and instructions to do the same 
type of operations repeatedly. The good news is that there only a relative few constructs and they’re all relatively 
simple. Everything about assembly language is simple; assembly language programming only seems hard 
because there are initially so many new things to learn. This chapter describes some of the more important 
considerations programmers should be aware of when writing robust assembly language code. 

 

Main Chapter Topics 

 BIT CRUNCHING INSTRUCTIONS: This chapter describes the remaining instructions that 
“crunch” bits including logic, arithmetic, and shift-type instructions.  

 PROGRAM FLOW INSTRUCTIONS: This chapter describes program flow instructions 
including conditional and unconditional branch instructions.  

 ITERATIVE CONSTRUCT ISSUES: This chapter describes some of the important 
underlying issues regarding iterative constructs.  

 MANIPULATING BITS: This chapter describes the common bit manipulations found in 
assembly language programming known as bit masking. 

 AUXILIARY INSTRUCTIONS: This chapter describes a few other useful instructions and 
pseudoinstructions that are hard to easily classify with other instruction types.  

 

Why This Chapter is Important 

This chapter is important because it describes some of the basic programming concepts and 
approaches beyond simple description of individual instructions.  

 

10.2 Bit Crunching Instructions 

The RISC-V ISA contains a set of instructions that we can describe as bit crunching. These instructions 
primarily change the value in the destination operand based on a given operation between source operands. 
There is always one destination operand and that operand is always a register. There are always two source 
operands, one of them is always a register, and the other operand can either be a register or an immediate value. 
Many of the bit crunching operands are similar in that the instruction set uses two different instructions to 
perform the same operation but on two sources register operands or one source register operand and one 
immediate value operand.  
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Important to note here is that the RISC-V MCU instruction set does not directly provide the ability to test the 
validity of bit-crunching operations. This is because the underlying hardware does not provide any type of status 
signal regarding the result of any given operation. Because of this, programmers are required to use the 
flexibility of the instruction set in order to determine items such as when an ALU operation overflows the 32-bit 
register width.  

10.2.1 Logic Instructions: AND, OR, & XOR 

We grouped these instructions together because they are all logic-based instructions. All of these instructions 
perform what we refer to as bit-wise logic operations on their operands. This is a common notion in 
computerland; it simply means that given logic operator performs the logic operation on the corresponding 
individual bits of the two operands.  

Table 10.1 shows the two forms of the instructions implementing AND, OR, and EXOR operations. Their 
instruction type differentiates the two forms, where the two-register operand form is an “R-Type” instruction and 
the one register one immediate value form is an “I-Type” instruction. These are differentiated by the “i” postfix 
on the instruction mnemonic; “R” roughly stand for register and “I” roughly stands for immediate. Both 
instruction types perform the given operation on the individual bits in the two operands and store the results in 
the designated destination register. These instructions do not alter either source operand.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

R-Type and   rd,rs1,rs2 rd ← rs1 ∙ rs2 and   x10,x20,x21 32-bit operation 

I-Type andi  rd,rs1,imm rd ← rs1 ∙ imm andi  x8,x8,0xF0 imm max: 12-bits 

R-Type or    rd,rs1,rs2 rd ← rs1 + rs2 or    x15,x15,x16 32-bit operation 

I-Type ori   rd,rs1,imm rd ← rs1 + imm ori   x7,x8,255 imm max: 12-bits 

R-Type xor   rd,rs1,rs2 rd ← rs1 ^1 rs2 xor   x30,x28,x8 32-bit operation 

I-Type xori  rd,rs1,imm rd ← rs1 ^ imm xori  x10,x9,0x44 imm max: 12-bits 

Table 10.1: The two forms associated with the four logic instructions. 

Figure 10.1 shows a well-commented code fragment that demonstrates the use of both forms of the logic-based 
instructions. While most of these instructions are straightforward in the sense that they are performing bitwise 
logic operations that should be familiar to you, you should take special note of a few items:  

 We initialize few registers with known values on lines (01-03) so we can use them in the 
instruction examples that follow. We also included a label on line (01) which acts as a comment to 
indicate that we’re performing some type of initialization, in this case, of a few register values.  

 The immediate version of each instruction has limitations on the size of the immediate value. For 
these instructions, that limit is 12 bits. The RISC-V hardware is responsible for sign-extending 
each 12-bit immediate value to form a 32-bit value so that the operation becomes a true bitwise 
operation (meaning both source operands are 32 bits when the hardware does the logic operation). 
The register-register version of these operations does not require any modification of the source 
operands.  

 As implied by the previous bullet, the transformation of an immediate value to a 32-bit value is 
typically a two-step process. The assembler does the first step by converting the immediate 
operand appearing as part of the instruction in to a 12-bit signed number; this value is 
subsequently stored as part of the instruction. The RISC-V hardware performs the second step in 
this conversion by sign-extending the 12-bit immediate value stored as part of the instruction to 

                                                           
1 Could not find proper XOR symbol in my editor, so I’m opting to use the “^”, which is the XOR operator in the C 
programming language.  
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form a 32-bit value. At this point, the RISC-V hardware can now implement a true bitwise 
operation.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
init:    li    x10,0xFFFF0A8B     # Initialize three registers 
         li    x11,0xF000000F     #  
         li    x12,0x0F0000FF     #  
 
         and   x20,x10,x11   # Op: x10 AND x11 (0xFFFF0A8B AND 0xF000000F)  
                             #  Result: x20=F000000B; x10 & x20: no change 
                              
         andi  x21,x10,0xFF  # Op: x10 AND 0xFF (0xFFFF0A8B AND 0x000000FF)  
                             #  Result: x21=F000008B; x10: no change 
 
         or    x22,x10,x12   # Op: x10 OR x12 (0xFFFF0A8B AND 0x0F0000FF)  
                             #  Result: x22=FFFF0AFF; x10 & x12: no change 
                              
         ori   x23,x10,1023  # Op: x10 OR 0xFF (0xFFFF0A8B AND 0x000003FF)  
                             #  Result: x23=FFFF0BFF; x10: no change 
 
         xor   x24,x10,x12   # Op: x10 XOR x12 (0xFFFF0A8B AND 0x0F0000FF)  
                             #  Result: x24=FFFF0AFF; x10 & x12: no change 
                              
         xori  x25,x10,0x3FF # Op: x10 XOR 0xF (0xFFFF0A8B AND 0x000003FF)  
                             #  Result: x25=FFFF0574; x10: no change 
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.1: Usage examples for register and immediate forms of the logic instructions. 

 

Example 10.1: Crunching Input Data 

Write a RISC-V assembly language program that continuously inputs data from port address 
0x1100CC00, performs a 1’s complement on that data, then outputs the result to port address 
0x1100EE00.  

Solution: Figure 10.2 shows the solution to this example. Since this solution is similar to previous solutions, we’ll 
only describe the significant differences:  

 As with previous problems, the program has a great file banner (lines (00-04)) and a declaration of 
the text segment using the “.text” directive on line (05). Also similar to previous example, we must 
place the stated input and output port addresses into register, which we do on lines (07-08).  

 We know we need to complement all the bits in the input value, so we look for a “complement” 
instruction in the RISC-V instruction set. We of course don’t find one. Our approach is using what 
we have in the instruction set, which is the xor instruction. Recall that if we XOR a bit with a 1, the 
result is to toggle (or complement) that bit. Therefore, to perform a bit-wise 1’s complement, we 
must use the xor instruction, which we do on line (12).  

 You may be wondering why we did no simply use the xori instruction, such as something like this: 
“xori   x10,x10,0xFFFFFFFF”. The problem is that the size of the immediate value is 
limited to 12 bits in immediate-type instructions. Had we tried to use the xori instruction in this 
form, the assembler would have declared that an error. The only solution we had is to put the 32-bit 
value into a register prior to the xor instruction, which we do on line (09). We effectively pre-
loaded the register with the value we needed for the 32-bit complement. This works nicely, but it 
does have the drawback of “reserving” a register, which means we can’t use that register for 
anything else in a given program.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously does the following: reads  
# data from an input port, does a 1’s complement on that data, then outputs  
# the result to the output port.  
#--------------------------------------------------------------------------- 
.text   # declare text segment 
 
init:   li    x20,0x1100CC00    # input port address 
        li    x21,0x1100EE00    # output port address 
        li    x22,0xFFFFFFFF    # set all bits in x22 
         
main:   lw    x10,0(x20)        # input data 
        xor   x10,x10,x22       # complement all bits in input 
        sw    x10,0(x21)        # output result data 
 
        j     main              # rinse, repeat 

Figure 10.2: Solution for this example. 

 

 

 

Example 10.2: Crunching Input Data 

Write a RISC-V assembly language program that continuously inputs data from port address 
0x1100CC00, performs a 1’s complement on the lower eight bits of the input data, then outputs the 
result to port address 0x1100EE00.  

Solution: Figure 10.4 shows a possible solution for this example. We purposely used the previous solution as a 
starting point for this solution to show that you can solve this problem two ways. You’ll see that one way is more 
efficient than the other way.  

 This solution is the same as the previous solution; the only different is that we modified the li 
instruction on line (09) to load the register with 8 1’s rather than 32 1’s. The xor instruction on line 
(12) uses this new data in x22. This works, but savvy RISC-V assembly language programmers 
know they can write the program to perform the same operation but use less instructions.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously does the following: reads  
# data from an input port, does a 1’s complement on the lower 8 bits of the 
# input data, then outputs the result to the output port.  
#--------------------------------------------------------------------------- 
.text   # declare text segment 
 
init:   li    x20,0x1100CC00    # input port address 
        li    x21,0x1100EE00    # output port address 
        li    x22,0xFF          # set lower eight bits in x22 
         
main:   lw    x10,0(x20)        # input data 
        xor   x10,x10,x22       # complement the lower eight of input 
        sw    x10,0(x21)        # output result data 
 
        j     main              # rinse, repeat 

Figure 10.3: A less efficient solution for this example. 

Figure 10.4 shows the better and preferred solution for this example. This solution is better because it uses less 
instruction than the previous solution. It also officially uses one less register; using as few registers as possible is 
generally good practice in assembly language programming.  
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 Because we only need to toggle the lower eight bits in the input value, we can use an xori 
instruction rather than an xor instruction. Recall that immediate-type instructions limit the size of 
the immediate value to 12 bits. This means that we don’t need to preload a register with a 32 
value, which makes the program functionally equivalent to the previous program but more space 
efficient (uses one less instruction).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously does the following: reads  
# data from an input port, does a 1’s complement on the lower 8 bits of the 
# input data, then outputs the result to the output port.  
#--------------------------------------------------------------------------- 
.text   # declare text segment 
 
init:   li    x20,0x1100CC00    # input port address 
        li    x21,0x1100EE00    # output port address 
         
main:   lw    x10,0(x20)        # input data 
        xori  x10,x10,0xFF      # complement the lower 8 bit of input 
        sw    x10,0(x21)        # output result data 
 
        j     main              # rinse, repeat 

Figure 10.4: The preferred solution for this example. 

 

10.2.2 Arithmetic Instructions: Addition & Subtraction 

The arithmetic-type instructions perform the basic mathematical operations of addition and subtraction. Like 
many simple MCUs, the RISC-V MCU only has a bare minimum of arithmetic instructions, namely addition and 
subtraction. If you need to do more complex math such as multiplication and division, you need to use the 
addition and subtraction instructions to do so2. Recall that we are using the RISC-V OTTER as a microcontroller 
(MCU), meaning that the main purpose of the RISC-V is to “control” things. The RISC-V OTTER can do some 
math, but complex mathematical operations are something it does not do efficiently3. The RISC-V OTTER MCU 
contains three mathematical instructions: add, addi, and sub.  

Before we continue, we must mention an underlying characteristic of the RISC-V MCU. When our intention is 
to crunch bits, we need to sometimes consider the “meaning” of the bits we’re crunching. Some RISC-V 
instructions perform operations that treat the source operands as unsigned numbers; other instructions treat 
operands as signed numbers. When working with any RISC-V instruction, particularly the arithmetic 
instructions, the programmer needs to be aware of the default operation of the instruction based on its treatment 
of signed and unsigned numbers. Sometimes the operations are obvious, and sometimes not. The savvy 
programmer always checks the details in the assembly language manual to ensure they are using instructions 
properly.  

The add, addi, and sub instructions perform operations as if the values of the operands are unsigned. If you 
need to work with any other form of numbers, such as radix complement (2’s complement), you need to work 
out the details in your program’s code. Keep in mind that each MCU does things differently, so you’ll always 
want to check the spec before you start programming. Note that the RISC-V instruction set contains register and 
immediate forms of the addition instruction, but only a register form of the subtraction instruction.  

                                                           
2 The notion here is that multiplication is repeated addition and division is repeated subtraction.  
3 Keep in mind we’re using a specific version of the RISC-V MCU; other versions include some complex instructions, such 
as instructions that deal with floating point numbers as well as other instructions that perform division and multiplication.  
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Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

R-Type add   rd,rs1,rs2 rd ← rs1 + rs2 add   x11,x21,x31 32-bit operation 

I-Type addi  rd,rs1,imm rd ← rs1 + imm addi  x7,x8,0x0F imm max: 12-bits 

R-Type sub   rd,rs1,rs2 rd ← rs1 - rs2 sub   x15,x14,x17 32-bit operation 

Table 10.2: The two forms associated with the four logic instructions. 

Figure 10.5 shows yet another well-commented code fragment that demonstrates the use of both forms of the 
arithmetic-type instructions. While these instructions do what the mnemonic implies, there are some underlying 
details that programmers must be aware of so they can write working programs. Here are a few things to note 
about the code in Figure 10.5.  

 We initialize few registers with known values on lines (01-03) so we can use them in the 
examples that follow.  

 The first example on line (06) is a reg-reg addition, with no surprise in the results.  

 The second example on line (09) is the reg-imm version of the addition instruction. Here we list 
the immediate value as -0xFF. The assembler converts this value to a two’s complement format 
and then sign-extends it to 0xF01. It does this to fit in the 12-bit immediate field associated with 
this type of immediate instruction. Before the instruction executes in hardware, the hardware sign 
extends 0xF01 again to become a 32-bit value: 0xFFFFFF01.  

 The third example on line (12) shows a subtraction operation. The second operand is all 1’s, 
which is either a big number or a -1 depending on how you interpret the format. The hardware 
does no interpretation of the format and does the subtraction as listed. The instruction subtracts a 
negative number, which is effectively addition; the result reflects this notion. In this case, the 
hardware performs the required 2’s complement operation before it adds the second operand.  

 The fourth example on line (15) is another subtraction. This time we are subtracting a positive 
number, so the operation requires no 2’s complement conversion of the second operand.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
init:    li    x10,0x0000FFFF     # Initialize several registers 
         li    x11,0x00000001     #  
         li    x12,0xFFFFFFFF     #  
         li    x13,0x00000003      
 
         add   x20,x10,x11   # Op: x10 + x11 (0x0000FFFF + 0x00000001)  
                             #  Result: x20=00010000; x10 & x11: no change 
                              
         addi  x21,x10,-0xFF # Op: x10 + -0xFF (0x0000FFFF + 0xFFFFFF01)  
                             #  Result: x21=0000FF00; x10: no change 
 
         sub   x22,x13,x12   # Op: x13 - x12 (0x00000003 - 0xFFFFFFFF)  
                             #  Result: x22=0x00000004; x12 & x13: no change 
 
         sub   x23,x13,x11   # Op: x13 - x11 (0x00000003 - 0x00000001)  
                             #  Result: x22=0x00000002; x13 & x1: no change 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.5: Usage examples for register and immediate forms of the arithmetic instructions. 

10.2.3 Shift Instructions 
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The RISC-V MCU supports integer-based math with a modest but useful set of shift instructions. Recall that a 
single bit shift to the right to the right or left is a fast way of dividing and multiplying by two. The left shift is 
true multiplication by two so long as the MSBs are not lost from the left end of the result. The right shift is a true 
divide by two except in the case that the LSB of the value being shifted is ‘1’; truncation occurs when we right-
shift a set LSB value. We typically use arithmetic shifts for signed values and logical shifts for unsigned values.  

RISC-V MCU has three types of shift instructions including a shift left, shift right, and an arithmetic shift right. 
Either each of these shifts can be simple shifts (shift one bit positions) or barrel shifts (shift multiple bit 
positions). For each of the shift instructions, one of the source operands provides the number of bits to shift. For 
reg-type instructions, the lower five bits in the second source register provides the number of bit positions to 
shift. For immed-type instruction, the lower five bits of the immediate operand provides the number of bit 
positions to shift. While we can consider these shift-type operations as a form of mathematical operations, we’ve 
grouped them separately from the arithmetic instructions4.  

The first thing to know about the shift instructions is their most basic difference. The logic shifts (the non-
arithmetic shifts) automatically replaced bit positions made vacant by the shift with zeros (the same for shifts in 
either direction). The arithmetic shift (which only shifts right) fills in vacated bit positions with copies of the 
sign-bit associated with the source operand that the instruction shifts. We sometimes refer to these operations as 
zero-filling or sign-filling. Table 10.3 shows some example of shift instruction usage including other information 
as well.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

R-Type sll   rd,rs1,rs2 rd ← rs1 << rs2[4:0] sll   x10,x20,x21 5 rs2 LSBs only  
zero-filled 

I-Type slli  rd,rs1,imm rd ← rs1 << imm[4:0] slli  x8,x8,0xF0 imm: 5 LSB only 
zero-filled 

R-Type srl   rd,rs1,rs2 rd ← rs1 >> rs2[4:0] srl   x5,x5,x16 5 rs2 LSBs only 
zero-filled 

 I-Type srli  rd,rs1,imm rd ← rs1 >> imm[4:0] srli  x7,x8,15 imm: 5 LSB only 
zero-filled 

R-Type sra   rd,rs1,rs2 rd ← rs1 >> rs2[4:0] sra   x30,x28,x8 5 rs2 LSBs only 
sign-filled 

I-Type srai  rd,rs1,imm rd ← rs1 >> imm[4:0] srai  x10,x9,0x12 imm: 5 LSB only 
sign-filled 

Table 10.3: The two forms associated with the four logic instructions. 

Figure 10.6 show some examples of shift-type instructions. The instructions follow the basic rules of 
logical and arithmetic shifts, but there are a few things to note here and there, which we list here:  

 The number of bits to shift for any shift instruction is always a positive number. It is therefore not 
possible to shift in a negative direction.  

 The first example on line (05) performs a shift left operation base on the value in x12. The value is 
x12 is much larger than 32; the underlying RISC-V hardware only considers the lower five bits of 
the x12 for the shifting operation. The programmer should strive to not rely on the hardware to do 
the “right thing” in such cases.  

 The arithmetic shift propagates the sign bit in the operation. To be clear, the sign-bit is the left-
most bit in the first (left-most) source operand.  

                                                           
4 Recall that a single bit-level shift-left and shift-right operations are clever ways to perform a multiply by 2 or divide by 2, 
respectively. 
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
init:    li    x10,0xFFFF0A8B     # Initialize three registers 
         li    x11,0xF000000F     #  
         li    x12,0xFF000010     # 
         li    x13,0x80007000     # 
         li    x14,0x00007000     # 
 
         sll   x20,x10,x12   # Op: x10 sll x11 (0xFFFF0A8B sll 0xFF000010)  
                             #  Result: x20=0x0A8B0000; x10 & x12: no change 
                              
         slli  x21,x10,0x04  # Op: x10 sll 0xFF (0xFFFF0A8B sll 0x000000FF)  
                             #  Result: x21=0xFFF0A8B0; x10: no change 
 
         srl   x22,x10,x12   # Op: x10 srl x12 (0xFFFF0A8B srl 0xFF000010)  
                             #  Result: x22=0x0000FFFF; x10 & x12: no change 
                              
         srli  x23,x10,0x8   # Op: x10 srl 0x8 (0xFFFF0A8B srl 0x00000008)  
                             #  Result: x23=0x00FFFF0A; x10: no change 
 
         sra   x24,x13,x11   # Op: x13 sra x12 (0x8000F000 sra 0xF000000F)  
                             #  Result: x24=FFFF0000; x13 & x11: no change 
                              
         srai  x25,x14,0x3   # Op: x14 sra 0x3 (0x8000F000 sra 0x00000003)  
                             #  Result: x25=00000E00; x14: no change 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.6: Usage examples for register and immediate forms of the shift-type instructions. 

10.3 Auxiliary Instructions 
The RISC-V instruction set has several other instructions that we’ll mention in this section.  

10.3.1 Various Simple Pseudoinstructions Operation: the nop Instruction 

There are a few simple pseudoinstructions used by the RISC-V ISA. Because of their simplicity, we’re grouping 
them together in this section.  

10.3.1.1 Pseudoinstruction: nop 

First, the mnemonic “nop” stands for “no operation”. While it does not make sense to have an instruction that 
does nothing, there are times assembly language programming land that we want to do nothing. The only reason 
we ever want to do nothing is to wait for some other event to happen. Thus, the nop instruction serves only to 
create a delay but changes nothing else in the MCU. Most assembly languages include a nop in their instruction 
sets.  

 For the RISC-V MCU, there is a nop pseudoinstruction available. The assembler then translates 
this instruction of an addi base instruction. Table 10.4 provides the details; we provide the 
following details.  

 The nop pseudoinstruction has no operands.  

 When the assembly encounters the nop pseudoinstruction in the source code, it replaces it with a 
base instruction. The assembler can actually use one of many different base instructions to 
“perform” a no operation, but the assembly chooses an addi instruction. For example, another 
way to perform a nop would be this instruction: “ori  x1,x1,0”. Not overly exciting.  

 As with many pseudoinstructions, they primarily exist for two reasons: to make assembly 
language source code easier for humans to write5 and understand code. For example, when you see 
a nop instruction in code, you know immediately what the instruction is doing. If you were to see 
an equivalent base instruction, such as the addi in Table 10.4, you might wonder for a moment 
what the instruction was actually doing.  

                                                           
5 As opposed to a computer writing the assembly language code, as is what the typical compiler is responsible for doing.  
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Instruction Form Example Usage 
Equivalent  
Base Instruction Comment 

nop  nop addi   x0,x0,0 Do nothing 

Table 10.4: On overview of the nop pseudoinstruction. 

Figure 10.7 and Figure 10.8 show examples of using nop instructions in code. The code in both of these figures 
creates a delay by first initializing a loop count (iteration variable) on line (02). The code in Figure 10.7 uses a 
do-while loop construct to crate the delay while the code in Figure 10.8 uses a while loop construct to create a 
delay.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
init:      li     x10,0xFFF        # input port address 
 
loop:      addi   x10,x10,-1       # decrement loop count 
           nop                     # insert delay 
           beq    x10,x10,done     # check condition 
           j      loop             # branch to loop 
done:                              # done with loop 
 
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.7: A code fragment implementing a delay using a do-while loop.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
init:      li     x10,0xFFF        # input port address 
 
loop:      beq    x10,x10,done     # check condition 
           nop                     # insert delay 
           addi   x10,x10,-1       # decrement loop count 
           j      loop             # branch to loop 
done:                              # done with loop 
 
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.8: A code fragment implementing a delay using a do-while loop.  

10.3.1.2 Pseudoinstruction: not 

The not is a pseudoinstruction is once again quite useful. Its official purpose is to perform a 1’s complement 
(toggles all the bits, or does a bitwise inversion) on the source operand and store the result in the destination 
operand. We of course recall that toggling a bit is always done with an XOR function, so it’s no surprise that the 
assembler replaces the not pseudoinstruction with some type of XOR instruction. Table 10.5 shows the details, 
and here is some extra explanation.  

 The assembler replaces the not instruction with a xori instruction. While we need to do a 
bitwise XOR operation on the full 32 bits, it appears the immediate field in the xori instruction is 
limited to a 12-bit value. The hardware is responsible for sign-extending the 12-bit immediate 
value to a 32-bit value so the instruction does the XOR operation in a true bitwise manner.  



FreeRange Computer Design  Chapter 10 

 

 - 238 -  
 

Instruction Form Example Usage 
Equivalent  
Base Instruction Comment 

not   rd,rs2  not   x8,x9 xori   x8,x9,-1 Do 1’s complement  

Table 10.5: On overview of the not pseudoinstruction. 

Table 10.6 shows a program fragment that uses the not pseudoinstruction. The fragment initializes two registers 
on line (02-03); the code one lines (05-06) performs a bitwise inversion (1’s complement) the values in the 
initialized registers. Note that on line (06) the source and destination registers are the same.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                            # 
init:  mv   x10,x0          # clear x10 
       li   x20,0xAFAFAFAF  # load x20 with pointless value         
                            #  
ex1:   not  x11,x10         # x11=0xFFFFFFFF after execution (x10 => no change) 
ex2:   not  x20,x20         # x20=0x50505050 after execution 
                            #  
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 10.6: Code fragment example using the not pseudoinstruction. 

10.3.1.3 Pseudoinstruction: neg 

The neg is a pseudoinstruction is also quite useful. Its official purpose is to perform a 2’s complement (toggles 
all the bits then add 1) on the register specified by the source operand. Programmers typically use the neg 
instruction when working with signed numbers. Be sure to note the difference between the neg instruction (2’s 
complement) and the not instruction (1’s complement). Table 10.7 shows the details, and here is some extra 
explanation.  

 The assembler replaces the neg instruction with a sub instruction. The instruction then subtracts 
the source operand from zero and stores the result in the destination register. This is equivalent to 
toggling all bits and adding one; this is one of the standard tricks associated with representing 
numbers 2’s complement format. 

 The implication of using the neg pseudoinstruction is that the instruction is assuming the value in 
the source register is in 2’s complement format; otherwise, the instruction would make no sense.  

Instruction Form Example Usage 
Equivalent  
Base Instruction Comment 

neg    rd,rs2  neg    x8,x9 sub    x8,x0,x9 Do 2’s complement  

Table 10.7: On overview of the neg pseudoinstruction. 

Table 10.8 shows an example using the neg pseudoinstruction. The code first initializes two registers on line 
(02-03). The code then uses the neg pseudoinstruction to perform a 2’s complement on the initialized values. 
We included a not pseudoinstruction in this example on line (08) to highlight the difference between the neg 
and not pseudoinstruction; note that the value in x20 and x20 are not equivalent, but only differ by the 1, which 
underscores the difference in the definitions of the 1’s and 2’s complement.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                            # 
init:  li   x10,-1          # load x10 with -1 (x10=0xFFFFFFFF) 
       li   x20,0x000000FF  # load x20 with pointless value         
                            #  
ex1:   neg  x11,x10         # x11=0x00000001 after execution (x10 => no change) 
ex2:   neg  x21,x20         # x21=0xFFFFFF01 after execution (x20 => no change)  
                            # 
ex3:   not  x20,x20         # x20=0xFFFFFF00 after execution 
                            #  
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 10.8: Code fragment example using the not pseudoinstruction. 

10.3.2 xxxxSet If Less Than: slt, slti, sltu, sltiu 

The RISC-V ISA include six base conditional branch instructions and ten other conditional branch 
pseudoinstructions, all of which are program flow control related instructions. These instructions allow the 
program to make conditional branch decisions based on the values in two registers. There are actually two 
drawbacks with the branch-type instructions. First, the instruction “branches” if the condition is met; but it may 
be the case where you don’t want to branch. You may have other tasks to complete before you actually need to 
branch. Second, the branch-type instructions base their inherent comparison on two registers only. It sometimes 
can become inconvenient to not be able to base program flow control decisions based on immediate values rather 
than register values. 

The RISC-V ISA also contains a group of compare-oriented instructions that provide programmers with 
expanded flexibility in performing branches. The group of “set if less than” instruction partially solves the issue 
of being constrained to basing branches on register comparisons by provided the ability to establish “less than” 
relationships based on immediate values.  

Table 10.9 provides an overview of the set if less than (slt) instructions. There are two main types of slt-type 
instructions. All slt-type instructions set the destination register (writes ‘1’ to the register) if the result of the 
comparison is true; the differences lie in the comparisons made by the instructions. The immediate forms of the 
instructions (slti & sltiu) compare a register to an immediate value, while the register-immediate forms of 
the instructions compare two register values. Additionally, the instructions either interpret the two operands 
differently, as both unsigned values (sltu & sltiu) or signed values (slt & slti).  

Table 10.9 uses some special vernacular in the associated RTL to describe the instructions. First, it uses “<u” and 
“<s” for unsigned and signed comparisons, respectively. Second, it uses a C programming language type 
operator to describe the result of the comparison. The “? :” is an arithmetic if operator. This operator includes an 
expression on the left of the question mark, and a value on each side of the colon; the RTL statements in Table 
10.9 use a comparison in place of the expression. If the comparison evaluates are true, the operator assigns the 
value on the left side of the colon (‘1’) to the destination register; otherwise, the operation assigns the value on 
the right side of the operator (‘0’). Thus, the destination register is either set or cleared as a result of executing 
any one of these slt-type instructions.  

The immediate forms of the slt-type instructions represent the immediate operand in a 12-bit field in the 
instruction format. The hardware interprets these values as signed values, which gives the immediate value an 
effective range of [-2048,2047]. The RISC-V MCU hardware sign-extends these values prior to the comparison. 
Table 10.9 indicates sign-extension of the immediate value with using the “sext(imm)” notation in the RTL 
statement.  
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Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

R-Type slt    rd,rs1,rs2 rd ← ( rs1 <s rs2 ) ? 1 : 0 slt    x10,x5,x21 signed compare 

I-Type slti   rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slti   x8,x9,0xF0 signed compare 
12-bit signed imm 

R-Type sltu   rd,rs1,rs2 rd ← ( rs1 <u rs2 ) ? 1 : 0 sltu   x5,x6,x16 unsigned compare 

 I-Type sltiu  rd,rs1,imm rd ← (rs1 <u sext(imm)) ? 1 : 0 sltiu  x7,x8,25 unsigned compare 
12-bit signed imm 

Table 10.9: The two forms associated with the four logic instructions. 

Table 10.10 shows a code fragment that uses the slt-type instructions. The code fragment groups the two-register 
compare slt-types (slt & sltu) and the register-immediate compare types (slti & sltiu) in the code for 
easy comparisons for humans who may actually be reading this. Here is some extra explanation regarding the 
Table 10.10 code fragment.  

The code initializes from generic values on lines (02-03) to use in the code below it. We load x11 with “-1”, 
which the assembler represents in x11 in 2’s complement format (0xFFFFFFFF).  

 The slt instruction on line (05) compares the values in register x11 & x12. This instruction 
causes the hardware to interpret the values in x11 & x12 as signed value. The RISC-V hardware 
interprets the value in x11 (0xFFFFFFFF) as -1, which is less than the value in x12, which is zero. 
As a result the hardware writes a ‘1’ (0x00000001) to x10. The hardware overwrites whatever 
value is in x10; the values in x11 & x12 do not change.  

 The sltu instruction on line (06) uses the same two source operands as the slt instruction on line 
(05). The value written to x20 is different, however, because the sltu instruction directs the 
hardware to interpret the values in x11 and x12 as unsigned values. This means that the value in 
x11 (0xFFFFFFFF) is now a large positive number instead of -1 as it was in the previous 
instruction. The result is that the value in x11 is no longer less than the value in x12, so the 
hardware clears the x20 register.  

 Lines (09-10) show the register-immed version of the slt-type instructions. Line (09) compares 
x11 to 1; the instruction directs the hardware to treat the value in x11 as a signed number. The 
result is that x10 is written with ‘1’ because -1 is less than the immediate operand of ‘2’. The sltiu 
instruction on line (10) is similar but the instruction directs the hardware to interpret the value in 
x11 as an unsigned number (0xFFFFFFFF). The hardware clears the value in x20 because the 
value in x11 is not less than the immediate value of “2”.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                            # 
init:  li     x11,-1        # load x10 with -1 (x10=0xFFFFFFFF) 
       mv     x12,x0        # clear x12   
                            #  
ex1:   slt    x10,x11,x12   # x10 = 1 after execution (x11,x12 => no change) 
ex2:   sltu   x20,x11,x12   # x20 = 0 after execution (x11,x12 => no change) 
                            # 
                            # 
ex3:   slti   x10,x11,2     # x10 = 1 after execution (x11 => no change) 
ex4:   sltiu  x20,x11,2     # x20 = 0 after execution (x11 => no change)  
                            # 
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 10.10: Code fragment example using the slt-type instructions. 

10.3.3 The Load Address Instruction: la 
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Assembly code uses labels as a way to make it easier for humans to write and understand code without needing 
to know about the underlying mechanics of the instruction. Labels serve two main purposes in programs: 1) as 
“no-cost” comments, and, 2) to locate specific portions of the code required by other instructions (including 
pseudoinstructions). Labels used as comments make code more readable for humans without increasing the 
program length, and without using actual comments (using the “#” symbol). The other use of labels is to locate 
sections of code that the program requires for program flow control issues such as conditional and unconditional 
branches (jumps), which includes subroutine calls.  

Labels represent addresses of either data or instructions in memory. The good news is that the assembler handles 
most of the underlying details on this, so we won’t go into too much detail in this section. However, for some 
program flow control issues, we need to be able to manipulate the address value associated with a label. In those 
situations, we use the la instruction.  

The la instruction is a pseudoinstruction that the assembler translates to an auipc and lui instruction. The 
mnemonic stands for “load address”, which means the instruction places the value associated with a label into a 
register. The value it places into the register is an address of data in the main memory module; this data can 
either be the address of true data or the address of an instruction as the same memory module holds both types of 
data. Table 10.11 provides an overview of the la instruction; astute programmers can find a full description in the 
associated assembly language manual.  

Instruction Form Instruction RTL Example Usage Comment 

la    rd,label rd ← &label la    x8,my_label Numerical value of 
my_label copied to x8 

Table 10.11: The overview of the la pseudoinstruction. 

The best way to understand the operation of the la instruction is to see it in code. Figure 10.9 shows a code 
fragment that uses two la instructions. This is a simple example; we’ll later use these instructions in the proper 
context when we discuss look up tables (LUTs) in Section 14.5 and interrupts in Chapter 13. Here are the 
important points to notice in Figure 10.9:  

 The code is a fragment, which means it’s a part of some larger program. It doesn’t do anything 
meaningful without seeing the other parts of the program.  

 The code uses a bunch of nop instructions as placeholders for more meaningful instruction. Recall 
that a nop is a pseudoinstruction that does nothing.  

 The code uses five labels: each of the labels represent the numerical value of the first instruction 
following it. The code provides the address of the emu label in the comment, thus the address of 
the emu label in instruction memory is 0x00000040 as the comment indicates.  

 The ex0 label does not have an instruction on the same line as do the other labels. This is common 
in programs and is completely legal. The ex0 label takes on the address of the next instruction in 
the code, which is the instruction on line (05). Thus, the numerical values associated with the ex0 
and ex1 labels are equivalent.  

 The la instruction on line 06 copies the value of the emu label (0x00000040) into register x20, 
which is an arbitrary register.  

 The la instruction on line (05) copies the value of the cow label into register x10. For this 
instruction, we need to count forward in the code from address 0x00000040 to determine the 
address of the cow label, which is 0x0000005C. Recall that each instruction in program memory 
requires four bytes of space and main memory is byte-addressable.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
emu:   nop               # placeholder instruction: addr=0x00000040 
       nop               # placeholder instructions 
       nop 
ex0:         
ex1:   la    x10,cow     # place associated value of cow (0x0000005C) into x10 
ex2:   la    x20,emu     # place associated value of emu (0x00000040) into x20 
 
       nop               # placeholder instructions 
       nop               #  
                         #  
cow:   nop               # 
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 10.9: Code fragment example using the la instruction. 

10.3.4 Other Loading-Type Instructions: auipc & lui 

The RISC-V ISA contains many generic base instructions that provide the ISA with significant flexibility 
without having to add more instructions. What this means is that the usefulness of some base instructions is not 
readily apparent because we typically don’t use these instructions directly. Because these instructions are part of 
other useful pseudoinstructions, the assembler converts those pseudoinstructions to the base instructions as part 
of the assembly process.  

This section describes the auipc and lui base instructions. The assembler translates the call pseudoinstruction 
to auipc & jalr base instructions; the assembler also translates the la pseudoinstruction into an auipc & 
addi base instructions. The assembler translates the li pseudoinstruction into a lui instruction (and possibly 
an addi instruction).  

10.3.4.1 Add Upper Immediate to PC Instruction: auipc  

The primary purpose of the auipc instruction is to load a copy of the current program counter to a register. The 
auipc instruction is primarily used indirectly by programmers because it is part of the call pseudoinstruction 
(the other part of the call pseudoinstruction is a jalr instruction). Table 10.12 shows a description of the auipc 
instruction along with some usage details. Here are some other fun facts about this instruction.  

 The auipc instruction loads the sum of the current PC and a modified immediate value into the 
destination register. The instruction sign-extends the immediate value and shifts it left 12 bit 
locations before being adding it to the destination register. The instruction clears the lower 12-
bits in the destination register.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

U-Type auipc   rd,imm rd ← PC + (sext(imm) << 12) auipc   x7,25 Lower 12 bits are 
cleared 

Table 10.12: An overview of the auipc instruction.  

10.3.4.2 Load Upper Immediate Instruction: lui 

The lui instruction is similar to the auipc instruction. It’s once again one of those instructions that 
programmers don’t use often in a direct manner, but use often in an indirect manner. The assembler translates the 
li pseudoinstruction into lui instruction.  

Similar to the auipc instruction, the lui instruction loads a modified immediate value into the destination 
register. The difference from the auipc instruction is that the PC value is not included in value loaded into the 
register. The instruction sign-extends the immediate value and shifts it left 12 bit locations before loading it into 
destination register. Table 10.13 provides an RTL description of the lui instruction. 
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Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

 U-Type lui  rd,imm rd ← (sext(imm) << 12) lui   x18,47 Lower 12 bits are 
cleared 

Table 10.13: An overview of the lui instruction. 

10.3.5 Loading Immediate Values: li 

The li pseudoinstruction provides a way to load an immediate value into a register. The assembler translates the 
li pseudoinstruction to a lui instruction and possibly an addi instruction, depending on the magnitude of the 
immediate value. Programmers can use either negative or positive values for the operand of this instruction. The 
assembler handles the details of where the li instruction translates to one or two base instructions. Table 10.14 
provides an overview of the li pseudoinstruction.  

Instruction Form Instruction RTL Example Usage Comment 

li    rd,imm rd ← imm li    x8,20 Immediate value loaded 
into destination register 

Table 10.14: The overview of the li pseudoinstruction. 

10.4 Program Flow Control  

Our original definition of a computer was a “piece of hardware that sequentially executes a stored program”. The 
key word here is sequentially. Computer programs typically execute programs in sequence: one instruction after 
another. Recall that program memory stores the instructions, so sequential program execution essentially means 
that computers execute the instruction at one memory address location, and then the computer executes the 
instruction at the next contiguous memory address, etc. Programs do not always simply execute instructions 
sequentially; if they did so, the program would quickly run out of instructions to execute.  

The notion of program flow control deals with instructions that have the ability to cause the computer to execute 
instructions in some order other than strictly sequentially. In other words, some instructions instruct the MCU to 
“jump” somewhere in program memory other than to the instruction following the current instruction being 
executed. We consider sequential instruction execution as “normal operation”, while everything else falls into 
the category of non-normal operation, or more aptly put, program flow control. This section covers the main type 
of flow control instructions: branch instructions. Additionally, there are two types of branch instructions: 1) 
unconditional branches, or jumps, and 2) conditional branches.  

As you will see, there are other program flow control issues in the RISC-V MCU including subroutines and 
interrupts. As it turns out, the RISC-V ISA does not have base instructions dedicated to working with 
subroutines; the RISC-V MCU deals with subroutines using the two available unconditional branch instructions. 
Interrupts are also part of program flow control; we cover the RISC-V interrupt architecture in another chapter.  

10.4.1 Labels Revisited 

We first mentioned labels in Section 8.4.1.4, but we purposely skipped over an important detail regarding the 
true non-commenting aspect of labels. We revisit the notion of labels in this chapter because of labels are 
critically important to the notion of jumping around in programs. In other words, it’s not a big deal to execute the 
instructions stored in program memory in a sequential manner; it doe, however, require a more complicated 
mechanism to have the MCU execute instruction in a non-sequential manner, which is where the notion of 
branching comes in. 

The truth is that labels represent numbers, and more specifically addresses of instructions in program memory. 
We can omit most of the underlying details regarding labels in this programming section of the text because we 
can more appropriately discuss them when describing the RISC-V MCU hardware. However, we mention a few 
details here. Labels represent addresses; when you branch to some other section of instructions in your program, 
you do so by loading the address value associated with a given label into a register that the hardware uses as an 
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index into program memory. We can mostly skip over those details for this section and deal 100% with labels 
without knowing anything of the underlying details. The notion here is that all the branch instructions generally 
include an operand that is an address value. We work to avoid using address values directly when dealing with 
labels; we instead use only labels and allow the assembler to convert those labels into actual numbers as the 
assembler translates the assembly language source code to machine code. So once again, the pure programmer 
gets away without knowing the full story embedded in the underlying hardware. I’m sure glad I understand 
hardware.  

 

Example 10.3: Label Values 

For the following RISC-V assembly language code fragment, if the label init has a value of 
0x00000E00, provide the following information:  

a) What are the numeric values (in hex) with all the labels in the fragment  

b) What is the address in program memory of the j instruction?  

c) What is the relative address of t_100 relative to init, c22 relative to loop1, loop1 
relative to t_100, and t_100 relative to loop1.  

init:      mv    x15,x10          # save a copy 
           li    x21,0x00000F00   # 100’s bit mask 
           li    x22,0x000000F0   # 10’s bit mask 
C22:       li    x23,0x0000000F   # 1’s bit mask 
           mv    x20,x0           # zero accumulator 
            
t_100:     and   x15,x15,x21      # mask 100’s nibble 
           srli  x15,x15,8        # shift to lowest position 
loop1:     beqz  x15,t_10         # go to tens if zero 
           addi  x20,x20,100      # accumulate 100s 
           addi  x15,x15,-1       # decrement loop count 

junk:      j     loop1            # do it again 
 

Solution: The key thing to recall doing problems such as this is that each RISC-V instruction requires four bytes 
of program memory. The code in this example is only instructions, so the entire problem becomes an exercise in 
doing math.  

a) This part of the problem is simply a matter of doing the math, where each instruction advances the 
address by four.  

label Value  comment 
init 0x00000E00 Given by problem 

c22 0x00000E0C 3 instrs past init 

t_100 0x00000E14 5 instrs past init, 2 past c22 

loop1 0x00000E1C 7 instrs past init, 2 past t_100 

junk 0x00000E28 10 instrs past init, 3 past loop1 

Table 10.15: Solutions to part a) 

b) We already did the math for the address of the j instruction; it’s the same value that is associated with 
the junk label, which is 0x00000E28.  

c) The solutions with explanation to part c). Note that because we are working with instructions, all the 
answer are divisible by four. Also, negative values indicate going backwards in the code (to lower 
memory addresses) while positive values represent going forward in the code (to higher memory 
addresses).  
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label Value  comment 

t_100 relative to init 20  Five instructions forward 

c22 relative to loop1 -16 Four instructions backwards 

loop1 relative to t_100 8 Two instructions forward 

t_100 relative to loop1 -8 Two instructions backwards 

Table 10.16: Solutions to part c) 

 

10.4.2 Branch Instructions  

Branch instructions can6 cause the MCU to execute an instruction that is not the next instruction in program 
memory. There are two types of branch instructions: unconditional branches and conditional branches. The 
RISC-V refers to unconditional branches as “jumps” and conditional branches as “branches”. Both types of 
branch instructions potentially alter the sequence in which the MCU executes instructions from program 
memory. The difference between these two types of instructions is that unconditional branches always change 
the program execution sequence while conditional branches may or may not change the instruction execution 
sequence depending on certain conditions in the MCU. The main thing to keep in mind is that branch 
instructions have the ability to transfer program control from one instruction to another instruction that is not 
necessarily the next instruction in the sequence.  

10.4.2.1 Unconditional Branch Instructions 

As the name implies, when the MCU executes an unconditional branch instruction, the MCU always takes the 
branch. In other words, program control always transfers to another instruction in program memory that is not 
the instruction following the instruction just executed7. The RISC-V instruction set contains two unconditional 
branch instructions: jal & jalr. The mnemonics for these instructions roughly mean “jump and link” for jal 
and “jump and link register” for jalr. Table 10.17 shows the two of the unconditional branch instructions. Here 
are a few things to notice about Table 10.17:  

 These instructions officially have different types, where the jal instruction is a “J-type” and the 
jalr instruction is an “I-type”. The difference in the number of operands is what requires these 
two instructions to have different types. The pure programmer does not need to be aware of this 
level of detail; we include it here for completeness.  

 There are two forms of each instruction. This means that you can use either form of each 
instruction in your source code. The number of operands forms the difference in the forms, where 
the forms with the most operands is the full instruction. If you don’t include all the operands, the 
assembler makes some assumptions. The difference in both instructions is the inclusion of the rd 
operand. In both cases, the assembler uses x1 for the rd operand if you use a form that omits it.  

 From the Instruction RTL column, you can see that both forms store the current PC (program 
counter) and modify the current PC. Note that the PC holds the addresses of the current instruction 
that the hardware is executing, which makes it an index into program memory. The current is 
(adjusted to point at the next instruction) is stored in the rd, the destination register. Both 
instructions also change the PC, which underscores the major difference between these two 
instructions. The new PC for the jal instruction is a function of the immediate value; the new PC 
for the jalr instruction is a function of the source register (rs1) plus the immediate value.  

 The difference the new PC value listed in the previous bullet is significant, sort of. As you’ll soon 
see, the pure programmer can get away without knowing these details, but everyone else needs to 
at one point understand these details. The functional difference is that you can use either the jal 

                                                           
6 We use the word “can” here because some types of branch instructions don’t always branch.  
7 You can branch to the instruction following the branch instruction, but that generally means you’re not understanding the 
point of the branch instruction.  
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or jalr instruction to call a subroutine, but you can only use the jalr instruction to return from 
a subroutine. We’ll discuss these details further in a later chapter. One last thing to note here is 
that the “r” in the jalr mnemonic stands for register, which refers to the new PC value is also a 
function of some register.  

 We opted to present these instructions using a “lab” expression, which is short for “label”, even 
though the official documentation uses an “imm” expression for the thing. The expression is 
eventually a value, as the “imm” implies, but it only becomes a value after the assembler makes it 
into one. This means that you can’t use a raw number for the “lab” value when you use these 
instructions in your source code; you have to use a label. Even if you could use an actual value, 
you would not want to because it would make your code unmanageable and hard to modify.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

 
J-Type 
 

jal   rd,lab 
X[rd] ← PC + 4 

PC ← PC + lab 
jal   x8,label 

Return address 
stored in X[rd]; 
lab is signed 

jal   lab  
x1 ← PC + 4 

PC ← PC + lab 
jal   label 

Return address 
stored in x1 
lab is signed 

 
I-Type 
 

jalr  rd,rs1,lab 
X[rd] ← PC + 4 

PC ← rs1 + lab 
jalr  x5,x6,label 

Return address 
stored in X[rd]; 
lab is signed 

jalr  rs,lab x1 ← rs1 + lab jalr  x7,label 
Return address 
stored in x1;  
lab is signed 

Table 10.17: Two forms of the two unconditional branch instructions.  

The creators of the RISC-V instruction set designed the  jal and jalr instructions for genericity and 
efficiency; the designers didn’t design them for easy use or quick understanding. The two instruction also serve 
to handle to well-known areas where executing the instruction other than the next instruction (jumping) is 
required: calling subroutines and returning from subroutines. The other area we use unconditional branches is to 
continue processing in an iterative loop. We cover iterative loops later in this chapter, and everything you want 
to know about subroutines in another chapter. This stuff  makes more sense when you see it used in actual 
assembly language programs; we’re almost ready to do that.  

Although the application of jal and jalr  instructions is not intuitive, we rarely if ever are required to use 
these instructions directly in our programs. We instead use one of the pseudoinstructions associated with these 
instructions, which we conveniently list in Table 10.18. Here is some useful stuff to note about Table 10.18:  

 You can find more details associated with each of the listed pseudoinstructions in Table 10.18 in 
the assembly language manual.  

 The assembler is responsible for converting every pseudoinstruction into a single or set of base 
instructions.  

 The programs we write typically use the j, call, and ret pseudoinstructions; we use the jr 
instruction much less often. We use the j pseudoinstruction as a jump associated with iterative 
loops; we use the call and ret pseudoinstructions when we access subroutines.  

 Generally speaking, the assembler translates the call instruction to two instructions. Using two 
instructions allows for a larger jump range. Your assembler may be smart enough to only use one 
instruction, but probably not. 

 Once again, despite what any other documentation says, you must use actual labels with these 
instructions. The assembler then coverts those labels to actual numerical values, which as then 
subsequently stored as part of the machine code associated with the base instruction.  
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Instruction Form 
Equivalent Base  
Instruction(s) Example Usage Comment 

j      label jal    x0,label  j     label Jump to instruction 
associated with label  

jr     rs1 jalr   x0,0(rs1) jr     x8 Jump to instruction at 
address in rs1 

call   rd,label 
auipc  rd,hi(label) 

jalr   rd,lo(rd) 
call   x5,subrot 

Jump to instruction 
associated with label;  
Store current address in rd 

call   label 
auipc  x1,hi(label) 

jalr   x1,lo(x1) 
call   subrot 

Jump to instruction 
associated with label;  
Store current address in x1 

ret    jalr   x0,0(x1) ret Jump to instruction at 
address in x1 

Table 10.18: The program flow control pseudoinstructions and their base instruction translations.  

One final comment here. The primary difference between these two instructions is how they calculate where they 
jump to. The jal instruction uses the immediate value as a signed offset from the current instruction, while the 
jalr instruction uses a register as to hold the address to branch to. The jal instruction can thus jump as 
FIXME far in instruction memory as the jalr instruction. We’ll cover the underlying details in the hardware 
section of this text.  

 

Example 10.4: Program with Unconditional Branch 

Write a RISC-V assembly language program that continuously reads data from port address 
0x11003000, negates that data, and outputs the result to port address 0x11005000.  

Solution: Figure 10.10 shows the solution to this example. This problem has similarities to previous problems, 
so we’ll only describe the new stuff:  

 This program includes a header that provides a description of program on lines (00-04). Code goes 
in the text segment so we use a “.text” assembler directive on line (05).   

 The initialization code includes an “init” label, which the program uses to place the port addresses 
into registers. Note that the choice of registers in this program is arbitrary in that we could use any 
register other than x0.  

 The main code in the program starts at line (10), as indicated with the “main” label. The program 
inputs data on line (10) using an lw instruction. The problem did not state a data size so we opt to 
use words. The program negates the input data on line (11) using a neg pseudoinstruction, and 
then output on line (12) using a sw instruction. The fact that the problem stated to “negate” the 
input data implies that the input data was signed data; the neg pseudoinstruction treats the data a 
signed when it performs a two’s complement on the data.  

 The j instruction on line (11) is the program flow instruction, which is a pseudoinstruction for that 
performs an unconditional branch. . This instruction directs program execution to some other 
executable instruction in the program, which is in this program, is to the instruction on the line 
with the main label.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x11003000, negates that data, and outputs the result to port  
# address 0x11005000.  
#--------------------------------------------------------------------------- 
.text                           # code goes in the text segment 
 
init:   li    x10,0x11003000    # input port address 
        li    x11,0x11005000    # output port address 
         
main:   lw    x20,0(x10)        # input data 
        neg   x20,x20           # take the 2’s complement of the data 
        sw    x20,0(x11)        # output data 
 
        j     main              # repeat I/O sequence 

Figure 10.10: Solution for this example. 

 

10.4.2.2 Conditional Branch Instructions 

While the unconditional branch instructions don’t provide any options in terms of program flow control, the 
conditional branch instructions do. Unconditional branch instructions utilize the two register values in order to 
determine whether to branch or not. When certain conditions associated with those values test as true, the 
instruction takes the branch; otherwise, the instruction does nothing and program flow control passes to the 
instruction following the branch instruction (which is the next instruction in program memory).  

There as six base conditional branch instructions in the RISC-V MCU instruction set. There are also ten other 
conditional branch pseudoinstructions derived from the six based conditional branch instructions. The fact that 
there are a relatively high number of base and pseudoinstructions underscores their importance in assembly 
language programming. Table 10.19 lists the six conditional branch base instructions. And of course, here are a 
few interesting items to note about Table 10.19.  

 Most importantly, notice that conditional branches are based upon the conditions in two register 
values. This is sometimes quite restrictive, but that’s what we have to work with in the RISC-V 
ISA. The existence of “set if less than” instructions provide somewhat of a workaround for the 
limited flexibility of conditional branch instructions, but we leave those to another section.  

 We once again use the “label” notation in our instruction description. Other documentation uses 
“imm” to reflect an immediate value, but the assembler actually rejects numerical value for the 
immediate operand.  

 We opt to use C programming language operators to show the relationship between registers in the 
Comment column; we also add an external note as well.  

 The instructions consider the values in the source registers to be signed values unless stated 
otherwise. The bgeu and the bltu instructions are the only two instructions that treat the source 
operands as unsigned values.  
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Instruction Form Example Usage Comment 

beq   rs1,rs2,label beq   x10,x11,label branch if x[rs1] == x[rs2];  (equal) 

bne   rs1,rs2,label bne   x23,x10,label branch if x[rs1] !=x [rs2];  (not equal) 

bge   rs1,rs2,label bge   x20,x21,label branch if x[rs1] >= x[rs2]; (≥) 

bgeu  rs1,rs2,label bgeu  x8,x9,label branch if x[rs1] >= x[rs2];  (unsigned) 

blt   rs1,rs2,label blt   x28,x29,label branch if x[rs1] <= x[rs2];  (≤) 

bltu  rs1,rs2,label bltu  x4,x11,label branch if x[rs1] <= x[rs2];  (unsigned) 

Table 10.19: The RISC-V conditional branch base instructions. 

Table 10.20 lists the ten pseudoinstructions and their base instruction equivalents. Here are a few things to note 
about Table 10.20:  

 You can use these instructions as listed in your source code; the assembler translates your 
pseudoinstructions to base instruction.  

 We once again use the “label” to mean a label in your source code. The associated documentation 
often uses an immediate value instead, even the though the assembler rejects such numeric values.  

Instruction Form Example Usage 
Equivalent  
Base Instruction Comment 

beqz  rs1,label beqz  x7,label beq   rs1,x0,label branch if x[rs1] == 0 

bnez  rs1,label bnez  x25,label bne   rs1,x0,label branch if x[rs1] != 0 

bgez  rs1,label bne   x23,label bge   rs1,x0,label branch if x[rs1] >= 0 

bgt   rs1,rs2,label bgt   x20,x21,label blt   rs2,rs1,label branch if x[rs1] > x[rs2] 

bgtu  rs1,rs2,label bgtu  x8,x9,label bltu  rs2,rs1,label branch if x[rs1] > x[rs2]; (us) 

bgtz  rs1,rs2,label bgtz  x4,x8,label blt   x0,rs2,label branch if x[rs1] > 0   

ble   rs1,rs2,label ble   x4,x11,label bge   rs2,rs1,label branch if x[rs1] <= x[rs2]) 

bleu  rs1,rs2,label ble   x14,x12,label bgeu  rs2,rs1,label branch if x[rs1] <= x[rs2]; (us) 

blez  rs1,rs2,label blez  x14,x8,label bge   x0,rs2,label branch if x[rs1] <= 0   

bltz  rs1,label bltz  x22,label blt   rs1,x0,label branch if x[rs1] < 0   

Table 10.20: The RISC-V conditional branch pseudoinstructions. 

10.5 Standard Assembly Language Constructs 

Assembly language is truly a type of programming language and thus shares same basic constructs associated 
with structured programming. This basic constructs include if-else constructs and iterative loops. When 
compared to higher-level languages, assembly languages differ wildly in the way they implement these basic 
constructs. The ungood news is that the RISC-V ISA has a distinct approach to encoding these basic constructs. 
The good news is that it’s not overly complicated once you understand it and use it a few times. Additionally, we 
can view an assembly language program as a large conglomeration of these constructs fit together to make a 
working program that solves the problem at hand. This section provides an overview of these constructs.  

10.5.1 If-Then-else Construct 

Figure 10.11(a) shows an example of a RISC-V assembly language version of an if/else construct. As the names 
implies, the code does one thing (if some condition is met), or else it does some other thing (if the condition is 
not met). In the case of the program in code fragment in Figure 10.11(a), bases the condition that may or may not 
be met on the state of the two register operands when the MCU executes the branch instruction. The program 
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takes one code path if the data meets the condition and another path if the data does not meet condition. Here is a 
full description of the program.  

 The program starts by loading two registers with port addresses on lines (01-02). The “init” label 
implies this code is some type of initialization code, which inherently means that the program only 
executes the code once. In the context of this program, that means this code is outside the main 
loop in the program.  

 The program inputs data on line (04), then does some arbitrary task on line (05). The if/else 
construct action happen starting with the condition branch instruction on line (06). If the value 
input on line (04) is zero, program control continues with the instruction associated with the 
“set_zero” label; we can consider this the “if” part of the if/else construct. This the “if” fails (the 
beq instruction condition is not true), the branch is not taken and the program control transfers to 
the next instruction following the beq instruction on line (07). The instruction on line (07) would 
then be the else part of if/else construct.  

 Once the instructions associated with the else clause execute, program flow control transfers to the 
instruction on line (11) by way of an unconditional branch instruction on line (08). In other words, 
the code jumps of over the code associated with the “if” clause. This is typical if/else operation.  

 As with all RISC-V assembly language programs, the non-initialization code forms a loop. After 
the if/else stuff is done happening, program control transfers to the instruction associated with the 
“main” label by issuing an unconditional branch instruction on line (12).  

 We’ve include a flowchart that models our program. Note circular terminal shape for the start of 
the program. Most importantly, notice that we have a decision box in there also (the diamond 
shaped box); be sure to notice that there are two arrows leaving the decision box where one uses a 
“yes” label and the other uses a “no” label. No “maybe” arrows here.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#------------------------------------------------------- 
init:      li     x10,0x11110000  # input port address 
           li     x11,0x22220000  # output port address 
 
main:      lw     x20,0(x10)      # input switch data 
           li     x8,1            # set flag 
           beq    x20,x0,set_zero # branch if data=0 
           li     x20,-1          # set to all 1’s’ 
           j      out_data        # jump over set to 0’s 
 
set_zero:  mv     x20,x0          # set to all 0’s 
out_data:  sw     x20,0(x11)      # write data to output 
           j      main            # reeepeeet 
#------------------------------------------------------- 

 

(a) (b) 

Figure 10.11: An example of if/else construct (a) and a supporting flowchart (b).  

10.5.1.1 Special if/else Coding Considerations 

You’ve now seen several approaches to coding if/else constructs in assembly language. While all of these ways 
are functionally equivalent, some approaches are more efficient than others. The issue here is that if/else 
constructs have at least one unconditional branch instruction (a jump) that directs program flow control to 
another area in the program. However, there is only one jump. The tendency in assembly language 
programming, especially with programmers who are new to the assembly language, is to have two unconditional 
branch statements, one jumps over the if clause, and the other jumps over the else clause. This is functionally 
correct, but is not efficient. Always strive to ensure you encode your if/else constructs using only one 
unconditional branch instruction.  

Figure 10.12 shows an alternate but equivalent form of the if/else clause of Figure 10.11(a). We show this to 
remind programmers that there truly are different and truly equivalent ways to code if/else constructs. The code 
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in Figure 10.12 essentially swaps the order of the if and else clauses compared to the code in Figure 10.11(a). 
Comparing and contrasting these two examples may be spiritually enlightening.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#------------------------------------------------------- 
init:      li     x10,0x11110000   # input port address 
           li     x11,0x22220000   # output port address 
 
main:      lw     x20,0(x10)       # input switch data 
           li     x8,1             # set flag 
           bnez   x20,set_ones     # branch if data=0 
set_zero:  mv     x20,x0           # set to all 0’s  
           j      out_data         # jump over set to 0’s 
 
set_ones:  li     x20,-1           # set to all 1’s’ 
out_data:  sw     x20,0(x11)       # write data to output 
           j      main             # reeepeeet 
#------------------------------------------------------- 

Figure 10.12: An alternate but equivalent form of the code in Figure 10.11(a).  

 

 

 

Example 10.5: Program with Conditional Branch 

Write a RISC-V assembly language program that continuously reads data from port address 
0x1100A000; if that data is non-negative, the program multiples that data by two, then outputs that 
data to port address 0x1100B000; otherwise, the program does nothing with the data.   

Solution: Figure 10.13 shows the solution to this example. This problem has similarities to previous problems, 
so we’ll only describe the new items:  

 The main code in the program starts at line (07), as indicated with the “main” label. The program 
inputs data on line (10) using an lw instruction. The problem did not state a data size so it is best 
to simply use word size for the input.  

 Once the data is input, the program only acts on it “if” the data is non-zero. So if the data is non-
zero, multiply it by two; “else” do nothing. In this case, doing nothing refers to doing nothing to 
the data; the program conditionally branches to the input instruction on line (10) if the input data is 
zero. We opted to use the beq conditional branch instruction for the if/else construct. If the input 
data is zero, we branch to “main” to input more data; else, program control drops to the next 
instruction on line (13).  

 If program flow makes it to line (13), the input data in x20 needs to be multiplied by two. There is 
no multiply instruction in the RISC-V instruction set, but we can use a shift left instruction to 
accomplish the desired multiplication. We opt to use a slli instruction on line(13) with the 
immediate value of ‘1’ handling the number of times to shift. Once the data is multiplied by two, 
we output the data on line(14).  

 The j instruction on line (16) is an unconditional branch instruction, which transfers program 
control to the instruction associated with the main label on line (10). This causes the program to 
repeat ad naseum.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x1100A000; if that data is non-zero, the data is divided by two 
# and output to port address 0x1100B000; otherwise the data is discarded.  
#--------------------------------------------------------------------------- 
.text                           # instruction code goes in text segment 
 
init:   li    x15,0x1100A000    # input port address 
        li    x16,0x1100B000    # output port address 
         
main:   lw    x20,0(x15)        # input data 
        beq   x20,x0,main       # do nothing if data is zero 
         
        slli  x20,x20,1         # multiply by 2 
        sw    x20,0(x16)        # output data 
 
        j     main              # repeat I/O sequence 

Figure 10.13: Solution for this example. 

Figure 10.14 shows a flowchart modeling the operation of this program; here are a few interesting items 
regarding this flowchart.  

 This is our first program that contains in conditional branch instruction. This program has an 
if/else construct, which the flowchart models using a decision box.  

 The decision box has one entry point and two exit points. We provide a “yes” and “no” label on 
the exit points indicating whether the condition in the decision box were met or not. The program 
takes a different flow path based on this condition.  

 Decision boxes in general alway have two exit points: a “yes” and a “no”. This never changes. 
Despite the fact that the decision box in Figure 10.14 contains only one entry point, decision boxes 
can have multiple entry points.  

 

Figure 10.14: A flowchart modeling the operation of this example program. 

 
 

 

Example 10.6: Negation and I/O Excitement 

Write a RISC-V assembly language program that continuously reads data from port address 
0x11003000, negates that data, and outputs the result to port address 0x11005000.  

Solution: Figure 10.10 shows the solution to this example. This problem has similarities to previous problems, 
so we’ll only describe the new stuff:  
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 This program includes a header that provides a description of program on lines (00-04). Code goes 
in the text segment so we use a “.text” assembler directive on line (05).   

 The j instruction on line (11) is the program flow instruction, which is a pseudoinstruction for that 
performs an unconditional branch. . This instruction directs program execution to some other 
executable instruction in the program, which is in this program, is to the instruction on the line 
with the main label.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#--------------------------------------------------------------------------- 
# Program Description: The program continuously reads data from port  
# address 0x11003000, negates that data, and outputs the result to port  
# address 0x11005000.  
#--------------------------------------------------------------------------- 
.text                           # code goes in the text segment 
 
init:   li    x10,0x11003000    # input port address 
        li    x11,0x11005000    # output port address 
         
main:   lw    x20,0(x10)        # input data 
        neg   x20,x20           # take the 2’s complement of the data 
        sw    x20,0(x11)        # output data 
 
        j     main              # repeat I/O sequence 

Figure 10.15: Solution for this example. 

 

10.5.2 Iterative Constructs 

Probably the most common construct we use in assembly languages is the iterative construct. A significant 
portion of assembly language programs apply the notion of doing something repeatedly, which we do using 
some type of iterative construction. There are two types of iterative constructs; we can implement each of those 
two constructs in two different ways.  

In any iterative construct, we employ the conditional branch instruction in such a way as to discern whether we 
need to continue iterating or not. The conditions we check for fall into two different categories: 1) we know in 
advance now many times we need to iterate, or 2) we don’t know in advance how many times we need to iterate. 
The conditions for the first type are based on a known count; we thus continue iterating the required amount of 
times. In other words, the program knows the number of times the construct iterates before it enters the 
construct. The number of times we iterate for the second type of is determined by the condition of some register 
that the program is using. In this way, the program does not know how many times the construct will iterate 
before it enters the construct. Another was to look at this is whether the program knows the iteration count at 
assemble time or run time. If the iteration count is a constant, then the assembler knows that count (assemble 
time); otherwise, the iteration count is a variable and the exact count is only known then the construct executes 
(run time).  

We typically refer to these constructs as loops, so we’ll do that from now on. We can implement either of these 
loops in two different ways: 1) while loops, or, 2) do-while loops. The difference between these two loops is 
simple and distinct: using a do-while loop ensure the loop iterates at least one time. When you use a while loop, 
the loop may not be iterated even a single time depending upon the condition controlling the loop. A do-while 
loop always iterates one time even if the iteration count is a variable (not known until run time).  

We provide a few examples of iterative constructs in the following section, but we state this disclaimer first. 
When you’re writing code, you need to make whatever comparison you need to do to make the code do what you 
want it to do. Every loop necessarily contains a conditional branch instruction. Being that there are six base and 
ten conditional branch pseudoinstructions, we can’t provide example of each instruction. Our approach in the 
next two sections to provide one example of each type of conditional construct. It’s the form of the construct that 
you should strive to understand, which allows you to use whatever conditional branch instruction you need to 
make your particular construct work in such a way that it your code solves the problem at hand.  
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10.5.2.1 while Loops 

The while loop is one type of iterative loop. The main characteristics of the while loop is that the loop condition 
is checked before execution enters the body of the loop as well as after each loop iteration. While loops contain 
at least one conditional and one unconditional branch instruction, where the conditional branch instruction 
provides a conditional exit from the loop and the unconditional branch provides a continuation of the loop. The 
unconditional branch in a while loop typically branches to the conditional branch instruction.  

Figure 10.16 and Figure 10.17 show an examples of a program fragments that include a while loop that utilizes a 
known number of iterations and an unknown number of iterations, respectively. For these and the other loop 
examples that follow, you must pretend the body of the loop is doing something meaningful. Here is stuff to note 
about Figure 10.16 and Figure 10.17:  

 The only thing that makes these loops different is what the code uses for the iteration count. For the 
example in Figure 10.16, the iteration count is set on line (05), and is thus constant and the iteration 
loop count is known at assemble time. For the example in Figure 10.17, the code determines the 
iteration count by inputting a value from the outside world, which means the loop count is variable and 
is not known until run time. Another way to look at this is that the code in Figure 10.16 knows the 
iteration count when the code is assembled (it is “known”) while Figure 10.17 does not know the count 
until the program runs (it is unknown until runtime).  

 The example initializes some registers on lines (01-03); the port addresses are arbitrary, but we do 
differentiate between input and output addresses.  

 The iteration count is set on line (05), which do with the li instruction in Figure 10.16 and an lw 
instruction in Figure 10.17.  

 The first instruction in the while loop is a conditional branch instruction which checks to see if the 
iteration count is zero. If the count is zero, the program takes the branch and program flow control 
exits the loop by branching to the instruction on line (15); otherwise, the program simply advances 
to the next instruction on line (08).  

 The body of the while loop is on lines (08-10); the code inputs data, complements that data, and 
then outputs that data to some external device. Not too exciting, but a placeholder for something 
else more exciting.  

 The administrative part of the loop is on lines (12-13). The instruction on line (12) decrements the 
iteration count; program flow is then unconditionally directed to line (07), which is effectively the 
start of the loop.  

 The first instruction in the loop is the conditional branch instruction; this is the check condition 
that effectively allows no iterations of the loop to occur by branching out of the loop (to the 
“done” label). The unconditional branch instruction unconditionally branches to the start of the 
loop after the iteration count was decrement on line (12).  



FreeRange Computer Design  Chapter 10 

 

 - 255 -  
 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

#  ~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:  li     x10,0x11110000  # input port address 1 
       li     x11,0x22220000  # input port address 2 
       li     x12,0x33330000  # output port address 
 
       li     x3,8            # set iterative count 
 
loop:  beq    x3,x0,done 
       lw     x20,0(x10)      # input data 
       xori   x20,x20,0xFF    # complement data 
       sw     x20,0(x12)      # write to output port 
 
admin: addi   x3,x3,-1        # decr loop count 
       j      loop            # do it again 
 
done:                         # do something else…   
#  ~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~  

(a) (b) 

Figure 10.16: An example of a while loop with a known numbers of iterations. 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

#  ~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:  li     x10,0x11110000  # input port address 1 
       li     x11,0x22220000  # input port address 2 
       li     x12,0x33330000  # output port address 
 
       lw     x3,0(x11)       # get iterative count 
 
loop:  beq    x3,x0,done      # branch if count=0 
       lw     x20,0(x10)      # input switch data 
       xori   x20,x20,0xFF    # complement data 
       sw     x20,0(x12)      # write to output port 
 
admin: addi   x3,x3,-1        # decr loop count 
       j      loop            # do another iteration 
 
done:                         # do something else…   
#  ~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~  

(a) (b) 

Figure 10.17: An example of a do-while loop with an unknown numbers of iterations. 

Figure 10.18 shows an alternative approach to writing the while-loops in these examples, which is to have the 
conditional branch at the end of the code instead of the unconditional branch. In this case, the program would 
take the branch when more iterations are necessary. This code would work fine, but the value of the iteration 
variable would need to be checked before entering the loop to determine if it was zero, which we do before we 
enter the while-loop on line (06). You never want to allow your code to decrement a loop count of zero before 
checking to see if that count is zero. The conditional branch on line (06) prevents the code from decrementing a 
zero on line (12), with the notion is the count is zero, we never want to enter the loop in the first place.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 

#  ~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:  li     x10,0x11110000  # input port address 1 
       li     x11,0x22220000  # input port address 2 
       li     x12,0x33330000  # output port address 
 
       lw     x3,0(x11)       # get iterative count 
       beq    x3,x0,done      # quit if zero 
 
loop:  lw     x20,0(x10)      # input switch data 
       xori   x20,x20,0xFF    # complement data 
       sw     x20,0(x12)      # write to output port 
 
admin: addi   x3,x3,-1        # decr loop count 
       bnez   x3,x0,loop      # do again if nedded 
 
done:                         # do something else…   
#  ~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~ 

 

(a) (b) 

Figure 10.18: An alternative approach to a while-loop with an unknown numbers of iterations. 

10.5.2.2 Do-While Loops 

The do-while loop is the other type of iterative loop. The main characteristic of the do-while loop is that the at 
least one iteration of the loop is guaranteed to be executed. After that first execution of the loop body, the do-
while loop effectively becomes a while loop after the first iteration complete. Keep in mind that there is a 
potential problem with do-while loops that have an unknown number of iterations at runtime. If you need to do 
something “zero times”, and you do it once, your program could die an ugly death. For these cases, you may 
want to make sure you code does the “safe thing” if this condition could potentially occur.  

The fragment of code in Figure 10.20 shows an example of a do-while loop with a known number of iterations. 
Even though this code does not do anything meaningful, here are a few fun facts to see in this example:  

 We included an “init” label as a comment; the instruction on lines (01-04) initializes registers that 
the code below it uses.  

 The body of the loop is on lines (06-08). Note that the program always executes these three lines 
at least once.  

 The loop administration starts on line (10) and includes line (11), which we like to indicate using 
the “admin” label. We first decrement the loop count and then jump back to do another loop 
iteration if that count is not zero. If the loop count is zero, then the condition fails and program 
execution drops through to the instructions starting at the “done” label (so pretend there are some 
instructions there).  

 We’ve included a charming flowchart that models the code for your viewing pleasure.  



FreeRange Computer Design  Chapter 10 

 

 - 257 -  
 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#  ~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:  li     x10,0x11110000  # input port address 
       li     x11,0x22220000  # output port address 
 
       li     x3,0x08         # set iterative count 
 
loop:  lw     x20,0(x10)      # input switch data 
       xori   x20,x20,0xFF    # complement data 
       sw     x20,0(x11)      # write to output port 
 
admin: addi   x3,x3,-1        # decr loop count 
       bnez   x3,loop 
 
done:                         # do something else…   
#  ~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~ 

 

(a) (b) 

Figure 10.19: An example of a do-while loop with a known numbers of iterations. 

Figure 10.20 shows an example of a do-while loop that iterates an unknown number of times. Because the 
accumulation of the input value determines how many times the loop iterates, we don’t know what that value is. 
Here are a few other things to notice about Figure 10.20.  

 The code uses an accumulator, so part of initialization of this fragment is to use a mv instruction to 
clear a register to use as an accumulator, which we do on line (03).  

 The body of the loop is to input a value from the outside world and accumulate it, which we do 
lines (05-06). These lines always execute at least one time based on the notion we’ve modeled this 
code as do-while loop.  

 The loop administration for this loop is on line (08); it comprises of a check to see if the 
accumulated value has surpassed the arbitrary threshold we created on line (02). If the threshold 
has not been exceeded, the loop does at least one more iteration (the branch is taken); otherwise, 
the branch is not taken and program flow continues on to the code below the “admin” label.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 

#  ~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:  li     x10,0x11110000  # input port address 
       li     x25,0x44444444  # arbitrary max value 
       mv     x3,x0           # clear accumulator 
 
loop:  lw     x20,0(x10)      # input switch data 
       add    x3,x3,x20       # accumulate input 
 
admin: bleu   x3,x25,loop     # branch if < threshold 
 
done:                         # do something else…   
#  ~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~ 

 

(a) (b) 

Figure 10.20: An example of a do-while loop with an unknown numbers of iterations. 

10.5.3 Iterative Construct Off-By-One Issues 

Off-by-one issues essentially means that you mean think your code executes a loop X number of times, but the 
loop is actually executing either X+1 or X-1 number of times. Off-by-one errors are particularly common in 
assembly language programming because coding at such low levels forces you to have a 100% understanding of 
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how the instruction actually work8. Once again, some loops are easy: you’ve coded a million of them, you never 
make a mistake. Coding these loops is easy because understanding the loop parameters are not too complicated. 
However, when you need to code a loop construct that does something somewhat special, you’re more apt to 
make a mistake9.  

In real life, it makes no sense to “decrement the loop count” before you started executing the loop. Often times in 
computerland, you must examine something that is “zero-based”, and you’re using the iterative count as an 
index. For example, you want to examine the first ten locations in main memory. The first ten locations in a start 
at address zero and continue to address nine (0-9). It’s easy to exit the loop on the ninth iteration before you do 
what you need to do in the loop, meaning you only iterated the loop nine times instead of ten. Keep this idea in 
mind; it may save your arse someday.  

 

Example 10.7: Iterative Construct with a Known Iteration Count 

Write a RISC-V assembly language program that continuously does the following: the program 
inputs a word of data from port address 0x11000004, divides that data by 64, then outputs the data 
to port addresses 0x11000008.  

Solution: This is a simple program that we’ll do in two different ways to show some of “the possibilities”, just 
because we can program necessarily uses a loop construct; Figure 10.21 shows all the gory but interesting details 
for the first approach.  

 The program first inputs data on line (10). We then plan on using a do-while loop that iterates six 
time and divides the input data by two each time through the loop. To do this, we load a register 
with the iteration count (six) on line (12). The loop divides the input value by two each iteration 
using a slri instruction that shift right one bit position.  

 The administrative part of the loop include decrement the iteration count on line (14) and then 
checking the condition using a conditional branch on line (15). We output the final divided value 
on line (17).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

#--------------------------------------------------------------------------- 
# Program Description: This program inputs word from port address 0x11000004 
# then divides the value by 64, then outputs the data to port address  
# 0x11000008.  
#--------------------------------------------------------------------------- 
.text                           # instruction code goes in text segment 
 
init:   li    x15,0x11000004    # input port address 
        li    x16,0x11000008    # output port address 
         
main:   lw    x20,0(x15)        # input count data  
 
        li    x10,6             # load iteration count 
loop:   slri  x20,x20,1         # divide by two 
admin:  addi  x10,x10,-1        # decrement iteration count 
        bne   x10,x0,loop       # check loop count 
 
        sw    x20,0(x16)        # output data 
        j     main              # rinse, repeat  

Figure 10.21: The solution to this example problem. 

                                                           
8 Which is not as true for higher-level languages (or at least it requires a different sort of understanding).  
9 Coding loop constructs become so second nature, that you forget why it is the loop you coded actually works properly. 
Then when you have a special loop to code, meaning a loop that is not as straight-forward as all the other loops you coded, 
you have to really be careful because you’ve forgotten how the loops actually work. Welcome to assembly language 
programming.  
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Figure 10.22 shows the better solution. Note that there is no loop; we can use one slli instruction on line 
(11) to complete the division. The cool thing to note here is that the RISC-V shift-type instructions can 
operate as barrel shifters of any with from 1 to 32 bit locations (inclusive). The code itself contains fewer 
instructions, including not configuring of the loop count for the do-while loop. Be sure to always take 
advantage of such handiwork. The moral of this story is that the second solution does not requires a loop 
construct, which enable the program to be run more efficiently, and thus do more inputting/outputting.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#--------------------------------------------------------------------------- 
# Program Description: This program inputs word from port address 0x11000004 
# then divides the value by 64, then outputs the data to port address  
# 0x11000008.  
#--------------------------------------------------------------------------- 
.text                           # instruction code goes in text segment 
 
init:   li    x15,0x11000004    # input port address 
        li    x16,0x11000008    # output port address 
         
main:   lw    x20,0(x15)        # input count data  
        slri  x20,x20,6         # divide by two, six time (divide by 64) 
        sw    x20,0(x16)        # output data 
 
        j     main              # rinse, repeat  

Figure 10.22: The solution to this example problem. 

Figure 10.23 shows two flowcharts representing the two solutions to this example problem. The flowchart in 
Figure 10.23(a) shows a decision box that models the do-while loop in the first solution; the decision box is gone 
in the second solution because the required shift operation completes in one instruction.  

 

 

(a) (b) 

Figure 10.23: Flowcharts to the first (a) and second (b) versions of the solution to this example. 
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Example 10.8: Iterative Loop with Unknown Count 

Write a RISC-V assembly language continuously does the following: the program inputs two pieces 
of data from port addresses 0x11004000 & 0x11004004, respectively. The first piece of input data is 
a byte and represents a count value. The second piece of data is a halfword. The program then 
outputs the input data to port address 0x11008000 for as many times as is represented by count 
inputs. The output data is also work data.  

Solution: This program necessarily uses a loop construct; Figure 10.24 shows all the gory but interesting details:  

 The program requires an iterative loop, which we know because we needs to do something a given 
number of times. We have a choice of what type of loops to use for this problem, so we must 
make that decision. The guiding factor in this problem is that the iterative count, which we input, 
could be zero. This means that we need to check the value before we execute the body of the loop 
(meaning we can’t use a do-while loop for this problem). Note since the iteration count is input 
when the program runs, we don’t know in advance (at assembly time) what that value is, thus this 
construct can iterate a variable number of time.  

 The initialization part of the program includes placing port addresses into registers, which we do 
on lines (07-09).  

 We input the count data on line (11) and the actual data on line (12). The problem stated the count 
data and actual data to be in byte and halfword form, respectively, which is why we use the lb 
and lh instructions.  

 The loop construct (while-loop) checks the condition on line (20) before continuing with the loop. 
The body of the loop is the data output instruction on line (16).  

 All loop constructs require some type of “loop administration”, which we do in this loop starting 
on line (18) with a decrement of the loop count. We use an addi instruction with a source register 
of “-1” to handle the decrement; the instruction officially adds “-1” to the current value of the loop 
count in x20. The other part of the loop administration is an unconditional branch back to the 
conditional branch instruction and determines if the loop should continue or not.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#--------------------------------------------------------------------------- 
# Program Description: This program inputs a count and data; the data 
# is then output for as many times as is in the count. The program  
# does this continuously.   
#--------------------------------------------------------------------------- 
.text                           # instruction code goes in text segment 
 
init:   li    x15,0x11004000    # input port address 
        li    x16,0x11004004    # output port address 
        li    x17,0x11008000    # output port address 
         
main:   lb    x20,0(x15)        # input count data  
        lh    x21,0(x16)        # input data to output 
         
loop:   beq   x20,x0,main       # Check count value; start again if zero 
         
        sh    x21,0(x17)        # output data 
         
admin:  addi  x20,x20,-1        # decrement iteration count 
        j     loop              # repeat output part, not input part 

Figure 10.24: The solution to this example problem. 

Figure 10.25 shows a flowchart modeling this example. The important item to notice is that the flowchart reflects 
a while loop in that the program checks the input count condition before it proceeds. This supports the notion 
that the count condition that the program inputs could be zero.  
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Figure 10.25: A flowchart modeling the operation of this example program. 

 

 

 

Example 10.9: Iterative Loop with Known Count 

Write a RISC-V assembly language continuously does the following: the program inputs ten pieces 
of data (unsigned data guaranteed to be non-zero) from port address 0x1100A000 and sums that 
data. The program then divides the sum by two as many times as it requires to ensure the data is less 
than 0x47. The program outputs the final value in to port address 0x11009800. Assume the input 
data never overflows a 32-bit register.  

Solution: This program necessarily uses two different loop constructs; Figure 10.26 shows the solution and the 
following describes its amazing glory:  

 The program has the typical initialization stuff, but now there is more. First, on line (11) we put 
the value 0xr47 into a register because the conditional branch instructions work using register 
values and not immediate values. Second, on line (12) we initialize the loop count to ten as the 
program requires. Third, since this program keeps a running total of input values, we use a register 
as an accumulator and clear that register on line (13). The ordering of these three instructions is 
important; the value of 0x47 never changes, but we must “re-initialize” the iteration count (x17) 
and the accumulator (x18) each time we start processing another ten pieces of data. There are a 
few ways to do this, but to save two instructions somewhere else in the program, we’ll be jumping 
back to the “start” label when the program completes processing of all ten pieces of data.  

 We use a do-while loop to input the data since we know how many times we’ll be iterating that 
loop (ten), which means there is always a first time. The “do” of the do-while loop starts on line 
(15) by inputting data, then adds that data to the running total (the accumulator) on line (16). The 
administrative part of the loop starts on line (21) by decrementing the iteration count and 
continues with a check of the iteration count on line (19). If the loop needs to continue, program 
control transfers back to line (15); otherwise it drops through to line (21).  

 The code on lines (21-23) is a while-loop with an unknown iteration count. We may need to divide 
the sum by two many times (line (22)), or we may not need to divide the sum at all. We use a srli 
(shift right logical immediate) instruction to divide by 2. We unconditionally jump on line (23) to 
check the condition after each division.  

 We output the final value on line (25) and then jump back to the start label, which we previously 
commented on.  
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 Note that we’ve simplified the reading of the program by using whitespace (blank lines) to 
delineate different “sections” of the program; the instructions in a given section are all supporting 
the same task and are different from the previous or next section.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 

#--------------------------------------------------------------------------- 
# Program Description: This program continuously inputs and sums ten pieces  
# of data (unsigned words guaranteed to be non-zero) from port address  
# 0x1100A000. The program then divides the sum by two as many times as  
# it requires to ensure the data is less than 0x47. The program outputs  
# the final value in to port address 0x11009800.   
#--------------------------------------------------------------------------- 
.text                           # instruction code goes in text segment 
 
init:    li    x15,0x1100A000    # input port address 
         li    x16,0x11009800    # output port address 
         li    x18,0x47          # load threshold value  
start:   li    x17,10            # iteration count  
         mv    x30,x0            # clear counter 
         
main:    lw    x20,0(x15)        # input data  
         add   x30,x30,x20       # accumulate input data 
 
admin:   addi  x17,x17,-1        # decrement iteration count 
         bne   x17,x0,main       # branch if iteration count non-zero 
         
loop:    ble   x30,x18,out_val   # jump to output data if less than 0x47 
         srli  x30,x30,1         # divide by two 
         j     loop              # jump to check again 
         
out_val: sw    x30,0(x16)        # output data 
         j     start             # repeat entire process again 

Figure 10.26: The solution to this example problem. 

Figure 10.27 shows a flowchart that models the assembly language solution to this example. The program had 
both a do-while loop and a while loop, which we see with the two decision boxes in Figure 10.27. Recall there is 
one decision both for each the do-while and while loop.  

 

Figure 10.27: A flowchart modeling the operation of this example program. 
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Example 10.10: Gathering Input Statistics 

Write a RISC-V assembly language continuously does the following: inputs 20 unsigned word 
values from port address 0x1100F000 and counts how many of those data are less than 0x58 and 
less than 0xA4. After the ten values are input, the program outputs the two counts as bytes to port 
address 0x1100E000 in two consecutive outputs.  

Solution: This is a rather contrived program in that it does not do much and there are many approaches to 
solving this problem. Our intent is to use the set-if-less-than-type instructions, so Figure 10.28 shows our choice 
of solutions along with the gut-wrenching details:   

 The has initialization code loads the I/O addresses into registers, and also places one of the 
threshold values to check in a register also (line (10)). We don’t put both less than threshold 
values into registers simply to prove a point that we’ll describe in a later comment.  

 The code at the “start” label is also initialization code but differs from the previous initialization 
code in that we need to execute the code on lines (12-15) each time the program does its main 
task. The body of the loop changes the values in the second set of initialization code, so it needs to 
be re-initialized; the program never changes the register values loaded by the first three 
instructions.  

 We use a do-while loop to input the data since we know how many times we’ll be iterating that 
loop (20), which we’ll always enter the loop for the first time. The “do” of the do-while loop starts 
on line (15) by inputting data. We then use two slt-type instructions on lines (18-19) to examine 
the two less-than threshold values. We use a register-type instruction on line (18) and an 
immediate-type instruction on line (19). This is somewhat arbitrary just to show we can do it. The 
only useful comment here is that the sltiu instruction uses a constant value that is set at assemble-
time while the sltu instruction uses a register that the program can change at any time. This 
program never changes the value but it’s good to know it’s possible.  

 The algorithm works by using the register values set by the slt-type instructions as incrementing 
values on lines (20-21). The values in these registers is either ‘1’ (less-than checks true) or ‘0’ 
(less-than checks false), so incrementing in this case is a viable approach.  

 Lines (23-24) contain the loop administration code including a decrement of the loop count and a 
conditional branch back to the “main” label to continue the loop.  

 The program completes by outputting the two counts on lines (26-27), then unconditionally 
branching to the start label to redo the entire program (except for the first three instructions).   
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 

#--------------------------------------------------------------------------- 
# This program continuously does the following: inputs 20 words values  
# (unsigned)  from port address 0x1100F000 and counts how many of those  
# data are less than 0x58 and less than 0xA4. The program outputs the two  
# counts to port address 0x1100E000 as bytes in two consecutive outputs.  
#--------------------------------------------------------------------------- 
.text                             # instruction code goes in text segment 
 
init:    li     x15,0x1100F000    # input port address 
         li     x16,0x1100E000    # output port address 
         li     x17,0x58          # load threshold value 
          
start:   li     x18,20            # iteration count  
         mv     x30,x0            # clear iteration counter 
         mv     x10,x0            # clear less than 0x58 counter 
         mv     x11,x0            # clear less than 0xA4 counter 
         
main:    lw     x20,0(x15)        # input data; start of do-while 
         sltu   x25,x20,x17       # check < 0x58 
         sltiu  x26,x20,0xA4      # check < 0xA4 
         add    x10,x10,x25       # add to < 0x58 count 
         add    x11,x11,x26       # add to < 0xA4 count 
          
admin:   addi   x18,x18,-1        # decrement iteration count 
         bne    x18,x0,main       # branch if iteration count non-zero 
         
store:   sb     x10,0(x16)        # output less than 0x58 count 
         sb     x11,0(x16)        # output less than 0xA4 count 
         j      start             # jump to do all over again 

Figure 10.28: The solution to this example problem. 

The slt-type instructions in this program allowed us to essentially make a comparison but not branching as a 
result of that comparison. An action like this is quite handy when you need it, but programs typically use it less 
often than other branch-type instructions. Try not to forget about slt-type instructions.  

Figure 10.29 shows one possible flowchart that models the solution. We’re getting to the point with our 
flowcharts that we’re not trying to represent every action in detail; we’re now more interested in the overall form 
of the flowchart. Keep in mind that the problems we’ve done so far are not overly complicated; the real 
usefulness of flowcharts comes with problems that require complex algorithms to complete.  

 

Figure 10.29: A flowchart modeling the operation of this example program. 
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10.6 Bit Manipulations for MCUs 
We design MCUs, or microcontrollers as some people call them, to do exactly what their name implies: they 
control things. By things, we mean external computer peripherals. In general, MCUs monitor status inputs and 
send out control outputs. Recall that this functionality is similar to FSMs, but MCUs control things via software 
(or firmware) while FSM are purely a hardware-oriented device. The way MCUs control things is by interpreting 
input bits (status) and then send out output bits (control); thus, bit manipulations are a key element in writing 
meaningful programs for MCU. This section describes some of the details regarding the finer points of bit 
manipulations.  

10.6.1 Tweaking Bits  

Bit-tweaking, or bit banging, is a well-known assembly language trick. In this context, we use the word 
“tweaking” to mean modifying individual bit values. There are only four things you can do with a bit: 1) setting, 
2) clearing, 3) toggling (complementing), and, 4) holding the bit value (doing nothing). The notion of tweaking 
bits is slightly misleading because MCUs such as the RISC-V MCU have instructions that typically only operate 
on complete register values. More specifically, the three logic-type instructions (AND, OR, and EXOR) operate 
on the entire register, which is why we refer to them as bit-wise operations. Although many modern MCUs have 
instruction that can perform logic-type operations on individual bits of a register, most do not.  

Having instructions that manipulate individual bits are handy but they make the instruction set larger than they 
need to be and the hardware more complex than they need to be, which is why most instruction sets don’t have 
such instructions. One of the unstated requirements of assembly language programming is that you need to be 
clever. In other words, you need to work with the instructions you have to do what you need to do with a 
reasonable amount of complexity. You won’t always have the exact instruction you need every time but the 
instruction set should always have the functionality to create the operation you’re looking for (although it may 
take a few instructions instead of just one instruction). 

You can do four things with a bit: set it, clear it, toggle it, or hold it (do nothing with it). Table 10.21 shows the 
four possible things you can do with a bit as well as the logic operations you use to do those four things. There 
are many ways to “hold” bits; Table 10.21 shows three of the more common approaches.  

Bit Operation How to do it 

setting  Logical OR with ‘1’ 

toggling  Logical XOR with ‘1’ 

clearing  Logical AND with ‘0’ 

holding   
(do nothing) 

Logical OR with ‘0’ 
Logical XOR with 0 
Logical AND with ‘1’ 

Table 10.21: The four possible things you can do to a bit and how to do it with logic operations. 

10.6.2 Bit Masking  

Since we generally use MCU to control various computer peripheral devices, it would make sense that we can 
use single bits to control these devices rather than entire bytes. The issue with most MCUs is that they can only 
operate on large chunks of data at a time. The result is that your assembly programs typically require the use of 
bit-masks in order to manipulate individual bits in a register. The bit-masks, combined with executing 
conditional branch instructions, allows the microcontroller to perform different functions based on the status of 
individual bits of registers rather than the entire register. As you can probably imagine, bit-masking is really 
useful and common in assembly languages. Table 10.22 shows a few examples regarding bit-mask possibilities, 
all of which makes more sense when you see it used in a few examples.  

There are two main uses for bit masks: 1) checking individual input bits in a register, and, 2) assigning values to 
individual bits in a register. Note that programs check individual bits and use those bit values in control the 
program flow in programs. In most cases, your MCU is controlling some peripheral device, which means your 
MCU is typically reading status inputs from external devices and assigning control outputs to external devices. 
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For the RISC-V MCU, we input values from the outside world into a register, where we can then “check” them; 
we then output values to the outside world from a register. 

Example Explanation 

ori     x10,x10,0x02 Sets second to right-most bit-1 in r1 (no other bits change) 

ori     x11,x10,0x0F Sets four LSB in x10; store result in x11 (no other bits change) 

andi    x12,x12,0x0F Clears all but the four LSBs in x12 (no other bits change) 

andi    x13,x13,0x0FF Clears all but the eight LSBS in x13 (no other bits change) 

xori    x14,x14,0x03 Toggles the lower two bits in x14 (no other bits change) 

xori    x15,x15,0x0F Toggles the lower four bits in x15 (no other bits change) 

Table 10.22: Examples of bit-masking operations. 

 

Example 10.11: Bit-Masking and Bit Setting 

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. 
Write a RISC-V assembly language program that reads data from the switches. Consider the data on 
the switches to represent a 16-bit unsigned number. If that number is greater than 255, then the 
program sets the bottom four bits of the data before it outputs it to the LEDs. Otherwise, the 
program outputs the input value. The port address of the switches is port address 0x1100C000; the 
port address of the LEDs is 0x11008000.  

Solution: Most of this solution is similar to the previous solution so we’ll only describe the interesting parts of 
this solution. Figure 10.30 shows the full solution; the following blather could prove interesting:  

 The main trick in this problem is how we check to see if the value is greater than 255. We could 
simply load a register with the value 255 and use that register in a conditional branch statement, 
but that approach would require that we use an extra register. Our approach is to clear the bottom 
byte in the input value; if the resulting value is non-zero, than the input value had bits set above 
the seventh bits from the right, which means the input value is greater than 255. Part of our 
initialization code set a mask value into a register (line (09)); we use this value to clear the lower 
byte of the input on line (12). The mask value is greater than 12-bits (meaning we can’t define the 
mask using 12-bits) so we place the value in a register and use an andi instruction on line (12).  

 We input the data on line (11), mask it on line (12), and branch to the output if the input value is 
255 or less using a beq instruction on line (13).  

 If the value is greater than 255, program flow drops to the ori instruction one line (14); this 
instruction sets the lower 4-bits of the value to 0xF. Note that some of these values may have 
already been 1’s, but that does not matter. The instruction does not know what is in the register; it 
sets the lower four bits no matter what is in the register.  

 The program outputs the value to the LEDs on line (16) and branches unconditionally to do it all 
again on line (17).  

 The main structure of this program is an if/else statement; the program repeats itself using the 
unconditional branch on line (17).  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

#----------------------------------------------------------------------------- 
# This program reads data from the switches; if the data is greater than  
# 255, then the program sets the lower four bit of the value before outputting 
# it. Otherwise, it outputs the value to the LEDs without changing value.  
# The port address of the switches is 0x1100C000; the port address of  
# the LEDs is 0x11008000. Assume 16 switches and the same number of LEDs. 
#------------------------------------------------------------------------------ 
init:     li    x10,0x1100C000     # put switch address (input) to register 
          li    x11,0x11008000     # put LED address (output) in register# 
          li    x15,0x0000FF00     # bit mask for values > 255 
           
main:     lhu   x30,0(x10)         # input data 
          and   x31,x30,x15        # mask the lower byte 
          beq   x31,x0,out_val     # jump to output (input greater than 255)  
          ori   x30,x30,0xF        # set lower four bits 
          
out_val:  sh    x30,0(x11)         # send value to LEDs 
          j     main               # rinse, repeat 

Figure 10.30: The solution to this example problem. 

 

 

 

Example 10.12: Parity of a Switches  

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. 
Write a RISC-V assembly language program that continually reads data from the switches and 
outputs the parity of the input data to the LEDs. Specifically, no LEDs on indicates the parity of the 
input was even; the right-most LED on indicates od parity of the input. The port address of the 
switches is port address 0x1100C000; the port address of the LEDs is 0x11008000.  

Solution: Some of this solution is similar to the previous solution so we’ll only describe the new parts. This is a 
classic problem that we’ll see again in a later chapter. This is our first program that sort of does something 
meaningful in that parity is popular topic and we use a clever algorithm to generate our result; Figure 10.31 
shows the incredibly interesting details.  

 The initialization part of the program includes loading the port addresses to registers, and putting 
the LEDs into a known state. We do all this on lines (06-09).  

 After inputting data on line (11), we check to see if that data is zero; if it is zero, we branch to the 
code that outputs to the LEDs; otherwise we continue into the code. We wrote the algorithm as 
while loop because we checked the condition first. The structure of the code is an embedded loop, 
where one where we essentially have a do-while loop embedded in the while loop. The while-loop 
is the outer loop and starts on line (11); the do-while loop is the inner loop and is on lines (13-18). 
This is a classic structure you use quite often in assembly languages.  

 The algorithm masks all but the LSB of the input data (line (14)) and then adds that result to x20, 
which is a register we use as a counter. Note that part of the init code we clear that counter and 
then clear it again after we complete the inner loop and output the result to the LEDs on line (22). 
The administrative part of the inner loop includes shifting the original input data to the right. Note 
that we treat the outer while-loop as if we don’t know the iteration count; we could have used an 
algorithm that used an iteration count of 16, but that would mean the inner loop would always run 
16 times. The way we’ve written the algorithm, the loops ends when that value we’re using to 
calculate parity runs out of 1’s.  

 The final portion of the algorithm is when we break out of the inner loop. At that point we mask 
1’s count on line (20) and output that value on line (21). In this way, if the count of 1’s is odd, a 
‘1’ in the LSB position is output to the LEDs; otherwise the algorithm turns off all LEDs.  



FreeRange Computer Design  Chapter 10 

 

 - 268 -  
 

 In preparation of starting the outer loops again, we clear x20, which use to keep track of the set 
bits in the input data.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

#-------------------------------------------------------------------------- 
# This program inputs data from the switches, calculates the parity of 
# of the input data, then outputs that parity to the LEDs with no LEDs 
# on indicating even parity and the right-most LED on indicating odd 
# parity.  
#-------------------------------------------------------------------------- 
init:      li    x10,0x1100C000     # put switch address (input) to register 
           li    x11,0x11008000     # put LED address (output) in register# 
           mv    x20,x0             # clear register to use for LED state 
           sh    x20,0(x11)         # turn off all LEDs 
 
main:      lhu   x30,0(x10)         # input data 
 
loop:      beq   x30,x0,done        # branch if zero 
           andi  x21,x30,1          # mask LSB 
           add   x20,x20,x21        # accumulate bits 
 
admin:     srli  x30,x30,1          # shift right one bit 
           j     loop               # jump to keep counting 
 
done:      andi  x20,x20,1          # mask LSB 
           sh    x20,0(x11)         # output result 
           mv    x20,x0             # clear counter 
           j     main               # rinse, repeat 
#------------------------------------------------------------------------ 

Figure 10.31: A codespace efficient solution to this example.  

Figure 10.32 shows a flowchart modeling the operation of this program. There are many ways to draw 
flowcharts; we typically draw the ones in this text to save vertical space. There are sometimes better ways to 
draw them, but making the flowcharts as “horizontal” as possible reduces page count issues. One issue to notice 
in the flowchart of Figure 10.32 is the fact that there are two “clear accum” boxes there. We could have 
structured our code to use only one such box, which would definitely have a few minor advantages.  

 

Figure 10.32: A flowchart modeling the operation of this example program. 

 

 

 



FreeRange Computer Design  Chapter 10 

 

 - 269 -  
 

Example 10.13: Simple Bit Mask with Conditional Output 

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. 
Write a RISC-V assembly language program that reads data from the switches. If the second to 
right-most switch is on (on=1), then the program turns on all LEDs; otherwise the program turns off 
all LEDs. The port address of the switches and LEDs is 0x1100C000 & x11008000, respectively. 

Solution: The most interesting part of this example is the notion we have to act on the status of a single switch. 
This is somewhat of a problem because the RISC-V MCU only operates on larger chunks of data such as bytes, 
halfwords, and words. This where the notion of bit masking comes in. Figure 10.33 shows the full solution; here 
are some fun facts about the solution:  

 The solution contains a nice program header on lines (00-06) that describes what the program does 
with a modest amount of detail. All programs should have such a header (or file banner); we 
sometimes omit them to save time.  

 The program first initializes stuff on lines (7-10); we use the “init” label to indicate this. The 
initialization code is typically code that we execute only once in a program. We use this code to 
essentially “create” constants in the code. This notion is that we set the constant values once, and 
then save codespace and execution time by not setting them again in the remainder of the code. 
For this initialization code, we put the two I/O addresses in registers; we also put the two chunks 
of output data in registers (all 1’s and all 0’s).  

 The main code consists of inputting data, and if/else construct, and a few strategically placed 
unconditional branches. We’ve noted the main code using the “main” label on line (12). The 
unconditional branch is on line (17). The if/else construct spans lines (12-17).  

 The problems states that the hardware only has 16 switches (inputs) and 16 LEDs (outputs). 
Because of this, the problem opts to use lh instructions for inputting data and sh instructions for 
outputting data. We could have used lw and sw instructions and the code would have worked, but 
using lh and sh is a better option because it better reflects the actual size of the data involved. 
Additionally, we could have used lhu for inputting data as well.  

 We first input the data on line (12). We’re only interested in the second to right-most bit, so we 
mask all the other bits using the andi instruction one line (13). The mask on this instruction 
(mask = 2) clears all the bits except the bit we’re interested in (recall that the assembler represents 
2 as 0x002, or 0000000000102; the underlying RISC-V MCU hardware extends the instruction 
length from 12 to 32 bits in order to fill the register with known values). The result from the AND 
operation leaves either a zero or two in x20. If the result is two, that means the switch was on 
when the program executed the lhu instruction. If the result is 0, that means the switch was off.  

 The beq instruction on line (14) is part of the if/else construct. This instruction checks to see of 
the result of the mask operation was zero or not, and branches accordingly. If the value in x20 is 
zero (the second to right-most switch was off), the code takes the branch and the instruction on 
line (19) is the next instruction to execute; otherwise, the code does not take the branch and the 
following instruction (line (16)) is the next instruction to execute.  

 We structured the code such that we need two unconditional branch instructions: one for the if 
clause and another for the else clause. We could have done this another way that we’ll list after 
this code.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

#----------------------------------------------------------------------------- 
# This program reads data from the switches; if the second to right-most  
# switch is on (on=1), then the program turns on all LEDs; otherwise 
# the program turns off all LEDs. The port address of the switches is 
# 0x1100C000; the port address of the LEDs is 0x11008000. Assume  
# there are 16 switches and an equivalent number of LEDs. 
#------------------------------------------------------------------------------ 
init:     li    x10,0x1100C000     # put switch address (input) to register 
          li    x11,0x11008000     # put LED address (output) in register 
          li    x8,0xFFFF          # load reg with one output value 
          mv    x9,x0              # load reg with other output value 
          
main:     lhu   x20,0(x10)         # input data 
          andi  x20,x20,2          # mask 2nd to right-most bit 
          beq   x20,x0,out_off     # if not zero, branch to off 
          
out_on:   sh    x8,0(x11)          # turn on all LEDs 
          j     main               # do it again      
 
out_off:  sh    x9,0(x11)          # turn off all LEDs  
          j     main               # do it again   

Figure 10.33: The solution to this example problem. 

Figure 10.34 shows an alternative solution to this example. We include this solution because it handles the 
output in a different manner. The previous solution had two different output instructions (sh); this solution only 
has one output instructions. This solution assigns the output value to a generic register; both the if and else 
clause assign a value to that register. The code in this alternative solution is actually longer, but this is a good 
programming form to know about. This example problem only had two possible outputs; if there were 20 
different possible output values, the structure of this alternative solution would be clearly more space efficient.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 

#----------------------------------------------------------------------------- 
# This program reads data from the switches; if the second to right-most  
# switch is on (on=1), then the program turns on all LEDs; otherwise 
# the program turns off all LEDs. The port address of the switches is 
# 0x1100C000; the port address of the LEDs is 0x11008000. Assume  
# there are 16 switches and an equivalent number of LEDs. 
#------------------------------------------------------------------------------ 
init:     li    x10,0x1100C000    # put switch address (input) to register 
          li    x11,0x11008000    # put LED address (output) in register 
          li    x8,0xFFFF         # load reg with one output value 
          mv    x9,x0             # load reg with other output value 
          
main:     lhu   x20,0(x10)        # input data 
          andi  x20,x20,2         # mask 2nd to right-most bit 
          beq   x20,x0,set_off    # if not zero, branch to off 
          
set_on:   mv    x30,x8            # load register with 1’s 
          j     out_val           # do it again      
set_off:  mv    x30,x9            # load register with 0’s 
 
out_val:  sh    x30,0(x11)        # turn off all LEDs  
          j     main              # do it again   

Figure 10.34: An alternative solution to this example problem. 

Figure 10.35 shows the two flowcharts for the two solution to this example. The flowcharts are the same up to 
the point of outputting data. The alternative solution in Figure 10.34 contains only one output instruction, which 
results in one less process block for the flowchart in Figure 10.35(b) representing the alternative solution. The 
two programs, however, are indeed functionally equivalent.  
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(a) (b) 
Figure 10.35: Flowcharts modeling the two solutions to this example. 

 

 

 

Example 10.14: Bit-Masking with Blinking LED 

Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. 
Write a RISC-V assembly language program that reads data from the switches. If the two right-most 
switches are off (on=’1’), the program toggles the right-most LED; in all other cases, the program 
does not change the state of any LED. The port address of the switches is port address 0x1100C000; 
the port address of the LEDs is 0x11008000.  

Solution: Most of this solution is similar to the previous solution so we’ll only describe the interesting parts of 
this solution. Figure 10.36 shows the full solution; here is some pertinent commentary:  

 Anytime you’re working with output such as LEDs, it’s always a good idea to put the LEDs in a 
known state. We do this despite the problem statement saying nothing about it. Line (09) clears a 
register; line (10) writes that value to the output port address controlling the LEDs. These two 
lines effectively turn off all the LEDs as part of the initialization sequence so there no question as 
to the state of the LEDs when the program exits the initialization code. We’re effectively using 
register x9 to save the current state of the LEDs, which is a standard assembly language 
programming approach.  

 This program is going to do perform a compare to ensure the two LSBs are set. There are many 
ways to do this, but we’ll do it in this problem by comparing the masked switch values to 3. This 
is why on line (11) we place 3 in a register.  

 The program inputs data from the switches on line (13) and masks it on line (14). We use the 
value of “3” in the mask because the number 3 in binary has the two LSBs set; the result is that all 
the bits in the register other than the two right-most bits are cleared; the code masks the two right-
most bits, which in this case means the andi instruction does not change them. We are able to use 
an immediate type instruction for the bit-mask because the value fits nicely into a 12-bit field, 
which is the upper limit for the andi instruction.  
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 Line (15) contains a conditional branch instruction (bne), which directs program flow back to the 
instruction associated with the main label if either of the two right-most bits are set. In the case 
where the two right-most bits are cleared, program flow drops to the instruction on line (17).  

 If the code makes it to line (17) that means we need to toggle the right-most LED. We opted to 
save the state of the LEDs in x9, so to toggle an LED, we need to exclusive OR that particular bit 
with a ‘1’, which we do on line (17) using an xori instruction. The xori instruction toggles the 
right-most value in the designated LED register but does not change any other bit in x9. The data 
in x9 is then output to the LEDs on line (18) using a sh instruction.  

 The program contains an initialization section followed by an if/else construct; the program looks 
a like a big pile of code, but it only really contains these two sections of code.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#----------------------------------------------------------------------------- 
# This program reads data from the switches; if the two right-most  
# switches are off (off=0), then the program toggles the right-most LEDs;  
# otherwise the program does not change the state of the LEDs.  
# The port address of the switches is 0x1100C000; the port address of  
# the LEDs is 0x11008000. Assume 16 switches and the same number of LEDs. 
#------------------------------------------------------------------------------ 
init:     li    x10,0x1100C000     # put switch address (input) to register 
          li    x11,0x11008000     # put LED address (output) in register# 
          mv    x9,x0              # clear register to use for LED state 
          sh    x9,0(x11)          # turn off all LEDs 
          li    x20,3              # load compare value (two LSBs set) 
 
main:     lhu   x30,0(x10)         # input data 
          andi  x30,x30,3          # mask two right-most bits 
          bne   x30,x20,main       # branch if two LSBs are 1  
          
both_off: xori  x9,x9,1            # toggle right-most bit in LED register 
          sh    x9,0(x11)          # send value to LEDs 
          j     main               # rinse, repeat 

Figure 10.36: The solution to this example problem. 

Figure 10.37 shows a flowchart modeling the solution to this example. No comments here as the flowchart is 
strangely similar to previous examples.  

 

Figure 10.37: A flowchart modeling the operation of this example program. 
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10.7 Chapter Summary 

 

 There are three types of bit-crunching instructions:  

1) logic (AND, OR, XOR) 

2) arithmetic (ADD, SUB) 

3) shift (right & left barrel shifts)  

 Program flow control instructions allow programs to execute instruction other than the “next” instruction in 
program memory. The types of program flow control instructions include jumps and branches, which offer 
unconditional and conditional program flow control, respectively.  

 Labels in program code provides jump and branch destinations used by the assembler, but also provide 
messages to human programmers without increase code space.  

 There are three primary programming constructs that form the bases of structured programming; all well-
written programs can be decomposed into these three constructs.  

1) sequences 

2) if-then-else constructs  

3) iterative constructs (while & do-while loops) 

 Iterative constructs can have constant or variable iteration counts. The values of constant iteration counts are 
known at assemble time while the value of variable iteration counts are only known at run time.  

 There are four things you can do with a bit, 1) set it, 2) clear it, 3) toggle it, and 4) hold it. Assembly 
languages set bits by ORing them with ‘1, clear bits by ANDing them with ‘0’, and toggling bits by 
EXORing them with ‘1’. Assembly languages hold bits in many different ways.  

 Bit-masking is the act of using logic instruction to operate on only a given set of bits (set, clear, toggle, 
hold). Most MCUs must use bit-masking because the MCU’s instructions operate only on larger chunks of 
data.  

 The RISC-V MCU has a set of instructions that don’t fall into other standard categories. These instructions 
include “set if less than” instructions, load address (la), load immediate (li), other data loading 
instructions (auipc & lui).  
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10.8 Chapter Exercises 

 

1) In your own words, describe what the term “program flow control” means.  

2) Briefly describe why you think it is that every assembly language program has at least one unconditional 
branch instruction.  

3) Briefly describe why it is important to have an area in your program for “initialization code”. 

4) Describe a situation where a “lesser” amount of code requires more execution time than a “greater” amount 
of code. Assume these sets of code perform identical tasks.  

5) What does the term “bit-wise” mean in terms such as “bit-wise AND operation”?  

6) What other type of logic operations are the other than bit-wise operations?  

7) Briefly describe why you feel it is that most MCUs don’t have bit-level instructions despite the fact that the 
MCU typically is operating on bits rather than bytes.  

8) List the two purposes of labels in assembly language programs.  

9) Briefly describe why the RISC-V instruction set contains an add immediate instruction (addi) but not a 
subtract immediate instruction.  

10) Briefly describe the two possible classification of conditions associated with do-while and while loops.  

11) Briefly describe why it is that labels in programs do not increase program size.  

12) What is another name for an unconditional branch operation?  

13) Describe the four things you can do with a single bit.  

14) There are standard approaches to setting, clearing, and toggling bits in assembly languages; provide 
examples of these approaches.  

15) Name the three logic-based approaches to “holding” a bit value.  

16) Briefly describe why the shift instructions in the RISC-V instruction set are actually barrel shifting 
instructions.  

17) Briefly describe the only use for a nop pseudoinstruction?  

18) Briefly describe the main function difference between a mv pseudoinstruction and a li pseudoinstruction.  

19) List five ways the RISC-V assembler could implement a nop instruction.  

20) In your own words, briefly describe what the term bit masking refers to.  

21) Why do MCUs have a need for bit-masking?  

22) Briefly explain why it is that most MCUs don’t have instructions that operate on the bit-level.  

23) Briefly describe the primary advantage of “set if less than” instructions.  

24) Will a do-while loop always iterate once when the iteration count is not known at run-time? Briefly explain.  

25) Briefly describe the notions of “assemble time” and “run time”.  
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26) For the following RISC-V assembly language code fragment, if the label init has a value of 
0x0000F104, provide the following information:  

a) What are the numeric values (in hex) of all the labels in the fragment  

b) What is the address in program memory of the beq instruction?  

c) What are the relative address of the following:  

i. cf2 relative to loop,  

ii. junk relative to loop,  

iii. cf2 relative to B_10  

iv. B_10 relative to init  
init:      mv    x15,x10          # save a copy 
           li    x21,0x00000F00   # 100’s bit mask 
cf2:       li    x22,0x000000F0   # 10’s bit mask 
           li    x23,0x0000000F   # 1’s bit mask 
           mv    x20,x0           # zero accumulator 
            
B_10:      or   x15,x15,x21       # mask 100’s nibble 
           srli  x15,x15,8        # shift to lowest position 
loop:      beq  x15,t_10          # go to tens if zero 
           addi  x20,x20,100      # accumulate 100s 
           sub   x15,x15,-1       # decrement loop count 
           slti  x16,x17,0x34     # do something important 

junk:      j     init             # do it again 

 

27) For the following RISC-V assembly language code fragment, if the label init has a value of 
0x00001B08, provide the following information:  

a) What are the numeric values (in hex) with all the labels in the fragment  

b) What is the address in program memory of the beq instruction?  

c) What are the relative address of the following:  

i. init relative to loop,  

ii. pig relative to init,  

iii. leave relative to done  

iv. loop relative to restore  

v. restore relative to loop 
init:      mv    x20,x0         # clear accumulator      
           li    x15,32         # number to sum       
           mv    x16,x10        # copy original address 
            
loop:      beq   x15,x0,done    # leave if finished 
           lw    x11,0(x10)     # get value from memory 
           add   x20,x20,x11    # accumulate 
           addi  x15,x15,-1     # decrement loop count 
pig:       addi  x10,x10,4      # advance addr to next data 
           j     loop           # done with iteration, do again 
            
done:      srli  x20,x20,5      # divide by 32 
restore:   mv    x10,x16        # restore original x10 address 
            

leave:     ret                  # come on up to the house 
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10.9 Chapter Programming Exercises 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code 

 Don’t worry about overflow issues unles the problem specifically state that you need to  

 

1) Write a RISC-V assembly language program that continuously inputs a word of data from port address 
0x11000C00, adds three to that data, then outputs the result to port address 0x11000E00. Don’t worry about 
overflow issues.  

2) Write a RISC-V assembly language program that continuously inputs a word of data from port address 
0x11001100, divides that data by two, adds eight to the result, then outputs the final the result to port 
address 0x11001200. 

3) Write a RISC-V assembly language program that continuously does the following: inputs a halfword of 
unsigned data from port address 0x11002200; if that data is less than 255, the data is doubled and output to 
port address 0x11003300; otherwise there data is halved and output to port address 0x11004400. Don’t 
worry about overflow for this problem.  

4) Write a RISC-V assembly language program that continuously does the following: inputs ten words of 
unsigned data from port address 0x11001110, sums those inputs, divides the result by 4, then outputs the 
result to port address 0x11002220. Don’t worry about overflow for this problem.  

5) Write a RISC-V assembly language program that continuously does the following: inputs a byte of data 
from port address 0x11003000; this byte represents the number of unsigned data words to input from port 
address 0x11004000. The input data is sum. The program then divides that input data by two enough times 
to make the data less than 0xFF. The final value is output to port address 0x1100AAA0 . Don’t worry about 
overflow for this problem.  

6) Write a RISC-V assembly language program that continuously does the following: inputs 64 unsigned 
halfwords from port address 0x11000022 and outputs the average of the value to port address 0x11000066.  

7) Write a RISC-V assembly language program that continuously does the following: inputs a word from port 
address 0x1100FF00, the outputs the eight nibbles in that word (one nibble at a time as a byte value) to port 
address 0x1100EE00. Output the right-most nibble first and work towards the left.  

8) Write a RISC-V assembly language program that continuously does the following: inputs a word from port 
address 0x11002300; if more than 16 of the bits in that data are set, it outputs the number of set bits to port 
address 0x11002400; otherwise it outputs zero to the same port address. Both output values are unsigned 
bytes.  

9) Write a RISC-V assembly language program that continuously does the following: inputs 60 unsigned 
halfwords values from port address 0x11000066. The program counts the number of these values that are 
greater than 255 and evenly divisible by 16. The program then outputs the count to port address 
0x11000077.  

10) Write a RISC-V assembly language program that continuously does the following: inputs a word from port 
address 0x11000F00, sums the eight nibbles in the word, and outputs the sum to port address 0x11000E00 
as an unsigned halfword.  

11) Write a RISC-V assembly language program that continuously does the following: inputs a word from port 
address 0x11000F00. This word should be eight valid BCD values. The program sums those values and 
outputs the result as an unsigned word if every nibble is a valid BCD value. If even one nibble is not a valid 
BCD value, the program outputs 0xFFFFFFFF. The output port address is s 0x11000E00.  
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12) Write a RISC-V assembly language program that continuously does the following: inputs 32 halfwords from 
port address 0x11002300 and outputs 16 words. Each word output is comprised of the two consecutive 
halfwords from the input, where the first value input is the lower 16-bits in the output word, and the next 
value input becomes the upper 16-bits in the input word. Output a word after inputting two halfwords. The 
port address for the output is 0x11002400.  

13) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a  
RISC-V assembly language program that continuously does the following: inputs a signed halfword from 
the switches and adds that value to a running total. If the running total is less than or equal to zero, the 
program turns all the LEDs off. Otherwise, the program outputs the lower 16-bits of the running total to eh 
LEDs. The port address of the switches is port address 0x1100C000; the port address of the LEDs is 
0x11008000.  

14) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a 
RISC-V assembly language program that inputs the switch value. If the number of switches that are on is 
one, the program outputs 0xFFFF to the LEDs; otherwise the program outputs the number of bits set as a 
binary number to the LEDs. The port address of the switches is port address 0x1100C000; the port address 
of the LEDs is 0x11008000. 

15) Consider the notion that the RISC-V MCU is controlling a board with 16 switches and 16 LEDs. Write a 
RISC-V assembly language program that reads data from the switches and considers those switches to be an 
unsigned binary number. The program then converts that binary number to stone age unary and outputs that 
value to the LEDs. The value input from the switches is never greater than 16. The port address of the 
switches is port address 0x1100C000; the port address of the LEDs is 0x11008000. 
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11 Working with Memory 
 

11.1 Introduction 

Though you have not seen it yet, most everything you with assembly language involves interfacing with memory 
in some way. We’ve introduced the load and store instructions in a previous chapter, but we did not show the full 
power of memory-type instructions with meaningful examples. This topic is so important that we’ve opted to 
dedicate an entire chapter to it. This chapter shows the full functionality and potential of interfacing with 
memory on the RISC-V MCU.  

 
Main Chapter Topics 
 

 ASSEMBLY ADDRESSING MODES: This chapter describes the various ways that 
assembly language instructions locate the data they require from various memory 
elements in the computer hardware.  

 MAIN MEMORY AND REGISTER FILE DATA ACCESS AND USAGE: This chapter 
provides an in-depth and intuitive description of how instructions access and 
utilize main and register file memory.  

 
Why This Chapter is Important 
 

This chapter is important because it shows the full flexibility and functionality of 
RISC-V memory-type instructions.  

 

 

11.2 Overview 

Our rough model of a computer was a device that uses the instructions in the underlying program to tell the 
computer hardware what to do with data. Additionally, the instructions also tell the hardware where to obtain 
that data they require. In solving a problem using a computer, the computer waits for the outside world to make a 
request and then acts on that request when it arrives; eventually the computer outputs a result.  

We write assembly language programs using a text editor to create a file that is a collection of the instructions in 
our program. We then use a special program (an assembler) which translates the instructions (text) in our 
program into machine code; we then use another mechanism to place that machine code into the program 
memory of the computer hardware.  

One of the stated benefits of using an MCU to solve our problems (as opposed to FSM controlled hardware) is 
that fact that programs are much more flexible. This form of flexibility means that I can use the MCU to solve 
many different problems by simply changing the program. Using digital circuits to solve problems that do not 
use a MCU are not flexible in that you must make major hardware redesigns for each problem you solve. The 
point here is that MCUs are flexible; the hardware in a computer is effectively non-changeable, which 
underscores the major point of this diatribe: the flexibility in using MCUs to solve problems lies in the flexibility 
associated with changing programs. Thus, this flexibility lies in the instructions themselves.  

11.3 Flexibility in Instructions 

Us human programmers essential use computer instructions to direct the computer on how we want data to move 
through the computer hardware. When we speak of data, we inherently speak of two issues: where to get the data 
from and what to do what that data. Some instructions are responsible for “crunching” data and other instructions 
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are responsible for moving data around. Both of these instruction types have the issue of where to obtain the data 
from and where to place it; not all instructions actually operate on that data (such as an arithmetic operations). 
The flexibility we’re interested in here is where the instructions obtain the data from and where to put it once the 
instruction completes.  

11.3.1 Register Addressing vs. Memory Addressing 

We have two different places to obtain data from in the RISC-V MCU: the register file and the main memory. 
Each of these locations are “storage” locations in that both modules are types of memory. As with all memory, 
we can read from and write to these modules. When we read from them, we provide them with the address of the 
data we want to read; when we write to them, we provide the address of where we want to place the data and the 
actual data we want to put in the memory. The approach instructions use to address register file memory vs. main 
memory is distinctively different.  

11.3.1.1 Register Addressing 

The RISC-V MCU contains 32 general-purpose registers, which is a relatively small number in the context of 
computer memory. Because this number is relatively small, the instructions in the RISC-V ISA require that we 
state directly which register we want to use. For example, the instruction “add    x10,x11,x12” calls out 
that we use three registers, two are source registers (x11 & x12) and one is the destination register (x10). This 
type of instruction grabs from data from somewhere, crunches it, and then places the data somewhere else. This 
instruction goes to the register file (memory) to obtain the two operands, crunches the data, and stores the result 
back into the register file. This instruction is reading data from memory and writing some data back to memory, 
which means there is some underlying addressing going on, which is not overly apparent from the instruction 
text itself.  

The reality is that when we specify “x10” in an instruction, the assembler forms the actual address that the 
computer hardware uses to accesses the memory we specify. In other words, the assembler translates to numeric 
value following the “x” in the register specification to an address that the hardware can use. Specifically, because 
there are 32 register, the assembler translates the number following the “x” specification to a five-bit field and 
encodes it as part of the instruction. The ramifications here is that the assembler assigns the specific memory 
address at “assemble time” and makes it part of the machine code associated with that instruction. This means 
that the assembler fixes the register address (memory address) at assemble time and the program can never 
change that address without re-assembling the program. The fact that the assembler fixes the address at assemble 
time effectively makes the instruction “lacking of flexibility” because the particular instruction is always using 
data at the same address. Note here that we can change the data at that address; we simply can’t change the 
address.  

11.3.1.2 Main Memory Addressing 

The RISC-V accesses memory using load-type and store-type instructions. Recall that load-type instructions read 
data from memory and writes that data to a register address while store-type instructions read data from a 
register and writes that data to main memory. As with all memory, we need to provide a memory location to 
write to or read from. The RISC-V MCU load-type and store-type instructions have a special way to “form” the 
memory addresses, which we show again in Table 11.1. Note that there is nothing special about this approach; 
it’s simply the approach RISC-V chooses to use.  

Table 11.1 shows that the memory address calculation has two parts: the offset value and the base address value; 
the underlying RISC-V hardware adds the offset value to the base address value in the specified register to form 
the absolute memory address. The hardware does the final address calculation at “runtime”; at assemble time, the 
assembler does not know what the absolute address will be. The only thing known at assemble time is which 
register the hardware  uses to form the absolute address. Recall that when dealing with register values directly 
such as in number crunching instructions, the assembler know the absolute address of the register (memory) 
assemble time. With load and store-type instructions, the underlying hardware calculates the absolute address at 
runtime. While it is true that we’re always using the same register value for a particular load or store-type 
instruction, the flexibility in this approach is that we use the program to change the value in that register.  

The fact that the load and store-type instructions calculate the absolute memory address at runtime provides 
flexibility to the programs we write. Because the hardware calculates the absolute memory addresses at runtime 
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effectively means that we can access different parts of memory according to the needs of our program. As we 
show in the remainder of this chapter, this approach allows us to write incredibly flexible programs, which in 
turn allows us to solve more problems in an efficient manner.  

Load-type instructions Store-type instructions 

  

(a) (b) 

Table 11.1: Overview of the load and store-type instructions. 

11.3.2 Assembly Language and Addressing Mode 

The term addressing modes refers to the ways we can use the instruction set to access data. The notion of 
addressing modes are special items in the context of assembly languages because the more different number of 
addressing modes you have, the more flexibility you have in the programs you write. While the notion of having 
many addressing modes in the ISA quite appealing, the notion of having many addressing modes creates several 
issues.  

1) Having many addressing modes complicates the underlying hardware. As with the issues of the 
RISC-V load and store-type instructions, the hardware does the absolute address calculation at runtime. 
This means there needs to be hardware in the computer to do the actual calculation. The effect is that 
more addressing modes you have, the more likely it is that your hardware is larger and/or more 
complex. There are cases where you can reuse existing computer hardware to perform the required 
calculation, but this is not always the case, or you’ll need to extend the execution time of the instruction 
to use that hardware. Actually, the previous statement is somewhat misleading.  

2) Having many addressing modes is not always helpful for humans. The addressing modes in some 
computer architectures are surprisingly complex. While you can figure out how to use them if you stare 
at them long enough, humans tend to stick with simple addressing modes. So why have so many 
addressing modes? Having many addressing modes makes compiler writers really happy. While us 
humans find it hard to wrap our brains around some of these modes, the compiler is a program that can 
utilize the various modes quite readily1. 

 

11.4 Memory Access: Solved Problems 

The best way to see the flexibility of memory access instructions is to see them in actual assembly language 
code. The section shows a few of these problems with extra justification of why they are so flexible.  

 

Example 11.1: Register Data Swap 

Write a fragment of code that swaps the values in registers x7 & x9.   

Solution: Figure 11.1 shows the solution to this example. Here are the pertinent points to note about the solution:  

 There are several ways to swap data in two registers; this is one approach. This particular 
approach uses an extra register to do the register swap; the code opts to temporarily store one of 
the values in another register, which we commonly refer to as a “working register”. For this code 

                                                           
1 Assuming of course that the people writing the compiler know what they are doing.  
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fragment, x20 is the working register and is going to be overwritten by the program, which may be 
an issue.  

 The approach the code takes is to 1) save data in one register, 2) copy data from one register to the 
other, and 3) copy the originally saved register data to the other register.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           mv    x20,x9           # copy data in x9 to working register (x20) 
           mv    x9,x7            # copy data from x7 to x9 
           mv    x7,x20           # copy working register data to x7  
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.1: The solution to this example problem. 

You’re probably thinking that this is not too exciting; you’re absolutely correct. But here’s the point. This code 
fragment always uses data from the same place to do the swap: it’s always swapping data in the x7 & x9 
registers; it never does anything different. We can change the data in those registers before we swap them, but 
we always have to use the same registers. This works, but it lacks flexibility in the way it address the data it 
needs to swap.  

 

 

Example 11.2: Memory Data Swap 

Write a code fragment that swaps the words in two different memory locations. Registers x6 & x7 
provide the locations of the data to swap; specifically, these two registers hold the addresses of the 
data to swap.  

Solution: This is yet another version of swapping something, but this time the problem is switches between 
two memory locations as opposed to two registers as we did in the previous example. Figure 12.11 shows the 
solution to this example; here are some other fun facts to fill your mind:  

 The code effectively embodies the previous code in that the code on lines (05-07) are 
structurally identical to the previous example. But that’s not the point…  

 The approach this code takes is to 1) load the data from memory into general-purpose registers, 
2) swap the data, and 3) put the data back into the original storage locations, but swapped.  

 The problem stated that we were working with words, so we use lw instructions (load word) to 
read the data into registers and sw instructions (store word) instructions to return the data from 
registers to memory.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           lw    x10,0(x6)       # load the data to swap 
           lw    x11,0(x7)  
            
           mv    x12,x10         # copy data in x10 to working register x12 
           mv    x10,x11         # copy data from x11 to x10 
           mv    x11,x12         # copy working data to x11  
 
           sw    x10,0(x6)       # store the swapped data 
           sw    x11,0(x7)  
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.2: The solution to this example problem. 

Once again, you’re probably thinking this is another boring problem. The point of this problem is that we are not 
limited to swapping data from the same two register; now we can swap data from any address in data memory 
simply by changing the data in the base addresses (x6 & x7). In other words, the addresses of the data we need to 
swap are no longer fixed as they were when we used registers to swap the data. It is true that we need to use the 
same two registers as base addresses, but we can change the values in those register under program control.  

 

 

 

Example 11.3: Memory Data Swap Yet Again 

Write a code fragment that swaps the halfwords in two different memory locations. Register x15 
provides the memory address of the first data to swap; the other piece of data to swap directly 
follows the first piece of data in memory.  

Solution: This is yet another version of swapping something, but the solution is much more efficient this time. 
Here are the details:   

 The problem statement only provided one address, stating the data to swap was effectively 
continuous in memory. The data is halfwords, so we use lh and sh instructions to account for the 
halfword data size.  

 The approach this code takes is to load the data from memory into general-purpose registers 
then write the data back out to memory by effectively swapping the address. Note that the code 
on line (03) and line (05) use the value of two as the offset value to accomplish the swap.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           lh    x10,0(x15)      # load the first halfword 
           lh    x11,2(x15)      # load the second halfword 
            
           sh    x10,2(x15)      # store the swapped data 
           sh    x11,0(x15)      #  
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.3: The solution to this example problem. 

Not a boring problem once again. We accomplished the swap without changing any register values as we did in 
the previous solution, which is generally a good thing. We can’t swap data in any two addresses in memory, but 
we can swap two contiguous pieces of data at any memory location. The point here is that the code is still quite 
flexible, but not as flexible as the previous problem.  
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Example 11.4: Modifying a Section of Memory 

Write a code fragment that adds three to each contiguous byte in a section of memory starting at the 
address in x25. The length of that section of memory is 32. Don’t worry about overflow for this 
problem.   

Solution: This is a problem where we need to go to a section of memory and modify each byte in that section 
of memory. Note that the problem calls out that the section of data is bytes. Here are the details regarding the 
solution in Figure 11.4:   

 The problem statement only provided one address, which is the location of the first byte of data 
in the section of memory. The problem also states that the data at that address and the data at the 
next 31 addresses needs to have three added to it.  

 The first thing we do is set the iteration count to 32, which we do on line (02). The problem 
stated 32, so we put that number into a register to use as our loop counter.  

 The code in the body of the loop (starting with the “loop” label) includes loaded the data (line 
(04)), adding three to the data (line (05)), and storing the data at the same memory address 
location we loaded the data from (line (06)). Note that the problem gave the address of the first 
byte of data, which is in x25; we use that register as an address throughout this piece of code. 

 The loop administration starts at the instruction associated with the “admin” label on line (08). 
We first increment the register holding the memory address on line (08); we add one because 
the problem states that we are working with byte data. We then decrement the loop count on line 
(09). We finally check the loop count with a conditional branch on line (10). If the loop count is 
zero (the value in x0), then we fall through to the next instruction (not listed); otherwise we 
branch to the instruction associated with the loop label.  

 We modeled this fragment as a do-while loop because we knew we had to do at least one 
iteration. If we did not know how many iterations we needed to do, we would have modeled the 
loop as a while loop (because the loop count may be zero).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           li    x10,32          # load iteration count  
 
loop:      lb    x11,0(x25)      # load a byte from memory 
           addi  x11,x11,3       # add 3 to data 
           sb    x11,0(x25)      # store the swapped data 
 
admin:     addi  x25,x25,1       # advance memory address 
           addi  x10,x10,-1      # decrement loop count 
           bne   x10,x0,loop     # branch for next iteration 
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.4: The solution to this example.  

Figure 11.5 shows a flowchart that models the solution to this example. In an effort to save vertical space in this 
text, we used two columns in the flowchart. Using two columns required us to cross flow lines on the lower right 
portion of the flowchart, which is common in more complex flowcharts. The flow lines do not intersect and 
effectively remain independent of each other. We also added a note to indicate the loop administration part of the 
loop.  
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Figure 11.5: A flowchart modeling the operation of this example program. 

The point of the problem is that we went to the data in a section of memory and modified each piece of data in 
that section of memory. Because we needed to modify 32 chunks of data, we could not have possibly stored that 
data in registers. The approach in this example leveraged the generic nature of memory access using the built-in 
flexibility of the RISC-V memory access instructions. The solution in Figure 11.4 is very space efficient being 
the we used an iterative construct; the code is arguably relatively runtime efficient.   

Just for the heck of it, Figure 11.6 shows the same solution using a while loop. This solution does not have a 
natural feel to it as did the solution with the do-while loop; this solution feels a bit klunky.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           li    x10,32          # load iteration count  
 
loop:      addi  x10,x10,-1      # decrement loop count 
           beq   x10,x0,done     # branch for next iteration 
            
           lb    x11,0(x25)      # load a byte from memory 
           addi  x11,x11,3       # add 3 to data 
           sb    x11,0(x25)      # store the swapped data 
 
admin:     addi  x25,x25,1       # advance memory address 
           j     loop 
 
done:      # some other part of the program 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.6: An alternative solution to this example.  

 

 

 

Example 11.5: Gathering Statistics About a Section of Memory 

Write a code fragment that counts of the number zero values in a contiguous section of memory 
starting at address x10. The number of values to scan is given in register x30 and is guaranteed to 
be non-zero. Store the count in register x15. Consider the memory values to be halfwords.   

Solution: This is yet another version of going to memory and doing something. In this problem, we are going 
to memory and gather some information about the data in that particular section of memory. Figure 11.7 
shows the solution to this example: here are the gory details:   
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 The iteration count for this problem is in a register, which means that this count may be zero 
(the problem did not state that it would be non-zero). This means two things for us: first, we 
must initialize the final count before we start the iteration, which we do on line (02). Second, we 
must use a while loop to implement the iteration construct, which we do to account for the fact 
that the count may be zero. If you performed an iteration first (as in a do-while loop), the 
program would fail miserably when the iteration count is zero. We check the loop counter on 
line (04).  

 The body of the loop loads data on line (06) and then checks to see if it zero on line (07); we 
toss in the “check” label for added commentation. If the value is non-zero, we branch to the 
code that implements the loop administration on line (10); otherwise, we drop to line (11) and 
increment the counter keeping track of the number of zero’s in the section of memory.  

 The loop admin consist of advancing the address by two (line (10)) and decrementing the 
iteration count (line (11)). An unconditional branch follows the loop administration on line (12), 
which is part of the while-loop iterative structure.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
           mv    x15,x0          # clear zero counter 
 
loop:      beq   x30,x0,done     # branch for next iteration 
            
           lw    x11,0(x10)      # load a halfword from memory 
check:     bnez  x11,admin       # jump if value not equal to zero 
           addi  x15,x15,1       # increment the count 
 
admin:     addi  x10,x10,2       # advance memory address (halfword length) 
           addi  x30,x30,-1      # decrement count 
           j     loop 
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.7: The solution to this example.  

Yet once again, we could have done this problem using data in registers. First, the fact that register usage is not 
generic would have stopped us. Second, we don’t know how much data we need to inspect. Once again, we can 
access main memory in a generic manner, something we can’t do with register memory. Figure 11.8 shows a 
flowchart modeling the solution for this example.  

 

Figure 11.8: A flowchart modeling the operation of this example program. 
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Example 11.6: Copying a Section of Memory.  

Write a code fragment that copies one section of memory (words) to another. The section to copy 
starts at the address in x10; the section of memory to copy to starts at the memory address in x20. 
The number of values is in x5 is always non-zero.  

Solution: This is yet another version of swapping something, but the solution is much more efficient this time. 
Here are the details:   

 The problem does not state how many times we need to iterate, but it is at least once (as the 
problem states). Because of this, we implement our solution using a do-while loop.  

 The approach this code takes is to load the data from one memory location then write it to the 
other location (lines (02-03). The loop administration includes advance each of the memory 
addresses (copy from and copy to) by four since the problem is dealing with words (lines (05-
06)). Lastly, we decrement the loop count on line (08) and to it all again if the loop count is non-
zero (line 09).   

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
loop:      lw    x11,0(x10)      # load a word from memory 
           sw    x11,0(x20)      # copy value to new location 
 
admin:     addi  x10,x10,4       # advance “copy from” memory address (word) 
           addi  x20,x20,4       # advance “copy to” memory address (word) 
 
           addi  x5,x5,-1        # decrement iteration count 
           bne   x5,x0,loop      # branch if iteration count not zero 
 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 11.9: The solution to this example.  

Yet another problem that we solved generically, thus advertising the flexibility of RISC-V memory access 
instructions. We could not have done this problem using registers to hold the data we needed to mess with. It’s 
true we did use registers in this problem, but we used the registers to primarily hold addresses, which gave us the 
ability to access different data in memory by simply changing the address values in the registers. Figure 11.10 
shows a flowchart that models this solution. Have lots of fun.  
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Figure 11.10: A flowchart modeling the operation of this example program. 
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11.5 Chapter Summary 

 

 Addressing modes in assembly languages is an important topic with classical trade-offs. Simple and few 
addressing modes result in smaller hardware; many and complex addressing modes make the hardware 
larger.  

 The two primary memory modules in the RISC-V are the register file and the main memory. Both of these 
modules are memory, but the assembler effectively treats them differently. Both of these memory modules 
require an address to access data in the memory, but the instructions handle the addressing of the data in 
significantly different ways.  

 Instructions that use data held in register include the 5-bit address of the registers as part of the underlying 
instruction word, which means the address of the data being accessed by such an instruction is known at 
assemble time. Instructions that access main memory use registers in the absolute address calculation, but 
the absolute address is calculated at run time. The fact that the absolute address in main memory accesses 
are calculated at run time make the instructions very flexible, and thus useful.  
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11.6 Chapter Exercises 

 

1) List the main differences between register file memory and main memory in the RISC-V.  

2) List the ways main memory and the register file memory are strangely similar and quite different from 
a simple memory module.  

3) Briefly describe what is meant by the terms “absolute address” and “relative address”.  

4) Briefly describe the main reason why the RISC-V uses relative addressing as part of the instructions 
but later converts the relative addresses to absolute addresses.  

5) Briefly describe whether relative addresses are signed or unsigned values, and why they are that way.  

6) Being that instructions only encode relative addresses, briefly describe whether that places any limits 
on the values that can be created and used as absolute addresses.  

7) If a relative address encoded with a given number of bits only needed to go in one direction, could it go 
farther in that direction than if the same number of bits was used to go in both directions? Briefly 
explain (sorry for the cr*ppy wording of problem).  

8) Briefly describe how the absolute addresses are generated for accessing memory in the register file.  

9) Briefly describe how the absolute addresses are generated for instructions that access main memory.  

10) Briefly describe the differences between generating absolute addresses at run time and and at assemble 
time. 

11) Briefly describe why absolute addressing for register memory access is considered not flexible.  

12) Briefly describe why absolute addressing for main memory access is considered flexible.  

13) Does the assembler know the absolute address used by load and store-type instructions? Briefly 
explain.  

14) Explain the notion of “addressing modes” in the context of assembly language programming.  

15) Briefly explain why it is advantageous to have many addressing modes for a given computer 
architecture.  

16) Briefly explain the main drawback of having many addressing modes for a given computer 
architecture.  

17) Briefly describe why main memory data access is considered more flexible and accessing the data in 
the register file.  
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11.7 Chapter Programming Problems 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code 

 

1) Write a code fragment that divides the word data by 32 in a section of memory starting at the address in x15. 
The length of that section of memory is in 50 words.  

2) Repeat the previous problem but round up the result after the division.  

3) Write a code fragment that examines 50 contiguous words in memory. If the data at a location is odd, then 
write zero to that particular memory location.  

4) Repeat the previous problem but store the number of times the code was zero a value in register x25.  

5) Write a code fragment that divides word data in a section of memory by two until the data is less than 256. 
The each word is stored back at the same memory address. The starting address of the memory is in x22. 
The length of that section of memory to operate on is given in x10.  

6) Write a code fragment that copies swaps halfword data from one section in memory (signed halfwords) to 
another section in memory. The section of memory to copy from starts at the address in x15; the section of 
memory to copy to starts at the memory address in x25. The number of values is in x10 and may be zero.  

7) Write a code fragment that examines two sections of unsigned halfwords in memory with the starting 
addresses stored in x10 and x20. Store the larger of two values at the address in x20 for the number of 
halfwords stored in register x30. Note that the data at some memory locations need to be swapped, but not at 
all the locations.  

8) Repeat the previous problem, but count the number of swaps and stores that value in x31.  

9) Write a code fragment that examines three sections of contiguous signed bytes in memory with the starting 
addresses stored in x10, x11, and x12. If all three of the values at the data in each location are equal, write 
0xFF to each location; otherwise don’t change the data. The number of sets of three signed bytes to check is 
the number in x30. 

10) Write a code fragment that examines three sections of contiguous words in memory with the starting 
addresses stored in x20, x21, and x21. This fragment of code counts the number of time zero appears in each 
of the three sections of memory and stores the result in x15. The number of values to check in each segment 
is in x30. 
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12 Subroutines and Supporting Structures 
 

12.1 Introduction 

Subroutines and their usage in assembly language programming represent a major issue both programming and 
writing well-structured and efficiently operating programs. The proper use of subroutines allows for the creation 
of understandable, maintainable, reusable, and relatively runtime efficient assembly language programs. The 
only catch is that writing great programs requires programmers to understand the relatively few, but significantly 
important aspects regarding subroutine. This chapter describes subroutines from primarily a programming 
aspect, but it does reach into some significant hardware aspects as well.  

The notion of subroutines falls into the category of program flow control because calling and returning from 
subroutines necessarily changes the normal sequential execution of instructions in an assembly language 
programming. You’ll soon see that there are no new instructions involved with calling subroutines and returning 
from them, the jal and jalr instructions have all the required functionality.  

 
Main Chapter Topics 
 

 THE STACK: This chapter describes the abstract data type known as a stack, how 
the assembly language program uses the stack, and some important functional 
issues regarding proper stack usage.  

 SUBROUTINES: This chapter describes the many issues involved in implementing 
and calling subroutines in the context of the RISC-V MCU.  

 PASSING VALUES: This chapter describes the concepts of passing values to and 
from subroutines.   

 SAVING CONTEXT: This chapter discusses the procedures for saving and restoring 
operating context in subroutines.  

 NESTED SUBROUTINES: This chapter describes the special issues the RISC-V 
MCU has with nested subroutines.  

 SUBROUTINE OVERHEAD: This chapter describes the various overhead issues 
regarding subroutine implementations.  

 
Why This Chapter is Important 
 

This chapter is important because it describes the details involved in the design and 
implementation of subroutines in assembly languages.  

 

 

12.2 Subroutine Supporting Structures: The Stack 

The word stack has many different meanings for the people who use the word. Some of the definitions include 
haystack, smoke stack, pancake stack etc., but we won’t use these definitions here in technical-land. Here in 
technical-land, there are two main definitions of a stack. In software-land, the stack is one of the classic abstract 
data types, or, ADTs. In this context, the definition of an abstract data type is a data type that we describe in 
terms of the operations the data type supports rather than how we actually implement the data type. In other 
words, we define an ADT by its interface while placing no constraints on the implementation details.  
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In the context of computer architecture, the stack has less of a computer science-type definition because we can 
describe the implementation of the stack in terms of simple hardware. Furthermore, the stack in standard 
computer architecture is an important part of any architecture because the hardware necessarily uses the stack for  
important program flow control mechanisms such as implementing subroutines and interrupts1.  

The basic concept behind a stack is simple: it is nothing more than an object that stores data. The most basic 
definition of the stack lies in the description of the accessibility of the things that have been stored on the stack. 
The short definition of a stack is that the most recent thing that you place on the stack is the first thing that you 
can remove from the stack. We refer to this functionality as Last In, First Out, of LIFO.  

Before going further, let’s define a couple of terms for so we’ll be speaking the same language regarding stacks. 
These terms are standard for any stack implementation; anyone dealing with stacks roughly knows what these 
terms mean in the context of the particular stack implementation they are working with. You need to know all of 
these terms for a hardware context, but you only need to know the first two terms if you’re strictly a 
programmer. Note that none of these terms provides any actual implementation details.  

 PUSH – This is the accepted term to mean that you are placing something onto the stack. 

 POP – This is the accepted term meaning that you are removing something from the stack. 

 Top of the Stack – We define the “top of the stack” to be the most recent object that we place, or push 
onto the stack. If the stack in empty (nothing has been pushed onto the stack), the top of the stack then 
has somewhat ambiguous meanings.  

 Stack Pointer – We use the “stack pointer” as the “thing” we use to point to the top of the stack, where 
the top of stack is the most recent thing placed on the stack.  

There are two ways to demonstrate the operation of the stack. The first way is more of the computer science 
approach2 while the second way is a hardware approach. The hardware approach is more of what we’re 
interested in as it is how the RISC-V MCU implements the stack in hardware, but the first approach makes for a 
nice introduction to the second approach. Figure 12.1 shows the first approach. Here is a description of the 
changes that take place in Figure 12.1; note that in Figure 12.1 we use the word “top” to indicate the top of the 
stack.  

 Image 1: the stack in its empty state. For the empty stack, the top label is not well defined.  

 Image 2: the stack after one item has been pushed onto the stack. The top label is associated with 
the most recent item placed on the stack.   

 Image 3: the stack after four items (three since image 2) have been pushed onto the stack. The 
number 34 was the first number pushed onto the stack, followed in order by 29, 19, and then 17.  

 Image 4: the stack after one item has been popped from the stack (the number 17 was removed).  

 Image 5: the stack after three items (two since image 4) have been removed from the stack. 

                                                           
1 As you will see later, the RISC-V OTTER interrupt architecture does not directly use the stack.  
2 Probably a better “computer science” approach would be to show a “linked list-type implementation.  
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Figure 12.1: Example of a software-based stack implementation. 

The key feature of the stack implementation shown in Figure 12.1 is that all the stack elements move each time a 
push or a pop operation executes. Note that this implementation would be inefficient for a hardware version of 
the stack because each stored stack item would need to be re-written for every push and pop operation, because 
each push and pop operation changes the location of all remaining data in the stack. This being the case, we can 
better define the concept of a stack pointer by examining a hardware-type stack implementation.  

The stack on the RISC-V MCU is nothing more than a designated area in main memory. The size of the stack, as 
well as starting and ending locations are arbitrary. We’ve included the current RISC-V memory map once again 
in Figure 12.2 to provide a visual representation of the “preferred” stack location. As you will see later, you can 
“place” the stack anywhere in main memory except for the space dedicated to the program memory (represented 
by the section marked “Code Segment” in Figure 12.2).  

 

Figure 12.2: The RISC-V MCU memory map. 

12.2.1 Pushing and Popping on the RISC-V MCU 

You could say that a set of instructions common to most MCUs is some form of a push and pop instruction. But 
somewhat surprisingly, the RISC-V MCU has no such instructions. While push and pop instructions are handy to 
have in the instruction set, we don’t need them because push and pop operations are simply memory writes and 
reads from a “special place” in memory. We refer to that special place in memory as the stack.  

The first order of business is the stack pointer. The stack pointer needs to be a register that holds an address; the 
MCU uses that address when doing operations on the stack. While many MCUs have a dedicated register, 
typically referred to as the stack pointer, the RISC-V MCU does not have such a register. The RISC-V MCU 
architecture is generic enough to use any register in the register file as a stack pointer, but it standard practice to 
use register x2 as the stack pointer. It’s handy that the alternative name for register x2 is “sp”, which stands for 
stack pointer. Despite the significant amount of flexibility in the RISC-V MCU’s approach to stack operations, 
we’ll only deal with a basic approach in this text.  
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Table 12.1 shows a summary of push and pop operations on the RISC-V MCU. Here is the important 
information to note about Table 12.1:  

 Pushing and popping of one register requires issuing two instructions. We have to both adjust the 
stack pointer, and then execute a memory access operation.  

 Push operations require a memory write operation (store) while pop operations require a memory 
read operation (load).  

 The “Usage” columns in Table 12.1 lists the two forms of pushes and pops. Either form is 
acceptable, but the left-most usage column shows the most widely used form.  

 There is often a need to push or pop more than one register in a section of source code. In these 
cases, it’s tempting to issue two instructions per push or pop operation, similar to the first two 
rows in Table 12.1. The better approach is to adjust the stack pointer only once per set of push or 
pop operation, then use the offset field of the memory access instructions (lw & sw) to form the 
correct memory access address. This approach is both more time efficient and space efficient.  

 In this example, are pushing and popping entire registers, which is why we use lw & sw 
instructions. If you only need to save parts of the registers, you could use memory access 
instruction dealing with bytes and halfwords.  

Operation Usage Example Alternate Usage Comment 

push 
(1 reg) 

addi   sp,sp,-4 
sw     x8,0(sp) 

sw     x8,-4(sp) 
addi   sp,sp,-4 

Push x8 onto stack (store/write 
value in x8 into memory) 

pop 
(1 reg) 

lw    x8,0(sp)    
addi  sp,sp,4 

addi  sp,sp,4 
lw    x8,-4(sp)    

Pop x8 off stack (load/read value 
into x8)  

push 
(2 regs) 

addi   sp,sp,-8 
sw     x8,0(sp) 
sw     x9,4(sp) 

sw     x8,-4(sp) 
sw     x9,-8(sp) 
addi   sp,sp,-8 

Push x8 then x9 onto stack 
(store/write x8, x9 into memory) 

pop 
(2 regs) 

lw    x8,0(sp)  
lw    x9,4(sp)   
addi  sp,sp,8 

addi  sp,sp,8 
lw    x8,-4(sp) 
lw    x9,-8(s0    

Pop x8 then x9 off stack 
(load/read into x8, x9)  

Table 12.1: Summary of RISC-V push & pop operations for one & two registers. 

One of the big mistakes that programmers can sometimes make when pushing and popping is to pop registers off 
the stack in a different order than was put on the stack. This is because the stack is a LIFO abstract data type, so 
ordering does matter. Table 12.2 shows both a correct and incorrect popping sequence for a given example of 
two pushes. The incorrect sequence does not cause the assembler to give you an error, which is why you have to 
be extremely careful when popping values off the stack. The incorrect pop sequence column does actually serve 
a purpose: it swaps the values in registers x8 and x9, which can sometimes be useful.  
 

Push Operation Correct Pop Sequence Incorrect Pop Sequence 

addi   sp,sp,-8 
sw     x8,0(sp) 
sw     x9,4(sp) 

lw    x8,0(sp)  
lw    x9,4(sp)   
addi  sp,sp,8 

lw    x9,0(sp)  
lw    x8,4(sp)   
addi  sp,sp,8 

Table 12.2: Correct and incorrect pops for two a two register push. 
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Example 12.1: Push and Pop Code Fragments 

Write two fragments of RISC-V assembly language code; one pushes register x20, x21, & x30 on 
the stack, and the corresponding code that pops those values off the stack. 

Solution: Figure 12.3 shows the solution to this example. There are several particularly important things to 
surprise your brain with in this solution:   

 We are pushing three registers, so we need to reserve room on the stack for three registers work of 
data, or, 12 bytes. We do this by adjusting the stack pointer backwards (lower address) by 12 on 
line (02). We include a “save” label for human clarity.  

 We next use the sw instruction to store the three registers designated by the problem on lines (3-
5). The ordering of these instructions does not matter, but the offset values for each sw instruction 
do matter. We push x20 on line (03) with a zero offset because the stack pointer is currently 
pointing 12 byte locations back from its original value. We need to push three registers, the order 
in which we push them is arbitrary.  

 The solution includes two options for restoring the registers with pops. The pop operations utilize 
the lw instruction to restore the pushed 32-bit register values back into their original registers. The 
two versions, labeled “restor1” and “restor2” both pop the registers before adjusting the stack 
pointer last. This is not the only approach but is the best approach. We include two versions to 
show that we can, and that the ordering on instructions does not matter. What does matter is that 
we pop the correct data back into the correct register, which we do in both solutions.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
save:    addi   sp,sp,-12     # adjust stack pointer (sp) to hold 3 registers  
         sw     x20,0(sp)     # push x20 
         sw     x21,4(sp)     # push x21 
         sw     x30,8(sp)     # push x30 
     
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
restor1: lw     x20,0(sp)     # pop x20 
         lw     x21,4(sp)     # pop x21 
         lw     x30,8(sp)     # pop x30 
         addi   sp,sp,12      # re-adjust sp  
# 
#~~~~~~~~ alternate program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
# 
Restor2: lw     x21,4(sp)     # pop x21 
         lw     x30,8(sp)     # pop x30 
         lw     x20,0(sp)     # pop x20 
         addi   sp,sp,12      # re-adjust sp  
# 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 12.3: Solution for this example. 

 

12.3 Subroutines Overview 

It is frequently necessary for a program to execute the same set of instructions at several different points in a 
program. If the set of instructions is relatively short, you could simply place the code in the program wherever 
your program requires it. However, if this section of code is relatively long, a more effective use of codespace to 
have only one piece of the code that needs repeating. When that section of code needs to execute, the program 
control transfers to the section of code that requires execution, the program executes that code, and then the 
program control transfers back to the code that it originally transferred from. Thus, when the special section of 
code completes execution, program control returns to where it was before the program executed that special 
piece of code. The thing we are describing here is what we know in assembly language terms as a subroutine. 
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We refer to this same mechanism in a higher-level language a function or a method, depending on the higher-
level language you’re working with.  

Subroutines have another major purpose besides saving associated with them that is extremely important to 
assembly language programs: they give the programmer the ability to modularize and thus organize their 
programs. In essence, there are situations where you must use subroutines as they save you program code space, 
but there are also situations where you should use subroutines to keep your programs organized. The use of 
subroutines is important for many reasons; the main ones we list below. 

Codespace Efficiency: The section of code that needs executing multiple times appears only one 
time in the source listing. This represents a significant savings in program codespace because 
despite the code appearing only once, the programmer can easily execute it multiple times. The 
efficiency we refer to here is program memory space efficiency, which is different from runtime 
efficiency.  

Program Readability and Understandability: Placing bunches of code in subroutines and giving 
it an appropriate name makes the program more readable. This in turn allows the programmer to 
abstract the code to higher levels, which means you don’t necessarily need to understand the 
workings of code at low level (the code in the subroutine) in order to use the code. Additionally, 
providing the code with a self-commenting label (or subroutine name) allows another human to 
quickly understand the purpose of the code on a high level. 

Maintainability: Compartmentalizing the code allows you to quickly locate and easily change 
only the code you need, particularly if it later turns out that there is a problem with that code.  

Reusability: Placing sections of code in meaningful blocks, namely subroutines, increases the 
chances that you or some other programmer can reuse the code later, which saves time by 
preventing multiple programmers from “re-inventing the wheel”. This is also why you should 
always provide adequate commenting on your subroutines.  

In the end, the notion of using subroutines in your programs can’t be overemphasized. Good programmers use 
appropriately named and structured subroutines in order to control the complexity of their code. Conversely, you 
can always detect code from beginning assembly language programmers because they tend to avoid using 
subroutines and/or try to use jumps and branches instead. The concept of subroutines from a programmer’s level 
is straightforward; please don’t fear the subroutine.  

Figure 12.4 shows an example of software flow diagrams that justifies the use of subroutines. In Figure 12.4 (a), 
program flow continues in a linear manner and executes the sections of code represented by A, B, C and X. The 
code represented by X appears two times in the section of code. In Figure 12.4(b), program flow jumps from A 
to X and then from X to B. Likewise, it jumps from B to X and then from X to C. In this way, the code that 
represents X needs to appear in the code only one time. This represents a direct saving in code space in program 
memory, though there are other negative ramifications in terms of program runt-time execution efficiencies (this 
is the overhead issue; we’ll talk about this later). The notion that Figure 12.4 is attempting to convey is that using 
subroutines saves program code space.  

  

(a) (b) 

Figure 12.4: A diagram showing program flow both with and without subroutines. 

Subroutines are a form of program control not unlike the unconditional branch instruction. When the program 
executes subroutines, the program temporarily transfers program control to some other place in the program (or 
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more precisely, some other address in program memory). When the subroutine completes it execution, the 
program transfers program control back to the instruction that follows the instruction that invoked the subroutine 
(the calling instruction).  

At the end of the subroutine code, there is usually some type of return instruction; we’ll deal with the official 
syntax and underlying details later. This instruction indicates that the program completed execution of the code 
associated with the subroutine and program control should now return to the instruction immediately following 
the after the instruction that initiated the subroutine (a call or unconditional branch instruction).  

Note that there is an important relationship between the instructions that initiate a subroutine and the instructions 
that initiate a return from subroutines. Roughly speaking, you must return from every subroutine you initiate in 
the order you initiate them in. If you violate this universal constant, your programs won’t execute properly.  

12.4 Subroutines on the RISC-V MCU 

Let’s start this discussion by showing some examples of subroutines and providing detailed descriptions of those 
examples. You’ll surely see that subroutines are generally not a big deal, but there are some special issues that 
programmers need to know so they can write working programs.  

 

Example 12.2 

Write a subroutine that swaps the values in register x8 & x9.   

Solution: Figure 12.5 shows an example of our first subroutine. There a many good subroutine formatting 
examples in this solution; you should strive to adopt them in your code. Here are the pertinent points to note 
about the solution:  

 We nicely delineate the subroutine from other parts of the code with comments. The delineating 
comments include an informative file banner and a line of dashes to indicate the end of the 
subroutine.  

 The subroutine has a banner that includes important information about the use of the subroutine. 
This includes the subroutine names on line (01) and a description of what the subroutines does on 
line (03). The banner also includes a list of registers that the program changes. You would expect 
a subroutine to change the values in the registers being swapped, but the subroutine also changes 
another register.  

 The name of the subroutine is a label, no different from other labels we’ve been using up to this 
point. Line (07) has the name of the label. Line (08) also has another label name, which we use for 
clarity. Most subroutines have some type of initialization code; even the subroutine in this 
example does not have such code, we use “init” label for consistency. The “init” label is optional, 
but it’s always good to use.  

 The main function of the code is to swap data in the two registers. There are many ways to do this; 
the code opts to temporarily store one of the values in another register, which we commonly refer 
to as a “working register”. This means that the program overwrites the value in x10, which may be 
an issue. We’ll deal with this issue in a later section.  

 The code ends with a ret instruction on line (12). This is actually a pseudoinstruction; we’ll deal 
with the details in another section.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_reg 
# 
# This subroutine swaps the values in x8 & x9.  
# 
# Tweaked Registers: x8,x9,x10 
#--------------------------------------------------------------------------- 
Swap_reg:   
init:      mv    x10,x9           # copy data in x9 to working register 
           mv    x9,x8            # copy data from x8 to x9 
           mv    x8,x10           # copy working data to x8  
            
           ret                    # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.5: The solution to this example problem. 

Figure 12.6 shows a flowchart modeling the solution to this example. This flowchart is the first flowchart where 
we use two terminal symbols. Subroutines, unlike programs, have the notion of “ending”, which is why we 
include an ending type terminal symbol (the one with the “return” text) in the diagram. Keep in mind that 
subroutines have one entry point (so one start-type terminal symbol), but can have multiple exit points, so there 
is no limit to the number of ending-type terminal symbols we can use to represent a subroutine. You’ll see that in 
later examples.  

 

Figure 12.6: A flowchart modeling the operation of this example program. 

 

 

 

Example 12.3 

Write a subroutine that swaps the values in register x8 & x9. Don’t change any register values 
other than x8, x9, and sp.   

Solution: This is the same example, but now with a constraint that we can’t change any register values other 
than two registers to swap and sp. The mentioning of sp is a hint that we’ll do this swap using the stack. Figure 
12.7 shows the solution to this example. Here a few other good things to note about the solution:  

 The subroutine uses comments to delineate and provide the human reader with information about 
the subroutine.  
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 We first made room for the two register values on line (08); we followed that with what are 
effectively two pushes onto the stack (x8 & x9). We then purposely pop the two registers off the 
stack in a different order to implement the required swap. The out-of-order popping of data is 
generally a mistake, but we use it accomplish the goals of the problem. 

 Even though the code in this example is functionally equivalent to the code in the previous 
example in that the subroutines do the exact same things, there are important differences. There is 
always a tradeoff when programming, the tradeoff in this example is that the previous example 
requires less time to run (because it has less instructions), but it uses one more register (x10) than 
the current example. Then again, the code in this example changes memory (in the stack), which 
is generally much less of a deal than changing the code in a register as the first example did. The 
stack exists for such operations and there is a lot of memory there as opposed to registers, where 
there are only 31 of them (at most) that we can use for general-purpose storage.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_reg_stk 
# 
# This subroutine swaps the values in x8 & x9.  
# 
# Tweaked Registers: x8,x9 
#--------------------------------------------------------------------------- 
Swap_reg_stk:   
init:      addi  sp,sp,-8        # create room on stack 
           sw    x8,0(sp)        # save value on stack in order 
           sw    x9,4(sp) 
            
           lw    x8,4(sp)        # remove values off stack out of order 
           lw    x9,0(sp) 
            
           addi  sp,sp,8         # return sp to original value 
            
           ret                   # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.7: The solution to this example problem. 

Figure 12.8 show a flowchart modeling the solution. The interesting thing to note about this flowchart is that we 
go out of our way to keep the flowchart independent of the computer the associated code will be implemented 
on. Thus, the process boxes in Figure 12.8 have relatively high-level descriptions of the code.  

  

Figure 12.8: A flowchart modeling the operation of this example program. 

 

12.4.1 Calling Subroutines and Returning from Subroutines 
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Calling subroutines and returning from subroutines is a topic we first mentioned in section 10.4.2.1; we’ll fill in 
more information in this section. Similar to pushing and popping operations, there are no base instructions 
dedicated to calling and returning from subroutines. However, lucky for us, we don’t need to deal with the low-
level details because there are pseudoinstructions dedicated to the use of subroutines. Because of the general 
usefulness of these pseudoinstructions, we’ll direct most of this discussion to the pseudoinstructions.  

We prefer to use the call and ret pseudoinstructions to call and return from subroutines, respectively. The 
assembler translates these pseudoinstructions to the jal and jalr base instructions, which is a detail that pure 
programmers do not need to know. We’ll discuss the underlying hardware implementation details in the RISC-V 
hardware portion of this text.  

Table 12.3 lists the call and ret pseudoinstructions along with some other information. The information in 
Table 12.3 that is most useful to us the “Example Usage” column. We as programmers don’t need to know that 
underlying base instructions that the assembler uses to implement the pseudoinstructions.  

Instruction Form 
Equivalent Base  
Instruction(s) Example Usage Comment 

call   rd,lab 
auipc  rd,hi{lab} 

jalr   rd,lo{lab}(rd) 
call   x5,subrut 

Jump to instruction 
associated with label;  
Store current address in rd 

call   lab 
auipc  x1,hi(lab) 

jalr   x1,lo(x1) 
call   subrut 

Jump to instruction 
associated with label;  
Store current address in x1 

ret    jalr   x0,0(x1) ret Jump to instruction at 
address in x1 

Table 12.3: The program flow control pseudoinstructions and their base instruction translations.  

Figure 12.9 shows an example of the both the use of the call and ret pseudoinstructions. Here are some extra 
important details:  

 There is a fragment from the calling code on lines (00-04); this fragment does not show the code 
that places meaningful values in the x8 & x9. Line (02) shows the actual call instruction.  

 When the program executes the call instruction on line (02), program control transfers to the 
instruction associated with the “Swap_reg” label; that instruction is on line (14). Because there is 
no instruction on the same line as the “Swap_reg” label, the label takes the value of the address of 
the next instruction, which is on line (14), which has the “init” label. In this way, the numeric 
values associated with the “Swap_reg” and “init” labels are equivalent (a detail the pure 
programmers don’t need to know).  

 When the program executes the ret pseudoinstruction on line (18), program control transfers 
back to the instruction following the call instruction. No, there is no such instruction in the 
fragment in the calling code of this example. The important thing to note here is that the ret 
instructions transfers program control to the instruction following the call instruction.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#---------- a fragment from the calling code 
  
          call   Swap_reg       # perform register swap 
         
#---------- a fragment from the calling code 
 
#---------------------------------------------------------------------------- 
# Subroutine name: Swap_reg 
# 
# This subroutine swaps the values in x8 & x9.  
# 
# Tweaked Registers: x8,x9,x10 
#--------------------------------------------------------------------------- 
Swap_reg:   
init:      mv    x10,x9           # copy data in x9 to working register 
           mv    x9,x8            # copy data from x8 to x9 
           mv    x8,x10           # copy working data to x8  
            
           ret                    # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.9: Example usage of the call & ret pseudoinstructions. 

12.4.2 Passing Values to Subroutines 

The notion of “passing values” comes up quite often when programming computers. This is simply a matter of 
“what you send and how you send something” and “what and how that thing sends something back”. In higher-
level languages, this primarily means the stuff you send to functions (formal parameters) and the stuff the 
function sends back (return values). For the RISC-V MCU, it simply means what data the subroutine requires 
and how the calling code sends data to the subroutines that the subroutine expects, and what data and how the 
subroutines returns data from the subroutine. As it turns out, this problem is not complex with the RISC-V 
MCU; it’s primarily a notion of learning the standard terminology when working the subroutines.  

There are generally only two ways to pass data to subroutines in the RISC-V MCU: via registers or via main 
memory. Note that both of these items are types of storage on the RISC-V MCU. The truth is that there is only 
one way, which is registers, but we refer to this as two approaches depending on the meaning of the data in a 
register. Sometimes the data is pure data, which means we are passing data to the subroutine in registers. Other 
times the data in the registers is a memory address; in this case, we refer to this as passing addresses to 
subroutines using main memory.  

Figure 12.10 shows the solution to a previous example. This subroutine swaps data between two register: x8 & 
x9. The calling code (the code that calls this subroutine) effectively passes data to the subroutine in register, 
namely x8 & x9. The subroutine thus expects to find data in those registers, so it’s up the programmer to put the 
correct data in those registers before code calls the subroutine.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_reg 
# 
# This subroutine swaps the values in x8 & x9.  
# 
# Tweaked Registers: x8,x9,x10 
#--------------------------------------------------------------------------- 
Swap_reg:   
init:      mv    x10,x9           # copy data in x9 to working register 
           mv    x9,x8            # copy data from x8 to x9 
           mv    x8,x10           # copy working data to x8  
            
           ret                    # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.10: A subroutine that uses data passed by register.  
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Example 12.4 

Write a subroutine that swaps the words in two different memory locations. The locations of the 
data to swap are provided in registers x6 & x7.  

Solution: This is yet another version of swapping something, which seems to work rather well for these 
introductory examples. Figure 12.11 shows the solution to this example; here are some other fun facts to fill 
your head:  

 First, this is a bad solution. We present it because it does a great job of illustrating a point in the 
following section.  

 The subroutine must be passed to values in x6 & x7. Because these two registers hold address 
information, we are passing data to the subroutine via memory. Sort of a fine line with that 
definition, but it works.  

 The problem with the solution is the code on lines (12-14). This code is not actually necessary 
because all we need to do is use the sw instructions to save the registers at different address 
locations, meaning we would swap the base register values for the instructions on lines (16-17).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_mem_w 
# 
# This subroutine swaps two word values in memory. The address of the  
# values to swap is found in register x6 & x7.  
# 
# Tweaked Registers: x10,x11,x12 
#--------------------------------------------------------------------------- 
Swap_mem_w:   
init:      lw    x10,0(x6)       # load the data to swap 
           lw    x11,0(x7)  
            
           mv    x12,x10         # copy data in x10 to working register 
           mv    x10,x11         # copy data from x11 to x10 
           mv    x11,x12         # copy working data to x11  
 
           sw    x10,0(x6)       # store the swapped data 
           sw    x11,0(x7) 
            
           ret                   # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.11: A subroutine that uses data passed by address.  

 

 

 

Example 12.5:  

Write a RISC-V assembly language subroutine that swaps the data in two registers. Do not 
change any memory other than the values in those two registers. Consider the registers with 
the data to be X10 and X11.  

Solution: The solution to this problem is a well-known digital “trick”. The solution is hard to understand (but 
easy to apply), so plan on putting this in your bag of digital tricks because swapping data in two registers is a 
common occurrence in assembly language programming. Here is some fun stuff embedded in the solution: 

 The Swap_in_place label on line (12) is the name of the subroutine, which of course provides an 
idea to human readers what the subroutine is doing.  
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 The xor instruction has three operands: it performs a bitwise exclusive OR on the data in the 
registers specified by the two right-most (x10 & x11), and stores that data in the register 
associated with the left-most operand. There is nothing magic about this; this is the way the 
register operands are accessed by the instructions. Note that someone needs to tell you this (or you 
need to read the spec); you would not know otherwise.   

 Yes, great interview question. The XOR function is somewhat magical; the magic displayed in 
this problem is how RAID arrays work (look it up).  

 The selection of x10 and x11 registers is arbitrary; recall these are all “general purpose” registers.  

 The code nicely aligns all the instructions and comments and in the subroutine banner.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16)) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_in_place 
# 
# This subroutine swaps the values in x10 & x11 but does not change  
# any other register or memory values.  
# 
# Tweaked Registers: x10,x11 
#--------------------------------------------------------------------------- 
#----------------------------------------------------------------------- 
#- Code Fragment: does “in-place” swap of data in two registers 
#----------------------------------------------------------------------- 
 
Swap_in_place:  xor     x10,x10,x11      # three xors; get used to it 
                xor     x11,x11,x10      # well-known trick 
                xor     x10,x10,x11 
 
done:           ret                      # take it on home 

Figure 12.12: Solution to this example problem. 

 

12.4.3 Saving Context in Subroutines 

The subroutine represents a different piece of code from the calling code. This being the case, the subroutine 
may inadvertently modify a register that the calling code is currently using, which would mean a slow death for 
your program3. To make subroutines more useful to programmers, we typically write subroutines to be 
independent of the calling code, which we do by saving the operating context of the MCU before we start 
executing the subroutine. What we mean by this is that we want to write subroutines that we can call and not 
worry about the subroutine altering a register currently being used by the calling code.  

The notion of “saving context” is quite popular in low-level programming. You probably don’t’ realize it, but 
your higher-level language compiler is responsible for saving “various contexts” when the call functions4. 
However, because we’re dealing with programming at a low level (the assembly language level), the 
programmer must be aware of and handle such details. This is actually not a large undertaking, as we don’t have 
to save the entire operating context of the MCU; we only need to save and restore the registers changed (not 
used) by the subroutine as the calling code may be using these registers.  

We’ve sort of provided warnings regarding this subject in our past subroutines. Note that the subroutines plainly 
state which registers the subroutine changes in the subroutine header. This is good practice, for sure. Better 
practice is to simply save the registers the subroutines uses at the beginning of the subroutine (referred to as 
saving context) and then restoring those registers values before the subroutines returns control to the calling code 
(referred to as restoring context. By far the most straightforward way for subroutines to save the context is to 
push the registers that the subroutines modifies in the body of the subroutine onto the stack at the beginning of 
the subroutine, then popping them off the stack back into the original registers before the subroutine returns 
control to the calling code.  

                                                           
3 Dead programs, or any programs that do not work, are bad things.  
4 This is a deep but important subject; this text does not delve into the details.  
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Example 12.6 

Write a subroutine that swaps the words in two different memory locations. The locations of the 
data to swap are provided by the addresses registers x6 & x7. Make sure the subroutine does not 
permanently change any register value.  

Solution: This solution once again uses the bad code from the previous solution, but with a good reason. The 
code in the previous version of this subroutine changed three register values, which means the programmer must 
make sure that those three registers are not currently being used by the calling program. This is a lot to ask, 
particularly when programs become complicated. The better solution is to know that you can call the subroutine 
without affecting the calling program in a detrimental way. Good programmers generally write subroutines in 
this way; we refer to this approach as the subroutine saves context before it does what it needs to do, then 
restores context afterwards. I personally like referring to this as making the subroutines “bulletproof”5. Here is 
some other stuff to note about the solution in Figure 12.13:  

 We changed the subroutine name so that it is different from the previous similar solution. We also 
changed the “Tweaked Registers” comment on line (06) to indicate that the subroutine does not 
permanently change any register.  

 We save context by pushing each register the subroutine uses at the start of the subroutine. We 
need to push three registers, so we make space on the stack by reducing the stack pointer by 12 on 
line (09). We follow that operation with three sw instructions, which serve to store the three 
registers on the stack. The overall approach is to first subtract 12 from the sp; the sp then points at 
an unused memory address. We push the three pieces of data starting at that address as indicated 
by the “0” in the offset box in the sw instruction on line (10). We do the same for the following 
two pushes, but we advance the pointer by four using the offset value in the following two sw 
instructions.  

 The body of the code is similar to previous examples so we won’t describe it again here.  

 Once the subroutine completes the main part of the work, we must restore the context, which we 
do by popping data off the stack and back into the registers from which that data originated (where 
we pushed it at the beginning of the program); We do this on lines (24-26). Note that we use a 
“restore” label on line (24), which alerts the astute human reader as to what the code is doing in an 
abbreviated format.  

 After restoring the data by popping it off the stack, we then adjust the stack pointer back to where 
it was before we stored context. Thus, line (27) undoes the instruction on line (09). For that matter, 
lines (24-26) undo the instructions on lines (10-12).  

                                                           
5 There are other things programmers do to make their subroutines bulletproof; we’ll discuss those things in a later section.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_mem_ws 
# 
# This subroutine swaps two word values in memory. The address of the  
# values to swap is found in register x6 & x7.  
# 
# Tweaked Registers: none 
#--------------------------------------------------------------------------- 
Swap_mem_ws:   
init:      addi  sp,sp,-12       # make room on stack for storage 
           sw    x10,0(sp)       # push 3 items on stack 
           sw    x11,4(sp)  
           sw    x12,8(sp)  
 
           lw    x10,0(x6)       # get data to swap 
           lw    x11,0(x7)      
            
           mv    x12,x10         # copy data in x10 to working register 
           mv    x10,x11         # copy data from x11 to x10 
           mv    x11,x12         # copy working data to x11  
 
           sw    x10,0(x6)       # store swapped values  
           sw    x11,0(x7) 
            
restore:   lw    x10,0(sp)       # pop data into register 
           lw    x11,4(sp)  
           lw    x12,8(sp)  
           addi  sp,sp,12        # unadjust the stack pointer 
            
           ret                   # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 12.13: A subroutine that uses data passed by address.  

 

12.4.4 RISC-V and Nested Subroutines 

The underlying mechanism in the approach the RISC-V MCU uses to call subroutines has some special issues 
that pure programmer needs to be aware of. Many of these details are associated with the underlying hardware, 
but we present a working overview here so that programmers can write viable code.  

The issue is simple: when you call a subroutine that in turn calls another subroutine, you have to do some special 
things to make your program work properly. We refer to a subroutine that calls another subroutine as a “nested” 
subroutine, a topic we’ll discuss further in a later section. This section presents the relatively simple mechanism 
of making nested subroutines work on the RISC-V MCU.  

When the program calls a subroutine, the underlying hardware needs to store the address of the instruction 
following the subroutine call “somewhere”, because this is the instruction that executes after the return from 
subroutine instruction (ret).  The mechanism employed by the RISC-V MCU is to store that address in a 
specific register, which is somewhat arbitrarily, x1. This being the case, the x1 register has an alternate name of 
“ra”, which conveniently stands for “return address”. When a subroutine is called, the underlying hardware 
places the address of the instruction after the call instruction into ra. When the subroutines completes, it transfers 
program control back to the calling program by making the instruction stored in ra to be the next instruction 
executed6.  

The problem with nested subroutines exists because it is most convenient to use the same register (ra) for all 
return addressed. The true issue is that when a subroutine calls another subroutine, the hardware automatically 
overwrites the ra with the return address of the newly called subroutine. This means that if you structure your 
code to nest subroutines, you first must save the return address of the calling subroutine before that subroutine 
calls another subroutine. The way to save the return address is to push that address on the stack before the nested 
subroutine call and then pop it off the stack back into ra after the nested subroutine returns. This is not a big deal 
to implement in your code, which is good because you must do this to make your code work properly.  

                                                           
6 Don’t worry: the specific actions of the underlying hardware is much more interesting than this written description.  
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Example 12.7 

Modify the previous subroutine that swaps data in two memory locations such that the actually 
register swapping portion of the code is done with a nested subroutine. Make sure the subroutines 
don’t permanently change any register values.   

Solution: This is the bad solution that won’t go away. What makes this solution bad now is that we call a three-
instruction subroutine; the overhead associated with such a short subroutine indicates that we should probably 
put the code inline rather than call a subroutine. However, for this problem, efficiency does not matter, as our 
intent is to show the special issues involved with using nested subroutines. Figure 12.14 shows the solution to 
this example; most of the stuff is similar to where we earlier described this solution, so we won’t describe that 
stuff again here. However, there is still some other fun stuff to take note of:  

 The problem stated to not permanently change any register, so we push two registers on the stack 
as part of the initialization code on lines (09-11). This code looks a bit strange because we 
reserve space for three registers when we adjust the stack pointer on line (09), but we only save 
two registers. This will make more sense later in the code.  

 The “Swap_mem_wsx” subroutine calls another subroutine so we list the nested subroutine at the 
end of the listing. We named the new subroutine “R_swap” because it swaps the data in two 
registers. The subroutine implements the swap using the infamous XOR in-place register swap; 
you can find a complete description of this algorithm and subroutine in the chapter with solved 
problems. This subroutine has a nice banner describing listing the subroutine name, describing 
what the subroutine does, and lists which registers the subroutine changes.  

 The call to the nested subroutine appears on line (17). Before we make that call, we need to save 
ra. The current value in ra is the return address associated with the call to the “Swap_mem_wsx” 
subroutine. When we call the “R_swap” subroutine using the call pseudoinstruction, ra is written 
with a new return address, which is the address of the instruction on line (18). We save ra on line 
(16) by pushing it on the stack; recall that we already saved space on the stack with the 
instruction on line (12). When we return from the nested subroutine, we then pop that original 
value off the stack back into ra on line (18). We can actually do the pop that restores ra any time 
before the ret instruction, but we choose to do it after the call so we don’t forget and then create 
an ugly bug in our program.  

 Placement of the ra saving and restoring mechanism is always an issue. If your subroutine only 
contained one nested subroutine, it would make sense to place storing ra in the initialization 
section of the code, and restoring the original ra somewhere near the end of the code (both of 
these items would fit nicely into the context saving and storing code). The issue is what happens 
if a subroutine calls contains two different nested calls? In this case, it would make sense to place 
the ra saving/restoring mechanism near the actual nested calls.  

 Though it may seem a bit strange, this solution works. There are other approaches to protecting 
the return address when nesting subroutines, but this is the most straightforward approach, 
particularly for people new to assembly language programming.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 

#-------------------------------------------------------------------------- 
# Subroutine name: Swap_mem_wsx 
# 
# This subroutine swaps two word values in memory. The address of the  
# values to swap is found in register x6 & x7.  
# 
# Tweaked Registers: none 
#------------------------------------------------------------------------- 
Swap_mem_wsx:   
init:      addi  sp,sp,-12      # make room on stack for storage 
           sw    x10,0(sp)      # push 3 items on stack 
           sw    x11,4(sp)  
 
           lw    x10,0(x6)      # get data to swap 
           lw    x11,0(x7)      
            
           sw    ra,8(sp)       # push current ra on stack 
           call  R_swap         # do the register swap 
           lw    ra,8(sp)       # pop old ra back into ra 
            
           sw    x10,0(x6)      # store swapped values  
           sw    x11,0(x7) 
            
restore:   lw    x10,0(sp)      # pop data into register 
           lw    x11,4(sp)  
           addi  sp,sp,12       # unadjust the stack pointer 
            
           ret                  # transfer program control back 
#----------------------------------------------------------------------- 
 
#----------------------------------------------------------------------- 
# Subroutine: R_swap:  
#   
# This subroutines swaps the values in x10 & x11 (in-place reg swap) 
# 
# Tweaked Registers: x10, x11 
#----------------------------------------------------------------------- 
R_swap:   xor   x10,x10,x11     # three xors; get used to it 
          xor   x11,x11,x10 
          xor   x10,x10,x11 
          ret                   # pass flow control back 
#----------------------------------------------------------------------- 

Figure 12.14: A subroutine that calls a subroutine (nested subroutine call).  

Figure 12.15 shows the flowchart that models this solution. This solution is new in that this subroutine contains a 
nested subroutine call. We indicate the subroutine call in the flowchart with the “predefined process symbol”, 
which is essentially a process box with extra vertical lines on the sides. The vertical lines make it painfully 
obvious that this is not the normal process box. We also opted to include a flowchart for the nested subroutine as 
part of this flowchart.  
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Figure 12.15: A flowchart modeling the operation of this example program. 

 
 

 

Example 12.8 

Write a RISC-V MCU assembly language subroutine that divides a 2-digit BCD value by 2. The 
value is sent to the subroutine in x20, where the lower two nibbles form the 2-digit BCD value. The 
halved value is returned to the subroutine in x20. Be sure to round up the value in x20 it needs it 
(round up when the pre-shifted value in x20 is odd).  

Hint: you need to deal with the LSB of each BCD value.  

Solution: This solution does not require nested subroutines, but it does give an example of using the slt-type 
instructions as well as implementing an algorithm. When we divide a binary number by two, we simply shift it 
right one bit position. The right shift effectively truncates the result, so we sometime want to round the result 
upwards. The general rounding operation is done when the least significant digit of a number is five or greater. 
For this problem, when the pre-shifted LSB of the 1’s digit is ‘1’, then we need to add a 1 back to the final result 
for the rounding operation.  

It turns out that a similar thing happens for the 10’s digit: when the LSB of the 10’s digit is ‘1’, that means we 
lose that value in truncation. To account for this, we add back 5 to the final result, which is of course half of ten. 
In other words, if we shift off the LSB of the 10’s digit, it changes the value of the final result.  

Yes, sort of an ugly algorithm. This works great for two digits, but you may consider doing another algorithm if 
you had to divide a 16 digit number by 2. In that case, you may first want to convert the number from BCD to 
binary, shift it right one position, add back the LSB, and convert the number back to BCD.  

Figure 12.16 shows a solution this problem; below is some verbose description.  

 The subroutine header has all the pertinent information for the subroutine including a rough 
description of the algorithm the subroutine uses. This is good programming practice.  

 The subroutine first clears off any data that maybe in the top six nibbles of x20 with the mask 
operation on line (14). The subroutine then makes two copies of the value for use later in the 
subroutine. Note that I did not know I needed these registers until I started coding the algorithm; I 
put the code on lines (15-16) later in the solution process.  
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 I want to perform the divide by a shift right, but I need to modify the data first by clearing the LSB 
of each digit with the mask operation on line (18). The value is ready to divide, which I do on line 
(22). I then mask and save the LSBs of each digit on line (19-20) for use later in the subroutine.  

 Line (24) checks to see if the LSB of the 10’s digit was zero; if it was, then it adds 5 (which is half 
of ten) to the result on line (26). The program then adds the 1’s LSB, which is effectively the 
round up value (which could be zero, no big deal).  

 We potentially added two values to the shift result, which means the lower nibble could be greater 
than nine. If it is, we need to increment the 10’s digit (line (43)) and subtract ten from the 1’s digit 
(line (42)). Note that on line (30), we use a slti instruction to determine if the value is less than 
ten or not. This instruction is handy because it allows us to compare a register with an immediate 
value, which saves up initially placing the value to compare into a register.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

#-------------------------------------------------------------------------- 
# Subroutine name: Half_BCD2 
# 
# This subroutine divides a two digit BCD number passed to the subroutine 
# in x20 by 2. This subroutine rounds the rounds up when fractional part 
# of result is 0.5 or greater. The algorithm uses a shift right instruction 
# to do the division, which means a 1 shifted out of the LSB location of  
# the 10’s digit causes a 5 to be added to the lower digit.  
# 
# Passed values: x20 (data to half) 
# Returned values: x20 (result) 
# Tweaked Registers: x10,x11,x30 
#------------------------------------------------------------------------- 
Half_BCD2:  
init:        andi    x20,x20,0xFF     # ensure it’s only two nibbles 
             mv      x10,x20          # make local copy 
             mv      x11,x20          # make local copy 
 
prepare:     andi    x20,x20,0xEE     # mask two low nibbles & LSBs 
             andi    x10,x10,0x1      # mask LSB of low nibble 
             andi    x11,x11,0x10     # mask LSB of hi nibble 
              
             srli    x20,x20,1        # divide by 2 
              
             beq     x11,x0,round     # jump over 1’s adjust (+5) 
              
             addi    x20,x20,0x5      # add five: half of 10’s LSB 
round:       add     x20,x20,x10      # add roundup bit 
              
chk_1:       andi    x30,x20,0xF      # mask 1’s digit 
             slti    x30,x30,0xA      # set if no adjust needed  
              
adjust:      bne     x30,x0,done      # branch if no LSB 
             addi    x20,x20,-10      # adjust lower LSB by 5 
             addi    x20,x20,0x10     # increment 10’s digit 
              
done:        ret                      # take it home leroy 

Figure 12.16: A subroutine that calls a subroutine (nested subroutine call).  

Figure 12.17 shows a flowchart modeling this solution. This could possibly be too much fun stuff for one 
problem where the code and the comments included in the code still don’t describe the algorithm in enough 
detail to understand completely. In this case, the flowchart is particularly helpful.  
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Figure 12.17: A flowchart modeling the operation of this example program. 

 

12.5 Special Subroutine Issues  
There are a few other issues regarding subroutine vernacular and usage that programmers need to be aware of. 
Subroutines are great when used properly, but can be a source of intermittent errors if programmers use them 
improperly. We all know that intermittent errors are typically the hardest errors to find.  

12.5.1 Recursive Subroutines 

When we think of subroutines, we generally think of the calling code and the subroutine itself as separate 
entities, but this is not always the case. There is no reason a subroutine cannot call itself. When a subroutine calls 
itself, we refer to it as a recursive subroutine call, or simply recursion. We consider recursion a special type of 
nested subroutine. Recursion is a special animal in that it’s somewhat hard to comprehend and is even trickier to 
actually use properly in a program. Although we don’t generally use recursion, there are times when it’s the most 
straightforward approach to implementing algorithms7.  

You can better understand recursion if you understand the underlying hardware implements subroutines, namely 
how the RISC-V hardware handles call and ret instructions. We don’t go there in this chapter because we are 
purposely excluding hardware details in order to deal with details pure programmers need to know. My personal 
thoughts about recursion are that you should avoid it at all costs. If you can’t avoid it, make sure you understand 
it well enough to ensure it works properly in your code. There are two issues to be aware of when using 
recursive subroutines.  

1) There are generally limits to the levels of recursion you can have based on the notion of 
subroutines saving the operating context. In addition, because recursive subroutines are inherently 
nested, programmers need to save the return address (ra) on each level recursive level. In other 
words, use of recursion can bring up stack integrity issues, which if not properly handled, can 
doom your program.  

2) Recursion must have stop conditions. The issue here is that stop conditions in recursive 
subroutines are more “tricky” than stop conditions in other items such as iterative loop. This 
means you really have to know what you’re doing to properly use recursion.  

                                                           
7 Once such situation is implementing factorial algorithms.  
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12.5.2 Stack Overflow 

The description of stacks implemented with a structured memory device such as a RAM leaves open the option 
for improper stack operations. The general rule when working with stacks is to keep the pushes “synchronized” 
with the pops. This means that if your subroutine saves operating context by pushing five items on the stack, it 
needs to pop five items off the stack before it returns. This also means when you nest subroutines, you must 
properly un-nest them as well.  

When you follow the proper stack protocol, you should attempt to write anything outside of the bounds of the 
stack segment. Another way to state this is that the stack pointer should always point to a location in the memory 
area designated for the stack8. If you don’t follow this protocol, you then have a stack overflow problem, which 
typically means a slow if not immediate death for your program. Programmers can avoid stack overflow 
problems by ensuring their code follows these two rules: 1) never push so many items onto the stack such that 
the stack pointer exceeds the designated stack area in memory, and 2) ensure that they write their code such that 
the push and pops are equally paired. Another way of saying the previous item is that for every push in your 
program, there needs to be a corresponding pop. Keep in mind the issues of pushing and popping primarily have 
to do with nested subroutine calls, and saving/restoring context associated with making subroutines safe. Recall, 
this stack is located in memory and that we can model the stack pointer as a counter that increments and 
decrements.  

The stack implementation in the RISC-V MCU has issues programmers need to be properly handl. Because the 
RISC-V does not have actual push and pop instructions, we rely on adjusting the stack pointer under program 
control, which means by issuing an add-type instruction to manually adjust the stack pointer. We subtract from 
the stack pointer with pushes (to support the notion that the stack grows in the negative direction) and add to the 
stack pointer with pops. This being the case, we have to ensure we eventually match the two directional 
adjustments to the stack pointer.  

Messing up the stack in one of these ways is typically an error that is hard to find, particularly since the problems 
it causes can be intermittent. As with any error in your code, the most likely time it fails during a customer 
demo. It is possible to set up checks in software to ensure the integrity of the stack, but these approaches take up 
codespace and reduce overall runtime efficiency. The better solution is to write good code that naturally supports 
stack integrity.  

The stack can overflow in one of two directions, which brings up the notion of stack overflow and stack 
underflow. The truth is that whether a stack is overflowing or underflowing is a semantic issue, which we bypass 
by including both overflow and underflow in the definition of stack overflow.  

12.5.2.1 Subroutines and Stack Overflow 

Subroutines are a major part of writing modular and reusable assembly language code. When programmers use 
subroutines, they are responsible for retaining integrity of the stack. When programmers nest subroutines, the 
must save the return address before calling the nested subroutine; the customary approach to saving the return 
address is by pushing it on the stack before the subroutine call and popping if off the stack back into the return 
address register after returning from the nested subroutine. A stack overflow problem exists when the stack 
operations associated with calling and returning from nested subroutines are not “paired”, which is another way 
of saying there is not a pop for every push associated with the nested subroutines. This same condition is 
associated with recursive subroutines.  

The stack overflows in the direction of larger magnitude memory addresses when the number of returns from 
subroutines are greater than the number of subroutine calls. The stack overflows in the other direction when the 
number of subroutine call is greater than the number of subroutine returns. You may be thinking how such a 
situation may arise; the answer is that is happens in three situations, all of which are common with nubile 
assembly language programmers.  

1) Stack overflow happens is when programmers branch or jump to a subroutine rather than calling 
that subroutine. This results in the MCU executing a return instruction without a corresponding 
call instruction. In this case, there is not a valid number in the return address.  

                                                           
8 Actually, when the stack is empty, it’s customary to point at an address outside of the stack because the the stack pointer 
needs to be adjusted (made to be a smaller value) before the program pushes a value onto the stack.  
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2) Stack overflow happens is when a programmer calls a subroutine only to later exit that subroutine 
with a branch or jump instruction rather than a corresponding return instruction. 

3) Stacks can overflow when the subroutines nest too deeply, which includes recursive subroutine 
calls. Another way to say this is that the program issues too many subroutine calls without issuing 
and return from subroutines. Note that it is possible to overflow the stack with too many 
subroutine calls and still have your program work. This is possible if the stack pointer wanders 
into memory space that other parts of the program are not currently using. This issue of course 
depends upon how the programmer structures their code and initially configures the stack pointer.  

12.5.2.2 Context Saving and Stack Overflow 

The other common use of the stack is to save operating context upon entering a subroutine or interrupt service 
routine9 and restoring context upon learning those sections of code. Programmers typically save context as part 
of the initialization code of a subroutine, which obviously is at the start of the subroutine. This context saving 
code typically saves every register that the subroutine changes in order to make the call to that subroutine “safe” 
for the code that calls the subroutine. The subroutine then restores the saved registers before the subroutine 
returns, an operation that is typically the final task before the subroutine executes the return instruction. The key 
to ensuring the context saving mechanism never causes overflow (or any other problems) is to ensure the same 
registers that are pushed as part of context saving are later popped as part of context restoration. Note that not 
ensuring each push has a corresponding pop and each pop has a corresponding push will eventually cause stack 
overflow if your program does not die immediately.  

One nice thing about the RISC-V ISA not having dedicated push and pop instructions is that the pushing and 
popping operations in context saving/restoring done have to be “in order”. Because the RISC-V implements 
pushes and pops with store-type and load-type instructions (with corresponding stack pointer adjustment under 
direct program control) respectively, pushes and pops in the RISC-V can be out of order and use the offset 
portion of the memory access instruction to target a specific address on the stack. Very handy.  

12.5.3 Subroutine Overhead 

The underlying problem with subroutine calls is that they also have “overhead” associated with them. The notion 
of “overhead” in this context is having the MCU execute an instruction that does not actually do anything useful 
for the given task. While we all know that we can use subroutines to keep our code well organized and efficient 
in terms of program memory, we can also abuse them. There are potentially two other forms of overheads 
associated with subroutines.  

1) Subroutines typically save and later restore the operating context   

2) Nested subroutines needing to protect return addresses  

The issue of subroutine overhead is always something programmers need to consider. We cover this topic in 
greater detail in section 14.4.2.  

12.5.4 Stack Initialization 

All programs, particular programs associated with embedded systems, typically have some type of initialization 
code at the start of the program. We consider this code to be initialization code partially because we only need to 
run it once. This code is typically associated with placing external peripheral devices into a known operating 
state.  

Another part of the initialization code is to put the MCU into a known state and to get the MCU ready to execute 
your program. You’ve seen this in many of the examples we’ve done up to this point. However, another thing 
you really must do: write a value to the stack pointer. Keep in mind that the RISC-V MCU is versatile enough to 
use most any register as the sp, but the best approach is to use x2 as the sp, and write a value to as part of your 
initialization code. When you write a value to sp (or x2), you’re officially declaring the top of the stack. The key 
here is to understand the memory map associated with your system, because knowing where the different parts 
of your program are located (such as the code and the stack) helps you optimize your system and avoid 
problems.  
                                                           
9 Interrupt service routins and the RISC-V OTTER’s interrupt architecture is the topic of Chapter 13.  
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12.6 Intelligent Subroutine Usage 

Because there are not official constraints or rules regarding the use of subroutines, you should strive to follow a 
few basic guidelines when you use them.  

 Subroutines should contain a piece of code that has some specific purpose. If each subroutine 
has a specific purpose, there is a greater chance you can reuse that code in another program. In 
addition, subroutines with specific purposes are easier to document and understand.  

 All subroutines should be clearly delineated from other parts of the code by using an 
appropriate amount of comments. This promotes neatness and readability of your source code, 
which subsequently support humans striving to understand your code.  

 Your subroutines should save the operating context at the start of the subroutine and of course 
restore it at the end of the subroutine.  

 It’s generally a good idea to put all your subroutines at the end of your source code as opposed 
to the beginning of our source code. Code with subroutines intermixed throughout the code 
makes the code hard for humans to read.  

 All subroutines should contain a banner that provides the name of the subroutine, a description 
of what the subroutine does, a list of register arguments sent to the subroutine, and a list of 
what registers the subroutine modifies permanently modifies 

 All subroutines banners should clearly list how the calling program sends data to the 
subroutine and how the subroutine returns data back to the calling code. This text doesn’t 
always use this rule in an effort to save space and reading time. .   

 Your subroutines should not be too short or too long. If your subroutines are too long, consider 
breaking them up into smaller subroutines that use nested subroutine calls. If your subroutines 
are too short, you stand the chance of having the overhead issues with your subroutine that 
make your code runtime inefficient (which is partially dependent on how often you call the 
subroutine). A general rule is that short subroutines are OK if they are called many different 
times from many different parts of the program.  

 If you nest subroutines, you must protect the integrity of the ra register.  

 

Example 12.9 

Write a subroutine that multiples the unsigned halfword in x8 with the unsigned half-word in x9 
and stores the result in x10. Don’t permanently change any register other than x10. Make sure your 
subroutine works in all cases. Write the subroutine with the thought the at least one of the operands 
will often be zero.  

Solution: You’ll quickly note that the RISC-V MCU instruction set does not include a multiply instruction. 
The solution therefore entails implementing multiplication by repeated addition algorithm. We’ve put every 
effort into making this solution as efficient and bulletproof as possible. Figure 12.18 show the solutions to this 
example; here are some other cools things to note about the description. 

 We included more information in the subroutine banner that we did not include in our other 
solutions. For this solution, we’ve included what values the subroutines expects to be sent by 
the calling code, which we do on line (06).  

 Our first task is to save context, which we do with stack operations on lines (10-12). We need to 
save these registers first because the next thing we do is mask them.  

 We’ve opted to mask the two operands in order to clear the top two bytes of the registers. The 
problem stated that they were halfwords, but we want to make sure by clearing whatever value 
may reside in the top two bytes. We do this on lines (14-16).  
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 We clear the accumulator on line (17); the subroutine is now ready for an early exit. Because the 
program description stated that one of the operands will often be zero, we start the subroutine by 
checking those values for zero. If either value is a zero, we can then quickly exit the subroutine. 
We do this with the two conditional branch instructions on lines (19-20).  

 The algorithm works by continually adding of the operands the number of times of the number 
in the other operand. At this point, we know that both operands are non-zero, so it does not 
matter how we use the operands in the solution. We encode this algorithm as a while loop, 
which is safe because before entering the while loop, we know both operands are non-zero. The 
entire body of the algorithm is on line (22). Loop administration include decrementing the 
operand we’re using as an iterative count line (25), followed by a conditional branch to possibly 
exit the loop on line (26).  

 When the code exits the loop, the answer is in x10. Our last task is then to restore context, 
which we do on lines (27-29).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 

#-------------------------------------------------------------------------- 
# Subroutine: Mult_regs 
# 
# This subroutine multiples the unsigned halfword values x8 & x9 with  
# each other and stores the results in x10.  
#  
# Passed values: x8 & x9 
# Tweaked Registers: x10 
#------------------------------------------------------------------------- 
Mult_regs:  
init:      addi  sp,sp,-8       # make room on stack for storage 
           sw    x8,0(sp)       # push 2 items on stack 
           sw    x9,4(sp)       # push 2 items on stack 
 
mask:      li    x10,0x0000FFFF # mask value 
           and   x8,x8,x10      # ensure values are halfwords 
           and   x9,x9,x10   
clr_acc:   mv    x10,x0         # clear accumulator 
 
chk_0:     beq   x8,x0,restore  # return if either operand is 0 
           beq   x9,x0,restore  
 
loop:      add   x10,x10,x8     # add value (accumulate)  
            
admin:     addi  x9,x9,-1       # decrement other value 
           bnez  x9,loop        # branch if count non-zero 
            
restore:   lw    x8,0(sp)       # pop data into register 
           lw    x9,4(sp)    
           addi  sp,sp,8        # unadjust the stack pointer 
            
done:      ret                  # transfer program control back 
#----------------------------------------------------------------------- 

Figure 12.18: A solution for this example.  

Figure 12.19 shows a flowchart modeling this solution. This is a classic problem where the code and the 
comments included in the code still don’t describe the algorithm in enough detail to understand completely. In 
this case, the flowchart is particularly helpful.  
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Figure 12.19: A flowchart modeling the operation of this example program. 

 

 

 

Example 12.10: Gathering Statistics from Memory 

Write a RISC-V assembly language subroutine that counts the number of non-zero values in a span 
of memory. The memory span is a contiguous set of unsigned bytes starting at the address x10, and 
checking the number of locations given by value in x15. The subroutine returns the final count in 
register x15. Don’t allow the subroutine to permanently change any registers other than x15.   

Solution: A classic subroutine that requires you go to memory and do something; in this case, we go to 
memory and collect statistics. Note that nothing in the problem states that we should change any value in 
memory, so we won’t be doing that.  here are some other cools things to note about the description. 

 We included more information in the subroutine banner that we did not include in our other 
solutions. For this solution, we’ve included what values the subroutines expects to be sent by 
the calling code, what the subroutine returns, and the registers that the subroutine alters.   

 Our first task is to save context, which we do with stack operations on lines (12-15). We don’t 
know in advance that we need to save these registers; we actually write the context saving and 
restoring code when we complete writing all the other parts of the subroutine.  

 Part of the initialization code is clearing a register for use to use as a counter, which we do on 
line (17). Because the count could be zero, we check the count first on line (19), which officially 
makes the loop in this subroutine a while-loop. Checking a count that could be zero in a 
subroutine is necessary because the value could be zero; subtracting one from zero would create 
tragic results in the subroutine.  

 The body of the whole loop loads a byte of data from memory (20), then checks that value to 
see if it is zero on line (21) by using a classic if/else construct. It the value is zero, it branches 
over the counter increment instruction on line (22). Either way, the code makes it to the loop 
administration code on lines (24-25). The loop admin code include incrementing the address 
value by one on line (24); we use one because the problem is dealing with bytes. We then 
decrement the loop count on line (25).  
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 When the loop count runs to zero, the code exits the loop and drops to the instruction on line 
(28). This instruction transfers the count value to a register that the program uses to send the 
subroutine loop count value. We essentially reuse this register so that we don’t need to include 
saving this register in the context storage/restoration parts of the subroutine.  

 We restore context on lines (30-33). Note that we needed to save three registers, so we need to 
restore three registers as well (the same registers). Note that the ordering of register 
saving/restoring does not matter; the only two things that matter are that 1) the subroutine saves 
the proper registers, and 2) the offset part of the load-type and store-type instruction are the 
same per register. When you’re writing code, the best approach is to cut-and-paste the context 
savings code to use as context restoring code, but be sure to change store-type instructions to 
load-type instruction and to change the sign on the instruction that adjusts the stack pointer.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

#-------------------------------------------------------------------------- 
# Subroutine: Count_zeros 
# 
# This subroutine counts the number of non-zero values appearing in a  
# contiguous chunk of memory (interpreted as bytes) starting at the  
# address stored in x10 and checking the number of bytes stores in x15.  
#  
# Passed values: x10 & x15 
# Returned values: x15 
# Tweaked Registers: x15 
#------------------------------------------------------------------------- 
Count_zeros:  
init:      addi  sp,sp,-12      # make room on stack for storage 
           sw    x16,0(sp)      # push altered registers on stack 
           sw    x20,4(sp)      # push 2 items on stack 
           sw    x10,8(sp)        
 
           mv    x16,x0         # clear register for non-zero counter 
 
loop:      beq   x15,x0,done    # branch if count is zero     
           lbu   x20,0(x10)     # get unsigned byte from memory  
           beq   x20,x0,admin   # skip count if zero 
           addi  x16,x16,1      # increment non-zero count 
            
admin:     addi  x10,x10,1      # increment address 
           addi  x15,x15,-1     # decrement loop count 
           j     loop           # branch if count non-zero 
  
done:      mv    x15,x16        # copy count to returned reg 
 
restore:   lw    x16,0(sp)      # pop data into registers 
           lw    x20,4(sp) 
           lw    x10,8(sp)   
           addi  sp,sp,12       # unadjust the stack pointer 
            
end:       ret                  # transfer program control back 
#----------------------------------------------------------------------- 

Figure 12.20: A solution for this example.  

Figure 12.21 shows a flowchart modeling this solution. This flowchart is fairly low level, but the text in the 
boxes could have been expanded to be more descriptive. Then again, there is nothing too exciting about this 
algorithm.  



FreeRange Computer Design  Chapter 12 

 

 - 318 -  
 

 

Figure 12.21: A flowchart modeling the operation of this example program. 

 

 

 

Example 12.11: Memory Span Characteristic Checker 

Write a RISC-V assembly language subroutine does the following: verifies that a contiguous 
section of memory has data (halfwords) that comes in pairs. This if the first piece of data equals the 
second piece of data for all the pairs in the span, then the subroutine returns a non-zero value in 
x10; otherwise, the subroutine returns a zero in x10. The subroutine check 32 pieces of data to 
verify if they are in contiguous pairs or not. The starting address of the first piece of data in 
memory is passed to the subroutine in x20. Don’t allow the subroutine to permanently change any 
registers other than x10.   

Solution: Another subroutine that goes to main memory and tries to do something meaningful. The challenge 
in some of these problems is to understand the program statement; this is one of these problems. Here are the 
fun issues worth mentioning regarding the solution in Figure 12.22:  

 Part of the initialization sequence is to store context by pushing three registers onto the stack. 
We do this last when we’re writing the subroutine because we don’t know in advance which 
registers we’ll use in our solution.  

 The other part of the initialization code is to set the loop counter to 16, which is half the stated 
count of 32; recall that we’re checking pairs which is why we divide the original count by 32.  

 We know the count is not zero, so we can use a do-while loop, which we start on line (18-19) by 
loading two halfwords of data. We then check to see if the two halfwords are equal or not. Life 
is good if they are equal, and we branch to checking the loop condition and other administrative 
tasks if they are equal. If the values are not equal, we don’t take the branch and drop down to 
line (22), which loads x10 with a zero indicating a mismatched pair. From there we jump to 
restoring context and exiting the subroutine. If all is good, the loop eventually fails, which 
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means all the halfwords are in equivalent pairs. In this case, we load x10 with a non-zero value 
before restoring context.  

 The subroutine restores context on line (31-34). We ended up using three registers.  

 We did somewhat of a trick here. We used x10 as the loop counter even though we knew it was 
acting as a flag variable. We did the so that we did not need to use another register, which 
would had required us to push it and later pop it as part of context saving/restoring. In the end, 
taking this approach saves us two instructions and allowed the subroutine to always run using 
two less instructions. Pretty dang clever. This is a typical trick we always seek out and use in 
assembly language programming.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 

#-------------------------------------------------------------------------- 
# Subroutine: Chk_mem_pairs 
# 
# This subroutine verifies the 32 halfwords of data in contiguous memory 
# starting at the address in x20 arrives in pairs with equivalent values.  
# If they do, x10 is assigned a non-zero value; otherwise x10=0.  
#  
# Passed values: x20 
# Tweaked Registers: x10 
#------------------------------------------------------------------------- 
Chk_mem_pairs:  
init:      addi  sp,sp,-12      # make room on stack for storage 
           sw    x20,0(sp)      # push altered registers on stack 
           sw    x21,4(sp)      # push 2 items on stack 
           sw    x22,8(sp)        
 
           li    x10,16         # load half total count into register 
 
loop:      lhu   x21,0(x20)     # get first halfword  
           lhu   x22,2(x20)     # get second halfword  
              
           beq   x21,x22,admin  # jump if OK 
           mv    x10,x0         # bad... clear flag, exit subroutine 
           j     restore        # jump to restore context 
            
admin:     addi  x20,x20,2      # advance address by halfword 
           addi  x10,x10,-1     # decrement loop count 
           bne   x16,x0,loop    # loop 
            
all_good:  li    x10,1          # all good: put non-zero value in x10 
          
restore:   lw    x20,0(sp)      # pop data into registers 
           lw    x21,4(sp) 
           lw    x22,8(sp)   
           addi  sp,sp,12       # unadjust the stack pointer 
            
end:       ret                  # transfer program control back 
#----------------------------------------------------------------------- 

Figure 12.22: A solution for this example.  

Figure 12.23 shows yet another flowchart supporting yet another example problem. The details may amaze you 
if you blink your eyes at just the right speed.  
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Figure 12.23: A flowchart modeling the operation of this example program. 
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12.7 Chapter Summary 

 

 Stacks are abstract data types typically used by computer architectures for special types of storage and 
special program flow control mechanisms such as subroutine implementation.  

 The stack abstract data type is known as a LIFO, which in terms of data management, stands for “last in, 
first out”. The basic operations of a stack include pushing and popping. Basic stack definitions include top 
of stack and stack pointer.  

 The RISC-V MCU instruction set does not include dedicated push and pop instructions; it instead 
implements push operations with store-type instructions and pop operations load-type instructions. Both 
push and pop implementations required two instructions: one for the actual memory access, and a second 
instruction to adjust the stack pointer according to the push or pop operation.  

 Using subroutines to structure your assembly language programs has many advantages such as increased 
readability, understandability, maintainability, code reuse, program space efficiency. The use of subroutines 
typically decrease runtime efficiency.  

 Subroutines appearing in programs should be well-delineated from other source code, include banners 
describing the subroutine name, description, and registers the subroutine permanently changes.  

 There are three main methods to “pass” value to and from subroutines: 1) registers, and, 2) memory. No 
matter how you do it, you should document it in the subroutine header.  

 Well-written subroutines typically save context upon entry to the subroutine, and restore context upon 
exiting the subroutine. In other words, the subroutine stores the values of the registers that the subroutines 
changes and restores those values once before exiting the subroutine. Saving context means to push the 
registers the subroutine tweaks onto the stack; restoring context means that to pop the values off the stack 
back into the original registers before exiting the subroutine.  

 Subroutine calls in the RISC-V architecture automatically use one of the registers in the register file (x1) to 
store the subroutine “return address”. In this context, the return address is the address of the instruction 
following the call instruction. For nested subroutines, the value in ra needs to be saved before the nested 
subroutine is called; the best way to save ra is to push it on the stack before the nested subroutine call and 
pop if off the stack back into ra after the nested subroutine returns. The same mechanism holds true for 
recursive subroutine calls, which are subroutines that call themselves.  

 In addition to protecting the ra with nested subroutine calls, subroutines calls and returns must be done in 
the proper order to ensure the integrity of the stack. If a subroutine call does not have an associated 
subroutine return, or if a subroutine return is not paired with a subroutine call, the stack can either overflow 
or underflow. In either case, the program dies a slow death if not immediate death because the stack either 
overwrites important data, or it may provide random data as a return address from the subroutine.  

 All subroutines have overhead associated with them. At the very minimum, this includes the calling of the 
subroutine and returning from the subroutine, both of which are program flow control actions that 
effectively don’t do anything useful. Additionally, nested subroutines much expend instruction saving and 
restoring ra. Finally, subroutines generally save and restore context. Saving and restoring context and the ra 
don’t do anything in the big scheme of things. In general, subroutines make programs more space efficient 
but less runtime efficient.  

 Any assembly language program that uses a stack should place the stack pointer at a known at the beginning 
of the program. Initializing the stack pointer should thus be part of the programs initialization code.  

 There are specific rules you should follow to make subroutines as useful and meaningful as possible. These 
are simple rules that every good programmer inherently knows.  
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12.8 Chapter Exercises 

 

1) Briefly describe what is meant by the term abstract data type?  

2) Briefly describe why abstract datatypes definitions don’t include low-level implementation details.  

3) Briefly describe the term last in first out in terms of data storage in the RISC-V MCU.  

4) Briefly describe the meaning of the terms push and pop.  

5) Briefly describe the relation between the top of the stack and the stack pointer.  

6) Briefly describe why the RISC-V MCU requires at least two instructions to perform push and pop 
operations.  

7) Briefly describe if you could use lh and sh instructions as part of pushing and popping. If this is possible, 
describe the constraints involved.  

8) What is the minimum number of instruction required to push ten word values onto the stack. Fully describe 
and explain your answer.  

9) What is the minimum number of instruction required to pop ten values onto the stack. Fully describe and 
explain your answer.  

10) Briefly describe why subroutine banners are a great idea. 

11) Briefly describe the three main items that should appear in subroutine banners.  

12) Describe the two ways you can pass data to and from subroutines in the RISC-V MCU.  

13) Briefly describe the main difference between nested and non-nested subroutine calls in terms of the 
underlying RISC-V hardware.  

14) Briefly describe why call pseudoinstructions are converted into two rather than one base instruction?  

15) Describe a situation where a “lesser” amount of code in a subroutine requires more execution time than a 
“greater” amount of code in a similar subroutine. Assume these subroutines perform identical tasks.  

16) Briefly describe the maximum depth you can nest subroutines with the RISC-V MCU.  

17) Briefly describe what recursion means in the context of computer programming.  

18) Briefly describe what is meant by the “depth of recursion”.  

19) Briefly describe the maximum depth of recursion possible on the RISC-V.  

20) Briefly describe why subroutines are considered to be more code space efficient but less run-time efficient 
than not using subroutines.  

21) Briefly describe the three types of overhead typically associated with subroutine calls.  

22) Briefly describe why initializing the stack is not required, but is considered a really good idea in any 
assembly language program.  

23) Briefly discuss if “the stack” is initialized at the beginning of programs written in higher-level languages.  

24) Briefly describe the advantages of not have a dedicated “stack pointer” for any given computer architecture.  

25) What is the maximum number of stacks a RISC-V assembly language program could easily control.  

26) List a few drawbacks associated with writing long subroutines.  

27) List a few reasons why for a given subroutine that you may not want/need to save and restore context.  

28) What would be the major drawback of writing an assembly language program that uses many short 
subroutines?  
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29) Briefly describe if saving the context directly before and restoring the context directly after a nested 
subroutine call is a good idea or not.  

30) Briefly describe why it is a good idea to provide a subroutine banner for all the subroutines in your program.  

31) Briefly describe why it is a good idea to include a list registers modified by a subroutine in a subroutine 
banner.  

32) Briefly explain why the names of subroutines are nothing more than simple labels.  

33) List the basic cause of stack overflow.  

34) Brielfy explain the fact that stack overlow can happen in two different directions.  

35) Briefly describe the three common ways misusing subroutines can cause stack overflow.  

36) Briefly describe whether it is possible to overflow the stack with subroutine calls and not have your program 
fail miserably.  

37) Briefly describe why it is bad to branch or jump to a subroutine rather than calling the subroutine.  

38) Briefly describe why it is bad to branch or jump out of a subroutine rather than returning from a subroutine 
using a jalr instruction or ret pseudoinstruction.  

39) I decided I did not need to use subroutine calls and returns; I decided to branch or jump to the subroutine 
and branch or return back from it. Briefly describe what’s wrong with this notion.  
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12.9 Chapter Programming Problems 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code 

 Make sure each subroutine has a proper banner 

 

1) Write a RISC-V assembly language subroutine that rewrites the data in x10 to be a horizontal nibble-level 
mirror image of itself. Don’t permanently change any registers other than x10.  

2) Repeat the previous problem such that it reflects on a bit level rather than a nibble level.  

3) Write a RISC-V assembly language subroutine that determines if the data in x20 is a valid stoneage unary 
value. If it is, the subroutine returns a non-zero value in x30; otherwise it clears x30. Don’t permanently 
change any registers other than x30.  

4) Write a RISC-V assembly language subroutine that determines if the data in x20 represents eigth valied 
BCD values. If it does, the subroutine returns a non-zero value in x10; otherwise it clears x10. Don’t 
permanently change any registers other than x10.  

5) Repeat the previous problem but also return the number of valid BCD values in the word in register x31.  

6) Write a RISC-V assembly language that converts a halfword representing a 4-digit decimal number 
(meaning the half word represents four BCD values) into a binary number. The value to convert is passed to 
the subroutine in x10 and also returned to the calling routine in the same register. Don’t permanently change 
any registers other than x10. Assume all BCD values are valid.  

7) Repeat the previous problem, but return 0 in x10 if any BCD value is not valid.  

8) Write a RISC-V assembly language subroutine that packs all the set bits in register x20 to the right-most 
positions in the resgister. Don’t permanently change any registers other than x20.  

9) Write a RISC-V assembly language subroutine writes a monotonically increasing value to a span of 
unsigned halfwords in memory. The addresses of the first piece of data is passed to the subroutine in register 
x20; the number of pieces of data to inspect is a byte in register x21; the starting value of the count is passed 
to the subroutine in x22. Don’t worry that the counter may overflow. Don’t allow the subroutine to 
permanently change any register values. 

10) Write a RISC-V assembly language subroutine that looks at a span of contiguous signed words in memory, 
multiplies every negative value it finds by -1. The addresses of the first piece of data is passed to the 
subroutine in register x20; the number of pieces of data to inspect is a byte in register x21. Don’t allow the 
subroutine to permanently change any register values. 

11) Repeat the previous problem, but return the number of values the subroutine changes in x30.  

12) Write a RISC-V assembly language subroutine that looks at a span of contiguous unsigned words in 
memory, and determines if the values in that span are always increasing in value. If the values are always 
increasing, load a non-zero value to register x31; otherwise load zero to x31. The addresses of the first piece 
of data is passed to the subroutine in register x15; the number of pieces of data to inspect is a byte in register 
x16. Return zero in x31 if the number of values to check is less than two. Don’t allow the subroutine to 
permanently change any register values. 

13) Write a RISC-V assembly language subroutine that looks at a span of contiguous unsigned words in 
memory, finds the largest word in that span, and clears that word. The addresses of the first piece of data is 
passed to the subroutine in register x10; the number of pieces of data to inspect is a byte in register x15. If 
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the largest is repeated, only clear the first large value encountered. Don’t allow the subroutine to 
permanently change any register values. 

14) Write two RISC-V assembly language subroutines: Push_31 & Pop_31. These two subroutines use x31 as a 
stack pointer and allow for the pushing and popping of data to those two subroutines. These two subroutines 
pass data to and from the subroutines using x30. Do not allow the subroutine tp permanently change any 
other registers other than x31.  

15) Write a RISC-V assembly language subroutine that copys the unsigned halfword data from one span of 
memory into another span. The addresses of the memory spans are passed to the subroutine in x10 & x11, 
where there data at the x10 address is the data to be copied. The number of data to copy is passed to the 
subroutine in x15. Don’t allow the subroutine to permanently change any registers. 

16) Write a RISC-V assembly language subroutine that looks at two spans of contiguous unsigned words in 
memory. If a value at one location is zero, the subroutine makes the values at both memory locations zero. 
The addresses of the first piece of data in the memory spans is passed to the subroutine in register x20 and 
x21; the subroutine compares 32 pieces of data. Assume the spans in memory do not overlap. Don’t allow 
the subroutine to permanently change any registers. 

17) Write a RISC-V assembly language subroutine that determines if a given span of signed word values in 
memory are always increasing. If it is, the subroutine returns a non-zero value in x31; otherwise it returns a 
zero in x31. The addresses of the first piece of data is passed to the subroutine in register x20; the number of 
pieces of data to inspect is a byte in register x26. Don’t allow the subroutine to permanently change any 
register values. 

18) Repeat the previous problem, but ensure the values read from memory are monotonically increasing.  

19) Write two RISC-V assembly language subroutines that looks at a span of contiguous signed words in 
memory, changes each word into a reverse image (LSB becomes MSB, etc.). The addresses of the first piece 
of data is passed to the subroutine in register x30; the number of pieces of data to reverse is in x31. You 
must use a nested subroutine for this problem. Don’t allow the subroutine to permanently change any 
registers.   
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13 RISC-V MCU Interrupt Architecture (Firmware) 
 

13.1 Introduction 

We often base the viability of any MCU-based system on the ability of the system to respond to stimulus from 
the external world. In order to support these “response-time” issues, MCUs typically have the ability to utilize 
“interrupts”. In this context, interrupts are essentially a method to allow external hardware (external peripherals) 
to alter instruction-based program flow control. We consider the notion of interrupts as a type of I/O, but it’s 
slightly different from I/O as we know it from memory-mapped I/O.  

The use of interrupts forms the basis real-time programming as it provides a mechanism for programmers to 
reduce response time and write programs that operate more efficiently. The approach we take in this text is to 
introduce the basic concepts of interrupts in the context of the RISC-V OTTER. The issue we need to work 
around is the fact that the current implementation of the RISC-V OTTER only contains one interrupt input. 
While this one interrupt is sufficient to introduce the basic concepts involved, one interrupt is not enough to 
introduce concepts with MCU-based systems that have many interrupts. We leave such concepts to more 
advanced digital design/embedded systems textbooks.  

 

Main Chapter Topics 
 

 THE RISC-V INTERRUPT ARCHITECTURE: This chapter describes interrupt 
architecture on the RISC-V, which it the hardware and software characteristics to 
implement real-time programming on the RISC-V.  

 THE SO-CALLED INTERRUPTS: This chapter describes the basic the basic theory on 
interrupts on the RISC-V MCU from a programmer’s standpoint. Interrupts are a 
mechanism that allows hardware to effectively “call” subroutines.  

 REAL-TIME PROGRAMMING: This chapter describes some of the theory behind 
real-time programming in the context of MCUs, using several programming 
examples.  

 

Why This Chapter is Important 

This chapter is important because it describes the RISC-V interrupt architecture from 
the standpoint of an assembly language programmer.  

 

13.2 Interrupt Overview 

The concept of interrupts is relatively simple. Essentially, an interrupt is a subroutine call that some device 
external to the MCU initiates. Recall that a normal subroutine call happens as a result of issuing a program flow 
control instruction such as jal, jalr, or call; these instructions are necessarily under program control. The 
execution of the “subroutine” associated with interrupts is not under program control, meaning we can’t issue an 
instruction that directly causes an interrupt.  

The notion of generating an interrupt causes specific actions to happen in the underlying hardware. Because 
we’re discussing the programming side of the MCU, we save the details of interrupt processing on the hardware 
level to Chapter 18 in this text. This current chapter primarily describes interrupts and general and the 
programmer’s responsibilities to using interrupts on the MCU.  
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There are generally three types of interrupts, which we briefly describe below. For better or worse, the RISC-V 
MCU currently only has the capability of handling one external interrupt. Although this could be somewhat 
limiting, the operational characteristics of the RISC-V’s interrupt reflects how other MCUs deal with interrupts. 
We label the notion of how a particular MCU handles an interrupt as that MCU’s “interrupt architecture”1.  

1) External Interrupts: Some device external to the MCU generates this type of interrupt. We 
generally refer to these devices as peripherals and include such things as analog-to-digital 
converters, digital-to-analog converter, real-time clock (RTC) modules, and many other 
communication-type devices. The thing that makes these devices external is that they physically 
connect to an interrupt pin on the MCU (as opposed to connecting internally), which is a special 
pin in that it has the ability to generate interrupts in the MCU itself.  

2) Internal Interrupts: Some device internal to the MCU generates this type of interrupts. We also 
refer to these devices peripherals and include the same devices as listed above. In other words, 
some MCUs contain these peripherals as part of the MCU itself in that these devices live on the 
interior of the IC. The RISC-V OTTER MCU does not currently have internal peripherals2 but 
most MCUs do. Once you start adding internal peripheral devices, you’re necessarily dealing 
with a microcontroller as opposed to a microprocessor, as microprocessors are primarily CPUs 
with extremely limited memory and/or I/O capabilities.  

3) Software-based Interrupts: We typically use these types of interrupts for debug functions and/or 
to handle “special” conditions that may appear on the MCU and require special handling3. We 
don’t generally see software-based interrupts often as the other two types of interrupts. This text 
does not discuss software-based interrupts.   

13.3 The Theory of Interrupts 

If you’re like most humans, you societal norms occasionally cause you to think that you need a haircut. It would 
be a strange world if the person who cuts your hair called you every five minutes and asked you if your hair 
needs cutting. Naturally, a better approach (more efficient? Less annoying?) would be that when you needed a 
haircut, you simply call the person who cuts your hair and schedule an appointment. Requesting some type of 
service is the general approach humans take in most facets of their lives (unless you work in the sales where 
you’re required to continually ask others if they want service). Phone solicitors therefore are not human.  

Not surprisingly, an analogous situation exists in computerland. Programs you write generally do something, i.e., 
they execute some finite number of relatively useful tasks to solve some problem. Additionally, programs are 
waiting for some indication that they need to do something; this indication is often times input from the outside 
world. The clearest example of this is your phone. When you don’t interact with the display for a given amount 
of time, the device is smart enough to turn off the display as a power-saving measure. Yet, when you touch the 
display, it turns back on. More likely than not, the touching of the display told the device to wake up; the device 
was probably not actively checking to see if you touched the display. The thing to note here is that actively 
checking to see if someone touched the display is a waste of clock cycles if the MCU could be performing more 
important tasks or saving power by doing nothing if there was truly nothing to do.  

The two approaches to knowing when a task should “take action” in embedded systems (such as a system 
controlled by a RISC-V MCU) are analogous to the example above: you either constantly check to see if a 
particular task needs attention from the MCU and act if it does, or you can give those tasks attention only when 
the tasks tell you they require attention. The notion here is that the task only seeks attention (meaning the 
execution of instructions) when they actually need attention. Microcontroller lingo refers to the act of constantly 
asking if a task needs attention as polling. MCUs implement polling by placing the program into a “polling 
loop”, which is also appropriately referred to as a “dumb loop4”.  

Polling is a relatively simple concept but it has one large drawback: it’s inefficient to continually ask a device if 
it needs something when the device has nothing that needs doing. In terms of MCU processing, if the MCU is 

                                                           
1 If you haven’t figured out by now, the word “architecture” gets a lot of use in computerland.  
2 But there is nothing stopping you from adding them if you’re working with an FPGA… 
3 We often label these types of situations as “exceptions” and/or “traps”.  
4 No offense meant here to academic administrators.  
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polling, it is not doing something else that could be potentially more important (as in something time critical 
such as restarting some dude’s heart). The result is that you lower the overall throughput of your system if you’re 
wasting clock cycles in a polling loop. Once again, a more efficient approach in terms of MCU processing is to 
allow individual circuit elements that occasionally need attention from the MCU to have those circuit elements 
directly request processing, or “service” from the MCU. The notion of a hardware interrupt on MCUs provides a 
mechanism for such a request; the “interrupt architecture” on an MCU is simply a description of that mechanism.  

We must be fair here and note that it’s comfortable to say polling is bad, but in reality, it’s only bad if the 
processor has something more important to do. In real life, your MCU may be idle sometimes when nothing 
needs doing; during those times, you can consider polling acceptable. The only possible problem here is that 
your program can be “stuck” in a polling loop and never be aware that peripherals in the circuit need the MCU’s 
attention. Thus, there are gray areas in this discussion. But if you’re processor is idle most of the time, you may 
want to choose a “less powerful” MCU or certainly an MCU with a low-power mode.  

The term interrupt comes from the fact the normal operation of the microcontroller is temporarily interrupted to 
handle some other task. Once microcontroller handles the other task, the microcontroller returns to the task it 
was executing when it received the interrupt. Though microcontrollers in general use three types of interrupts 
(internal interrupts, external interrupts, and software interrupts), the RISC-V OTTER MCU currently only 
handles a single external interrupt. Keep in mind that there is no single method used by all microcontrollers to 
handle interrupts, so examining the interrupt architecture is one of the first things you typically do when working 
with a new microcontroller. We refer to “handling” these tasks only when the task requests service as interrupt 
driven, or “real-time”, and thus require the use of the MCU’s interrupts.  

13.3.1 Using Polling for Inputting Data 

Most of the RISC-V MCU programs we’ve written thus far used some form of polling. In this context, the 
“something useful” statement refers to the notion that most programs interface with the outside world in one way 
or another, which requires them to input data from that outside world. The MCU typically reacts to that input and 
then outputs something to the outside world. When the MCU requires something (such as a specific condition) 
from an external device, one approach to obtain that information is to constantly ask the device if it’s ready to 
provide that information, which is the classic definition of polling. An example of such a system would be an 
MCU that receives input from an external sensor at a set frequency.  

Figure 13.1 shows an example of this basic program procedure that uses polling. The program needs to do 
something when a certain switch is turned on; because the program does not know when the switch will turn on, 
it must constantly monitor the switch, which it does in Figure 13.1 using a polling loop. The polling loop is on 
lines (12-14); the program inputs data, masks that data to isolate the switch in question, and then reacts to the 
state of the switch. If the switch is not on, the program turns off all LEDs and then continues in the polling loop 
by branching back to the input instruction on line (12). If the switch is on, then the condition associated with the 
branch instruction evaluates as false and the program does not branch, and instead exits the loop and drops down 
in the code to do other things, which in this example is turn all the LEDs on.  

Although this program works great and everything seems fine, there is a problem. The polling loop in Figure 
13.1 is not problematic according to our definition because the program has no other tasks it needs to attend to. 
Another way of saying this (the official embedded systems way of saying it) is that there are no other pending 
tasks that require the attention of the MCU. The problem arises when there are other tasks. In this case, the other 
tasks may need attention also, but they won’t receive it as long as the MCU is stuck in a polling loop such as the 
one on lines (12-14). More than likely, the switch does not require as much attention as this program is giving it, 
which can be an issue in an actual problem.  

Keep in mind we designed these examples and definitions to be simple. In real life embedded systems 
applications, these situations can become exponentially complicated as the number of tasks that the program 
needs to monitor increases. In this context, the number of tasks refers to the number of items (such as inputs and 
outputs) that require the MCUs attention. The notion of interrupts is important because any meaningful 
embedded system (an embedded system with many tasks) probably would not work properly, if at all, if it relied 
solely in polling. The solution is to utilize real-time programming, particularly by taking advantage of the 
MCU’s interrupt architecture.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

#----------------------------------------------------------------------------- 
# This program reads data from the switches; if the second to right-most  
# switch is on (on=1), then the program turns on all LEDs; otherwise 
# the program turns off all LEDs. The port address of the switches is 
# 0x1100C000; the port address of the LEDs is 0x11008000. Assume  
# there are 16 switches and an equivalent number of LEDs. 
#------------------------------------------------------------------------------ 
init:     li    x10,0x1100C000     # put switch address (input) to register 
          li    x11,0x11008000     # put LED address (output) in register 
          li    x8,0xFFFF          # load reg with one output value 
          mv    x9,x0              # load reg with other output value 
          
main:     lhu   x20,0(x10)         # input data 
          andi  x20,x20,2          # mask 2nd to right-most bit 
          beq   x20,x0,out_off     # if not zero, branch to off 
          
out_on:   sh    x8,0(x11)          # turn on all LEDs 
          j     main               # do it again      
 
out_off:  sh    x9,0(x11)          # turn off all LEDs  
          j     main               # do it again   

Figure 13.1: The solution to this example problem. 

13.3.2 Moving Towards Real-Time Programming 

Interrupts are an extremely important part of any computer system. Thus, understanding the interrupt 
architecture is vital to writing good programs that drive efficient systems. The notion of interrupts becomes more 
important with working with embedded systems and particularly at the assembly language level. In order to 
successfully work with interrupts, you must understand the low-level details of the interrupt architecture 
associated with the computer you’re working with. Being that there is no one method used by all MCUs to 
handle interrupts, you’ll soon discover that one of the first things you must do when working with a new MCU is 
to examine the interrupt architecture. First, you look at the architecture, then you look at the instruction set, then 
the I/O architecture, and finally, you look at the interrupt architecture. You’ll need to establish the flavor and 
number of interrupts the microcontroller handles and how exactly the MCU handles the interrupts, since the use 
of polling rather than interrupts is an indication of a nooby programmer.  

The term interrupt comes from the fact the normal operation of the microcontroller is briefly interrupted to take 
care of some other special task (by special, we inherently mean more important). Once the MCU handles the 
task, the MCU returns to the processing it was doing when the interrupt arrived. The basic model is that some 
peripheral device can request service from the MCU. We do this by allowing the external device to directly 
connect to MCU by way of a dedicated signal. We refer to this input on the RISC-V MCU as the interrupt input.  

Figure 13.2 shows the top-level diagram for the RISC-V MCU; the input with the “INTR” label is the dedicated 
interrupt input. Because the design of the overall system including how the hardware is set up is not a 
programming concept, we’ll leave those details for the hardware section of this text. What we’ll say now is that 
when MCU hardware detects the signal connected to the INTR input at a ‘1’ state, the RISC-V MCU executes a 
special subroutine. We usually refer to this special subroutine as the “interrupt service routine”, or “ISR”, but 
other people refer to it as the “interrupt handler”. We’ll deal with some of these specifics in this chapter when we 
discuss the required real-time programming details.  

 

Figure 13.2: The RISC-V MCU schematic symbol. 
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13.3.2.1 The Advantage of Real-Time Programming  

There are essentially an infinite number of approaches you can take using an MCU to solve a problem. In this 
context, solving the problem using a MCU requires two separate approaches. First, someone needs to design the 
hardware for the system; we consider the MCU to be an important part of that hardware. Second, we need 
someone to write the firmware for the system. There are many options and trade-offs in designing both hardware 
and firmware. Additionally, there is no “set of rules” that exist such if you follow the rules, you magically have a 
well-designed and well-functioning system.  

The first step in any MCU-based design is to know the system requirements before you start. We tend to try to 
design stuff to run fast so we can impress out friends, but that’s not always the most important design issue. 
Recall that possibly the biggest design issue faced by modern embedded system designers and programmers is 
not only making your system work, but make it work efficiently. In this context, the notion of efficiently allows 
the program to be run at low power, thus making battery powered applications happy. The point of this 
paragraph is that you’ll find in all meaningful applications that, designers and programmers use real-time 
programming to meet their goals5. 

In the general case, writing real-time programs has two basic advantages over systems that rely exclusively on 
polling. What this means is that most of the time, using interrupts in your design is going to make your design a 
better. Here are the two major advantages, or maybe “potential” advantages of implementing a real-time design. 

1) Increases System Throughput: In this context, we define the term throughput as the amount of 
meaningful things an MCU does over a given amount of time that it’s active6. The problem with a 
polling loop is that although the processor is executing instructions at high rate, we can view the 
instructions as not really doing anything until the condition the loop is polling for materializes. In other 
words, polling represents a relatively high percentage of useless instructions. The throughput is low in 
this situation because the MCU is executing instructions, but it is doing no meaningful work. Once 
again, if there are no other tasks that need the MCU’s attention, you can argue that this approach is OK. 
In general, querying an I/O device that probably does not provide useful information most all of the 
time, lowers the overall through put of the MCU.  

2) Response Time: The notion of the interrupt is that the code that the MCU is processing is “interrupted” 
so that the MCU can execute a special subroutine. This means that the code in the special subroutine 
executes with what we consider a higher priority than the code not in that special subroutine. Having 
code run at different priorities such as this is a way to reduce the “response time” of your system. If 
your system relies 100% on polling, the response time of your system and/or the system complexity 
increases exponentially as you add more tasks that your MCU needs to handle.  

Imagine a complex digital system that contains many I/O devices. In such a system, polling each of these 
devices would usually be a bad option because it may take a long time for a given device to get the service it 
needs. The better option would be for all the devices to request service from the microcontroller only when 
they need it. Real-time systems become quite interesting as the systems become more complex as such 
issues of interrupt priority, interrupt latency, specialized interrupt hardware, and other real-time concepts 
become more important. Don’t worry, most of these concepts are beyond the scope of this text. We’ll cover 
the more important issues later in this text.  

13.4 RISC-V Interrupt Architecture for Programmers 

The overall notion of interrupts is relatively simple due to their similarity with subroutines. Stated as simply as 
possible, an interrupt is basically a subroutine call that is initiated by the hardware. In contrast, executing a call 
instruction initiates a subroutine in a program. We describe the mechanism that the hardware uses to initiate the 
special subroutine in a later chapter. For now, all the hardware the pure programmer needs to know is that the 

                                                           
5 Low power hardware and subsequent firmware design are indescribably important. This text leaves those issues for another 
course. You’ll find that off-the-shelf MCUs have many ways to adapt to your particular design such that you can lower the 
overall power and processing needs of your design.  
6 The notion here is that if the processor truly has nothing to do, it can turn itself off and wait for a signal to turn itself back 
on. This is a classic low-power mode that most off-the-shelf MCUs have. In other words, the MCU does not always need to 
be running if there is no hope that it will need to do anything for a while.  
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hardware designers of the system that contains the MCU they are programming set up the system such that an 
extern device can cause the hardware to initiate the execution of the special subroutine. In short, when the RISC-
V MCU hardware detects a request from service from an external device, the underlying hardware initiates a 
sequence of events to switch to the execution of the special subroutine.  

13.4.1 Real-Time Programmer Responsibilities 

Although the interrupt architecture on the hardware level is somewhat complex, the pure programmer only has a 
few responsibilities when writing interrupt-driven programs. We list these responsibilities below with a brief 
description, then delve into them deeper in later subsections.  

1) The Overall Program Structure: Real-time programs have a special structure that is different from non-
real-time programming. You’ll learn in later discussions that there are things our programs need to do 
and special places in the code where they do those things. We divide the code into three sections: 1) 
initialization (both of interrupts and the program in general), 2) the background task, and, 3) the 
interrupt service routine.  

2) Interrupt Initialization: There is special hardware in the RISC-V MCU that is dedicated to interrupt 
implementation. This hardware requires programmers to initialize it in various ways in order to make 
the program work properly. This initialization is generally part of the overall program initialization.  

3) The Interrupt Service Routine: The special subroutine that we previously mentioned as a specific name: 
the interrupt service routing, or (ISR). It’s truly a subroutine, but there are several approaches to using 
the ISR in an optimal manner.  

13.4.1.1 Real-Time Program Structure 

Figure 13.3 shows a basic interrupt-driven assembly language program. This code actually does something if you 
can image that the MCU can control a single LED. This code does in fact contain the three items listed in the 
previous section. Some of these items are not apparent, so we provide a few pertinent comments below. Note 
that the code below depends on the fact that some external device has a pin that connected to the RISC-V 
MCU’s interrupt input, and is occasionally generating interrupts.  

 The initialization code spans lines (09-19), and comprises of interrupt-related and general 
initializations. Line (09) stores the output port address. Line (14) initializes a register to use as a 
flag. Lines (15-16) put the output LED into a known state. The code on lines (11-12) and lines 
(18-19) are part of the interrupt initialization code that we’ll discuss later.  

 The main code, or what we’ll often refer to as the background task, is on lines (21-22). This code 
is always running, waiting for an interrupt to happen. This code is a polling loop, but that’s OK for 
this example as the code only has one task to perform, which is blinking an LED. We use the 
name main code and background task interchangeably; we sometimes refer to the code as the task 
code.  

 The interrupt service routine is on lines (39-40), after we introduce it with a nice descriptive 
banner. The ISR represents the foreground task. Program execution exits the background task each 
time the MCU acts on an interrupt and commences executing the foreground task.  
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#------------------------------------------------------------------------ 
# Example Interrupt Driven Program.  
#  
# Description: The program blinks an LED. Each time the program  
# receives an interrupt the code changes the state of the LED. We  
# assume some external device has configured the hardware such that  
# the MCU can receive an interrupt signal from an external device.  
#------------------------------------------------------------------------ 
My_Prog:  
init:    li     x15,0x1100C004 # put output address into register 
 
         la     x6,ISR         # load address of ISR into x6 
         csrrw  x0,mtvec,x6    # store address as interrupt vector CSR[mtvec] 
 
         mv     x8,x0          # clear x8; use as flag 
         mv     x20,x0         # keep track of current output value 
         sw     x20,0(x15)     # put LEDs in known state 
          
         li     x10,1          # set value in x10 
         csrrw  x0,mie,x10     # enable interrupts 
 
main:    nop                   # do nothing (easier to see in simulator)  
         beq    x8,x0,main     # wait for interrupt 
 
         xori   x20,x20,1      # toggle current LED value 
         sw     x20,0(x15)     # output LED value 
 
         mv     x8,x0          # clear flag 
         csrrw  x0,mie,x10     # enable interrupt 
         j      loop           # return to loopville 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# The ISR:  
#  
# Description: This ISR puts a non-zero value into x8.  
#  
# Tweaked Registers: x8 
#------------------------------------------------------------------------ 
ISR:     li     x8,1           # set flag to non-zero 
         mret                  # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.3: An example interrupt-driven program.  

13.4.1.2 Interrupt Initialization  

Interrupt driven programs requires two forms of initialization programs, which are items programmers must be 
aware of: the vector address and the interrupt enable. Both of these items are values that the RISC-V MCU 
hardware stores in special register, thus there are instructions in the RISC-V ISA that access these registers.  

Recalling that the ISR is a subroutine “called” by hardware. Acting on an interrupt causes the transfer of 
program control to the ISR. In a subroutine call, the assembler encodes the information to know where to jump 
to (the address of the first instruction in the subroutine) as part of the instruction. Because ISRs don’t have a 
program-related calling mechanism, the address of the ISR must be stored as part of the interrupt initialization 
code. Typical MCU vernacular refers to the mechanism as the vector address, with the idea that program 
execution “vectors” to that address when the MCU acts on an interrupt.  

The vector address is stored in the mtvec register, which is one of three registers involved in interrupt 
processing. The vector address is stored with a csrrw instruction. Table 13.1 gives details of the csrrw 
instruction. Here are the important items to know about this instruction.  

 The instruction mnemonic states for “control and state register read write”. There are three CSR 
registers that programmers can write to; one of them is the mtvec register. This instruction allows 
you to simultaneously read the current contents of CSR[mtvec] and store that value in a register, 



FreeRange Computer Design  Chapter 13 

 

 - 333 -  
 

and write a new value to CSR[mtvec]. The CSR[mtvec] register is one that we typically only 
write to once in a given program.  

 The RISC-V MCU stores the interrupt vector address in CSR[mtvec]. To do this, programmers 
need to first issue a la (load address) instruction to obtain the value of the ISR label (it’s an 
address), then use the csrrw instruction to save that address in CSR[mtvec]. Thus, CSR[mtvec] 
contains the address of the first instruction in the ISR. When the MCU acts on an ISR, the 
underlying hardware ensures that the instruction at this address is the next one executed.  

 We typically don’t need to know what the CSR[mtvec] value is, so we use x0 as the destination 
register in the csrrw instruction.  

 The mtvec value in the instruction assumes the assembler knows a value for mtvec to use for 
mtvec. The mtvec value is actually an address of a particular register in the hardware, so csrrw 
is simply a number.  

 csrrw is a base instruction. Its underlying bit format is unique so we don’t consider it as having 
an instruction “type”.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

none csrrw  rd,csr,rs1 rd ← CSR[csr] 
CSR[csr] ←∙rs1 

csrrw  x0,mtvec,x8 
Simultaneous read 
and write of the 
mtvec CSR register 

Table 13.1: The csrrw instruction with other information.  

The other form of initialization that programmers must do for all interrupt driven programs is to “enable 
interrupts”. Programmers can enable or disable interrupt under program control using the csrrw instruction by 
writing to the CSR[mie] register. Note that the “ie” in mie stands for “interrupt enable”, which is a comment 
acronym in MCU-related lingo. This register is only one-bit wide. Writing a ‘1’ to this register enables the 
interrupts; writing a ‘0’ to this register disables the interrupts. When the interrupts are disabled, the MCU 
effectively ignores any pending interrupts; when interrupts are enables and an external device connected to the 
RISC-V MCU generates an interrupt, the MCU processes that interrupt, which include calling the ISR. Table 
13.2 shows instruction usage to disable/enable interrupts by writing CSR[mie].  

Instruction Usage  Comment 

mv     x5,x0        # clear x5 
csrrw  x0,mie,x5    # write CSR[mie] Disable interrupts (prevent interrupt processing) 

li     x5,1         # set LSB in x5 
csrrw  x0,mie,x5    # write CSR[mie] Enable interrupts (allow interrupt processing) 

Table 13.2: The csrrw instruction usage for enabling/disabling interrupts.  

When working with interrupts, MCUs typically use a special vernacular to indicate whether interrupts are 
enabled or not. If interrupts are disabled, we can say that they are masked. Conversely, if interrupts are 
unmasked, we know that interrupts are enabled. The act of masking the interrupt means that we are disabling it, 
which is a term we use quite often. In addition, if we unmask an interrupt, we are enabling it. We sometimes 
refer to bits such as CSR[mie] as the interrupt mask bit.  

Unlike working with the vector address where we generally on need to write it once during the initialization part 
of our program, we typically need to write CSR[mie] more often. The reason is that when the RISC-V MCU acts 
on an interrupt, part of the interrupt architecture dictates that the hardware automatically disables future 
interrupts. The hardware disables the interrupts so that the MCU can execute instructions without risking 
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receiving another interrupt and having the MCU act on it. If the hardware did not automatically disable the 
interrupts, the first instruction in the ISR would cause another interrupt to be processed, even if that instruction 
attempted to disable the interrupts. xxxxAs we’ll discuss later, although an ISR is similar to a subroutine, it’s 
different because the RISC-V OTTER hardware does not currently have the capability to nest interrupts.  

Automatically disabling the disabling interrupts has two ramifications to the program. First, the program has 
time do whatever processing required in the ISR (or associated with the interrupt) without risking acting on 
another interrupt. Second, the programmer must re-enable the interrupts under program control using the csrrw 
instruction outlined in Table 13.2. Where exactly to place the instruction can be tricky. Don’t try to put the code 
at the end of the ISR because if there is a pending interrupt, the MCU will act on the interrupt before the program 
can exit the ISR, which would represent the deadly “nested interrupt”.  

Good programmers always know the state of the interrupts relative to the code they’re writing. You always must 
ensure the interrupts are masked if you’re program is executing important code. The most important code for us 
now is the initialization code. We hope that hardware designer provided a way to ensure that our interrupts 
powered-up in the disabled state, but we generally don’t take chances. In all embedded systems programming, 
it’s better to do what you can as a programmer to ensure the integrity of your system. In this case, that means 
probably the first instructions in any program you write should be to mask the interrupts.  

13.4.1.3 The Interrupt Service Routine 

Implementing Interrupt service routines have the same guidelines are implementing subroutines. The only major 
difference is that they have use different instructions to transfer program control (the return statement). We’ll 
discuss returning from ISRs in another section. Similar to subroutines, ISRs should save the operating context of 
the MCU when it received the interrupt.  

There is one other obvious difference between ISRs and subroutines. The code in the ISR necessarily runs with a 
higher priority than the code in any subroutine, which is because the external event (the interrupt) causes the 
program from to switch from whatever it may be doing to the ISR code. When writing ISRs, you should keep in 
this in mind. There is one important ISR guideline here as a result of the higher running priority of the ISR code. 
When you’re executing ISR code, the interrupts are disabled, which means the program may be missing some 
important event while processing the interrupt. You can’t get around this issue by simply re-enabling the 
interrupts in the ISR, which would cause the interrupts to nest, and your program to die. The general approach 
solution here is to strive to keep you interrupts are short as possible. Notice we say, “you should” as a general 
approach, but this is not always desirable and/or feasible.  

13.4.1.4 Saving the Context  

Various MCUs out there have many different context saving mechanisms, which is yet another reason why 
examining the interrupt architecture is always one of the first things you do when working with a new MCU. The 
notion of saving the context is important because by definition, when we act on an interrupt, we’re temporarily 
suspending the part of code we’re currently executing and then start executing the ISR. This implies that we may 
be using registers in the background task, so we want to ensure that the ISR does not permanently change those 
registers. What you ideally want the MCU to do is stop the code that it is currently executing, execute the ISR 
code to completion, and then go back to the code that the MCU was executing when the MCU received the 
interrupt. The idea here is that if you must can “save the state” of the MCU before you execute the ISR, then you 
can “restore” that state once the ISR completes execution and before you start executing the code you were 
executing when MCU received the interrupt.  

Many MCUs store the context automatically in hardware, but the RISC-V MCU has no such mechanism. All 
context saving in the RISC-V MCU is done in firmware and uses the same approach as saving the context when 
you call a subroutine. Recall that we saved context by pushing the registers used in that subroutine onto the stack 
at the beginning of the subroutine and popping them off the stack before the subroutine terminates. Recall that 
ISRs are essentially subroutines that the hardware can “call”, so it’s no surprise subroutines and ISRs share the 
same characteristics. To summarize, the RISC-V MCU has no automatic context saving mechanism; context 
saving in ISRs is done by the programmer in firmware in the same way the program saves context in subroutine 
calls.  
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One could argue that the RISC-V does have some type of automatic context saving mechanism. Usually, when 
we speak of context, we primarily refer to register values (from the register file). We could easily stretch this 
definition to include other registers, such as the program counter. In truth, part of the automatic context saving 
mechanism in the RISC-V MCU is to save the address of the instruction following the instruction that was 
executing when the MCU received the interrupt to a CSR register, mepc. Because the hardware automatically 
does this, we won’t delve deeply into the subject until the hardware portion of this text.  

13.4.1.5 Returning From ISRs 

As you probably would guess, returning from ISRs is similar to returning from subroutines. When a subroutine is 
called (when a program executes a call instruction), the RISC-V hardware automatically saves the return 
address (the address of the instruction after the call instruction) in a register (typically x1, or ra). When the 
subroutine exits (the MCU executes a ret instruction), it loads the value in that register into the PC, which 
makes it the next instruction executed after the ret instruction.  

Returning from an interrupt is similar, except that it loads the return address from another CSR register rather 
than from the ra register. When the MCU acts on an interrupt, the MCU’s hardware places the address of the 
instruction after the instruction that was being executed when it received the interrupt into CSR[mepc], which is 
one of the three registers in the CSR. The hardware automatically controls the loading of this hardware so the 
programmer does not need to do anything. Additionally, the programmer would rarely have a reason to ever load 
a value into CSR[mepc], though they could do so with the csrrw instruction.  

Because the hardware uses a different return address when returning from a subroutine, programmers must use a 
different instruction. The instruction in this case is mret. Table 13.3 shows various helpful information 
associated the mret instruction. Similar to ret, mret has no operands. Additionally, mret is a base 
instruction.    

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

none mret  PC ← CSR[mepc]  mret  Return instruction for 
returning form ISR 

Table 13.3: The csrrw instruction with other information.  

13.4.2 Basic Interrupt Example Program 

We initially presented an interrupt driven example problem but provided very little information describing the 
operation of the program. We’ll once again show this program, but this time explain it in a painful amount of 
detail. The disclaimer for this section is this: this is a simple example that shows the basic structure/requirements 
of an interrupt driven RISC-V interrupt driven program. This is not necessarily a good example, because a 
“good” interrupt driven program example would be more complex, which would allow programmers to do things 
“more intelligently”. The point is that there are many approaches to writing real-time programs; if you learn the 
basics associated with simple programs such as the one in this section, you’ll have no trouble writing your own 
“good” interrupt driven programs. Figure 13.4 shows the same program we previously provided; here’s all the 
good stuff to realize about this program:  

 The program assumes that some external device attached to the RISC-V MCU generates interrupts. 
Each time the MCU receives an interrupt, the code changes the state of an external peripheral, which in 
this case is an LED. Someone has generously provided you the programmer with the correct output port 
address associated with the LED.  

 The first part of the program is initialization, as indicated with “init” label. The first instruction places 
the output port address into a register for later use.  

 The instructions on lines (11-12) is initialization of the interrupts. The instruction on line (11) loads the 
address of the subroutine into a register; this value is the address of the first instruction of the ISR, 
which is the interrupt vector address. The following instruction stores that address value in 
CSR[mtvec]; the underlying hardware loads this value into the PC when the MCU acts on an interrupt.  
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 We use a register as a “flag”, which is the assembly language approach of using a Boolean value. The 
program places either a ‘1’ or ‘0’ into the flag register; the program interprets these two values as 
positive logic where ‘1’ means something happened and ‘0’ means otherwise. The code on line (14) 
uses x8 as the flag register and sets the flag to an initial value of zero.  

 The program blinks an LED; we use a register to hold the current LED value. We initialize that register 
to zero (LED initially off) on line (15). We follow that line with an instruction to write that register 
value to the output on line (16).  

 The second portion of the interrupt initialization code resides on lines (18-19). At this point in the code, 
we’ve completed all the other required initializations; we purposely saved this code until last. The 
purpose of this code is to enable (unmask) the interrupts, which we do by writing a ‘1’ to the CSR[mie] 
register using the csrrw instruction on line (19).  

 The background task is the loop on lines (21-22). The program gets stuck in this code for what seems 
like forever, because this code keeps monitoring (yes, this is a polling loop) the state of x8, which we 
are using as a flag. We initialized this flag to zero, and we keep loop so long as it remains zero. The 
only way x8 can become a non-zero value is when the MCU receives an interrupt and executes the 
interrupt service routine.  

 When the program receives an interrupt, the program transfers control to the ISR, which starts on line 
(39). Be sure to note the nice banner for the subroutine, very similar to standard subroutine banners. 
The ISR comprises of two instructions: line (39) change the value of the flag to be non-zero, and line 
(40) returns from the subroutine. Note that we use an mret instruction rather than a ret instruction 
because we are returning from an interrupt and not a normal subroutine.  

 The program was executing the instruction on line (21) or line (22) when it received the interrupt. 
Interrupts are external to the MCU and can thus happen at any time. When the ISR exits, it returns to 
one of these instructions. The difference now is that x8 is no longer zero, which causes the conditional 
branch on line (22) to fail and program control to drop through to the instruction on line (24).  

 The program has one task to do as part of the main code: toggle the LED. It does this by first toggling a 
bit in the register storing the LED value on line (24), then outputting that value to the LED on line (25). 
This code effectively makes the LED blink.  

 Once the LED blinking completes, we need to prepare for the next interrupt. We first clear the flag 
register (x8), which allows us to stay in the polling loop on lines (21-22). We must use this approach 
based on the way we structured our code. We then need to unmask the interrupts, which we do by write 
a ‘0’ to the CSR[mie] register on lines (27-28).  

 The final part of the code is to jump back to the main loop, which we do on line (29).  
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#------------------------------------------------------------------------ 
# Example Interrupt Driven Program.  
#  
# Description: The program blinks an LED. Each time the program  
# receives an interrupt the code changes the state of the LED. We  
# assume some external device has configured the hardware such that  
# the MCU can receive an interrupt signal from an external device.  
#------------------------------------------------------------------------ 
My_Prog:  
init:    li     x15,0x1100C000 # put output address into register 
 
         la     x6,ISR         # load address of ISR into x6 
         csrrw  x0,mtvec,x6    # store address as interrupt vector CSR[mtvec] 
 
         mv     x8,x0          # clear x8; use as flag 
         mv     x20,x0         # keep track of current output value 
         sw     x20,0(x15)     # put LEDs in known state 
          
         li     x10,1          # set value in x10 
         csrrw  x0,mie,x10     # enable interrupts 
 
main:    nop                   # do nothing (easier to see in simulator)  
         beq    x8,x0,main     # wait for interrupt 
 
         xori   x20,x20,1      # toggle current LED value 
         sw     x20,0(x15)     # output LED value 
 
admin:   mv     x8,x0          # clear flag 
         csrrw  x0,mie,x10     # enable interrupt 
         j      main           # return to loopville 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# The ISR:  
#  
# Description: This ISR puts a non-zero value into x8.  
#  
# Tweaked Registers: x8 
#------------------------------------------------------------------------ 
ISR:     li     x8,1           # set flag to non-zero 
         mret                  # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.4: An example interrupt-driven program.  

13.4.3 Real-Time Programming Considerations 

Real-time programming is an art form. There are so many issues involved with even relatively simple real-time 
problem that any rules as associated with designing and programming such systems become questionable. If 
there were a set of rules to follow to ensure that any real-time program you wrote was going to solve the given 
problem 100% of the time, then people would not be paying you the big bucks to be embedded systems 
designers and programmers. There are a few guidelines you should consider following, particularly if you’re new 
at real-time programming. Here they are:  

Keep your ISR as short as possible: The issue here is that we want to keep the response time as short as 
possible. The problem is that the hardware automatically masks the interrupts the MCU acts on an 
interrupt, and can only be unmasked under program control. This generally means that if your ISRs are 
long, that may cause you to delay or completely miss another interrupt. They delayed interrupt may 
cause an obnoxious delay that would make people think less likely to purchase your product (or hire 
you); missing the interrupt altogether could never good outcome.  

Nested ISRs: The current interrupt architecture does not allow for nested interrupts. Because there is 
currently only one register to store the return address (CSR[mepc]) when the MCU acts on an interrupt, 
your code would return to the incorrect place in the code if you acted on a second interrupt. Note that 
the only way you could get a nested interrupt is if you re-enable interrupts while you are in an ISR. This 
being the case, nested interrupts are easily avoidable.  
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Calling subroutines from ISRs: There is nothing inherently wrong with calling subroutines from 
interrupts. Your code can even nest subroutine calls if there is a need if you follow the standard rules 
for writing and nesting subroutines. In truth, the only two special things about your interrupt code the 
fact that 1) the ISR uses a different return instruction from subroutines, and, 2) the interrupts are 
probably disable while executing the ISR code. The one possible drawback of calling subroutines in the 
ISR code is the fact that it extends the amount of time interrupts are disabled, which may cause 
problems with response time issues with acting on other pending interrupts.  

13.5 Real-Time Programming Example Problems 

This section provides a few interrupt-driven example problems. These problems are similar to the example 
presented earlier in this chapter, but do show a few more tricks and expose a few more issues.  

 

Example 13.1: Another Blinking LED  

Write a RISC-V assembly language program that counts the number of interrupts the MCU receives. 
The count range is [0,255] and rolls over from 255 to 0. When the count is less than 128, the 
program turns on the right-most LED; otherwise it leaves it off. The LED address is 0x1100C000.  

Solution: The first thing to note about the solution is that it is very similar to the first interrupt driven program 
we worked with. That being the case, we essentially copied much of that code. As you’ll see, the interrupt 
initialization is always the same; the program initialization, not so much so. Here are the other cool things to note 
about this solution.  

 The program places the LED address into a register for later use by output instructions on line 
(09).  

 The program writes the address of the ISR to the CSR[mtvec] register on lines (11-12); this is 
where program flow vectors to when the MCU acts on an interrupt.  

 This program uses x8 as a flag, so we clear it on line (14). We use this to have the ISR signal that 
the MCU received an interrupt.  

 We also clear our LED counter value and write that value to the outputs on lines (15-16). We 
always want to put external items in a known state as part of the initialization sequence.  

 We enable (unmask) the interrupts on lines (18-19) by using the csrrw instruction to write to the 
CSR[mie] register.  

 The main code (background task) starts on line (21) with a polling loop. The loop is checking the 
value if the flag register x8; the code stays in this loop until x8 contains a non-zero value.  

 When the MCU receives an interrupt, program control transfers to the foreground task, which is 
the first instruction in the ISR on line (42); this instruction places a non-zero value into x8 before 
returning program flow control to the background code.  

 The first thing we do outside of the polling loop is to increment the counter on line (23). We then 
massage the counter by clearing all but the lower byte, which we do because the problem states 
that our count range is [0,255].  

 At this point, we could do some type of compare operation, but we instead take advantage of the 
fact that if the 8th bit from the left is set, then the count is greater than 127, and we thus want to 
turn off the LED. We first mask the count on line (25) to isolate the eighth bit, then shift it right to 
the LSB position on line (26). This bit does not have the correct logic level, so we toggle it on line 
(27) before outputting it to the LEDs on line (28).  

 Once we complete handling the stuff the problem description wanted, we need to recover from the 
interrupt and prepare to receive another interrupt, which we do starting at the line with the admin 
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label. We first clear the flag register x8 on line (30), which was made non-zero in the ISR. We 
then use a csrrw instruction on line (31) to set CSR[mie], which unmasks the interrupts. Recall 
that when we receive an interrupt, the RISC-V hardware automatically masks the interrupts. 

 We are now ready to receive another interrupt, so we transfer program control back to the main 
loop on line (32).  
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(37) 
(38) 
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(40) 
(41) 
(42) 
(43) 
(44) 

#------------------------------------------------------------------------ 
# Example Interrupt Driven Program.  
#  
# Description: The program counts the number of interrupts using the  
# count range of [0,255]. When the count is less than 128, the program 
# turns on LED. Assume some external device configured the hardware so  
# the MCU can receive an interrupt signal from an external device.  
#------------------------------------------------------------------------ 
My_program:  
init:    li     x15,0x1100C000  # put output address into register 
 
         la     x6,ISR          # load address of ISR into x6 
         csrrw  x0,mtvec,x6     # store address as interrupt vector CSR[mtvec] 
 
         mv     x8,x0           # clear x8; use as flag 
         mv     x20,x0          # keep track of current count 
         sw     x20,0(x15)      # put LED in known state 
          
         li     x10,1           # set value in x10 
         csrrw  x0,mie,x10      # enable interrupts 
 
main:    beq    x8,x0,main      # wait for interrupt 
 
         addi   x20,x20,1       # increment counter 
         andi   x20,x20,0xFF    # clear all but lower byte 
         andi   x21,x20,0x80    # mask the 2^7 bit (8th from right) 
         srli   x21,x21,7       # shift to LSB position          
         xori   x21,x21,1       # toggle LSB to agree with problem  
         sw     x21,0(x15)      # output LED value 
 
admin:   mv     x8,x0           # clear flag 
         csrrw  x0,mie,x10      # enable interrupt 
         j      loop            # return to loopville 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# The ISR:  
#  
# Description: This ISR puts a non-zero value into x8.  
#  
# Tweaked Registers: x8 
#----------------------------------------------------------------------- 
ISR:     li     x8,1            # set flag to non-zero 
         mret                   # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.5: An example interrupt-driven program.  

 

 

 

Example 13.2 

Modify the code in example problem solution shown in Figure 13.4 such that the ISR handles all the 
LED blinking activity.  
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Solution: The previous example used a register as a flag, which allowed the foreground task (the ISR) to signal 
to the background task (the main code) that an interrupt had occurred. There was nothing special about this 
approach other than to show that we often use registers (and sometime memory locations) as flags. The previous 
solution actually made the code slightly more complicated. Here are some items to note about the solution to this 
example in Figure 13.6.  

 The first thing to note is that the code is shorter than the previous solution, so this solution is more 
space efficient.  

 The code is first initializing all the registers it uses on lines (09-10), then writes the interrupt 
vector on line (12-13), the puts the LEDs in a known state (off) on line (15-16).  

 The main code consists of unmasking the interrupts. The issue here is that we continually unmask 
the interrupts, but this is the only way we can do this in a simple problem such as this one. The 
tendency is to unmask the interrupts before leaving the ISR, but that’s a horrible idea because a 
pending interrupt will cause the interrupts to nest.  

 This solution does all the blinking work in the ISR, which comprises of toggling the state of the 
LED using an XOR instruction on line (29), and then outputting the result on line (30).  

 Overall, this program is functionally equivalent to the previous solution; the only notable 
difference is that this solution does more in the ISR, which means the interrupts are disabled for 
longer compared to the previous solution.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 

#------------------------------------------------------------------------ 
# Example Interrupt Driven Program.  
#  
# Description: The program blinks an LED. Each time the program  
# receives an interrupt the code changes the state of the LED. We  
# assume some external device has configured the hardware such that  
# the MCU can receive an interrupt signal from an external device.  
#------------------------------------------------------------------------ 
My_Prog:  
init:    li     x15,0x1100C004 # put output address into register 
         li     x10,1          # set value in x10 
 
         la     x6,ISR         # load address of ISR into x6 
         csrrw  x0,mtvec,x6    # store address as interrupt vector CSR[mtvec] 
 
         mv     x20,x0         # keep track of current output value 
         sw     x20,0(x15)     # put LEDs in known state 
 
main:    csrrw  x0,mie,x10     # enable interrupt 
         j      main           # return to main loop 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# The ISR:  
#  
# Description: This ISR toggle the LSB of x20 and outputs it  
#  
# Tweaked Registers: x20 
#------------------------------------------------------------------------ 
ISR:     xori   x20,x20,1      # toggle current LED value (LSB) 
         sw     x20,0(x15)     # output LED value 
         mret                  # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.6: An example interrupt-driven program.  

 
 

 



FreeRange Computer Design  Chapter 13 

 

 - 341 -  
 

Example 13.3 

Write a RISC-V MCU interrupt-driven assembly language program that blinks a single LED. The 
LED is in the LSB position of the output port with the address 0x1100C004. The LED toggles each 
time the system receives an interrupt; assume the hardware is configured such that an external 
peripheral can generate an interrupt on the RISC-V MCU. The blinking action only occurs if the 
switch in the LSB position is on; otherwise, the LED turns off and does not blink. The port address 
of the switch input is 0x11008000. Keep the ISR as short as possible.  

Solution: The example seems similar to the previous example, but this example has an extra control input that 
partially determines the how the LED operates. Because much of the code in this example is similar to the 
previous example, we’ll only describe the main differences. Figure 13.7 shows the solution to this example along 
with this other fun stuff to note: 

 There are many possible solutions to this example; Figure 13.7 show just one of them, and not 
necessarily the best solution, but certainly a working solution.  

 The main difference with this solution is in the structure of the code. The previous example 
unconditionally blinked the LED when the program received an interrupt. This program now 
blinks the interrupt conditionally based on the value of a switch. Additionally, the program must 
ensure the LED is off if the switch is not actuated. These differences make the program structure 
quite different.  

 There is a polling loops starting on line (25). The interrupts were never masked, so the this polling 
loop checks to see if the switch is on. If the switch is on, the code drops out of the polling loop; 
otherwise the program continues to poll the switch.  

 With the switch activated, the code exits the polling loop and first enables the interrupts on line 
(29). The program checks the status of the flag on line (30), and toggles the LED if the flag is set 
starting with the code on line (32). Note that if program needs toggle the LED, it also needs to 
unmask the interrupt, which the program does on line (35).  

 If the interrupt-received flag is not set, the program checks for to see if the switch is still on lines 
(38-40). This code is a repeat of the polling loop on line (25), but the code on lines (38-40) has an 
if/else structure. If the switch is off, we jump to line (20) to turn off the LED and disable the 
interrupts. If the switch is on, the program branches to check the status of the interrupt-received 
flag on line (30).  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 
(54) 

#------------------------------------------------------------------------ 
# Example Interrupt Driven Program LED Blinking Program.  
#  
# Description: The program blinks an LED only when a given switch is off 
# The LED address port is 0x1100C004; the switch input port address is  
# 0x1100800. If the right-most switch is one, the program toggles the LED  
# each time it receives an interrupt. Assume the hardware is configured  
# such that some external device that the MCU can receive an interrupt  
# signal from device 
#------------------------------------------------------------------------ 
My_Prog:  
init:    li     x15,0x1100C004 # LED port address (output)  
         li     x16,0x11008000 # switch port address (input) 
 
         la     x6,ISR         # load address of ISR into x6 
         csrrw  x0,mtvec,x6    # store address as interrupt vector CSR[mtvec] 
 
         mv     x8,x0          # clear x8; use as flag 
         li     x10,1          # set value in x10 
 
sw_off:  mv     x20,x0         # clear LED 
         csrrw  x0,mie,x0      # disable interrupts 
         sw     x20,0(x15)     # put LEDs in known state 
          
sw_off_loop:        
main:    lw     x25,0(x16)     # input switch data 
         andi   x25,x25,1      # mask lsb 
         beq    x25,x25,main   # branch if switch off 
          
         csrrw  x0,mie,x10     # enable interrupts 
sw_on:   beq    x8,x0,chk_sw   # check for flag 
 
togl:    xori   x20,x20,1      # toggle current LED value 
         sw     x20,0(x15)     # output LED value 
         mv     x8,x0          # clear flag 
         csrrw  x0,mie,x10     # enable interrupts 
          
sw_on_loop:  
chk_sw:  lw     x25,0(x16)     # input switch data 
         andi   x25,x25,1      # mask lsb 
         beq    x25,x25,sw_off # branch if switch off 
  
         j      sw_on          # return to loopville 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# The ISR:  
#  
# Description: This ISR places a non-zero value into x8.  
#  
# Tweaked Registers: x8 
#------------------------------------------------------------------------ 
ISR:     li     x8,1           # set flag to non-zero 
         mret                  # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.7: An example interrupt-driven program.  
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Example 13.4 

Write a RISC-V MCU interrupt-driven assembly language program that blinks a single LED. The 
LED is in the LSB position of the output port with the address 0x1100C004. The LED toggles each 
time the system receives an interrupt; assume the hardware is configured such that an external 
peripheral can generate an interrupt on the RISC-V MCU. The LED can blink at two different 
frequencies based on the state of the switch in the LSB position. If the switch is on, then the LED 
toggles every two received interrupt; otherwise the LED toggles on every received interrupt. The 
port address of the switch in put is 0x11008000. Keep the ISR as short as possible.  

Solution: The example is somewhat similar to the previous examples, but with some slight twists. Once again, 
we’ll only describe the significant differences, particularly the structural differences in the program, because 
there are many similarities with previous solutions. Figure 13.8 shows the solution to this example: here is the 
description of fun stuff contained within:  

 Lines (11-12) include initialization instructions for both the interrupts and other standard items.  

 The code next falls into a one-line polling loop on line (25). When the program breaks out of this 
polling loop, it then increments a counter. Using a counter is a standard was of track on/off event. 
In this program we’re sometimes interested when things happen, and other times, when things 
happen every other time. When something happens and the LSB of the counter is ‘1’, we know 
something has happened every other time. In this program, we always toggle the LED if the 
switch is on; otherwise we toggle the LED if the switch is off and the LSB of the counter is ‘1’. 
Somewhat tricky, but hey, it’s assembly language.  

 After the program increments the interrupt counter on line (26), we input the switch data to 
determine the LED blink frequency, which we do on lines (28-30). Note that is structure is an 
if/else construct. The if part of the construct jumps over the code that toggles the LED to the code 
at the “done” label. The if code essentially jumps over the else code. The else code is the code that 
toggles the LED and resides on lines (35-36). The else code is on lines (32-33).  

 The code at the “done” label does tasks that always need to be done including resetting the flag 
and unmasking the interrupt on line (38-39). The program then transfer control back to the loop 
that polls for the interrupt flag on line (25).  
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(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 

#------------------------------------------------------------------------ 
# Example Interrupt Driven Program LED Blinking Program.  
#  
# Description: The program blinks an LED only when a given switch is off 
# The LED address port is 0x1100C004; the switch input port address is  
# 0x1100800. If the right-most switch is one, the program toggles the LED  
# each time it receives an interrupt. Assume the hardware is configured  
# such that some external device that the MCU can receive an interrupt  
# signal from device 
#------------------------------------------------------------------------ 
My_Prog:  
init:    li     x15,0x1100C004 # LED port address (output)  
         li     x16,0x11008000 # switch port address (input) 
 
         la     x6,ISR         # load address of ISR into x6 
         csrrw  x0,mtvec,x6    # store as interrupt vector CSR[mtvec] 
 
         mv     x8,x0          # clear x8; use as flag 
         mv     x9,x0          # use as interrupt counter 
         li     x10,1          # set value in x10 
 
sw_off:  mv     x20,x0         # clear LED - 344 -ource- 344 -y 
         sw     x20,0(x15)     # put LEDs in known state 
         csrrw  x0,mie,x10     # unmask interrupts 
          
main:    beq    x8,x0,main     # branch if switch off 
         addi   x9,x9,1        # increment interrupt counter 
          
get_sw:  lw     x15,0(x16)     # get switch data 
         andi   x15,x15,1      # mask LSB of counter 
         beq    x15,x0,togl 
 
slow:    andi   x15,x9,1       # mask LSB  
         beq    x15,x15,done   # branch to done if zero 
          
togl:    xori   x20,x20,1      # toggle current LED value 
         sw     x20,0(x15)     # output LED value 
         
done:    mv     x8,x0          # clear flag 
         csrrw  x0,mie,x10     # enable interrupts 
         j     main            # return to loopville 
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
# ISR Description: This ISR places a non-zero value into x8.  
#  
# Tweaked Registers: x8 
#------------------------------------------------------------------------ 
ISR:     li     x8,1           # set flag to non-zero 
         mret                  # return from interrupt 
#----------------------------------------------------------------------- 

Figure 13.8: An example interrupt-driven program.  
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13.6 Chapter Summary 

 

 Interrupts are a signal from the world outside of the MCU connected to a dedicated pin on the MCU.  

 Interrupts provide a method for external hardware to execute a special subroutine typically referred to as the 
interrupt service routine (ISR). Much of the functionality associated with interrupts is the responsibility of 
the underlying hardware. Interrupt driven programs form the basis of embedded systems programming.  

 The interrupt architecture is a term we use to describe all the hardware and hardware-induced operations 
associated with the processing interrupts. The interrupt architecture is one of the first things you should 
examine when dealing with a new MCU or CPU, as interrupt driven programs have many distinct 
advantages over programs that are not interrupt driven.  

 There are three main types of interrupts: 1) internal, 2) external, and, 3) software-based. These types are 
based upon which device and the location of that device in the system.  

 If some device requires service, there are two ways to make this need known to the MCU: 1) polling, or 2) 
interrupt driven. Polling refers to the MCU expending instructions to see if a device requires service. 
Interrupt driven systems allow the particular device to tell the MCU when and if it requires service.  

 The main problem with polling is that it is done under program control, which means it takes time, and can 
effectively prevent your MCU from processing doing any other processing. Polling a device typically 
creates low throughput because the act of asking a device if it needs service wastes time in the case where 
the device does not require service. While polling in itself sounds bad, it is actually only bad if the act of 
polling prevents the MCU from performing a more meaningful task. Often time in MCU-based digital 
design, there are times when there is “nothing” that the MCU needs to do; these times are ideal for polling 
because polling is most often “nothing”.  

 Programmers have several responsibilities when writing interrupt-driven programs. First, they must write an 
Interrupt Service Routine (ISR), which is similar to a subroutine. Second, they must store the interrupt 
vector address (the address of the first instruction in the ISR) in the CSR[mtvec] register. Third, they must 
control the interrupt enable (CSR[mie]), which controls whether the MCU acts on interrupts or not. 
Interrupts must be enabled (unmasked) before the MCU can act on an interrupt, and must also be unmasked 
after the MCU receives an interrupt because the interrupt architecture automatically disables interrupts as 
part of initial interrupt processing.  

 Programmers should strive to keep ISRs as short a possible because we typically process ISRs with the 
interrupts masked. Any time the interrupts are masked, the system could experience a delay because the 
MCU is not able to react to an interrupt. Making and unmaking of interrupts is done under program control, 
though interrupts are masked in hardware after an interrupt is acted on by the MCU.  

 The current RISC-V architecture does not have the capability to nest interrupts, so programmers must be 
careful to not enable interrupts within the ISR if there is any chance of receiving another interrupt.  
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13.7 Chapter Exercises 

 

1) List and briefly describe the three main types of interrupts.  

2) Briefly describe why does the current approach to the RISC-V MCU interrupt architecture somewhat 
limited?  

3) In your own words, describe the notion of polling.  

4) Briefly describe in your own words why is polling usually a bad idea.  

5) Briefly describe in your own words when polling is not a totally bad idea.  

6) Briefly describe what we mean by an interrupt service routine  

7) Briefly describe what is exactly is being interrupted in the context of interrupts.  

8) Briefly describe why it is important to always examine the interrupt architecture for each new MCU you 
work with.  

9) List and briefly describe the two main reasons to use a real-time system to solve your given problem.  

10) List and briefly describe the two forms of initialization require by an interrupt driven program.  

11) Masking interrupts sounds very much like bit masking. Briefly comment if there any meaningful relation.  

12) Briefly describe the two ramifications that automatically disabling interrupts in hardware has for 
programmers.  

13) Briefly describe what we mean by “foreground” and “background” tasks in the context of RISC-V MCU 
assembly language programs.  

14) Briefly explain why the code in an interrupt service routine is considered “higher priority code” compared to 
code that is not part of an interrupt service routine.  

15) Briefly describe why masking interrupts should be one of the first tasks in any assembly language program.  

16) Briefly describe the general use of a “flag” variable or register.  

17) Briefly describe the functional differences (not the RTL) between mret and ret type instructions.  

18) Briefly describe why it is not possible to nest interrupts on the RISC-V OTTER MCU.  

19) Briefly describe whether programmers can call subroutines from ISRs.  

20) Briefly describe whether programmers can call subroutines that call other subroutines from ISRs.  

21) Briefly describe how it would be possible to receive an interrupt while in the interrupt service routine 
knowing that the hardware automatically masks the interrupts upon entry to the ISR.  

22) Briefly describe whether it would possible to act on another interrupt while in the interrupt service routine. 

23) Briefly describe why it is a good idea to keep ISRs are short as possible.  

24) Briefly describe the ramifications of jumping out of an ISR rather than returning from it with an mret 
instruction.  

25) Briefly describe what would happen if you returned from an interrupt using a ret pseudoinstruction rather 
than a mret instruction.  

26) I designed my interrupt service routine such that it called one subroutine. Briefly explain whether I need to 
save the return address register (ra) before I call the subroutine in the ISR.  

27) Briefly describe whether it is possible to nest subroutine calls in an interrupt service routine.  
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13.8 Chapter Programming Problems 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code 

 Provide a banner for all subroutines 

 Keep ISRs are short as possible  

 Assume there are 16 switches (port address = 0x11008000) and 16 LEDs (port address = 0x1100C004).  

 

1) Write a RISC-V OTTER interrupt driven assembly language program that does the following. Assume that 
some external hardware can assert a signal connected to the RISC-V MCU interrupt input. Each time the 
MCU receives an interrupt, the program inputs a value from the switches and outputs that value to the 
LEDs. After receiving ten interrupts, the program stops acting on interrupts until it detects that only the 
right-most button is pressed (active high), at which point, the program continues processing interrupts in the 
ten interrupt sequence. The MCU continues doing this process-wait pattern for an eternity. 

2) Write a RISC-V MCU interrupt-driven assembly language program that outputs a 16-bit binary count to port 
address 0x11003008. Each time the program receives an interrupt, the program outputs advances the count 
value then outputs it. If the switch in the LSB position in on (on=1), then the program adds two to the count; 
otherwise the program adds three to the count before outputting. For this problem, don’t worry about 
overflow in the counter. Don’t perform any I/O in the ISR.  

3) Write a RISC-V MCU interrupt-driven assembly language program that does the following each time it 
receives an interrupt. The interrupt indicates that the program must transfer data starting at the address in 
x20 to the output port address 0x11005500, one byte at a time. The number of bytes of data to output is 
given by the switch data, which forms a binary value that is never greater than 255. Don’t Don’t perform 
any I/O in the ISR. 

4) Write a RISC-V MCU interrupt-driven assembly language program that does the following: it keeps a 
decimal count of the number of interrupts. The count starts at zero; the 1’s, 10’s, and 100’s digits are stored 
in registers, x10,x11,x12, respectively. Each time the count changes, the three values are output to port 
address 0x11009990, 0x11009991, and 0x11009992, respectively. The count should roll over from 9999 to 
000. Don’t Don’t perform any I/O in the ISR.  

5) Repeat the previous problem with the following modifications. When the program will increment or 
decrement depending upon the value input from port address 0x110000F0; it the input value is zero, the 
count increment; otherwise it decrements. Don’t allow the count value to exceed 999 of go below 000, 
meaning with it hits those values, the count does not increment for 999 and does not decrement for 000.  

6) Write a RISC-V MCU interrupt-driven assembly language program that does the following: each time it 
receives an interrupt, it reads a unsigned byte from port address 0x11002200. This value can be in the range 
[0,32], and is used to light the same number of LEDs in a stoneage unary type manner (light LEDs starting 
from right and filling to the left). The value is output to the LED port address of 0x1100C000. Don’t Don’t 
perform any I/O in the ISR. This is an example of a digital level meter.  
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14 Important Supporting Topics 
 

14.1 Introduction 

There are a few topics regarding the programming side of the RISC-V MCU that didn’t fit into other chapters. 
These topics are important so we group them all into this chapter before we go onto other amazing stuff.  

 

Main Chapter Topics 

 MEMORY SEGMENTATION: This chapter provides a description of the RISC-V 
MCU’s segmented memory model including an overview of the utilized segments.  

 RISC-V MCU ASSEMBLERS: This chapter provides an overview of the currently 
available RISC-V assemblers and the basic functionality such as assembler 
directives.  

 PROGRAMMING EFFICIENCY ISSUES: This chapter provides an overview of 
concepts and terminology dealing with programming efficiency in the context of 
standard programming constructs.  

 

Why This Chapter is Important 

This chapter is important because it describes many important support topics associated 
with programming the RISC-V MCU.  

 

14.2 Memory Segmentation 

The RISC-V MCU has one memory, which we commonly refer to as main memory. This memory provides 
storage for both the program and data. We further divide the data portion of memory into special areas for 
particular uses such as the stack. We typically refer to the various areas of memory by the notion of “segments”. 
Segmenting memory is a common term when working with MCUs, which is why the memory map associated 
with the MCU is so important. Figure 14.1 once again shows the memory map for the RISC-V MCU, which 
clearly shows the various segments in main memory.  

Keep in mind that the notion of segmenting memory is an approach to help humans better understand and work 
with system resources. In the end, it’s all just memory; but particular portions of that memory serve different 
purposes so we give those portions special names associated with the word “segment”. The astute programmer 
can change many but not necessarily all of the segment boundaries and addresses because they are most likely 
arbitrary. Figure 14.1 essentially represents a set of starting guidelines. Keep in mind that physical memory on 
the RISC-V Otter consists of bytes in the range [0x00000000,0x0000FFFF].  
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Figure 14.1: The RISC-V MCU memory map. 

14.2.1 Memory Address Space 

The term memory address space is a common term in computerland. As you can probably see by now, the notion 
of memory in a computer system is very important, as even simple computers base their operation on accessing 
different types of memory in the system. This being the case, the instructions in the computer’s instruction set 
have a heavy focus on “addressing” in order to efficiently work with that memory. The result of this is that we 
need to become familiar with exactly how much memory the computer can access.  

The notion of accessing memory can be misleading. People who design generic computers must deal with a 
trade-off regarding the overall physical size of the computer and the basic functionality of the computer. This 
notion becomes obvious with the notion of memory accessing. Every computer has a maximum amount of 
memory it can directly address; the value is based on the width of the bundle that the system uses to address 
memory. We refer to the amount of memory a CPU can address as the memory address space, which is based on 
the physical size (data width) of the address lines. The trade-off computer designers must deal with is that the 
wider the larger the address space, the larger the computer is going to be. The problem is that some applications 
won’t need all that memory space. The best example of this is with the RISC-V Otter MCU. The address space is 
32 bits, but the current OTTER implementation only uses 16-bits of that. While we could redesign the RISC-V 
hardware to limit the address space to 16 bits, this would require extra time and effort, and it may not be what we 
want somewhere down the line.  

The point here is that the address lines in the RISC-V can sometime address physical memory and sometimes it 
addresses “other things” such as input and output ports. The physical memory in the RISC-V Otter MCU is 
[0x00000000,0x0000FFFF]. Note that the amount of memory is constant, but the address of the memory, or the 
placement of this memory in the memory map of Figure 14.1 is arbitrary; we placed it starting at address zero for 
convenience. In the same way, most of the memory map is arbitrary; but someone needs to map this stuff out. If 
you’re simply a programmer, someone needs to provide these details for you; but if you’re the system designer, 
you’ll need to provide these details for the people working on and/or programming your system.  

14.2.2 Code Segment 

As the name implies, the RISC-V MCU uses the code segment to store programs. That being the case, we often 
refer to the code segment part of memory as program memory. Typical MCU lingo uses different and often 
confusing names for the code segment, and the RISC-V MCU is no different. The RISC-V MCU often refers to 
the code segment as the “text segment” for some unknown reason.  

When you write an assembly language program, the assembler translates your assembly code into machine code 
and stores it in the designated code segment portion of memory. Programmers should always specify that their 
code goes into the code segment using the “.text” assembler directive, which we’ll discuss in the next section. 
We’ve used this quite often in our programming examples up to now; it becomes more important when we 
discuss look-up-tables in another chapter. The assembler actually assumes your instructions go into the code 
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segment if your program does not specify a data segment (we cover data segments in the following section), but 
you should always use the .text assembler directive in order to provide clarity for humans reading your code.  

14.2.3 Data Segment 

The data segment is where the RISC-V MCU stores intermediate data. The notion here is that the RISC-V only 
has 32 general-purpose registers, which is simply not enough data storage for many applications. The solution is 
to store intermediate values in main memory to free up registers to use in general data crunching. Additionally, 
the designers of the RISC-V created instructions that easily and efficiently access data memory for look-up-
tables.  

We’ve previously dealt with this topic when discussing load and store instructions and various issues regarding 
the stack. Both the stack segment and the data segment represent area for generic data storage, but they differ by 
how they are accessed. In general, programmers access the data segment using load and store instructions, but do 
so in two different ways. The two ways differ in how the program provides the physical address. For generic data 
access, the physical address can be anything; for stack operations, program stores the main part (base address) of 
the address in a register we refer to as the stack pointer. Generic data memory accesses specify the memory 
address of interest using an address specified in the associated load and store instruction, while access to the 
stack uses a reference to the stack pointer to access data.  

Not all programs need to specify a data segment. We generally only specify a data segment when we need to 
reserve specific places for memory, such as a look-up-table. Data accesses such as stack operations rely on the 
notion of stack pointer stored in a register. Other data operations access area of memory that fall into two 
categories: memory with pre-initialized values and memory that is simply reserved but not initialized. In cases 
where our programs need special access to memory (reserved memory) or pre-initialized memory (look-up-
tables), we need to explicitly specify a data segment, which we do with a “.data” assembler directive, a topic we 
cover in the next section with a greater amount of detail.   

14.2.4 Stack  

The stack segment is another area of data memory. Because the access to the stack segment is conceptually 
different from access to the data segment, we consider the stack and code segment to be separate independent 
areas of main memory. We extensively described stack operations in a previous section, so we’ll not describe it 
again here. There are a few items to keep in mind regarding the stack segment.  

 There is no assembler directive specifying the stack as there was for the data segment.  

 We don’t need to use an assembler directive to specify memory dedicated to the stack; we just 
know the location of the top of the stack and know that the stack grows in the negative direction 
regarding memory addressing.  

 There is no magic uncrossable boundary between any parts of main memory including the data 
and stack segment. It is once again up to the programmer to write code that respects these 
boundaries, as it would be easy for stack operations to corrupt the data segment and data access to 
corrupt the stack segment with stack overflow/underflow.  

14.2.5 Memory Mapped I/O Segment 

The memory mapped I/O segment is not actually a physical segment in the RISC-V MCU as were the code, data, 
and stack segments. We include the memory mapped I/O in the memory map because it provides useful 
information to programmers regarding I/O operations. What programmers need to know is that the underlying 
hardware considers a memory access instruction to be an I/O instruction based on the value of the memory 
address specified by the load or store instruction.  

As the memory map in Figure 14.1 indicates, the hardware interprets all memory accesses with addresses above 
a certain value (as specified in Figure 14.1) as I/O. The underlying hardware handles all the required details, so 
programmers don’t need to worry too much about this. Recall that the person who designed/configured the 
hardware must inform potential programmers of the “memory address” associated with I/O. The memory 
mapped I/O segment does not require any special assembler directives because memory mapped I/O is based in 
the associated hardware configuration.  
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14.3 The RISC-V Assemblers 

As of this writing, where are three RISC-V assemblers that you can use to assemble your programs. They each 
have their pro & cons, which we list in Table 14.1. Note that all assemblers are available at no cost.  

Assembler 
Brief  
Description Pros Cons 

Venus Web-based  very simple 
 includes graphical-based 

simulator/debugger  
 includes error message 

reporting 

 does not recognize interrupt-
based instructions 

 does not simulate interrupts 
 fixed data segment address 

RARS Downloadable 
Java-based 

 simple 
 includes graphical-based 

simulator/debugger 
 better error message reporting 

 fixed data segment address 
 does not simulate interrupts 

gcc gcc-based  very complete 
 very versatile 
 various debuggers available 

 requires Unix-based 
environment 

 steeper learning curve 

Table 14.1: Description of various RISC-V assemblers. 

All three assemblers have the ability to act as simulators/debuggers. Not only can the assembler assemble your 
programs (convert your programs to machine code), they also allow you to debug/simulate your code. This 
means that you can step through your code one instruction at a time and watch the various RISC-V memory 
elements change including register, memory, and program counter. The act of stepping through your assembly 
code line-by-line in this manner and watch the changes occur in the various RISC-V MCU memory elements 
makes the software a simulator. When your code does something incorrectly, you can fix your code, thus making 
the software a debugger.  

For the current form of this course, we’ll be using both the Venus and RARS assemblers. The gcc assembler and 
associated development tools are by far the best tools available. The problem with gcc-based tools are that they 
require a Unix-based environment, which has a steeper learning curve based on the notion that most people 
taking this course have little experience working in a Unix-based environment. We intend to switch to the gcc 
assembler in future offerings of the course, which will happen once we make the switch to presenting this course 
using a complete Unix-based environment. Your particular instructor may have you work with gcc, but most 
instructors do not.  

14.3.1 Assembler Directives 

Recall that assembler directives are messages from the human programmer to the assembler. In general, the use 
of assembler directives in your program allows you some level of control as to how the assembler handles your 
program. The RISC-V assembler has many available directives in order to provide the programmer with more 
versatility in overall program design. We only cover the more commonly used directives in this section, as some 
of the directives as typically associated with advanced assembly language topics and large programs.  

We can classify the directives as being one of two types: required by the program, or, 2) helpful to make your 
programs more readable to humans. Table 14.2 show the list of directives we’ll use in the program presented in 
this text; the following sections show usage information for these directives. As you’ll see in the following code 
examples, all directives begin with a period and we place them in the left-most column of text in your source 
code.  
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Directive Short Description Comment 

.text Indicates following information is in text segment 
Required if using .data 
directive 

.data Indicates following information is in data segment 
Required if initializing or 
reserving data 

.space Allocates a given number of bytes of memory (data segment) Not required 

.byte Allocates and assigns 1 byte of memory (data segment) Required if initializing data 

.half Allocates and assigns 2 bytes of memory (data segment) Required if initializing data 

.word Allocates and assigns 4 bytes of memory (data segment) Required if initializing data 

.equ Substitutes a label for a value 
Not required, but potentially 
helpful 

Table 14.2: The short list of RISC-V assembler directives. 

14.3.1.1 Instruction-Related Directives 

Table 14.3 shows a summary of the two code-related directives. Probably the best way to present these two 
directives is with simple programs. Up to this point, the code we’ve written looked like the code in Figure 14.2. 
While is this code is OK, we prefer to use the code in Figure 14.3, which is 100% equivalent, though it does 
appear different.  

Directive Usage Comments 

.text .text Takes no arguments; only instructions can follow directive 

.equ .equ   lab,new_lab Takes two comma-separated arguments, assembler replaces 
all instances of lab with new_lab 

Table 14.3: The summary of code-type directives. 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 

#---------------------------------------------------------------- 
init:      li     x10,0x11008000   # switch input port address 
           li     x11,0x1100C000   # LED output port address 
 
main:       
in_data:   lw     x20,0(x10)       # input switch data 
out_data:  sw     x20,0(x11)       # write data to LEDS 
           j      main             # rinse, repeat 
#---------------------------------------------------------------- 

Figure 14.2: A simple example problem.  

There are several advantages to writing the program using the style in Figure 14.3. Here is the happy bulleted list 
of those advantages.  

 We use the .equ directive on lines (01-02) to specify the input and output port address. These 
values are essentially constants, which is why we specify them using all capital letters. This is a 
common programming practice that all good programmers follow, so you should too.  

 We put all the .equ directive in one area of the program and delineate nicely with the long dashed 
commenting style. You can spread these directives throughout your program is you choose, but 
that is really bad programming practice.  

 Using the .equ directives is good for a few reasons. First, it makes the code somewhat self-
commenting. Second, if makes the program more generic. The I/O addresses are generally fixed 
for a given hardware platform, but if they change, we want to have the changes in one spot only, 
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which allows us to only change the directive rather than values that may be spread through the 
program.  

 The code also uses a .text directive. The program does not require this directive because the 
program is not defining a data segment, but we include it in order to provide more information to 
the human reader of the code.  

 Although the .equ and .text directives increase the file size of your source code, they do not 
increase the size of program memory. And because they make the program more readable to 
humans, you should strive to use these.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

#---------------------------------------------------------------- 
.equ      SWITCHES,0x11008000      # port address of switches 
.equ      LEDS,0x1100C000          # port address of LEDs 
#---------------------------------------------------------------- 
 
.text                              # specify code segment 
 
init:      li     x10,SWITCHES     # switch input port address 
           li     x11,LEDS         # LED output port address 
 
main:       
in_data:   lw     x20,0(x10)       # input switch data 
out_data:  sw     x20,0(x11)       # write data to LEDs 
           j      main             # rinse, repeat 
#---------------------------------------------------------------- 

Figure 14.3: An clearer alternative to the simple example problem.  

NOTE: for some unknown reason, the RARS assembler uses “.eqv” instead of “.equ” for that directive.  

14.3.1.2 Data-Type Directives  

We use data-type directives exclusively in the data segment. We use the .data directive to signify all that 
follows that directive is associated with the data segment. We use the data segment for intermediate storage of 
data and we typically want control of exactly how much data we are using and where in the data segment we are 
placing that data. Table 14.4 shows the list of data-type directives and an example of their usage. As with the 
code-type directives, the usage makes more sense when you see them in actual code. What is missing from Table 
14.4 and the Venus and RARS assemblers in general is a directive to control where the assembler places the data 
in the data segment. This means we need to have various work-arounds to ascertain where exactly the data 
resides.  

The .space directive allow programmers to ‘”reserve” a specified number of “uninitialized” bytes of data. The 
other three directives allow programmers to both reserve and initialize that data in three different sizes: bytes, 
halfwords, and words, using the .byte, .half, and .word directives. Note: for some unknown reason, the Venus 
assembler does not recognize the .half directive.  
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Directive Usage Comments 

.data .data no arguments; only data-type directives can follow directive 

.space .space    10 Reserve space for 10 bytes (uninitialized)  

.byte .byte   4,-1,0xFA Defines and initializes the list of data in 1 byte format 

.half .half   0xFF00,0xFa,-5 Defines and initializes the list of data in 2 byte format 

.word .word   0xFA780001,-1 Defines and initializes the list of data in 4 byte format 

Table 14.4: The summary of code-type directives. 

Figure 14.4 shows an example using the .data and .text directives. Recall that using the .text directive is optional 
when the program does not need to specify a data segment. Here is the useful information regarding the code 
fragment in Figure 14.4:  

 By convention, we list the data segment at the top of the program and before the code segment. 
We can break up the data and code segment as long as we correctly identify them using the .data 
and .text directives, but that is not good programming practice. We use delineation comments to 
clearly show the different segments.  

 We reserve 20 bytes of “space” in memory using the .space directive on line (02). We don’t 
initialize the data in this area. The .space directive specifically reserves the number of bytes 
specified by the argument to the directive, but programmers can use data in this area to store byte, 
halfwords, or words of data.  

 The .space directive on line (02) is not in the first column because we prefaced it with a label. 
The number associated with the “empty” label is thus the address of the first byte of 20 bytes of 
storage. We don’t at this point know where the assembler places that data in memory, but we’ll 
figure that out later and be able to work with the data at this location.  

 We specify three bytes using the .byte directive on line (04). We use the “my_bytes” label so we 
can later access the location of the first byte of the three bytes of data. This data is initialized to the 
provided comma-separated values. The assembler stores negative values in an 8-bit 2’s 
complement format.  

 We specify three halfwords using the .half directive on line (05). We use the “my_halfs” label to 
locate the data for future reference of all data specified by this directive. The assembler initializes 
the memory associated with the provided comma-separated values. The assembler stores negative 
values in a 16-bit 2’s complement format.  

 We specify four words using the .word directive on line (06). The “my_words” label locates the 
data for future reference. The assembler initializes the memory associated with the provided 
comma-separated values. The assembler stores negative values in a 32-bit 2’s complement format.  

 Because this program uses a data segment, we must explicitly specify a code segment using 
the .text directive on line (10). Only instructions and directive can follow the .text directive.  

 We use the la pseudoinstruction on line (12) to retrieve the address of the data starting at the 
“empty” label. We then can store data at that address; we store a byte of data at that address using 
the sb instruction online (14). The byte that we store is 0xB7, which is the data we loaded into x11 
on line (13). We could have also stored halfwords or words in this memory location.  

 We get the first byte in memory starting at the data associated with the “my_bytes” label using the 
lbu instruction on line (17). Note that we use “4” in the address offset for the lbu instruction, 
which points the address to the third halfword. We load the value “34” into x11.  
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 We get the third halfword in memory using the lbu instruction on line (20). Note that we use “4” 
in the address offset for the lbu instruction, which points the address to the third halfword. We 
load the value “0xFFE9” into x11. 

 We get the fourth word in memory using the lw instruction on line (23). In this case, we use an 
address offset of “12” to point at the fourth word specified at this location. We load the value 
“0x00002355” into x11. 

 We still have the address of the word data in x10, so we use that address to clear the first word at 
that address using the sw instruction on line (25).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 

#------------------------------------------------------------------- 
.data                              # data segment  
empty:    .space   20  
 
my_bytes:  .byte    34,-1,0xFA 
my_halfs:  .half    -4,0x4FAD,-0x23 
my_words:  .word    0x1100C000, -2, 0x34F, 9045 
#------------------------------------------------------------------- 
 
#------------------------------------------------------------------- 
.text                                    # code segment 
 
main:    la     x10,empty          # load address of empty 
         li     x11,0xB7           # place value in x11 
         sb     x11,0(x10)         # store value in memory 
          
get_b:   la     x10,my_bytes       # load address of my_bytes 
         lbu    x11,0(x10)         # get data from memory 
          
get_h:   la     x10,my_halfs       # load address of my_halfs 
         lhu    x11,4(x10)         # get third half from address 
                
get_w:   la     x10,my_words       # load data of my_words 
         lw     x11,12(x10)        # get fourth word from address 
 
stor_w:  sw     x0,0(x10)          # clear data at addr my_words 
          
         j      main               # repeat pointless program 
#------------------------------------------------------------------- 

Figure 14.4: A program using code and data-type directives.  
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Example 14.1: Address of Data 

Answer the following questions using the code fragment that follows. For this problem, assume the 
value of my_words is 0x50.   

a) Value of my_bytes d) Address of 6 g) Value in x11 

b) Value of my_halfs e) Address of -24 h) Value in x12 

c) Value of my_extra f) Address of  89 i) Value in x13 
 

.data    # data segment directive 
my_words:   .word  4,5,6,7,9 
my_bytes:   .byte  0x23,-24,46,-33 
my_halfs:   .half  88,99,456  
my_extra:   .word  988, 89 
 
.text                        # text segment directive 
        la    x11,my_bytes 
        la    x12,my_halfs 
        la    x13,my_extra 

stop:   j     stop   
 

Solution: This is a classic problem type, which has somewhat of an issue. What this problem requires you to do 
in order to solve it is count in 1’s, 2’s, or 4’s based on the whether you’re counting byte, halfword, or word data 
respectively. The issue with this is that it is tedious and error prone. The reason it is error prone that you never 
need to do it in real life; you instead allow the assembler to handle the details.  

The first thing to note in this problem that there are four labels associated with 12 pieces of data. There is 
nothing preventing programmers from using a unique label for each piece of data; doing so would not make the 
program any less space efficient (meaning it would require the same amount of data memory). Generally, you 
group data on the same line if you have some easier way to access the data on that line, which is the case for 
look-up tables, which we discuss later in this chapter. The other issue is that when we’re programming and 
require data from the data segment, we generally don’t know the actual address of that data, we only know how 
to easily access that data. Being able to access data is almost always more important than knowing exactly where 
that data lives.  

a) my_bytes is five words past the my_words label the precedes it. We only know the value of the 
my_words label (from the program description), so we work from there. The value of my_words is 
0x50; the value of my_bytes is 5 (number of words on my_words line) * 4 (size of a word) greater than 
my_words, which is 0x64 (0x50 + 0x14).  

b) The value of my_halfs is four bytes of space beyond my_bytes, which is 0x64 + 0x4, or 0x68.  

c) The value of my_extra is three halfwords of space beyond my_halfs, which is 0x68 + 0x6, or 
0x6E.  

d) The address of 6 is two words greater (because it’s the third value on the word list) than the value of 
my_words, which is 0x58. 

e) The address of -24 is one byte greater (because it’s the second on the byte list) than the value of 
my_bytes, which is 0x65. 

f) The address of 89 is one word greater (because it’s the second on the word list) than the value of 
my_extra, which is 0x72. 

g) The code loads the value associated with my_bytes into x11, so x11 contains 0x64.  

h) The code loads the value associated with my_halfs into x12, so x12 contains 0x68.  

i) The code loads the value associated with my_extra into x13, so x13 contains 0x6E.  
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Example 14.2 

Write a RISC-V assembly language program that counts the number of set bits in a range of words 
in memory. The starting point of the range and the quantity of numbers in the range are passed to 
the subroutine x8 & x10 respectively. The result is passed back to the calling routine in x25.  

Solution: This solution is somewhat special because we include some test code for the solution. Anytime you 
write code, you should do your very best to test it before you “show it to anyone”, which mostly means before 
you submit it as part of an assignment. This example accesses memory, which means you have to be able to set 
values in memory to test the code, a task that is not always easy based on the assembler you’re working with. 
We’ll describe the problem in more detail once we’re done describing the solution.  

First thing we need to do in all problems like this is to devise the steps that will lead us to the glory of a solution. 
There are two tasks in the problem: 1) grab words from memory, and 2) count the number of bits that are set in 
that word. The number of words to grab from memory is given, which could be zero, so we’ll control that with a 
while loop. The number of bits set in the word from memory can also be zero, so we’ll put that in a while loop 
also. This problem thus has two loops, one is on the interior of the other loop, which is a common situation we 
run into in all programming. Thus, the outer loop is the “get words from memory” and the inner loop is “count 
the number of bits in a word”. Check for that in the code below. Figure 14.5 shows the solution for this example 
including the test code, and lots of other stuff to check for.  

 The subroutine has a header describing what the subroutine does, what values are sent to and 
returned from the subroutine, what registers the subroutine changes. Always do this.  

 We clear the accumulator, which is our return value on line (22).  

 The outer while loop starts on (24), where we check the count variable and exit the loop if it is 
zero.  

 We then load a word of data from memory on line (25); x20 now has the data we want to count the 
bits in.  

 The inner while loop starts on line (27) where we count the data, which we do by masking the 
LSB on line (28), and adding the result of the making operation to the accumulator on line (29).  

 The inner loop admin is on line (30) which is to shift the value loaded from memory to the right 
one bit position, and then jump to “in_loop” to repeat the inner loop. If the value is zero, we’re 
done. Recall that the shift right operation inserts a ‘0’ into the left-most bit position when it does a 
right shift.  

 The outer loop administration starts on line (33), where we first decrement the counter, then 
advance the address pointer on line (34), before jumping to another iteration of the outer loop on 
line (35).  

 The test code is on lines (13-18). The problem is that RISC-V assemblers to funny things with 
declared data, meaning the programmer has little control were the assembler places the data 
segment. To work around this peculiarity, we provide the data with a label on line (14); “junk” 
may not be the best label ever, but it works. We then use the la pseudoinstruction on line (18) to 
load the number associated with “junk” into x8, which effectively put the address of the first piece 
of data into x8. The code on line (17) places a 2 in x10, which is the quantity of data in the test 
code. The subroutine is now ready to test.  

 Recall that if we don’t include a data segment, anything you write in the program defaults to the 
text segment. If our program needs to declare data, we must do so in the data segment, which we 
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do on line (13). Once we do this, everything we write is in the data segment until we declare a text 
segment, which we do on line (16).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 

#-------------------------------------------------------------------------- 
# Subroutine: Count_bits:  
# 
# This subroutine counts the number of set bits in a range of words in  
# memory passed to the subroutine in x10 an starting at address passed to  
# the subroutine in x8. The result is passed back to the calling code in  
# x25.  
#  
# Passed values: x8 & x10 
# Returned values: x25 
# Tweaked Registers: x8,x10,x20,x21 
#------------------------------------------------------------------------- 
# ---- test code --------------------------------------- 
.data 
junk:    .word   0xF,0x3            # assign some data 
 
.text 
            li         x10,2        # assign a count 
            la         x8,junk      # assign an address 
# ---- test code --------------------------------------- 
 
Count_bits:  
init:        mv   x25,x0            # clear counter 
 
out_loop:    beq   x10,x0,done      # check loop count 
             lw    x20,0(x8)        # get data 
 
in_loop:     beq   x20,x0,admin     # exit inner loop 
             andi  x21,x20,1        # mask LSB of data 
             add   x25,x25,x21      # add LSB to counter 
             srli  x20,x20,1        # shift right one position 
             j     in_loop          # do it again 
             
admin:       addi  x10,x10,-1       # decrement loop count 
             addi  x8,x8,4          # increment address pointer 
             j     out_loop         # do it again 
 
done:        ret                    # take it home jimmie 

Figure 14.5: A solution for this example.  

 

14.4 Programming Efficiency Issues 

Out there in computerland, there are always many different approaches to performing the same task. This is also 
true for assembly language programming. Although there are many different ways to do the same thing and 
obtain the same result, there are generally underlying differences in the code that affect how the code executes. 
This section describes a few of the more obvious issues, which we group into the notion of “programming 
efficiency”.  

The term “programming efficiency” certainly sounds good. Suppose you tell your boss that the code you wrote is 
very efficient. If your boss is actually not just sitting there taking up space, she will ask you, “What makes your 
code efficient?”. The issue here is that there are different forms of efficiency. The two forms we discuss in this 
section are run-time efficiency and program memory space efficiency, which are generally the two most 
important issues in assembly language programming.  

I always think of the example of knowing an algorithm that I can use to save the world. Sounds good, right? 
What if the algorithm requires too much program memory space to actually implement? What if you could 
implement the algorithm in a reasonable amount of code space, but it takes 5000 years to run the code? In these 
cases, your algorithm is useless, no matter how good it sounds. Conversely, if I had a program that ran “pretty 
fast” but required a bajillionquadrillion lines of code (thus too much memory to actually store somewhere), the 
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algorithm would be equally as useless. While these are extreme examples, they nicely describe issues that good 
programmers face make every time they write code.  

14.4.1 Iterative Construct Overhead 

The underlying problem with iterative constructs is that they have associated “overhead”, which we refer to as 
loop overhead. This means that loop constructs contain instructions that don’t do anything useful other than 
maintain the iterative operational integrity of the construct. The instructions we refer to are the loop 
administration instructions (such as incrementing loop counts) and program flow instructions associated with the 
loop. This creates a well-known trade-off in coding: fast code vs. less code.  

The idea behind fast code is that the code gets the task done faster; the idea behind less code is that the code 
itself takes up less space in the program memory. These two issues are always of great concern when writing 
programs, particularly in environments such as embedded systems, which are generally resource constrained. 
While we all want our programs to run super-fast, we can’t always do that if we’re writing code for an 
environment that has limited program memory. The best way to see this is in an example.  

 

Example 14.3: Byte-Based Parity Generation 

Write a RISC-V assembly language subroutine that calculates the parity of a byte in register 
x20. If x20 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’ 

Solution: There are a few ways to calculate parity using firmware; the approach in this problem the notion of 
counting the individual bits by masking, accumulating, and shifting. We won’t go over the programming details 
in this solution as we are more interested in the runtime and space efficiencies of the solutions.  

Figure 14.6 and Figure 14.7 show two subroutines that solve the given program; these solutions are functionally 
equivalent but perform the task in different ways. The code in Figure 14.7 uses an iterative construct while the 
code in Figure 14.6 doesn’t use an iterative construct. The solution Figure 14.7 obviously has fewer instructions, 
but it must execute more instructions to arrive at the answer compared to Figure 14.6.  

Your first look at these subroutines shows that there are fewer instructions for the code that uses an iterative 
construct (10 instructions vs. 27 instructions). This means that the code for the iterative construct requires less 
space in program memory. The execution of these programs tells another store. While the non-iterative 
subroutine requires 27 instructions to complete, the iterative subroutine requires 46 instructions. Thus, the 
subroutine with less about 1/3 less instructions requires almost twice as much time to execute.   

The moral of the store is that the non-iterative version of the subroutines requires about twice as much program 
memory space, but runs twice as fast as the iterative version. This trade-off is something you always need to 
think about while programming in assembly language. The most easily applied issue associated with this is that 
you should never use an iterative construct that you know will iterate less than three times1. Keep in mind that 
this is only a suggestion, and you should always have your brain engaged when programming. For example, if 
you had to iterate twice, don’t use a loop. However, if the code associated with the task you need to do twice 
requires 100 instructions, use a loop construct2. One thing to consider here is that it is generally a good ideas to 
keep your iterative constructs as “single purpose” as possible.  

                                                           
1 If you need to do a lot of work in your iterative construct, iteration counts of two are acceptable as it does save program 
memory space.  
2 Obviously, it’s really hard to make a black/white rule on this. Using your brain is always a better option than looking for 
rules to follow.  



FreeRange Computer Design  Chapter 14 

 

 - 360 -  
 

Subroutine 
Number of 
instructions 

Number of executed 
instructions 

Get_par1 27 27 

Get_par2 10 46 

Table 14.5: A summary of efficiency statistics for both subroutines. 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 

#-------------------------------------------------------------------------- 
# Subroutine: Get_par1  
# 
# This subroutine determines the parity of the byte in x20. Parity 
# is returned in x20 where 1 and 0 equal odd and even parity, respectively.  
# The byte question is in the lower 8-bits of x20.  
#  
# Passed values: x20 
# 
# Tweaked registers: x20,x10,x11 
#--------------------------------------------------------------------------- 
Get_par1:      
init:        mv     x10,x0        # clear accumulator 
        
one:         andi   x11,x20,1     # mask LSB 
             add    x10,x10,x11   # accumulate bit 
             srli   x20,x20,1     # shift value 
two:         andi   x11,x20,1     # do 7 more times  
             add    x10,x10,x11 
             srli   x20,x20,1 
thr:         andi   x11,x20,1     # 3 
             add    x10,x10,x11 
             srli   x20,x20,1 
for:         andi   x11,x20,1     # 4 
             add    x10,x10,x11 
             srli   x20,x20,1 
fiv:         andi   x11,x20,1     # 5 
             add    x10,x10,x11 
             srli   x20,x20,1 
six:         andi   x11,x20,1     # 6 
             add    x10,x10,x11 
             srli   x20,x20,1 
sev:         andi   x11,x20,1     # 7 
             add    x10,x10,x11 
             srli   x20,x20,1 
eig:         andi   x11,x20,1     # 8 
             add    x10,x10,x11 
 
done:        andi   x10,x10,1     # mask LSB 
             mv     x20,x10       # transfer to x20 
             ret                  # bring it on home 
#------------------------------------------------------------------------ 

Figure 14.6: A runtime efficient solution to this example. 
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 

#-------------------------------------------------------------------------- 
# Subroutine: Get_par2  
# 
# This subroutine determines the parity of the byte in x20. Parity 
# is returned in x20 where 1 and 0 equal odd and even parity, respectively.  
# The byte question is in the lower 8-bits of x20.  
#  
# Passed values: x20 
# 
# Tweaked registers: x20,x10,x8 
#--------------------------------------------------------------------------- 
Get_par2:      
init:        mv     x10,x0        # clear accumulator 
             li     x8,8          # load iterative count 
 
loop:        andi   x20,x10,1     # mask LSB 
             add    x10,x10,x20   # accumulate 
 
admin:       srli   x10,x10,1     # shift right one bit 
             addi   x8,x8,-1      # decrement loop count 
             j      loop          # rinse, repeat 
 
done:        andi   x10,x10,1     # mask LSB 
             mv     x20,x10       # transfer to x20 
             ret                  # bring it on home 
%------------------------------------------------------------------------ 

Figure 14.7: A codespace efficient solution to this example.  

 

14.4.2 Subroutine Overhead Issues 

We consider subroutines to have “overhead”, which means there are instructions associated with subroutines that 
we consider as doing “nothing useful”. In this case, the call and ret instructions essentially do nothing except 
handle the administrative tasks of the program flow control associated with calling and returning from 
subroutines. This means that anytime you call a subroutine, there are at two instructions worth of “doing nothing 
useful”. But wait, it gets worse. There are potentially two other forms of overheads associated with subroutines.  

1) Subroutines typically save the operating context upon entering the subroutine, which generally 
comprises of pushing registers onto the stack. Additionally, once you push registers on the stack, you 
then need to pop them off the stack. Both pushing and popping operations are essentially instructions 
that don’t do anything useful but take time to execute in the process.  

2) If you’re particular subroutine calls another subroutine, you need to push the return address onto the 
stack before the nested subroutine call and then pop it off afterwards. Yet more instructions that don’t 
do anything.  

The issue of subroutine overhead is always something programmers need to consider. While we typically push 
programmers to write modular code, if your subroutines have a lot of overhead and don’t do that much “work”, 
your modular code won’t have runtime efficiency3. There’s an art to writing good subroutines that are part of a 
carefully architected program. We mention few items at the end of this chapter, but it primarily something that 
comes with experience and a lot of conscientious coding. Here is a somewhat meaningful example.  

Figure 14.8 and Figure 14.9 show two code fragments that perform the exact same task. The code in Figure 14.8 
adds a number to a register four times. The code in Figure 14.9 performs the same task, but does so by using a 
subroutine call. Yes, this is an overly simplified example, but it proves the point.  

The code in Figure 14.8 performs the given task in using four instructions. The code in Figure 14.9 performs the 
same task, but requires a total of 12 instructions, thus requiring three times as much time to perform the same 
task. The difference in running times of these code fragments has to do with the subroutine call/return overhead. 
Specifically, each add operation has an associated call and ret instruction. These are the instructions that 
don’t do anything except perform administrative issues for the subroutine. Additionally, the code in Figure 14.8 

                                                           
3 This is a nerdy way of saying your program will be relatively slow.  
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requires less program memory space; it requires four instructions compared to the six instructions of Figure 14.9. 
The moral of the story is that you should strive to prevent the structure of your program from adding extra 
running time to your programs.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
           addi     x8,x8,0x4             # add some value 
           addi     x8,x8,0x4             # etc. 
           addi     x8,x8,0x4             #  
           addi     x8,x8,0x4             #  
                                        ;  
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 14.8: Program fragment of some meaningless task. 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
            call   Add_four       # do something   
            call   Add_four        
            call   Add_four        
            ca;;   Add_four        
                                        ;  
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
#------------------------------------------------------------------------ 
#- Subroutine: Add_four –  
#   
#  Near meaningless subroutine, but serving as an excellent example. 
#-  
# Passed value: x8 
# 
# Tweaked  registers:  x8 
#------------------------------------------------------------------------- 
Add_four:      
             addi    x8,x8,0x4     # change x8 
             ret                   # bring it on home 
;------------------------------------------------------------------------ 

Figure 14.9: A functionally equivalent fragment. 

 

Example 14.4 

What percentage of the code in Figure 14.10 would we classy as overhead?  

Solution: This code is the declared bad code from a previous solution, but we’ll continue working with it. Here’s 
the big summary:  

 The code has a total of 16 instructions. We’ll call it 17 instructions because we’ll in the call 
instruction from the calling code.  

 The four instructions on lines (09-12) represent saving the current context; these instructions do 
nothing useful because we have to undo them later.  

 The four instructions on lines (24-27) restore the context after the body of the subroutine executes. 
These instructions undo the context saving, so they do nothing useful either.  

 The subroutine also has a ret instruction that does nothing useful.  

In the end10 out of the subroutine’s 17 instructions (approximately 59%) do nothing. That means that over 50% 
of the time associated with the execution of this subroutine is dedicated to subroutine overhead. The 
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ramifications of these are that if your program only rarely calls this subroutine, you might as well not make it 
into a subroutine. What this means is that to recoup your losses from subroutine overhead, your program must 
call this subroutine often and particularly from different parts of the code. Note that if your program called this 
subroutine often but from inside the same loop, it would probably once again be better to not use a subroutine.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 

#---------------------------------------------------------------------------- 
# Subroutine name: Swap_mem_ws 
# 
# This subroutine swaps two word values in memory. The address of the  
# values to swap is found in register x6 & x7.  
# 
# Tweaked Registers: none 
#--------------------------------------------------------------------------- 
Swap_mem_ws:   
init:      addi  sp,sp,-12       # make room on stack for storage 
           sw    x10,0(sp)       # push 3 items on stack 
           sw    x11,4(sp)  
           sw    x12,8(sp)  
 
           lw    x10,0(x6)       # get data to swap 
           lw    x11,0(x7)      
            
           mv    x12,x10         # copy data in x10 to working register 
           mv    x10,x11         # copy data from x11 to x10 
           mv    x11,x12         # copy working data to x11  
 
           sw    x10,0(x6)       # store swapped values  
           sw    x11,0(x7) 
            
restore:   lw    x10,0(sp)       # pop data into register 
           lw    x11,4(sp)  
           lw    x12,8(sp)  
           addi  sp,sp,12        # unadjust the stack pointer 
            
           ret                   # transfer program control back 
#--------------------------------------------------------------------------- 

Figure 14.10: A subroutine that uses data passed by address.  

 

14.4.3 Program Space vs. Bullet-Proof Code Issues 

As you have probably figured out by now, there are always many approaches to performing the same task when 
programming computers. You the programmer always face many subtle but important design decisions when 
writing your code. This section examines another subtle issue, yet clever opportunity for you to write 
“appropriate” code.  

 

Example 14.5 

Write a subroutine that multiplies the two halfword values stored in x10 & x10 together, and stores 
the result in x15. 

Solution: We provide two different solutions to this example. The first solution in Figure 14.11 shows the 
barebones dumb-dood solution, while we refer to the solution in Figure 14.12 as “bullet proof”. If we’re 
speaking roughly, we can refer to these two subroutines as functionally equivalent, but only speaking roughly.  

The solution in Figure 14.11 obviously has few instructions than the solution in Figure 14.12, but we don’t want 
to think that fewer instructions is somehow better. The truth is that the code in Figure 14.11 probably works 
“most” of the time and runs faster than the code in Figure 14.12 based on the number of instructions alone. But 
are you as a programmer satisfied with your code working most of the time. If you answered “yes”, then there 
are many job openings for academic administrators with your name on them. The problem with the code in 
Figure 14.11 is that it fails horribly in some common cases.  
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The code in Figure 14.11 has one initialization instruction followed by a do-while loop and its associated loop 
administration stuff. This code fails (does not provide the proper result) in two main areas. First, if the multiplier 
value is zero, the do-while performs one calculation including decrementing the multiplier. If the multiplier is 0, 
it becomes -1 (32 1’s) after the decrement on line (15), and thus stay in the loop for a long time. Second, sending 
values other than halfwords to the subroutine also causes the subroutine to fail, as there may be values in the two 
upper bytes of x10 and x11, which is probably not what we want. Additionally, this subroutine changes several 
register values, which makes using this subroutine “troublesome” to use and reuse.  

The code Figure 14.12 solves the problematic issues present in the previous solution. Here are the ways we 
resolve those issues:  

1) We save the operating context by pushing the registers the subroutine uses on lines (14-17).  

2) We check to see if the values are greater than 0x0000FFFF on lines (19-22), which indicates 
passed values are not halfwords. If we detect a non-valid value, we exit out of the subroutine, 
which is an arbitrary choice. In this case, it may be better to indicate an error condition in another 
register or memory location, which represents an even greater level of error detection that we 
don’t want to deal with in this example.  

3) We then check both operands for zero on lines (24-25), which serves two purposes. First, it 
ensures our do-while loop is valid in that there is no chance of decrementing a zero count. Second, 
it allows the subroutine to end faster in the case that one of the operand is zero, taking advantage 
of the fact if one of the operands is zero, the result is zero. If you know for sure that neither 
operand would ever be zero, you could not include this code.  

The moral of this story is that there is a trade-off here. We wrote the code in Figure 14.12 so that it would 
always work and always work as efficiently as possible. The cost of doing this was that the subroutine 
required more code space and required more time to run. In all honesty, as the number of times the loop 
iterates becomes larger, the overhead associated with the extra code becomes less significant. So what is 
the best approach? Only you, the astute and knowledgeable programmer knows for sure. Note that you 
have to be knowledgeable of basic programming techniques and the system you’re writing the code for. 
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#------------------------------------------------------------------------- 
# Subroutine: Mult_nums 
#   
# This subroutines multiples the two halfword values x10 & x11 and  
# stores the result in x15. The result is limited to 32 bits. 
# 
# Passed values: x10, x11 
# 
# Tweaked registers: x11, x15 
#------------------------------------------------------------------------- 
Mult_nums:     
init:         mv     x15,x0        # clear accumulator 
 
loop:         add    x15,x15,x10   # accumulate result 
               
admin:        addi   x11,x11,-1    # decrement multiplier 
              beq    x11,x0,loop   # branch if not done 
 
done:         ret                  # homeward bound 
;------------------------------------------------------------------------- 

Figure 14.11: A runtime efficient version of the Mult_nums subroutine. 

(00) 
(01) 
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(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 

#------------------------------------------------------------------------- 
# Subroutine: Mult_nums 
#   
# This subroutines multiples the two halfword values x10 & x11 and  
# stores the result in x15. The result is limited to 32 bits. 
#  
# Passed values: x10, x11 
# 
# Tweaked registers: x15 
#------------------------------------------------------------------------- 
Mult_nums:    
init:         mv    x15,x0         # clear accumulator 
              li    x20,0xFFFF0000 # upper half mask value 
 
store:        addi  sp,sp,-12      # adjust stack pointer 
              sw    x11,0(sp)      # push: store context 
              sw    x12,4(sp)    
              sw    x20,8(sp)    
               
chk_size:     and   x12,x10,x20    # mask multiplicand: verify half 
              bne   x12,x0,done    # error condition 
              and   x12,x11,x20    # mask multiplier: verify half 
              bne   x12,x0,done    # error condition 
 
chk_zero:     beq   x10,x0,restore # check multiplicand for zero 
              beq   x11,x0,restore # check multiplier for zero 
 
loop:         add   x15,x15,x10    # accumulate result 
               
admin:        addi  x11,x11,-1     # decrement multiplier 
              beq   x11,x0,loop    # branch if not done 
 
restore:      lw    x11,0(sp)      # pop: restore context 
              lw    x12,4(sp)    
              lw    x20,8(sp)    
              addi  sp,sp,-12      # adjust stack pointer 
 
done:         ret                 # homeward bound 
#------------------------------------------------------------------------- 

Figure 14.12: A “bullet-proof” version of the Mult_nums subroutine. 
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14.5 Look-Up Tables (LUTs) 

Generally speaking, anytime you can use a LUT in your hardware or software, you do so. In hardware, we can 
use LUTs to implement Boolean functions, which is really handy when the equations become knarly. In 
software/firmware, we can use LUTs to reduce the size of programs (and thus they run faster) by not repeating 
calculations or by not having to conduct long if/else clause (or case statements) in our code.  

LUTs should be nothing new to you at this point, or at least the concepts behind LUTs. This is because LUTs are 
analogous to arrays in higher-level programming languages4. An array is a structure that holds data; we access 
this data using the base address of the array (the address of the first piece of data in the array) plus some offset. 
We refer to the offset we provide the array as the “index”; when we retrieve data from the array, we say we are 
indexing into the array.  

LUTs in assembly language are a true mix of software and firmware techniques. We need to store the data in 
memory to make it accessible to the program. The assembler provides instruction so place data into the array 
using assembler directives. The associated ISA provides instructions to access that data as needed. We store the 
LUT somewhere in the data segment; we access the LUT using the standard set of load and store instructions.  

There are many advantages to using a LUT, particularly in firmware applications such as display multiplexing. 
The use of LUTs in computer programming is typically well supported by the underlying assembly languages, 
which certainly underscores their usefulness. The RISC-V MCU ISA supports LUTs without any type of special 
instructions; the use of assembler directives and the load & store instructions are adequate.  

Using a LUT on the RISC-V MCU requires three steps. 1) generate the data that goes into the LUT, 2) store the 
data in an accessible area of the data segment, and 3) access the LUT using the RISC-V MCU’s instruction set. 
The best way to present this information is with an example.  

 

Example 14.6: LUT-Based Parity Subroutine 4-Bit Version 

Write a RISC-V assembly language subroutine that determines the parity of the value in 
x10. If x10 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’ 

Solution: There are a few ways to calculate parity using firmware; the approach in this problem uses a LUT 
because it runs faster than other version. Then again, it requires more data memory than other versions, which is 
a tradeoff that we’ll discuss later. This solution uses the LUT to determine the parity of a nibble; to complete 
solution requires that we determine the parity of each of the eight nibbles in the 32-bit register. The algorithm 
accumulates the number of set bits; the LSB of the accumulated value is then the parity. Figure 14.13 shows the 
complete solution; here are the details with an emphasis on the LUT portions of the program:  

 We are defining a LUT, which is a section in data memory, so we start off by working in the data 
segment as noted by our use of the .data assembler directive on line (01).  

 The first step in using a LUT is to define the data that goes into the LUT. We sort of did this in our 
heads for this program, but make sure you understand what the data means before you continue on 
in this solution.  

 The second step in using a LUT is to put the data into memory. The two .byte directives tell the 
assembler to place the data into memory; we don’t know where exactly the assembler is putting 
the data, but we’ll be able to access it because we included the “par_val” label. The two .byte 
directives define 16 values; these values correspond to the number of bits that are set in a 4-bit 
number ranging from [0,15]; 0 through 15 are the decimal equivalents of each possible 4-bit value. 
For example, the eighth value in the line on (04) is “3”, which corresponds to the fact that the 
eighth value in the [0,15] is “7”, or “0111”. Because the value “7” has three bits set, we placed a 
“3” at this data location.  

                                                           
4 Where there is a possibility that you have not used a real LUT in your previous programming experience, you absolutely 
should have used an array of some type. Or at least I hope you did. Consider having a talk with your programming instructor 
is you did not use a LUT or especially an array.   



FreeRange Computer Design  Chapter 14 

 

 - 367 -  
 

 We used two .byte directives for clarity and neatness; we could have used only one.  

 The initialization sequence of the subroutine includes loading the iteration count with 8 (for 8 
nibbles) on line (24), clearing an accumulator register on line (25), and most importantly, loaded 
the address of the LUT into a register using the la pseudoinstruction on line (26). x30 now 
contains an address, which is the address of the first piece of data in the LUT.  

 We used a while loop for the body of the code and check the loop variable on line (28).  

 The next task is step 3) in using a LUT: accessing the LUT data. We then need to mask all but the 
right-most nibble to use as an index into the LUT, which we do on line (29). We don’t know what 
that nibble value is, but we use that value as an index into the LUT, which we do by adding the 
nibble (offset) the base address of the LUT to form the absolute address of the data we’re looking 
for in the LUT. We do the calculation on line (30) and the actual LUT access (look-up) on line 
(31). We accumulate the value we “looked up” on line (32).  

 The administrative part of the loop is to shirt right the data by a nibble on line (34) and then 
decrement the loop counter on line (35).  

 When the code breaks out of the while loop, the value in x15 contains the number of bits that were 
set in x10. We can use the LSB as the parity, but first we must mask all but the LSB, which we do 
on line (39).  



FreeRange Computer Design  Chapter 14 

 

 - 368 -  
 

(00) 
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(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 

#--------------------------------------------------------------------- 
.data                               # define data segment  
# num of bits set in each nibble (range: [0,15]) 
 
par_val: .byte   0,1,1,2,1,2,2,3    # values 0 -> 7 
         .byte   1,2,2,3,2,3,3,4    # values 8 -> 15 
#--------------------------------------------------------------------- 
 
#--------------------------------------------------------------------- 
# Subroutine name: Par_32b 
# 
# This subroutine uses a LUT-based approach to calculate parity of x10 
# by adding the parity values of the 8 underlying nibbles. The LUT  
# thus holds the parity values for each of the 16 possible number that 
# the nibble can represent. The 8 look-ups are added and the LSB is  
# the parity value.  
#  
# Passed values: x10 
# 
# Tweaked values: x10, x15, x20, x30, x21, x22 
#--------------------------------------------------------------------- 
.text 
 
Par_32b:  
init:       li    x20,8          # loop count 
            mv    x15,x0         # bit count 
            la    x30,par_val    # get address of LUT 
             
loop:       beq   x20,x0,done    # done yet?  
            andi  x21,x10,0xF    # calc table offset 
            add   x22,x30,x21    # calc index 
            lbu   x22,0(x22)     # table look-up 
            add   x15,x15,x22    # accumulate 
             
admin:      srli  x10,x10,4      # shift right one nibble 
            addi  x20,x20,-1     # decr loop count 
            j     loop           # rinse, repeat 
            
done:       mv    x10,x15        # load count to x10 
            andi  x10,x10,1      # mask LSB 
            ret                  # take it on home 
#---------------------------------------------------------------------- 

Figure 14.13: A program using code and data-type directives.  

 

The beauty of this approach for accessing data maybe can only be appreciated by those people who have written 
functionally equivalent code not using a LUT. The cool thing about this code is that we never had to figure out 
what the value of the nibble was (meaning we did not have to use a bunch of if/else constructs to figure it out); 
we instead simply used that value as an index, or offset, into the LUT. The moral of this story is that with any 
program you write, you should always ask yourself: “How am I going to use a LUT to make this program easier 
to write and more efficient?” Seriously, asking this question of yourself should be automatic in any program you 
write5. 

 

Example 14.7: LUT-based Parity Subroutine 8-Bit Version 

Don’t actually do it, but describe how you would repeat the previous problem using a LUT 
with 256 entries. Discuss the obvious space and run time efficiencies involved.  

                                                           
5 Similarly, when you’re designing digital hardware, you should always be asking yourself how you can use a generic 
decoder to simplify your circuit.  
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Solution: It’s the same problem, but this time we’ll use a LUT with 256 entries, which would represent the 
number of set bits for each of the 256 unique values that an 8-bit number can represent. For a problem such as 
this, you’d for sure want to use some other software to write a program that generated the LUT code for you; you 
certainly would not want to count all the bits and type it all in. The while-loop in the code would now only need 
to be iterated four times. The main result here is that the subroutine runs about twice as fast, but the required data 
memory increased from 16 bytes to 256 bytes. You, the astute programmer, would need to decide if that was 
worth it.  

 

14.5.1 LUTs Revisited 

LUT implementations are a tradeoff between space and run-time efficiencies. The underlying details are that it is 
computationally more efficient to “look something up” than it is to search for or calculate it. LUTs can make 
code run faster, but it comes at the prices of requiring extra space in memory to store the LUT. While LUTs can 
be quite helpful, the larger they are, the more memory space they consume. In both cases, you must make sure 
your computational savings of using a LUT justifies the memory space required to represent that LUT in 
memory.  

 The act of searching for something in this context means that you’re iteratively searching for a 
particular value associated with a given value, which typically implies you encode this search with 
an if/else or case structure. If the given value could be one of many different values, then the 
supporting search structure could be very large and subsequently very slow.  

 The act of calculating a result associated with a value can require a significant amount of 
computing resources. In this case, it would make sense to use a LUT under the condition that you 
have to perform the calculation relatively often in your code.  
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14.6 Chapter Summary 

 

 Memory is important to computers, which is why instructions set generally have different ways of 
addressing memory. The term address space refers to the total amount of memory an instruction set can 
access, but not all of this memory is physical memory; it includes other memory space items such as I/O 
port addresses.  

 Computer memory is typically divided into segments; the segments used in the RISC-V include:  

o Code segment: stores program memory (physical memory) 

o Data segment: stores LUTs and other data  (physical memory) 

o Stack Segment: store data used by program  (physical memory) 

o Memory mapped I/O: used to differentiate different computer peripherals (not physical memory) 

 There are currently three RISC-V assemblers available: Venus, RARS, and gcc. Each of them has their good 
and bad points as listed in this chapter.  

 Different assemblers have a different set of assembler directives, which allow programmers to control 
certain aspects of the assembler. Assembler directive as essentially messages from the programmer to the 
assembler. It’s good to know which directives an assembler supports before using that assembler.  

 There are two main types of directives: 1) those that support instructions, and 2) those that support code.  

 Writing efficient assembly language programs is more of an art form than a science. Many aspects of 
assembly language programs have efficiency issues including. The is always a tradeoff between runtime and 
program space efficiencies, for example, larger programs (more program memory) often run faster than 
functionally equivalent smaller programs. Areas where programming efficiencies are an issues include   

o Iterative loops: instructions that check loop conditions and/or handle program flow control 
(branching) don’t do meaningful work 

o Subroutines: calling/returning from subroutines are program flow control instructions that don’t do 
meaningful work. Saving context and saving return addresses (for nested subroutines) also do not 
do anything.  

 We can write “bullet proof” subroutines that work no matter when and where you call them, which includes 
checking all iteration counts and saving/restoring context.  

 There are two main efficiency issues in assembly language programming: run-type efficiencies and program 
memory space efficiencies. The programmer needs to be aware of this trade-off and program their computer 
appropriately.  
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14.7 Chapter Exercises 

 

1) Briefly describe the difference between address space and the physical address space of a memory access 
instruction.  

2) Briefly describe what or who decides how much physical address space is available in a given system.  

3) Briefly describe what or who delineates the boundaries between the code and data segments in the RISC-V 
OTTER MCU.  

4) Briefly describe how stack segment can encroach on other segments.  

5) Briefly describe if there is actually a physical boundary between any segments in physical memory space.  

6) Briefly describe whether it would be possible for a programmer to write programs without understanding 
and being familiar with the memory map. 

7) Where do you typically find most errors in assembly language programs?  

8) What is the question that programmers should always be asking themselves when they’re writing source 
code?  

9) What are the three steps required in order to use a LUT on the RISC-V MCU?  

10) Describe how LUTs can help programmers create efficient code.  

11) What’s the general rule to using an iterative construct or not in programming?  

12) Briefly describe the overhead associated with iterative loops.  

13) Briefly describe the two types of overhead associated with subroutines.  

14) Describe the difference between accessing a LUT located at address 0xF0000010 and a LUT located at 
0xF00000020. For this problem, assume each LUT has ten locations.  

15) Describe the two types of programming efficiencies in the RISC-V MCU assembly language.  

16) Describe why assembly code that has more instructions can have a shorter running time than code that has 
fewer instructions.  

17) Briefly describe the relationship between the number of times a loop iterates, the amount of non-overhead 
code in the loop, and the overall efficiency of the loop.   

18) Answer the following questions using the code fragment that follows. For this problem, assume the value of 
xwords is 0x00000F00.   

d) Value of xbytes g) Address of -33 j) Value in x21 

e) Value of xwords2 h) Address of 459 k) Value in x22 

f) Value of xmore i) Address of  0xDD0 l) Value in x23 
 
.data    # data segment directive 
xwords:   .word  0xAF0,0xBF0,0xCF0,0xDD0,0xFF0, 0x3E0 
xbytes:   .byte  0xAA,-0x32,58, 23,-33,-121 
xwords2:  .word  88,99,459  
xmore:    .half  344,456 
 
.text                        # text segment directive 
        la    x21,xbytes 
        la    x22,xwords2 
        la    x23,xmore 

stop:   j     stop   
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19) Answer the following questions using the code fragment that follows. For this problem, assume the value of 
bwords is 0x000010F0.   

g) Value of chalfs j) Address of 0xFFCC m) Value in x7 

h) Value of dbytes k) Address of 48 n) Value in x8 

i) Value of ewords l) Address of  34605 o) Value in x9 
 
.data    # data segment directive 
bwords:   .word  0xFF03,0xAB30,0xFDD0,0xEEE0,0xF3DE 
chalfs:   .half  0xFFFE,0xFFCC,0xFFAA,0xFF11 
dbytes:   .byte  0x4,-0x6,48, 123,-93,128 
ewords:   .word  0x4555,34605,-0x8958  
 
.text                        # text segment directive 
        la    x7,chalfs 
        la    x8,dbytes 
        la    x9,ewords 
        addi  x7,x7,3 
        addi  x8,x8,4 
        addi  x9,x9,5 

kill:   j     kill   

 

20) The following two subroutines generates are described by their hearders.  

a) What percent of instruction in the subroutine are considered subroutine overhead?  
b) What percentage of the instructions executed by the subroutine are subroutine overhead?  
#--------------------------------------------------------------------------- 
# Subroutine: bcd_to_bin 
#  
# Converts a 3-digit decimal number represented in the lowest three nibbles 
# of x10 to the equivalent unsigned binary value and places the result in x20.  
#  
# Tweaked Registers: x20 
#--------------------------------------------------------------------------- 
bcd_to_bin:   
init:       
store:    addi  sp,sp,-12         # adjust sp to save 3 regs 
          sw    x21,0(sp)         # save x21 
          sw    x15,4(sp)         # save x15 
          sw    x10,8(sp)         # save x10 
 
           li    x21,0x00000F00   # 100’s bit mask 
           mv    x20,x0            # zero accumulator 
            
t_100:     and   x15,x15,x21      # mask 100’s nibble 
           srli  x15,x15,8        # shift to lowest position 
loop1:     beqz  x15,t_10         # go to tens if zero 
           addi  x20,x20,100      # accumulate 100s 
           addi  x15,x15,-1       # decrement loop count 
           j     loop1            # do it again 
           
t_10:      lw    x15,8(sp)        # load original value 
           srli  x21,x21,4        # shift the mask value to next nibble 
           and   x15,x15,x21      # mask 10’s nibble 
           srli  x15,x15,4        # shift left to right-most position         
loop2:     beqz  x15,t_1          # move on if it’s zero 
           addi  x20,x20,10       # accumulate 10 values 
           addi  x15,x15,-1       # decrement loop count 
           j     loop2            # do it again 
            
t_1:       mv    x15,8(sp)        # load original value 
           srli  x21,x21,4        # shift the mask value to next nibble 
           and   x15,x15,x21      # mask bits 
           add   x20,x20,x15      # add value to accumulator 
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restore:   lw    x21,0(sp)        # restore x20 
           lw    x15,4(sp)        # restore x20 
           lw    x10,8(sp)        # restore x20 
           addi  sp,sp,12         # adjust sp after restoring 3 regs 
   
done:      ret                    # take it on home 

 

#----------------------------------------------------------------------- 
# Subroutine: gen_fib_16 
# 
# Generates the first 16 Fibonacci numbers (starting with 1,1,...) and 
# stores the numbers as halfwords starting at address stored in x25.  
#  
# Tweaked registers: none 
#---------------------------------------------------------------------- 
gen_fib_16:  
store:   addi  sp,sp,-20     # adjust sp to save 5 regs 
         sw    x20,0(sp)     # save x20 
         sw    x21,4(sp)     # save x21 
         sw    x25,8(sp)     # save x25 
         sw    x15,12(sp)    # save x15 
         sw    x16,16(sp)    # save x16 
       
init:    li    x20,14        # load loop count 
         li    x21,1         # load initial fib number 
       
         sh   x21,0(x25)     # store first two fib numbers 
         sh   x21,2(x25) 
         addi x25,x25,4      # adjust the pointer forward 
       
loop:    beq   x20,x0,done   # done yet?  
         lhu   x15,-4(x25)   # get two previous values 
         lhu   x16,-2(x25) 
         add   x15,x15,x16   # add two previous value 
         sh    x15,0(x25)    # store result of addition 
         addi  x20,x20,-1    # loop admin: decrement loop count 
         addi  x25,x25,2     # increment pointer forward 
         j     loop          # repeat, rinse 
 
restore: lw    x20,0(sp)     # restore x20  
         lw    x21,4(sp)     # restore x21 
         lw    x25,8(sp)     # restore x25 
         lw    x15,12(sp)    # restore x15 
         lw    x16,16(sp)    # restore x16 
         addi  sp,sp,20      # adjust sp to back to original value 
  
done:    ret 

 

21) Rewrite the following to subroutines and make them “bullet proof”, in other words, safe to call in all 
circumstances.  

#--------------------------------------------------------------------------- 
# Subroutine: parity 
#  
# Determines the parity of the value in x10; returns ‘0’ in x20 if parity  
# is even, otherwise returns ‘1’.  
#  
# Tweaked Registers: x10, x15, x20 
#--------------------------------------------------------------------------- 
parity:  
 
init:   mv    x15,x0         # clear an accumulator 
         
loop:   beq   x10,x0,done    # check to see if were done  
        andi  x15,x10,1      # mask LSB 
        add   x20,x20,x15    # increment bit count 
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        srli  x10,x10,1      # shift value right 1 bit 
        j     loop           # rinse, repeat 
         
done:   andi  x20,x20,1      # clear all but LSB 
        ret                  # take it home jimmie 

 

22) Briefly describe under what condition will the following subroutine work as described?  

#----------------------------------------------------------------------- 
# Subroutine: abs_mem 
# 
# This subroutine multiplies takes the absolute value of signed bytes  
# in memory starting at the address in x10, and does this for the number 
# of values represented by the count in x11.  
# 
# Tweaked registers: none 
#---------------------------------------------------------------------- 
           
abs_mem:   
store:    addi  sp,sp,-12    # room on stack 
          lw    x10,0(sp)    # push regs 
          lw    x11,4(sp) 
          lw    x12,8(sp) 
init:                        # nothing to init 
 
loop:     lb    x20,0(x10)   # load value 
          bge   x20,x0,write # br if > 0 
           
          neg   x20,x20      # change sign 
write:    sb    x20,0(x10)   # store value 
   
admin:    addi  x10,x10,1    # incr addr 
          addi  x11,x11,-1   # decr loop count 
          j     loop         # do again 
     
done:      
rstore:   lw    x10,0(sp)    # pop regs 
          lw    x11,4(sp) 
          lw    x12,8(sp) 
          addi  sp,sp,12     # adjust sp 

          ret                # bring it home 
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14.8 Chapter Programming Exercises 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code, including proper headers for subroutines  

 

1) Write a RISC-V assembly language subroutine that determines how many if all eight nibbles of register x8 
have the same parity. The subroutine returns a non-zero value in x8 if all the nibbles have the same parity; 
otherwise the subroutine returns zero in x8. Use a LUT for this subroutine. Don’t permanently change any 
registers other than x8. 

2) Write a RISC-V assembly language subroutine that determines if all eight nibbles of register x8 the same 
number of bits that are set. The subroutine returns a non-zero value in x8 if all the nibbles have the same 
number of bits set; otherwise the subroutine returns zero in x8. Use a LUT for this subroutine. Don’t 
permanently change any registers other than x8.  

3) Write a RISC-V assembly language subroutine that determines if all eight nibbles of register x8 the same 
number of bits that are set and have even parity. The subroutine returns a non-zero value in x8 if all the 
nibbles have the same number of bits set and are even parity; otherwise the subroutine returns zero in x8. 
Use a LUT for this subroutine. Don’t permanently change any registers other than x8.  

4) Write a RISC-V assembly language subroutine that determines whether the value in x10 is a prime number 
or not. The value in x10 always falls into the following range: [2,25]. If the number in x10 is prime, the 
subroutine returns a non-zero value in x10; otherwise it returns zero in x10. Use a LUT for this subroutine. 
Don’t permanently change any registers other than x8.  

5)  
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15 RISC-V Solved Programming Problems 
 

15.1 Introduction 

The only way to learn about assembly language programming is to actually do some assembly language 
programming. The previous chapters spoke about the basic mechanics of assembly language programs, but only 
provided a few basic examples. This chapter presents nothing new, but presents all of the older assembly 
language programming ideas in the context of example problems. The problems start out easy and become more 
challenging as the chapter progresses. The idea here is that if you understand all the example programs in this 
chapter, then you’ll know about all the tricks associated with assembly language program.  

Keep in mind that one of my theories of assembly language programming that if you see and understand a trick 
once, you can put that trick in your bag of tricks and then be prepared to whip it out whenever you need it. 
Remember, assembly language programming is the same instructions and constructs arranged in different orders 
such that your program solves the problem at hand.  

 

Main Chapter Topics 

 NO NEW TOPICS: This chapter presents all previously presented stuff in the context 
of actual example assembly language programs.  

 C PROGRAMMING CONVERSIONS: This chapter show how common C 
programming constructes translate into RISC-V assembly language code.  

 

Why This Chapter is Important 

This chapter is important because it shows how to solve a wide set of problems by 
writing RISC-V assembly language programs.  

 

15.2 Introductory RISC-V Programming Problems 

Here are a few introductory RISC-V programming problems. Each solution contains pertinent highlights as 
well as the well-commented source code.  

 

Example 15.1: Continuous I/O 

Write a RISC-V OTTER assembly language program that continually reads data from the 
input port associated with the switches, complements that data, and outputs the data to the 
port associated with the LEDs. Consider the address of the switches and LEDs to be 
0xC000_0004 and 0xC000_000A, respectively.  

Solution: This program tries to do something meaningful in that we’re reading in data from the outside world, 
tweaking it, and then writing back out to the outside world. The actual topic of I/O is really important, but 
relatively simple on the programming level. We’ll get into more details later, but for now, just go with it.  

Here’s the quick I/O overview. The RISC-V MCU uses “memory-mapped” I/O, which is one of several 
common approaches to performing I/O on a computer system. The notion here is that I/O and reading/writing 
memory use the same instructions. Recall that the RISC-V MCU has a memory that programmers can use to 
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store intermediate values. What makes this work is that the computers configure the hardware such that when 
it sees a particular address, it knows that it needs to perform I/O rather than performing a memory read or 
write. This being the case, when we load a value from that particular address in memory (using a load 
instruction), the instruction accesses the data from the outside world and places it in the specified source 
register. When we store a value at a that particular address in memory (using a store instruction), the 
instruction takes the data from a general purpose register and makes it available to the outside world to do 
something with. Lots more on this later; for now: input = load; output = store.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#----------------------------------------------------------------------- 
# Read in data from the port connected to the switches, compliment 
# the data, then output the data to the port connected to the LEDs.  
# The port addresses for the I/O is listed in the code.  
#----------------------------------------------------------------------- 
.text                              # we’re in the text segment 
 
init:     li      x10,0xC0000004   # input port for switches 
          li      x11,0xC000000A   # output port for LEDs 
 
main:     lw      x15,0(x10)       # input data from switches port to x15 
          xori    x15,x15,-1       # compliment data 
          sw      x15,0(x11)       # output data to LED port 
          j       main             # do it again 

Figure 15.1: Solution to this example problem. 

Solution Notes: Fun stuff embedded in the solution. 

 The first five lines provide a nice explanation of what is going on. All good programs 
include a very neat header such as this.  

 Line (05) uses an assembler directive to specify that we’re in the “text” segment. All code 
goes in the text segment; this will make more sense later when we talk more about memory 
segmentation in the MCU.  

 The most straight forward way to get data from the outside world is to place the address 
associated with the switches and LEDs into a register. The li instruction stands for “load 
immediate”; it loads the immediate data specified in the instructions in lines (07-08) into the 
listed registers. The x10 & x11 registers are arbitrary. Note that someone needs to give you 
the programmer these addresses. Some hardware person configured them; that person needs 
to state how to access I/O in the hardware.  

 The actual input instruction is the lw instruction on line (10). The first operand specifies 
which register is written with the external data; the second operand is the address. The 
“0(x10)” notation specifies the port address, which is officially zero added to the value in 
x10. A previous instruction put the address value into x10.  

 The input data is then complimented using an xori instruction, which stands for “exclusive 
OR immediate”. The instruction reads the value from the source operand (the right-most 
x15), does a bit-wise exclusive OR with -1, and stores the value into x15. The assembler 
represents negative numbers using 2’s compliment notation, so -1 is encoded as all 1’s 
(0xFFFFFFFF). The instruction takes the data from x15, operates on it, then stores the data 
back into x15.  

 Line (12) is the output operation. Note that it uses a “sw” instruction, which stands for 
“store word”. The sw instruction takes the data from register x15 and makes it available to 
the outside world.  

 The problem specified to do this operation over and over again, so line (13) directs program 
control back to the line (10), which is the instruction that performs an input. Note that we 
don’t go back to line (07) because that data is already in the registers and no instruction 
changed it.  
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 All the instructions and comments are nicely aligned.  

 All labels start in the left-most column.  

 All assembler directives start in the left-most column 

 We used two pseudoinstructions in this code: li & j. We could have used the not 
pseudoinstruction in place of the xor instruction. The code in below shows the equivalent 
pseudoinstruction.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 

#----------------------------------------------------------------------- 
# Read in data from the port connected to the switches, compliment 
# the data, then output the data to the port connected to the LEDs.  
# The port addresses for the I/O is listed in the code.  
#----------------------------------------------------------------------- 
.text                              # we’re in the text segment 
 
init:     li      x10,0xC0000004   # input port for switches 
          li      x11,0xC000000A   # output port for LEDs 
 
main:     lw      x15,0(x10)       # input data from switches port to x15 
          not     x15,x15          # compliment data 
          sw      x15,0(x11)       # output data to LED port 
          j       main             # do it again 

Figure 15.2: An alternate solution to this example problem. 

 
 

 

Example 15.2: Continuous Output Sequence 

Write a RISC-V OTTER assembly language program that continually outputs the following 
sequence to the output port specified by address 0xC000_00D0. Don’t use more than two 
registers in your design.  

{…0x1, 0x2, 0x4, 0x8, 0x4, 0x2, 0x1, 0x2…}   

Solution Notes: Fun stuff embedded in the solution. There are definitely better approaches to this problem, but 
you don’t have those items in your toolset as of yet.  

 The first five lines provide a nice looking header. Nice a judgment call, but I’m practicing to 
be an administrator so I consider all my work in the nice to great range.  

 The first thing to note when doing this problem is that the sequence is a single bit in the LSB 
of a number that moves to the left and back to the right until you want to hurl. This reminds 
us of a shifting left and shifting right operations that we loved so much from our days 
working with shift registers. Lucky for us programmers there are instructions in the RISC-V 
instruction set that shift left and right. These instructions are the slli and srli 
instructions, which are mnemonics for “shift left logical immediate” and “shift right logical 
immediate”.  

 There is always an issue of what the processor stuffs in the right side of that data when it 
shifts left (and vice-versa with the shift right). Does it stick in a ‘1’ or a ‘0’? There is no 
magic to this, you need to check the RISC-V spec to find out. After you do that, you’ll be 
relieved to know that the instructions shove in ‘0’s’, so the instructions are perfect for this 
problem.  

 There is also plain shift left and shift right instructions (sll & srl), which use the lowest 
five bits of a register location as the number of bits to shift. We can’t use these for this 
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problem because the problem nefariously stated we could only change two registers. Be sure 
to enhance your excitement by checking out these instructions in the RISC-V spec.  

 The set of shift lefts and rights synthesize the required values; the values are then output to 
the specified output port.  

 To repeat the sequence forever, jump back to the instruction associated with the main label 
to allow the fun to continue.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 

#----------------------------------------------------------------------- 
# Outputs the following sequence to output port 0xC00000D0:  
#  
# {…0x1, 0x2, 0x4, 0x8, 0x4, 0x2, 0x1, 0x2…}   
#---------------------------------------------------------------------- 
.text 
 
init:       li    x10,0xC00000D0      # store address in register 
            li    x20,0x01            # initial value of sequence 
 
main:       sw    x20,0(x10)          # output first value in sequence (1) 
            slli  x20,x20,1           # shift left 1 spot 
            sw    x20,0(x10)          # output second value in sequence (2) 
            slli  x20,x20,1           # shift left 1 spot 
            sw    x20,0(x10)          # output second value in sequence (4) 
            slli  x20,x20,1           # shift left 1 spot 
            sw    x20,0(x10)          # output second value in sequence (8) 
  
            srli  x20,x20,1           # shift right 1 spot 
            sw    x20,0(x10)          # output second value in sequence (4) 
            srli  x20,x20,1           # shift right 1 spot 
            sw    x20,0(x10)          # output second value in sequence (2) 
            srli  x20,x20,1           # shift right 1 spot 
            j     main                # jump to first output ad nasuem 

Figure 15.3: Solution to this example problem.  

 
 

 

Example 15.3: Half Swap 

Write a RISC-V assembly language subroutine that swaps the upper two bytes in x10 with 
the lower two bytes in x10. 

Solution Notes: Fun stuff embedded in the solution. There are arguably better ways to do to this problem; we’ll 
take the most straightforward approach.   

 This is a subroutine, so we give it a nice header. The header includes the name of the 
subroutine, a brief description of the subroutine, and a list of what registers the subroutine 
changes. All this information is massively important to anyone who may want to your 
subroutine. The notion here is that the registers are shared by all the code, so if the subroutine 
changes a register that the calling code is working with, that is really ungood. There are ways 
to prevent this, but that is a “stack” issue; we’ll deal with that later.  

 The subroutine name is on line (08); it is a simple label, which means there is a value 
associated with it, and that value is the location in program memory of the first instruction in 
the subroutine. For what it’s worth, the labels “init” and “Big_swap” have the same numerical 
value; we include both so as not to confuse the human readers of the code.  

 The code has three initialization related instructions on lines (10-12). The two li instructions 
are to place the mask values into registers. We need to do that because the andi instruction has 
a limited amount of space for mask values, so we opt to put the mask value in a register and 
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use the and instruction for the masking operations. The code on line (12) makes a copy of the 
register with the data we need to swap.  

 The swapping action is this: we clear the upper two bytes of one register and shift the result 
left 16 places, clear the lower two byte of the other register and shift the result right by 16 
placed, then combine the results. The slli and srli instructions handle the shifting 
operations. 

 The results of the two shifting operations are combined using an OR instruction on line (20). 
We could have combined them with an add instruction or an or instruction; the choice is 
arbitrary.  

 We conclude the subroutine with a ret instruction, which stands for “return”. This is a 
pseudoinstruction, but it works rather nicely if we’ve called the instruction using the call 
pseudoinstruction (more on that later).  

 The “done” label is never called; it serves as a comment to human readers of the code.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 

#----------------------------------------------------------------------- 
# Subroutine: Big_swap 
#  
# This subroutine swaps the upper two bytes with the lower two bytes  
# in register x20. 
#  
# Tweaked Registers: x10, x15, x20, x21 
#---------------------------------------------------------------------- 
Big_swap:  
 
init:      li    x20,0x0000FFFF    # lower bit mask 
           li    x21,0xFFFF0000    # upper bit mask 
           mv    x15,x10           # make a copy 
            
upper:     slli  x15,x15,16        # move lower 2 bytes 16 bits to left 
           and   x15,x15,x21       # clear lower 16 bits 
            
lower:     srli  x10,x10,16        # move upper 2 bits 16 bits to right 
           and   x10,x10,x20       # clear upper 16 bits 
            
glue:      or    x10,x15,x10       # tack two results together 
            
done:      ret                     # take it on home 

Figure 15.4: The solution to this example. 

But of course, there is a better approach. We presented the previous solution to show an example of bit 
masking. The reality is that the shift left and shift right instructions stuff in 0’s to the register when they 
shift (the spec describes this characteristic). That means we do not need to use masks in this problem. 
This problem also provides an alternate solution to this example. Here are some comments.  

 The code is shorter because we removed the instructions that initialized the masks, and the 
instructions that do the actual masking.  

 We kept the labels, as they are forms of commenting: the make the code easier to understand 
but do not increase the code length.  

 There is less code in this subroutine so it executes faster than the previous code, but provide 
the exact same result.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

#----------------------------------------------------------------------- 
# Subroutine: Big_swap 
#  
# This subroutine swaps the upper two bytes with the lower two bytes  
# in register x20. 
#  
# Tweaked Registers: x10, x15 
#---------------------------------------------------------------------- 
Big_swap:  
 
init:      mv    x15,x10           # make a copy 
            
upper:     slli  x15,x15,16        # move lower 2 bytes 16 bits to left 
            
lower:     srli  x10,x10,16        # move upper 2 bits 16 bits to right 
            
glue:      or    x10,x15,x10       # tack two results together 
            
done:      ret                     # take it on home 

Figure 15.5: An alternative solution to this example. 

 

 

 

Example 15.4: Conditional Operations 

Write a RISC-V assembly language subroutine that does the following based on the value in 
x20.  

 If the value in x20 = 64 

o Divide value in x20 by 8 

 If the value in x20 = 128 

o Divide the value in x20 by 32 

 Otherwise, make x20=0 

Solution Notes: Fun stuff embedded in the solution. This demonstrates a classic case construct, which of course 
if a special form of an if/else construct.  

 The subroutine has a header that include pertinent information that other programmers who are 
reading the code can learn from, particularly the list of registers that the subroutine changes.  

 The subroutine name is on a line by itself, which makes it clear to human readers; the 
subroutine name is a label that the assembler uses to transfer program control to the subroutine 
when it is called from another section of the program.  

 Line (13) loads one of the values to compare into a register. The comparison is done on the 
next line. If the value in x20 is not equal to 64, the branch on line (14) sends the code to the 
next test, which is on line (18). If the value is equal to 64, the value is divided by 8 by shifting 
the value right by 3 using the srli instruction. Because the code found a match in the values, 
it’s not going to find another match, so the program flow control jumps to the ret instruction.  

 The same general approach is taken looking for the second match starting at the check_128 
label. Note that the code shifts right 5 places to divide by 32.   

 The check_64 and check_128 labels and the default label for the cases for the case statement 
that this code uses. It smells like C code to me; maybe it’s the same in less useful languages.  
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 The two blocks of code at starting at check_64 and check_128 labels are very similar. Quite 
often when you’re writing code, you repeat the same functionality. This sort of means you can 
do it more generically, but it for sure means you can copy your code. Don’t try this if you’re a 
computer science major, because copying your own code is plagiarism and could get you 
expelled, killed, or worse. 

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

#----------------------------------------------------------------------- 
# Subroutine: case_construct 
#  
# This subroutine is an example of a case statement. If the value in x20 
# is equal to 64, then the value is divided by 8. If the value in x20 is 
# equal to 128, then the value is divided by 32. If neither of those  
# tests are true, then the subroutine sets the value of x20 to 0. The  
# does the same for the other test.  
#  
# Tweaked Registers: x10, x20 
#---------------------------------------------------------------------- 
case_construct:  
 
check_64:    li    x10,64              # load value to compare 
             bne   x10,x20,check_128   # check to see if equal 
             srli  x20,x20,3           # divide by 8 (2^3) 
             j     done                # done 
              
check_128:   li    x10,128             # load value to compare 
             bne   x10,x20,default     # check to see if equal 
             srli  x20,x20,5           # divide by 32 (2^5) 
             j     done                # done 
            
default:     mv    x20,x0              # clear register 
done:        ret   

Figure 15.6: A solution to this example problem. 

 

15.3 More Advanced RISC-V Programming Problems 

This section continues with more advanced programming problems. The previous sections provided a basis for 
many of the standard RISC-V MCU programming structures. We sincerely hope that after staring at these 
problems, you did not find them too complicated. Recall that the nice thing about assembly language 
programming is that nothing can really become too complicated based on the inherently simplistic nature of the 
assembly language programming.  

 

Example 15.5: BCD to Binary Conversion 

Write a RISC-V assembly language subroutine that converts a BCD to binary conversion on 
x10. Consider the three least significant nibbles in x10 to represent a 3-digit decimal 
number. Place converted binary number in x20. Note that a nibble is half a byte, or 4-bits. 
Recall that we use BCD to represent decimal numbers, which requires a minimum of 4 bits 

Solution Notes: Fun stuff embedded in the solution. This is a very common and useful conversion. There are 
cleaner ways to do this, but this is good enough for now. This is the most meaningful and useful program up 
until now, but it is still “missing” some stuff; we’ll talk about the missing stuff later.  

 Once again, nice header providing useful information regarding the subroutine.  

 This is a non-trivial subroutine, so we need to do some initialization. We use the init label to note the 
code that falls into the category of initialization.  
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 We first need to save a copy of the data we need to convert, which we do with the mv pseudoinstruction 
on line (11). We often refer to this as making a “working copy” of the data. This subroutine is going to 
tweak the data, so we need to ensure that we don’t lose the original data before we’re done with it.  

 We stuff our nibble masks in registers starting at line (12). Yes, definitely better ways to do this in case 
you’re thinking this is klunky. We’ll definitely become cleverer with our coding once we get more 
assembly language programming skills in our bag of tricks.  

 This is a classic “accumulator” problem. As with most accumulator problems, we need to start the 
accumulator at 0, which is what the mv instruction on line (15) does.  

 The BCD values provide the count of the number of 100’s, 10’s, and 1’s. The general approach of this 
code is to keep adding one of those values for each value in the nibble location. This means there is a 
loop to accumulate 100’s, followed by a loop to calculate 10’s, and then we simply add the 1’s as the 
1’s has no associated weighting as the 100’s and 10’s does.  

 The 100’s loop starts at line (17) where we see a label which is there for commenting purposes (no code 
ever jumps to it. We first mask the bits we’re interested in with the and instruction on line (17). We then 
shift the resulting 100’s nibble to the four LSB positions of the register. At that point, the code on lines 
(19-22) form a while loop that adds 100 to the accumulator each iteration. The BCD value is effectively 
the loop count, so we must decrement it each iteration. We then jump to the comparison instruction on 
line (19). In this case, we do use the loop1 label as the place to j instruction on line (22) passes program 
control to.  

 The code for the 10’s loop is similar to the code for the 100’s loop, so we’ll skip the painful detail. The 
one interesting thing to note is that the first thing we need to do is restore the original value on line (24), 
which we originally saved on line (11).  

 The 100’s and 10’s BCD nibbles have weights associated with the counts, but the 1’s nibble does not. 
This being the case, we don’t require a loop as we did with the 100’s and 10’s, we simply add the 1’s 
nibble to the accumulator. We do have to mask the higher-order nibble before we accumulate the 1’s, 
which we do on line (33).  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

#--------------------------------------------------------------------------- 
# Subroutine: bcd_to_bin 
#  
# Converts a 3-digit decimal number represented in the lowest three nibbles 
# of x10 to the equivalent unsigned binary value and places the result 
# in x20.  
#  
# Tweaked Registers: x15, x20, x21, x22, x23 
#--------------------------------------------------------------------------- 
bcd_to_bin:   
 
init:      mv    x15,x10          # save a copy 
           li    x21,0x00000F00   # 100’s bit mask 
           li    x22,0x000000F0   # 10’s bit mask 
           li    x23,0x0000000F   # 1’s bit mask 
           mv    x20,x0           # zero accumulator 
            
t_100:     and   x15,x15,x21      # mask 100’s nibble 
           srli  x15,x15,8        # shift to lowest position 
loop1:     beqz  x15,t_10         # go to tens if zero 
           addi  x20,x20,100      # accumulate 100s 
           addi  x15,x15,-1       # decrement loop count 
           j     loop1            # do it again 
           
t_10:      mv    x15,x10          # restore original value 
           and   x15,x15,x22      # mask 10’s nibble 
           srli  x15,x15,4        # shift left to right-most position         
loop2:     beqz  x15,t_1          # move on if it’s zero 
           addi  x20,x20,10       # accumulate 10 values 
           addi  x15,x15,-1       # decrement loop count 
           j     loop2            # do it again 
            
t_1:       mv    x15,x10          # get original value 
           and   x15,x15,x23      # mask bits 
           add   x20,x20,x15      # add value to accumulator 
    
done:      ret                    # take it on home 

Figure 15.7: A solution to this example problem. 

Figure 15.8 provides an alternate solution for this example. What we did was use one register for the mask value 
rather than three registers. The length of the code is the same and it has the same running time, but the subroutine 
is more “space efficient” because it uses less registers. This becomes a more important issue when we start 
writing our subroutines “more better”. More on that later.  

 Lines (23) and (32) shift the single mask right by four bits. This creates the same mask as before but it 
uses less registers. Pretty clever. I wish I had thought of that the first time.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

#--------------------------------------------------------------------------- 
# Subroutine: bcd_to_bin 
#  
# Converts a 3-digit decimal number represented in the lowest three nibbles 
# of x10 to the equivalent unsigned binary value and places the result 
# in x20.  
#  
# Tweaked Registers: x15, x20, x21 
#--------------------------------------------------------------------------- 
bcd_to_bin:   
 
init:      mv    x15,x10          # save a copy 
           li    x21,0x00000F00   # 100’s bit mask 
           mv    x20,x0            # zero accumulator 
            
t_100:     and   x15,x15,x21      # mask 100’s nibble 
           srli  x15,x15,8        # shift to lowest position 
loop1:     beqz  x15,t_10         # go to tens if zero 
           addi  x20,x20,100      # accumulate 100s 
           addi  x15,x15,-1       # decrement loop count 
           j     loop1            # do it again 
           
t_10:      mv    x15,x10          # restore original value 
           srli  x21,x21,4        # shift the mask value to next nibble 
           and   x15,x15,x21      # mask 10’s nibble 
           srli  x15,x15,4        # shift left to right-most position         
loop2:     beqz  x15,t_1          # move on if it’s zero 
           addi  x20,x20,10       # accumulate 10 values 
           addi  x15,x15,-1       # decrement loop count 
           j     loop2            # do it again 
            
t_1:       mv    x15,x10          # get original value 
           srli  x21,x21,4        # shift the mask value to next nibble 
           and   x15,x15,x21      # mask bits 
           add   x20,x20,x15      # add value to accumulator 
    
done:      ret                    # take it on home 

Figure 15.8: An alternate solution to this example problem.  

 
 

 

Example 15.6: Parity Determination 

Write a RISC-V assembly language subroutine that determines the parity of the value in 
x10. If x10 has even parity, it returns a ‘0’ in x20. Otherwise, it returns a ‘1’.   

Solution Notes: Fun stuff embedded in the solution. This is another handy function.  

The overall algorithm is this: mask LSB, increment count with LSB, shift right original value until the original 
value is zero. The value in the LSB of the count is the desired parity value returned to the calling code. There are 
many approaches to calculating parity, this is one of the easier. 

 Subroutine initialization is only a matter of clearing a register that the subroutine uses as 
an accumulator, which occurs on line (10).  

 The main body of the loop is a while loop. The while loop counts the number of bits that 
are set in x10. We implement the while loop as a loop with an unknown number of 
iterations; the idea here is that we’ll keep counting bits in x10 so long are x10 is non-zero. 
We could have modeled this as a loop with a known count (namely, 32), but the way we 
modeled it ensures it will run faster in the average case. Note that this approach only 
works because we know the RISC-V shifting operations shift ‘0’s into the register that is 
being shifted.  
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 Line (13) masks the LSB of x10 and stores the result in x15. Line (14) uses the result of 
the masking operation to increment a count variable stored in x20.  

 Line (15) adjust the original value by shifting it to the right by one bit, then jumps to the 
check instruction on line (12).  

 The done label on line (18) clears the upper 31 bits, thus leaving the required parity bit in 
x20.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#--------------------------------------------------------------------------- 
# Subroutine: parity 
#  
# Determines the parity of the value in x10; returns ‘0’ in x20 if parity  
# is even, otherwise returns ‘1’.  
#  
# Tweaked Registers: x10, x15, x20 
#--------------------------------------------------------------------------- 
parity:  
 
init:   mv    x15,x0         # clear an accumulator 
         
loop:   beq   x10,x0,done    # check to see if were done  
        andi  x15,x10,1      # mask LSB 
        add   x20,x20,x15    # increment bit count 
        srli  x10,x10,1      # shift value right 1 bit 
        j     loop           # rinse, repeat 
         
done:   andi  x20,x20,1      # clear all but LSB 
        ret                  # take it home jimmie 

Figure 15.9: A solution to this example problem. 

 
 

 

Example 15.7: Rotate Left Implementation 

Write a RISC-V assembly language subroutine that rotates the value in x10 left by the value 
in x11. Assume the value in x11 is going to be [0,32].   

Solution Notes: Fun stuff embedded in the solution. This is another handy function. The RISC-V ISA currently 
does not include a rotate instruction. To combat this injustice, we need to implement a rotate in code. Yes, very 
clever algorithm. It seems to work despite its admitted cleverness.  

 The general approach of the subroutine is to use a shift left to do most of the rotate, but to 
catch the bits that we normally shift off into a register that we later add back at the other end of 
the original data.  

 The instruction on line (10) places the length of the RISC-V registers into a register. We’ll use 
this value to find out how many bits we need to shift in the right direction. The actual 
calculation is done on line (11). The result of this subtraction essentially finds the complement 
of the value to shift based on 32. The result is the number of bits to shift in the other direction.  

 We need to operate on two different registers, for we make a working copy on line (12).  

 Line (14) left shifts off the number of bits in the register passed to the subroutine (x12). We 
already saved the original number in x30, so we shift the value that number in the other 
direction, leaving the bits that were shifted off in line (14) in the lower x11 bits of x30.  

 We have both the values remaining in the sent value after the shift (x10) and the bits we shifted 
off at the lower end of x30. We then complete the subroutine by gluing these values together 
with the or instruction on line (17).  
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#--------------------------------------------------------------------------- 
# Subroutine: rot_left 
#  
# This routine performs a rotate left on the value in x10 by rotating 
# x10 by the value provided x11. The value in x11 must be [0,32].  
#  
# Tweaked Registers: x25, x30, x10 
#--------------------------------------------------------------------------- 
rot_left:    
            
init:       li   x25,32        # 32 is the length of registers 
            sub  x25,x25,x11   # get the complement of 32 
            mv   x30,x10       # copy x10 to working register 
             
            sll  x10,x10,x11   # shift the lower bits left 
            srl  x30,x30,x25   # shift the upper bits right 
              
            or   x10,x30,x10   # glue the results together 
              
done:       ret                # go home, all the way home 

Figure 15.10: A solution to this example problem. 

 
 

 

Example 15.8: Classic LED Bouncer 

Write a RISC-V assembly language program lights one LED at a time. The program makes 
it appear as if the lighted LED moves left through 16 LEDs, the back to the right, then back 
to the left, etc. Assume there are 16 LEDs and the output port address of those 16 LEDs is 
0xC0000080.    

Solution Notes: Fun stuff embedded in the solution. This is a fun problem: it’s the bouncing LED problem, 
which has some classic programming constructs. Many approaches to doing this problem. Be sure to check out 
the solution on the simulator of your choice.  

 On lines (08) – (10), we place the output port address in a register so we can later use a store 
instruction for output of data to the LEDs. We output 32 bits to 16 LEDs, for all but one of the 
LEDs is off. We use x10 for the one LED that is one so we initialize it to ‘1’ (only right-most 
LED on). We finish up with initializing register x15 to 15, which we later use to discern when 
we’re done with one left-to-right or right-to-left cycle. Note that we use the init label to 
indicate that chunk of code is initialization code.  

 The algorithm officially starts on line (12) where we initialize a local loop count to 0. This is 
truly an initialization, but we place the code near one of the loops because we jump back to 
this instruction after we finish a right-to-left and a left-to-right cycle.  

 Line (13) shows the first output; we output using a sw (store word) instruction. The data we 
output is the LED value; we output it to the output port address.  

 After the output, we do some administrative tasks. We first shift the register holding the LED 
value to the left on line (14). We then increment the loop count on line (15). The final loop 
administration operation is to jump if the count is not equal to the maximum shift value, which 
we do on line (16).  

 If the branch on line 16 is not taken, then we drop through to the other block of code, which 
shifts the lit LED from the left to the right. We start this process on line (18) by resetting the 
loop counter.  
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 The second loop is similar to the first loop except we are shift right one bit at a time. When 
program controls falls through the second loop on line (22), we jump back to initialize the first 
loop.  

 Note that the overall form of the program is an initialization followed by two do-while loops.  
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(10) 
(11) 
(12) 
(13) 
(14) 
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(19) 
(20) 
(21) 
(22) 
(23) 

#--------------------------------------------------------------------------- 
# Program: led bouncer 
#  
# The program moves a single LED back and forth on an assumed 16 LED  
# display. The LED output port is 0xC0000080  
#  
# Tweaked Registers: x10, x15, x16, x30 
#--------------------------------------------------------------------------- 
init:   li    x30,0xc0000080   # put output port address in register 
        li    x10,1            # initialize LED bounce register 
        li    x15,15           # x15 used as counter register 
      
loop:   mv    x16,x0           # clear counter register 
left:   sw    x10,0(x30)       # output current LED value 
        slli  x10,x10,1        # shift LED left one bit position 
        addi  x16,x16,1        # increment bounce count 
        bne   x16,x15,left     # check loop (goes 15) times 
          
        mv    x16,x0           # init bounce count  
right:  sw    x10,0(x30)       # output current LED value 
        srli  x10,x10,1        # shift right one bit position 
        addi  x16,x16,1        # increment loop count 
        bne   x16,x15,right    # branch to inner loop if loop not 15 
        j     loop             # done with right, go to left 

Figure 15.11: A solution to this example problem. 

 
 

 

Example 15.9: Conditional LED Display 

Write a RISC-V assembly language program lights monitors the 16 switches connected to 
the RISC-V MCU, such as the ones on the development board. Consider the 5 right-most 
switches to form a 5-bit digital number. The program outputs to the LEDs continuously 
according to the following:  

 Switches = 0: turn on right-most four LEDs 

 Switches = 1: turn on the second to right-most four LEDs 

 Switches = 2: turn on the second to left-most four LEDs 

 Switches = 3: turn on left-most four LEDs 

 Otherwise, turn off all LEDs 

Consider the address of the switch input port and LED output port to be 0xC0000040 and 
0xC000008, respectively. 

Solution Notes: Fun stuff embedded in the solution. This is a classic case statement problem, that does not do 
too much exciting as do some of the previous problems up to this point.  

 On lines (12) – (15), we do a bunch of initialization. First we place the port addresses registers. 
Then we initialize a mask for input data, which clears all but the first three bits. Lastly, we 
clear x20, which we later use as a count register.   
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 The code starting at main is essentially more initialization code, but it inits each iteration, 
which means it reinitializes items that were first initialized in the init code, but the values were 
changed by the body of the program.  

 Line (20-21) inputs the data and masks all but the three LSBs. Recall that we only need to look 
for 0-3 for this case statement.  

 The chk_x labels delineate the separate parts of the program where we’re looking for values 0-
3. These sections of code form the cases we’re looking for. The output instruction (sw) on line 
(43) represents the default condition were we turn off all LEDS.  

 We use bne instructions to compare the input to the desired value. We compare the input to a 
counter that we increment in each ch_x checking section of code.  

 We need to output a 4-bit chunk of LEDs that are on, so we keep a register with the desired 
output value. With each checking section, we use the slli instruction to shift that chunk of 
data to the correct position for outputting.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
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(08) 
(09) 
(10) 
(11) 
(12) 
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(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 

#--------------------------------------------------------------------------- 
# Program: switch input monitor 
#  
# The program moves monitors the switches associated with the system. There 
# are 16 switches, which the program reads and then outs a value to the LEDs  
# according to: value 0, 1, 2, 3, none; the corresponding outputs are  
# a set of four LEDs starting from the right and moving to the left. The c 
# default value is all LEDs off.  
# 
# Tweaked Registers: x15, x16, x20, x30, x31 
#--------------------------------------------------------------------------- 
 
init:      li    x30,0xc0000040   # put switch input port address in reg 
           li    x31,0xc0000080   # put LED output port address in reg 
           li    x15,0x00000007   # mask for switches 
           mv    x20,x0           # clear counter register for input compares 
           
         
main:      li    x16,0x0000000F   # start value to output 
           mv    x20,x0           # clear counter register for input compares 
           lw    x10,0(x30)       # get input data 
           and   x10,x10,x15      # mask off lower 3 bits 
         
chk_0:     bne   x10,x20,chk_1    # check input for 0 
           sw    x16,0(x31)       # output to LEDS 
           j     main 
         
chk_1:     addi  x20,x20,1        # increment check count 
           bne   x10,x20,chk_2    # check input for 1 
           slli  x16,x16,4        # value to output 
           sw    x16,0(x31)       # output to LEDS 
           j     main 
 
chk_2:     addi  x20,x20,1        # increment check count 
           bne   x10,x20,chk_3    # check input for 2 
           slli  x16,x16,8        # value to output 
           sw    x16,0(x31)       # output to LEDS 
           j     main 
         
chk_3:     addi  x20,x20,1        # increment check count 
           bne   x10,x20,default  # check input for 3 
           slli  x16,x16,12       # value to output 
           sw    x16,0(x31)       # output to LEDS 
           j     main 
         
default:   sw    x0,0(x31) 
           j     main 

Figure 15.12: A solution to this example problem. 
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As with all code you write, there’s probably a “better” way to write the code. Keep in mind that the notion of 
“better” has many definitions. The thing to note for this solution is that the various case clauses look very 
similar. Anytime you see this in the code, you can often time structure you code to use loop constructs rather 
than the straight through code in the original solution. The code in Figure 15.13 is an attempt to structure the 
code to be more space efficient. This solution obviously requires less instructions, but… it requires more register 
(one more). The funny thing in programming is that there are always tradeoffs. The other trade off in the solution 
of Figure 15.13 is that it runs a bit slower than the first solution, which is because there is always some overhead 
associated with loops, which means there are more instructions that say: “go somewhere” rather than say: “do 
something”.  
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(33) 
(34) 

#--------------------------------------------------------------------------- 
# Program: switch input monitor 
#  
# The program moves monitors the switches associated with the system. There 
# are 16 switches, which the program reads and then outs a value to the LEDs  
# according to: value 0, 1, 2, 3, none; the corresponding outputs are  
# a set of four LEDs starting from the right and moving to the left. The c 
# default value is all LEDs off.  
# 
# Tweaked Registers: x15, x16, x20, x21, x30, x31 
#--------------------------------------------------------------------------- 
 
init:      li    x30,0xc0000040   # put switch output port address in register 
           li    x31,0xc0000080   # put LED output port address in register 
           li    x15,0x00000007   # mask for switches 
           mv    x20,x0           # clear counter register for input compares 
           li    x21,4            # the end count 
           
         
main:      li    x16,0x0000000F   # start value to output 
           mv    x20,x0           # clear counter register for input compares 
           lw    x10,0(x30)       # get input data 
           and   x10,x10,x15      # mask off lower 3 bits 
         
check:     bne   x10,x20,not_eq   # check input for 0 
           sw    x16,0(x31)       # output to LEDS 
           j     main 
         
not_eq:    addi  x20,x20,1        # increment compare count 
           beq   x20,x21,default  # do default if count is 4 
           slli  x16,x16,4        # count != 4, shift output val 
           j     check            # look for next number 
         
default:   sw    x0,0(x31) 
           j     main 

Figure 15.13: A solution to this example problem. 

 
 

 

Example 15.10: Memory Data Swap 

Write a RISC-V assembly language subroutine that swaps the data in two memory 
locations. Consider the data to be words (4-bytes) that reside at the addresses given by the 
values in x20 and x21.   

Solution Notes: Fun stuff embedded in the solution. Note that this is a classic case of using what intelligent & 
useful higher-level languages such a C refer to as pointers. This provides classic genericity when work with data 
sets that you can’t obtain from working with registers alone.  
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 After the great subroutine banner, we include an init label in the program. We do this mostly 
out of habit, as you could argue that we really don’t need to initialize anything.  

 Lines (11-12) show the loading of data from the addresses given in the x20 and x21 registers 
into two working registers x30 & x31.  

 Lines (14-16) show the classic XOR in-place swap trick, showcasing the magic of the XOR 
function.  

 Lines (18-19) uses the address still store in x20 & x21 to store the data back in memory.  

Post Mortem: note that the general structure of the program was to transfer something from memory to 
registers, tweak with the value in registers, then transfer the values back to memory. The idea here is 
that we the only operations we can do with memory is loading and storing; all the interesting bit 
crunching takes place using registers.  

(00) 
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(18) 
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(20) 
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#----------------------------------------------------------------------- 
# Subroutine: mem_word_swap 
# 
# Swap data in the memory location specified by the contents of  
# registers x20 & x21 (x20 & x21 thus contain memory address values).   
#  
# Tweaked registers: x30,x31 
#---------------------------------------------------------------------- 
.text 
 
mem_word_swap:  
init:     lw    x30,0(x20)       # get data from memory 
          lw    x31,0(x21)     
           
          xor   x30,x30,x31      # the classic xor in-place data swap 
          xor   x31,x31,x30 
          xor   x30,x30,x31 
           
          sw    x30,0(x20)       # store the data back at the addresses 
          sw    x31,0(x21)       #  the data was obtained from 
           
          ret                    # take on home 

Figure 15.14: Solution to this example problem.  

 

 

 

Example 15.11: Memory Data Averaging 

Write a RISC-V assembly language subroutine that calculates the average of 32 values 
(words, so 4 bytes) in memory. The starting address of the data is passed to the subroutine 
in register x10; pass the average back to the calling routine by placing the calculated 
average in x20. 

Solution Notes: Fun stuff embedded in the solution. All we know about this problem is the starting address of 
the data to average, and the number of items to average. Sending data to the subroutine is often referred to as 
passing data to the subroutine; returning data from the subroutine is often referred to as returning data from the 
subroutine. Exciting stuff.   

 This is a subroutine that requires accumulating values, which means we first must clear the 
accumulator. We use x20 as the accumulator and clear it on line (09).  

 This is a problem where we iterate a given number of times (32), so we use x15 to hold that 
count and initialize x15 on line (10).  
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 Although the problem does not state it, we’ve decided to save the first address value in x10 by 
copying it to another register, which we do on line (11).  

 The main loop starts on line (13) with a conditional branch (beq). We’re modeling this 
solution using a while loop; since we know we’ll always be adding 32 items; we could have 
easily used a do-while loop for this solution.  

 We first get the data from memory using a lw instruction on line (14), we then accumulate the 
loaded value on line (15). These two lines form the body of the loop; all the other stuff in the 
loop is what we refer to as loop administration.  

 For loop administration, we first decrement the loop count on line (16), then advance the 
address of data we’re loading from memory on line (17). The next line of loop admin is the 
unconditional branch on line (18). The final line of loop admin is the conditional branch on 
line (13).  

 When the branch condition evaluates are true, we branch to the instruction associated with the 
done label. This srli instruction performs the divide by 32. Very handy; we must be thankful 
that the person who created this problem made the divide easy, as a divide by 32 is simply a 
barrel shift right five bit locations.  

 The restore label is used to indicate we’re restoring some registers to the values they had when 
the subroutine started. There are better ways to do this, but this works for now. Please don’t 
tell Jeffrey.  

 Note that since we “restored” the original value of x10, we don’t include it in the tweaked 
register list.  
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#----------------------------------------------------------------------- 
# Subroutine: avg_32 
# 
# Averages 32 words in memory starting at the address in x10. The  
# result is stored in x20.  
#  
# Tweaked registers: x20,x15,x16,x11 
#---------------------------------------------------------------------- 
avg_32:  
init:      mv    x20,x0         # clear accumulator      
           li    x15,32         # number to sum       
           mv    x16,x10        # copy original address 
            
loop:      beq   x15,x0,done    # leave if finished 
           lw    x11,0(x10)     # get value from memory 
           add   x20,x20,x11    # accumulate 
           addi  x15,x15,-1     # decrement loop count 
           addi  x10,x10,4      # advance addr to next data 
           j     loop           # done with iteration, do again 
            
done:      srli  x20,x20,5      # divide by 32 
restore:   mv    x10,x16        # restore original x10 address 
            
           ret                  # come on up to the house 

Figure 15.15: Solution to this example problem.  
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Example 15.12: Fibonacci Sequence Generator 

Write a RISC-V assembly language subroutine that generates the first 16 Fibonacci 
numbers (starting with 1,1) and stores those values as unsigned halfwords starting at address 
x25 in memory. Don’t allow this subroutine to permanently change any register value. 

Solution Notes: Fun stuff embedded in the solution. We all know how much students love solving problems 
having to do with Fibonacci numbers. So here’s the solution in RISC-V assembly language. 

 I’ve of course plopped the solution down; the truth is that I first generated a flowchart before I 
wrote the code. After that, I wrote the code in two main phases. I first wrote code to solve the 
problem. I then added the code I that saved the context of the MCU when the subroutine was 
called. This is essentially a fancy way of saying the subroutine saved all the register that are 
changed in the body of the subroutine on the stack before executing doing anything having to 
do with the Fibonacci sequence. Moreover, once we completed what the problem was asking 
for, we restored the registers we used in the subroutine back to their original values.  

 The first part of any subroutine is the initialization, which we casually label with “init”. For 
most of these problems, initialization includes several phases. First we save any registers we’re 
using in the subroutine. Then we save the return address ra (x1) if the subroutine calls other 
subroutines. Then we initialize important things in the code such as loop counters, 
accumulators, etc. This subroutine doesn’t call another subroutine so we don’t have to save the 
ra register.  

 The subroutine uses five registers, so we make room on the stack so we can safely add these 
registers to the stack. We back the sp up 20 bytes so that we can store 5 registers (recall that 
each register comprises of four bytes) on line (10). We then proceed to save the five registers 
(in no particular order) onto the stack, which we do on lines (11-15).  

 The next part of the initialization is to put the loop count into a register, which we do on line 
(17). We only place the count at 14 even though we intend to generate of Fibonacci sequence 
comprising of 16 values because we hardcode the first two values in the sequence.  

 The first two numbers in the Fibonacci sequence are one, so we opt to place ‘1’ in a register for 
easy later access. This makes sense because we need the value we want to write to memory to 
be in a register.  

 We store the first two values in the Fibonacci sequence on lines (20-21). We follow that by 
adjusting the address pointer x25 by 4, which represents to halfwords We could have done 
these three instructions in different orders using different offsets; there’s nothing magical about 
the approach I took in these lines.  

 After we’ve initialized the first two values in the Fibonacci sequence, we’re ready to enter the 
“algorithmic” portion of the subroutine. This is because unlike the first two values in the 
sequence that we assigned, we’re not ready to calculate the remaining Fibonacci values from 
previous Fibonacci values. We of course do this all this in a loop, and we find it easiest to use a 
while loop. We first check to see if we’re done with the loop starting on line (24).  

 The first part of the algorithm requires up to get the last two values in the sequence from 
memory, which we do on lines (25-26) we grab unsigned halfwords (lhu) as the problem 
specifies. The address was already updated, so we use the offset of these two instructions to 
reach back before the current value of the address (we use negative offsets to reach back).  

 Once we have the two previous values in the Fibonacci sequence, we then add these values to 
form the next value in the sequence on line (27) and store the result in memory on line (28) 
using the sh instruction.  

 At this point, we’re done with the body of the loop and we need to perform some loop 
administration, which include decrementing the loop count on line (29) and then advancing the 
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address value we’re keeping in x25 by two. Note that we add two because we’re working with 
halfwords.  

 After we’ve complete the loop administration we branch unconditionally back to the start of 
the loop.  

 When we eventually complete the loop, we must restore the registers we’re using in the 
subroutine to the values they were at before the subroutine changed them. We do this with five 
lw instructions starting on line (34). Once we’ve restored all the registers, we then adjust the 
stack point by 20, which essentially undoes the operation on line (10).  
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#----------------------------------------------------------------------- 
# Subroutine: gen_fib_16 
# 
# Generates the first 16 Fibonacci numbers (starting with 1,1,...) and 
# stores the numbers as halfwords in memory starting at the address  
# stored in x25.  
#  
# Tweaked registers: none 
#---------------------------------------------------------------------- 
gen_fib_16:  
store:   addi  sp,sp,-20     # adjust sp to save 5 regs 
         sw    x20,0(sp)     # save x20 
         sw    x21,4(sp)     # save x21 
         sw    x25,8(sp)     # save x25 
         sw    x15,12(sp)    # save x15 
         sw    x16,16(sp)    # save x16 
       
init:    li    x20,14        # load loop count 
         li    x21,1         # load initial fib number 
       
         sh   x21,0(x25)     # store first two fib numbers 
         sh   x21,2(x25) 
         addi x25,x25,4      # adjust the pointer forward 
       
loop:    beq   x20,x0,done   # done yet?  
         lhu   x15,-4(x25)   # get two previous values 
         lhu   x16,-2(x25) 
         add   x15,x15,x16   # add two previous value 
         sh    x15,0(x25)    # store result of addition 
         addi  x20,x20,-1    # loop admin: decrement loop count 
         addi  x25,x25,2     # increment pointer forward 
         j     loop          # repeat, rinse 
 
restore: 
         lw    x20,0(sp)     # restore x20  
         lw    x21,4(sp)     # restore x21 
         lw    x25,8(sp)     # restore x25 
         lw    x15,12(sp)    # restore x15 
         lw    x16,16(sp)    # restore x16 
         addi  sp,sp,20      # adjust sp to back to original value 
  
done:    ret 

Figure 15.16: Solution to this example problem.  

 

 

 



FreeRange Computer Design  Chapter 15 

 

 - 395 -  
 

Example 15.13: Largest Value Finder 

Write a RISC-V assembly language subroutine that finds the largest value in the five 
unsigned bytes starting at the address stored in x10. Return the largest value to the calling 
code in x10. Don’t allow the subroutine to permanently change any registers other than 
x10.   

Solution Notes: Fun stuff embedded in the solution. Yet another problem that involves generic access to 
memory. There are many ways structure problems such as this one; we always choose the most generic 
approach. For this problem, that means that we want to make the algorithm in one phase rather than two. For 
problems such as this, it’s always tempting to compare the first two values, then compare all the result to that 
first result. Yep, it works, but it’s easier to keep in simple by making it one phase only.  

 Keep in mind, I first wrote the body of this loop, then went back and saved/restored context. 
This is of course because I don’t’ know what registers need saving until I’m done doing the 
required work.  

 Saving/restoring context only included registers; since this subroutine did not call other 
subroutines, there was no reason to include ra in context saving/restoring. This subroutine 
used three registers, so we saved 12 bytes of space on the stack on line (10). We then stored 
the registers in no specific order and at no specific addresses.  

 The code starting at the init label was for the loop. We need to check five value so we 
initialized a register on line (15). We then wanted to keep our algorithm generic so we 
initialized a register with zero on line (16). Note that zero is the smallest possible value, so the 
MCU stores any value greater than that as the largest value in the loop’s iterations.  

 The body of the loop first loads some data from memory on line (18); the problem stated 
unsigned bytes so we use the lbu instruction. We then compare the loaded data with our 
current largest value on line (19). If we find a new large value, we replace the current larger 
value on line (21).  

 Whether the branch is taken on line (19) or not, we always perform loop administration. For 
this algorithm, that include incrementing the address value on line (23) and decrementing the 
loop counter on line (24). Note that we only increase the address by one because in this 
problem we are dealing with bytes.   

 We model this loop as a do-while loop because we know that we’ll always have to go through 
the loop five times, which of course means we’ll always have to do it once. There are many 
ways to do this but this is probably the most efficient.  

 When we drop out of the loop, we know that x20 has the largest value. We then need to put 
that value in x10 as requested by the original problem, which we do on line (27).  

 Context restoration is performed on lines (29-31). We adjust the stack pointer (sp) on line (32). 
Note that the amount we adjust the stack pointer on line (32) is the opposite of how much we 
adjusted the stack pointer on line (10).  
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#----------------------------------------------------------------------- 
# Subroutine: find_big_5 
# 
# This subroutine finds the largest of 5 continuous unsigned bytes in  
# memory starting at the address store in x10.  
# 
# 
# Tweaked registers: x10 
#---------------------------------------------------------------------- 
find_big_5:         
store:   addi sp,sp,-12      # room for 3 regs 
         sw   x15,0(sp)      # push regs 
         sw   x20,4(sp)      
         sw   x21,8(sp)      
 
init:    li   x15,5 
         mv   x20,x0         # smallest possible 
        
loop:    lbu  x21,0(x10)     # get data 
         blt  x21,x20,Admin  # jump if x16>x17  
        
         mv   x20,x21        # store new large 
       
Admin:   addi x10,x10,1      # incr addr 
         addi x15,x15,-1     # decr loop count  
         bne  x15,x0,loop    # do it again 
        
xfer:    mv   x10,x20        # x15 is largest 
 
restore: lw   x15,0(sp)      # pop regs 
         lw   x20,4(sp)        
         lw   x21,8(sp)       
         addi sp,sp,12       # readjust stack pointer 
          
done:    ret                 # bring it home 

Figure 15.17: Solution to this example problem.  

When I write these problems, I always test them first on one of the RISC-V simulators. To test problems that 
include memory, I have to first put the data in memory. I do this by using the .byte directive in the data segment. 
In general, we put data in the data segment and code in the .text segment. This means that you have to use 
the .data and .text directives to have the data placed in the correct places. I included the full program using both 
segments in the following figure. Here is some stuff to chew on.  

 Line (09) has the .data segment directive. From there we can now specify some dat.  

 Line (10) has some data, which is conveniently give pieces of data. We specify this data as 
being bytes by using the .byte directive, which means the data we specify is stored as bytes in 
memory.  

 We gave the data a label on line (10) also. The issue here is that the assembler can place the 
data anywhere in data memory, we don’t yet have easy control of that. We use a label here 
because we can figure out where that data actually is by using the la instruction on line (13). 
This instruction stands for “load address” and is one of our load instructions that don’t actually 
have anything to do with memory. What this instruction does is put the value associated with 
the “junk” label into register x10. The key to understanding this is the value associated with 
the junk label is the address in memory where the “2” is stored. The value of 45 is one byte 
beyond where the “2” is stored.  

 Before we start writing actual code, we first must change from the data segment to the text 
segment. We do that by using the .text directive on line (12). If we did not do this, the 
assembler would grumble, and no one likes a grumbling assembler.  

 The remainder of the algorithm does not change so we’ll not bore you again with the details.  
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#----------------------------------------------------------------------- 
# Subroutine: find_big_5 
# 
# This subroutine finds the largest of 5 continuous unsigned bytes in  
# memory starting at the address store in x10.  
# 
# 
# Tweaked registers: x10 
#---------------------------------------------------------------------- 
.data                        # declare data segment 
junk:  .byte 2,45,4,5,6      # make up some data 
 
.text 
         la    x10,junk      # load address of data 
          
Find_Big_5:         
store:   addi sp,sp,-12      # room for 3 regs 
         sw   x15,0(sp)      # push regs 
         sw   x20,4(sp)      
         sw   x21,8(sp)      
 
init:    li   x15,5 
         mv   x20,x0         # smallest possible 
        
loop:    lbu  x21,0(x10)     # get data 
         blt  x21,x20,Admin  # jump if we don’t find new large 
        
         mv   x20,x21        # store new large 
       
Admin:   addi x10,x10,1      # incr addr 
         addi x15,x15,-1     # decr loop count  
         bne  x15,x0,loop    # do it again 
        
xfer:    mv   x10,x20        # x15 is largest 
 
restore: lw   x15,0(sp)      # pop regs 
         lw   x20,4(sp)        
         lw   x21,8(sp)       
         addi sp,sp,12       # readjust stack pointer 
          
done:    ret                 # bring it home 

Figure 15.18: Solution to this example problem.  

 

 

 

Example 15.14: Largest Value Finder 

Write a RISC-V assembly language subroutine that finds the largest value in a set of 
unsigned halfwords. The starting address of the data is passed to the subroutine in x10; the 
length of the data is passed to the subroutine in x11. Return the largest value to the calling 
code in x15. Don’t allow the subroutine to permanently change any registers other than 
x15.  

Solution Notes: Fun stuff embedded in the solution. This problem is similar to the previous problem, so we 
won’t include another painful description. The issue with the previous problem was that it was not generic; 
although the subroutine could check data anywhere, it was hardcoded to inspecting five pieces of data. The 
subroutine in this problem differs in that the calling code passes the number of values to check. You’ll be sure to 
note that there are not big changes from the previous problem.  
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 Since we’re passing a new value to the subroutine, which is the count value in a register, we 
need to save that register on the stack. We make room for four register pushes on line (11), and 
save the registers on the four following lines (12-15) 

 We don’t’ need to initialize the loop count since that value is passed to the subroutine in x11. 
We do decrement the loop count as part of loop administration on line (25).  

 Part of loop administration is incrementing the address of the data. Since we’re working with 
halfwords in this subroutine, we increment the address by two each loop iteration; see line (24).  

 Note that this subroutine uses eight labels. Only three of the labels (find_big_uhalf, loop, and 
Admin) are actually required by the code. The unused labels make the code more readable to 
humans but does not increase the storage space requirements of the program.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 

#----------------------------------------------------------------------- 
# Subroutine: find_big_uhalf 
# 
# This subroutine finds the largest of continuous unsigned halfwords 
# starting at the data memory address in x10. The number of halfwords  
# the subroutine inspects is passed in x11. The largest value is  
# passed back to the subroutine in x15.   
# 
# Tweaked registers: x15 
#---------------------------------------------------------------------- 
find_big_uhalf:         
store:   addi sp,sp,-16      # room for 4 regs 
         sw   x15,0(sp)      # push 4 regs 
         sw   x20,4(sp)      
         sw   x21,8(sp)      
         sw   x11,12(sp) 
 
init:    mv   x20,x0         # smallest possible 
        
loop:    lbu  x21,0(x10)     # get data 
         blt  x21,x20,Admin  # jump if we don’t find new large 
        
         mv   x20,x21        # store new large 
       
Admin:   addi x10,x10,2      # incr addr by halfword #bytes 
         addi x11,x11,-1     # decr loop count  
         bne  x15,x0,loop    # do it again 
        
xfer:    mv   x10,x20        # x15 is largest 
 
restore: lw   x15,0(sp)      # pop four pushed regs 
         lw   x20,4(sp)        
         lw   x21,8(sp)       
         lw   x11,12(sp)     
         addi sp,sp,16       # readjust stack pointer 
          
done:    ret                 # bring it home 

Figure 15.19: Solution to this example problem.  

 

 

 

Example 15.15: Memory Data Size Conversion 

Write a RISC-V assembly language subroutine that reads unsigned bytes of data starting at 
the address in x10, and stores that data as equivalent values in words starting at the address 
in x20. Register x11 holds the number of data pieces to translate. Don’t allow the subroutine 
to permanently change any register.  
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Solution Notes: Fun stuff embedded in the solution. This is another generic subroutine that translates data at one 
address in memory to another address in memory. Note that it is specific to what size of the data it translates to 
and from. This lack of genericity is the inspiration for a later problem.  

 The body of the subroutine uses three register, so we make room to save those three registers by 
adjusting the stack on line (10), and pushing the registers on lines (11-14).  

 We don’t’ need to initialize the anything in this program because all the values of interest are 
passed to the subroutine by the code that calls the subroutine. We do leave in a “init” label on 
line (16) as good programming practice; the comment says why the label has no associated code.  

 We increment the byte data source pointer by one and the word data destination pointer by two as 
part of loop administration on line (23) and line (24), respectively.  

 We use a do-while loop in the code. This is relatively bullet-proof because we know the number 
of values to translate that is passed to the program is non zero. We’ll redo this solution with 
another approach to show the possibilities.   

 We restore the context on lines (28-32) by popping values off the stack and adjusting the stack 
pointer.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 

#----------------------------------------------------------------------- 
# Subroutine: byte_to_word 
# 
# This subroutine finds translates contiguous unsigned byte data  
# starting at the value in x10 to word data starting at the address in  
# x20. Register x11 holds the number if values to translate.  
# 
# Tweaked registers: none 
#---------------------------------------------------------------------- 
byte_to_word:         
store:   addi sp,sp,-16       # room for 4 regs 
         sw   x11,0(sp)       # push 4 regs 
         sw   x20,4(sp)      
         sw   x21,8(sp)      
         sw   x10,12(sp) 
 
init:                         # nothing to init 
 
check:   beq  x11,x0,restore  # quit if loop count is zero 
 
loop:    lbu  x21,0(x10)      # get hald data at x10 
         sw   x21,0(x20)      # store data as word x20 
       
admin:   addi x10,x10,1       # incr addr by number of bytes 
         addi x20,x20,4       # incr addr by word  number of byte 
         addi x11,x11,-1      # decr loop count  
         bne  x11,x0,loop     # do it again 
        
restore: lw   x11,0(sp)       # pop 4 pushed regs 
         lw   x20,4(sp)        
         lw   x21,8(sp)         
         lw   x10,12(sp) 
         addi sp,sp,16        # readjust stack pointer 
          
done:    ret                  # come on up to the house 

Figure 15.20: Solution to this example problem.  

Figure 15.21 shows an alternative solution to this example. The solution below is arguably better. The difference 
in this solution is that we modeled the main part of the algorithm as a while loop rather than a do while loop. 
This means that the check for zero loop iterations was part of the body of the loop that than actually checking for 
that condition in the previous solution (recall we used a do-while loop in that solution). 
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 

#----------------------------------------------------------------------- 
# Subroutine: byte_to_word 
# 
# This subroutine finds translates contiguous unsigned byte data  
# starting at the value in x10 to word data starting at the address in  
# x20. Register x11 holds the number if values to translate.  
# 
# Tweaked registers: none 
#---------------------------------------------------------------------- 
byte_to_word:         
store:   addi sp,sp,-16       # room for 4 regs 
         sw   x11,0(sp)       # push 4 regs 
         sw   x20,4(sp)      
         sw   x21,8(sp)      
         sw   x10,12(sp) 
 
init:                         # nothing to init 
 
loop:    beq  x11,x0,restore  # quit if loop count is zero 
         lbu  x21,0(x10)      # get hald data at x10 
         sw   x21,0(x20)      # store data as word x20 
       
admin:   addi x10,x10,1       # incr addr by number of bytes 
         addi x20,x20,4       # incr addr by word  number of byte 
         addi x11,x11,-1      # decr loop count  
         j    loop            # do it again 
        
restore: lw   x11,0(sp)       # pop 4 pushed regs 
         lw   x20,4(sp)        
         lw   x21,8(sp)         
         lw   x10,12(sp) 
         addi sp,sp,16        # readjust stack pointer 
          
done:    ret                  # come on up to the house 

Figure 15.21: An alternative solution to this problem. 

 

 

 

Example 15.16: Two-Digit BCD Number Doubler 

Write a RISC-V MCU assembly language subroutine that doubles a two digit BCD number 
contained x20. The result is passed back to the calling routine in x10. 

Solution Notes: Yet even more fun stuff in assembly language programming land. This problem can be done in 
two distinct ways. The most understandable way would be to translate the code from BCD to binary, double the 
value, then translate the value back to BCD. This would be generally straightforward as there are many such 
translation routines out there. But since this problem only deals with a 2-digit decimal value, and we don’t have 
the support translation subroutines already coded, we’ll take a different approach.  

The algorithm we’ll use is to double the 1’s digit; if the result is greater than 10, it exceeds the decimal digit 
range, so we then need to subtract 10 and later increment the 10’s digit. We roughly do the same thing for the 
10’s digit, but in that case, we need to increment the 100’s digit. We’re adding two 2-digit decimal number (max 
= 99), the result will be between zero and 198 ( [0,198] ). You’ll see this happen in the algorithm. Here are some 
other cool things to note about the solution.  

 We cleverly forgot to say “don’t permanently change any registers”, which means we don’t need to 
push the registers at the beginning of the routine and pop them later. We of course should do this in real 
life, but not doing so here makes the solution shorter.  
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 We initialize three values starting on line (09). This includes copying the original value on line (10), 
clearing an accumulator register on line (09), and keeping around a “carry value” on line (11), which 
we’ll use for the possible carry from the 1’s to 10’s digit.  

 The processing of the 1’s data starts at line (13) where we first mask off all but the 1’s nibble. We then 
double that value on line (14). We need to check to see if that value is greater than 10, and if it is, we 
need to decrease it by 10 and add carry value to our carry register x15. We use the slti instruction on 
line (15) because it works well with immediate values (which is not true of branch instructions). We set 
the x25 register to indicated the value is less than 10, which means we don’t have to do anything. If the 
value is not less than 10, we need to subtract 10 from the value, which we do on line (19), and then set 
the carry value in x15. When we’re done processing the 10’s digit, we’ll add the value in x15 without 
checking to see what it is.  

 We added 0x10 to “increment” the 10’s digit. We do this because we don’t want to have to shift the 
10’s digit to the 1’s position. This is a common trick when working with BCD values. Expect to see that 
again when we process the 10’s digit.  

 We accumulate the resulting 1’s value on line (21) whether we’ve modified it or not.  

 We then process the 10’s digit starting on line (23). We start by retrieving the original value. Recall that 
we were using a copy when we processed the 1’s digit. The remainder of the algorithm is similar to the 
1’s processing so we’ll not bore you to death with more verbose description. The only difference is that 
we need to add 0x100 when there is a carry out from the 10’s processing, which we do on line (31). 
Note on line (32), the assembler is smart enough to handle negative hexadecimal numbers.  

 We do the final accumulation on line (33).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 

#----------------------------------------------------------------------- 
# Subroutine: bcd_2x 
# 
# This subroutine multiplies the two digit BCD value in x10 by two and 
# stores the result in x10. 
#  
# Tweaked registers: x10, x21, x15, x25 
#---------------------------------------------------------------------- 
bcd_2x:  
init:     mv   x10,x0           # clear x10 
          mv   x21,x20          # copy x 20 
          mv   x15,x0           # clear carry value 
     
ones:     andi x21,x21,0xF      # mask low nib 
          add  x21,x21,x21      # 2x low nib 
          slti x25,x21,0x0A     # check is < 10 
          beq  x25,x0,fix_1s    # branch if not 
          j    done_1           # jump if < 10 
            
fix_1s:   addi  x21,x21,-10     # adjust 1’s sum 
          addi  x15,x15,0x10    # store carry  
done_1:   add   x10,x10,x21     # accumulate 1’s value 
 
tens:    mv    x21,x20         # get copy 
         andi  x21,x21, 0xF0   # mask 
         add   x21,x21,x21     # 2x tens 
         add   x21,x21,x15     # add carry 
         slti  x25,x21,0xA0    # see if > 0xA0 
         beq   x25,x0,fix_10s  # branch to fix 
         j     done_10         # jump to not fix 
           
fix_10s: addi  x10,x10,0x100   # increment 100’s digit 
         addi  x21,x21,-0x0A0  # decrement 10’s value 
done_10: add   x10,x10,x21     # accumulate 10’s res 
      
restore: ret                   # take it home  

Figure 15.22: The solution to this example. 
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Example 15.17: Memory-Based Absolute Value Conversion 

Write a RISC-V MCU assembly language subroutine that replaced signed bytes in 
contiguous memory with their absolute values. The address of the first value is passed to the 
subroutine in x10; the number of value to operate on is stored in register x11. The 
subroutine should not permanently change and register values. 

Solution Notes: More fun stuff in solutionland. This is a relatively straightforward solution, though it does use 
an instruction that we’ve not used before. Here are some cool things to note about the solution.  

 We left in some test code for this solution on lines (09-16). If you use these in the simulator, you’ll be 
able to see the results develop in memory starting at the junk label.  

 The subroutine uses three registers, so we need to make room for those registers on the stack by 
adjusting the stack pointer on line (19) and then copying the three registers used in the algorithm to 
memory on lines (20-22). We need to adjust the stack pointer in the direction of lower memory, which 
we do subtracting 12 from the stack pointer value, which represents 4 bytes for each of the three 
registers that the subroutines changes. We of course don’t know which registers we use until we finish 
coding the algorithm.  

 We choose a while loop for this algorithm because it has an initial check for the loop value, which we 
do on line (25). There are many possible ways to structure this algorithm, this is the way that makes the 
most sense for us.  

 We load a byte value on line (26) using the lb instruction, which loads signed bytes into a registers. We 
then use an if-else construct to determine if the value is negative or not. If the value is negative, we 
must negate it, which we do with the neg instruction on line (29). The neg instruction is a 
pseudoinstruction, but who really cares? If the value is positive, we do not change it.  

 Line (32) has the loop administration, which include decrement the loop counter on line (33) and 
incrementing the address value on line (32). Pretty exciting stuff.  

 When we complete all required iterations, we restore the registers the subroutine uses on lines (37-39). 
We follow that with an adjustment of the stack pointer on line (40).  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 

#----------------------------------------------------------------------- 
# Subroutine: abs_mem 
# 
# This subroutine multiplies takes the absolute value of signed bytes  
# in memory starting at the address in x10, and does this for the number 
# of values represented by the count in x11.  
# 
# Tweaked registers: none 
#---------------------------------------------------------------------- 
#----------- test code ------------------------ 
#.data 
#junk:    .byte -3,-5,4,8,-11   
#            
#.text 
#          li    x11,5 
#          la    x10,junk 
#----------- test code ------------------------ 
           
abs_mem:   
store:    addi  sp,sp,-12    # room on stack 
          lw    x10,0(sp)    # push regs 
          lw    x11,4(sp) 
          lw    x12,8(sp) 
init:                        # nothing to init 
 
loop:     beq   x11,x0,done  # check if zero 
          lb    x20,0(x10)   # load value 
          bge   x20,x0,write # br if > 0 
           
          neg   x20,x20      # change sign 
write:    sb    x20,0(x10)   # store value 
   
admin:    addi  x10,x10,1    # incr addr 
          addi  x11,x11,-1   # decr loop count 
          j     loop         # do again 
     
done:      
rstore:   lw    x10,0(sp)    # pop regs 
          lw    x11,4(sp) 
          lw    x12,8(sp) 
          addi  sp,sp,12     # adjust sp 
          ret                # bring it home  

Figure 15.23: The solution to this example. 

 

 

 

Example 15.18: Sorting Values 

Write a RISC-V MCU assembly language subroutine that sorts ten words in descending 
order. The ten words are contiguous in memory and start at the address stored in register 
x10. The subroutine should not permanently change and register values. 

Solution Notes: More fun stuff in solutionland. The most straightforward sort is bubble sort. While this solution 
is straightforward, it not efficient computationally speaking. My vote goes for the straightforwardness of the 
solution. There are many ways to structure this code; I’ve opted to do that way that divides the complexity of the 
code into subroutines. The bubble sort is a classic “loop inside of a loop” algorithm, so we use the notion of the 
“inside loop” and the “outside loop” throughout the solution description. Here are other lowlights of the solution.  

 I left in some test code so you can give it a try in the simulator; this code is on lines (08-11).  

 The algorithm uses six registers, so we push them all. The subroutine also calls a subroutine, which 
means we also must push the return address register, which we do on line (20).  
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 The init code starts on line (23) and includes initializing both the inside and outside loops to 9. The 
significance of 9 is that it is one less than 10, which is the number of values we want to sort. We’ll be 
tweaking with the address, so we also make a working copy of the original address in x10 on line (25).  

 The inner-loop basically calls the swap subroutine. All the swapping work is done in the swap routine, 
which we intentionally did to simplify the calling code in the bbl_sort subroutine.  

 The calling code passes the address of the first word to consider; the subroutine leverages the fact that 
the second word is 4 beyond (bytes or one word) the first word. The swap routine does not save 
registers; we save the registers the swap routine uses in the store and restore sections of the bbl_sort 
subroutine.  

 The swap_q loads the two words to compare into registers. If the two values need to be swapped, the 
subroutine swaps them by storing them in opposite addresses from which they were loaded. Otherwise, 
the subroutine simply returns  

 The inner loop administration consists of advancing the address and decrementing the loop count, 
which is done on lines (31-32).  

 The outer loop administration consists of resetting the inner loop counter on line (36), decrementing the 
outer loop counter on line (35), and resetting the address value back to the start of the numbers to be 
sorted on line (37).  

 Lines (41-48) restore context, including the return address, which we needed to save because we called 
the swap_q subroutine.  

 We had to adjust our labels in this program. I like to use labels such as “done”, but there are several 
contexts in which I needed to say “done”. The solution I went with is to use “done_1” and “done_2”. 
Not too exciting, but it works.  

 This solution included two subroutines, both with nice looking (if I do say so myself) headers with all 
the pertinent information included.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 
(54) 
(55) 
(56) 
(57) 
(58) 
(59) 
(60) 
(61) 
(62) 
(63) 
(64) 
(65) 
(66) 
(67) 

#--------------------------------------------------------------- 
# Subroutine: bbl_sort 
#  
# This subroutine sorts (bubble sort) 10 words in memory  
# starting at the address passed in x10.  
# 
# Tweaked regsiters: none 
#--------------------------------------------------------------- 
#.data       # test code for simulator 
#arr:   .word  10,3,5,4,3,8,3,4,7,1 
#.text  
#            la     x10,arr 
 
bbl_sort:  
store:        addi  sp,sp,-28         # adjust stack pointer 
              sw    x10,0(sp)         # save context 
              sw    x11,4(sp) 
              sw    x12,8(sp) 
              sw    x25,12(sp) 
              sw    x26,16(sp) 
              sw    x30,20(sp) 
              sw    ra,24(sp)         # push return address 
             
init:         li    x25,9             # inside count 
              li    x26,9             # outside count 
              mv    x30,x10           # array start address 
         
loop_out:     beq   x26,x0,done_out   # outer while loop                          
             
loop_in:      beq   x25,x0,done_in    # inner while loop 
              call  swap_q            # do swap 
              addi  x25,x25,-1        # decr inner loop count 
              addi  x10,x10,4         # advance address 
              j     loop_in           # keep doing it 
 
done_in:      addi  x26,x26,-1        # decr outer loop count 
              li    x25,9             # reload inner loop count 
              mv    x10,x30           # reload starting address 
              j     loop_out          # jump to outer loop 
             
done_out:   
restore:      lw    x10,0(sp)         # restore context 
              lw    x11,4(sp) 
              lw    x12,8(sp) 
              lw    x25,12(sp) 
              lw    x26,16(sp) 
              lw    x30,20(sp) 
              lw    ra,24(sp)         # restore return address 
              addi  sp,sp,28          # adjust stack 
done_1:       ret                     # take it on home 
#--------------------------------------------------------------- 
 
#--------------------------------------------------------------- 
# Subroutine: swap_q 
#  
# This subroutine sorts two words in memory starting at the  
# address passed in x10.  
# 
# Tweaked registers: x11,x12 
#--------------------------------------------------------------- 
swap_q:  
              lw    x11,0(x10)  
              lw    x12,4(x10) 
              bge   x11,x12,done_2 
              sw    x11,4(x10) 
              sw    x12,0(x10) 
done_2:       ret    
#---------------------------------------------------------------- 

Figure 15.24: Yet another meaning-packed solution. 
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Example 15.19: Increasing Number Determination 

Write a RISC-V assembly language subroutine that determines if all the data in contiguous 
memory locations is non-zero and always increasing. Consider the data to be signed 
halfwords. X15 contains the address of the first halfword; continue checking until two 
contiguous pieces of data are equivalent. Return the number of increasing data in x12. 
Assume the data terminates the algorithm in a reasonable amount of time. 

Solution Notes: This is a classic hardware problem done many times in your introductory digital design course. 
This is another one of those problems that has a special starting initialization that we want to use in order to 
make the algorithm more generic and thus easier to encode. For this problem, it means starting the algorithm by 
loading the first piece of data. 

 This problem has a special and exciting exit condition from the loop; we iterated many of our 
past loops a known number of time; this problem iterates a conditional number of times. Note 
that the ending condition is when we find two pieces of contiguous data that are equivalent.  

 For this problem, we are only reading data, so there is no need for a sb instruction.  

 We left in the test code for the subroutine on lines (10-14).  

 The initialization comprised of a few things in order to make the algorithm more generic. Line 
(17) clears a counter register to hold the number of pieces of data in a row. We then need to get 
the first piece of data on line (18), which we check to see if it’s zero (and quit if it is). We then 
need to increment our counter and address value. The fact that we increment the counter is 
arbitrary. This means there is one at least one piece of non-zero data increasing data in the way 
we did this.  

 The body of the algorithm gets another piece of data on line (24). If the data is zero, we quit by 
branching to the end (line 25). We also check to see if the current data is less than or equal to 
the old data; we quit if it is (line 26).  

 The loop administration for this algorithm includes three items. First, we copy the new data to 
the old data on line (28). Second, we increment the memory address on line (29). Third, we 
increment our counter on line (30).  

 We opted not to save context on this problem simply to save space. Once you do it a few 
times, it’s the same stuff over and over again. Not too exciting after you do it a few times.  
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#----------------------------------------------------------------------- 
# Subroutine: Cnt_incr 
# 
# This subroutine goes to a specific address in memory and counts 
# how many pieces of data are both non-zero and increasing. The count 
# is returned in x12.  
# 
# 
# Tweaked registers: x10,x11,x12,x15 
#---------------------------------------------------------------------- 
#.data 
#junk:   .byte  -6, -2, 1, 1, 3, 8, 8 
# 
#.text 
#         la     x15,junk 
           
Cnt_incr:  
init:     mv    x12,x0          # counter reg 
          lb    x10,0(x15)      # get first piece of data 
          beq   x10,x0,done     # quit if data=0 
          addi  x15,x15,1       # increment address 
          addi  x12,x12,1       # increment counter 
           
           
loop:     lb    x11,0(x15)      # get more data 
          beq   x11,x0,done     # quit if data=0 
          ble   x11,x10,done    # quit if not greater than 
 
admin:    mv    x10,x11         # store last data 
          addi  x15,x15,1       # incr address 
          addi  x12,x12,1       # incr counter 
          j     loop            # do it again 
 
done:     ret                   # take it home 

Figure 15.25: Solution to this example problem.  

 

 

 

Example 15.20: Increasing Number Determination Yet Again 

Write a RISC-V assembly language subroutine that determines if all the data in contiguous 
memory locations is non-zero and always increasing. Any zero value does not count toward 
the average. The final result should be rounded up and returned to the calling code in 
register x25.   

Solution Notes: This problem is similar to other problems, but with two new items. First, we add (and count that 
add) only if the value is non-zero. Second, when we do that math to take the average, we round up instead of 
truncating. Note that when we right-shift a number, we lose those bits as part of the number, so we are by 
definition truncating the value. This is easy to do with the shift-right instructions, but not always what we want 
to do. Here is some other fun stuff in the solution. A. 

 The init routine clears the accumulator and set the loop count on lines (20-21).  

 We model the body of this algorithm with a while loop, which starts on line (23).  

 The body of the algorithm is to get data (line (24)) and use that data in the calculation it is not 
zero. That means we first examine the data to see if it’s a candidate for adding on line (25). If 
we include the data, we then branch to our admin line, though we branch to only part of the 
admin (the part that advances the counter). When the value is non-zero, we advance the 
counter but we also decrement the loop count on the line before the admin label (line (28)).  
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 When we exit the loop, we must process the sum, which means a divide by 6 using a shift-right 
instruction on line (34).  

 In order to round the result up, we are going to isolate the 6th bit from the right and add it to the 
final value. We first shift the sum right by five bits on line (32), then mask all but the LSB on 
line (33). We don’t know if this value is a 1 or a 0, but we don’t care; we simply add this value 
to the sum that right-shifted by 6 places on line (35). Wow. Too much excitement for one 
problem.  
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#----------------------------------------------------------------------- 
# Subroutine: nz_avg_64  
#  
# This subroutine finds the average of 64 non-zero unsigned words in  
# memory. The first piece of data must be located at the address in x10;  
# all other data is contiguous. Any zero value does not add to the  
# overall number of value being averaged. The final answer is rounded up  
# as opposed to being truncated.  
# 
# Tweaked registers: x25, x20, x11, x10 
#---------------------------------------------------------------------- 
 
#-- test code ----------------------------- 
.data 
junk:   .word 1,2,4,8,16,0,32,64,128 
 
.text 
         la   x10,junk 
#------------------------------------------          
nz_avg_64:  
init:    mv    x25,x0       # clear accum 
         li    x11,64       # set count (8 for test code) 
 
loop:    beq   x11,x0,done  # see if done 
         lw    x20,0(x10)   # get data 
         beq   x20,x0,admin # skip if zero 
more:    add   x25,x25,x20  # accumulate 
 
         addi  x11,x11,-1   # decr loop count 
admin:   addi  x10,x10,4    # advance addr 
         j     loop         # rinse, repeat 
 
done:    srli  x11,x25,5    # save lsb 
         andi  x11,x11,1    # mask lsb 
         srli  x25,x25,6    # take avg 
         add   x25,x25,x11  # add 2^-1 bit 
          
         ret                # take it home 

Figure 15.26: Solution to this example problem.  

 

 

 

Example 15.21: Register-Based Parity Determination 

Write a RISC-V assembly language subroutine that determines the parity of the value in 
register x10. The parity is passed back to the calling program in x10, where x10=1 indicates 
odd parity and x10=0 is even parity.   

Solution Notes: This is a popular operation, but also a great opportunity to use a LUT in a solution. We’ve 
probably done this solution previously not using a LUT, but we’ll include that solution here as well. Here is 
some fun stuff to note about the solution in Figure 15.27 



FreeRange Computer Design  Chapter 15 

 

 - 409 -  
 

 The first part of the solution is to define the LUT, which we do on lines (11-12). We of course 
need to put the LUT in the data segment, which we declare using the .data directive on line 
(10).  

 The LUT defines 16 bytes of data, which represents the number of bits set in the set of 4-bits 
(nibble). For example, the 0, 1, 1, 2 (the first four values in the LUT) represent the number of 
bits set in 0000, 0001, 0010, and 0011. We provide a value for each possible combination of 
four bits.  

 We’ll look up nibbles in the table, which means we have to perform eight table look-ups. This 
means we need a loop that iterates eight times, which we initialize on line (15).  

 We’ll be counting bits, or accumulating them, so we’ll need to clear a register to use as a 
counter, which we do on line (16).  

 We then need to store the base address of the LUT, which is the value associated with the 
“par_val” label. We use the la instruction to do this on line (17).  

 The body of the loop is a while loop, so it starts with checking if there is more work to do, 
which we do on line (19).  

 The first step in the algorithm is to mask the lower nibble of the data of interest (x10), which 
we do on line (20). This gives us the offset into the LUT. We add this offset to the base address 
of the LUT, which we previously stored in x30; this is on line (21). The value in x22 is now 
the address of the value we’re looking for in the table, a value we grab with the load byte 
unsigned instruction on lien (22). The data we load is the number of bit set in the nibble we got 
by masking on line (21). We accumulate the number on line (23).  

 The loop admin first needs to shift the original value right by four places, which we do one line 
(25). We then need to decrement the loop count, which we do on line (26).  

 Once we complete the loop, we need to mask the result (mask the LSB) and then store the 
result in x10; we do both of these tasks with one instruction on line (30).  
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#----------------------------------------------------------------------- 
# Subroutine: Par_32b 
#  
# This subroutine finds parity of the value in x10 and returns the 
# result in x10 where x10=1 = odd and x10=0 is even parity.  
# 
# Tweaked registers: x20, x10, x21, x22, x15 
#---------------------------------------------------------------------- 
 
# num of bits set in each nibble (range: [0,15]) 
.data 
par_val: .byte   0,1,1,2,1,2,2,3    # values 0 -> 7 
         .byte   1,2,2,3,2,3,3,4    # values 8 -> 15 
.text 
Par_32b:  
init:       li    x20,8          # loop count 
            mv    x15,x0         # bit count 
            la    x30,par_val    # get address of LUT 
             
loop:       beq   x20,x0,done    # done yet?  
            Andi  x21,x10,0xF    # calc table offset 
            add   x22,x30,x21    # calc index 
            lbu   x22,0(x22)     # table look-up 
            add   x15,x15,x22    # accumulate 
             
admin:      srli  x10,x10,4      # shift right one nibble 
            addi  x20,x20,-1     # decr loop count 
            j     loop           # rinse, repeat 
            
done:       mv    x10,x15        # load count to x10 
            andi  x10,x10,1      # mask LSB 
            ret                  # take it on home 

Figure 15.27: Solution to this example problem.  

This above solution requires about 150 clock cycles to execute. We redo this problem (without verbose 
description) in Figure 15.28. This solution uses a different algorithm that does not use a LUT. Although 
the code is noticeably shorter, the runtime is significantly greater, as the algorithm in Figure 15.28 
requires almost 400 clock cycles to execute. The final word here is that the LUT solution ran faster, but 
it required more code space and more data space. It’s a common tradeoff in computerland.  
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#----------------------------------------------------------------------- 
# Subroutine: Par_32b 
#  
# This subroutine finds parity of the value in x10 and returns the 
# result in x10 where x10=1 = odd and x10=0 is even parity.  
# 
# Tweaked registers: x15, x20, x11, x10 
#---------------------------------------------------------------------- 
 
.text 
Par_32b:  
init:       li    x20,32         # loop count 
            mv    x15,x0         # bit count 
             
loop:       beq   x20,x0,done    # done yet?  
            Andi  x21,x10,0x1    # mask bit 
            add   x15,x15,x21    # accumulate 
            srli  x10,x10,1      # shift 
admin:      addi  x20,x20,-1     # decr loop count 
            j     loop           # rinse, repeat 
            
done:       andi  x10,x15,1      # mask LSB 
            ret                  # take it on home 

Figure 15.28: Solution to this example problem.  



FreeRange Computer Design  Chapter 15 

 

 - 411 -  
 

 

 

 

Example 15.22: Interrupt Paced I/O 

Write a RISC-V OTTER interrupt-driven assembly language program that does the 
following. Each time the MCU receives an interrupt, the program inputs a value from port 
address 0x11002222 and adds this value to a running total. Once the program receives ten 
interrupts, the program outputs the sum to address 0x11003333. The program then waits for 
a button press (LSB of port address 0x11005555) to happen, to start accumulation again 
from zero.  

 Don’t worry about button debouncing for this button.  

 Don’t do any I/O from the ISR 

Solution Notes: This is our first interrupt driven program. This follows a standard format of interrupt driven 
programs in that it’s not too exciting (contrived problems) but it does show the correctly architected interrupt 
driven program. Here’s some stuff to note in the solution.  

 We first place the I/O addressed called out in the problem into registers, which we do on lines (11-13). 
Putting the addresses in registers saves instructions later in the program.  

 Because this is an interrupt driven program, we need to load the interrupt vector (the address of the first 
instruction in the ISR) into CSR[mtvec]. We do this on lines (15-16).  

 We need to continually re-enable the interrupts after we receive in interrupt, for we place a 1 in x9 on 
line (18). Once again, this saves instructions later in the program.  

 We then do some more initialization stuff including clearing the accumulator and setting the iterative 
count value on lines (20-21).  

 Lastly for the initialization stuff, we turn on the interrupts on line (24). We use x8 as a flag register, so 
we clear that value on line (23).  

 The program then goes into a polling loop waiting for an interrupt. This loop constantly checks the x8 
register, which we use as a flag. This register is initially cleared, and is then only set when the program 
receives an interrupt. The entire ISR is thus to set that x8 value to non-zero and return from the ISR 
(lines (46-47)).  

 When the program receives an interrupt we first input a value and add that value to our running total, 
which we do on lines (28-29).  

 Next the program does admin stuff that first include decrementing the loop count on line (31). If the 
loop count is non-zero, we’re done with admin stuff and we get ready for the next interrupt by jumping 
back to somewhere near the start of the program. We arranged the init code such that we could do this 
and thus saved a few instructions. If there are still more values to add, we only need to turn the 
interrupts back on, which we do by jumping to the redo_2 label.  

 If the loop count has run out, we need to first output the accumulated value, which we do on line (34). 
We then need to go into a polling loop waiting for a button press. The polling loop on lines (36-38) 
consists of inputting the buttons, masking the LSB, and checking to see if it is set or not. If it is not set, 
the button of interest is not pressed and we keep looking/waiting. If the bit is set, there was a button 
press and we branch to our complete initialization routine starting on the line associated with the redo_1 
label.  
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#--------------------------------------------------------------------------- 
# This program that does the following: Each time the MCU receives  
# an interrupt, the program inputs a value from port address 0x11002222  
# and adds this value to a running total. Once the program receives  
# ten interrupts, the program output the sum to address 0x11003333. The  
# program then waits for a button press (LSB of port address 0x11005555)  
# to happen, to start accumulation again from zero. Don’t worry about  
# button debouncing for this button.  
#----------------------------------------------------------------------- 
 
.text     
.init:   li     x10,0x11002222  # input port address 
         li     x11,0x11003333  # output port address 
         li     x12,0x11005555  # button port address 
          
         la     x6,ISR          # load address of ISR into x6 
         csrrw  x0,mtvec,x6     # store address as interrupt vector CSR[mtvec] 
 
         li     x9,1            # store 1 for interrupt enable 
 
redo_1:  mv     x20,x0          # accumulation value 
         li     x25,10          # iteration count 
          
redo_2:  mv     x8,x0           # clear flag value 
         csrrw  x0,mie,x9       # enable interrupts 
 
wait:    beq    x8,x0,wait      # wait for interrupt 
 
body:    lw     x15,0(x10)      # input data 
         add    x20,x20,x15     # accumulate 
          
admin:   addi   x25,x25,-1      # decrement loop count          
         bnez   x25,redo_2      # jump to reset stuff 
          
done:    sw     x20,0(x11)      # output accumulated value 
 
poll:    lw     x20,0(x12)      # input buttons 
         andi   x20,x20,1       # mask LSB 
         beq    x20,x0,poll     # keep looking for button press 
          
         j      redo_1          # rinse, repeat 
#----------------------------------------------------------------------- 
       
#----------------------------------------------------------------------- 
#- The ISR: sets bit x8 to flag task code 
#----------------------------------------------------------------------- 
ISR:       mv   x8,x9 
           mret 
#----------------------------------------------------------------------- 

Figure 15.29: The solution to this example. 
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Example 15.23: Interrupt-Driven Programming 

Write a RISC-V OTTER interrupt-driven assembly language program that does the 
following. When a button is pressed (LSB of port address 0x11008888), the program waits 
for interrupts. Each time it receives an interrupt, the program stores the average of the 
current value it read from port address 0x11009999 with the previous value it read from that 
port in contiguous memory addresses 0x0000FF00. After 100 values are written to memory 
(101 interrupts), the program then waits for another button press. Don’t write a value until 
after the MCU receives the second interrupt.  

 Don’t worry about button debouncing for this button.  

 Don’t do any I/O from the ISR 

 Assume additions never overflow 32 bits.  

Solution Notes: This is another interrupt driven program. This has the standard format of an interrupt driven 
program. Here’s some stuff to note in the solution.  

 We first place the I/O addressed called out in the problem into registers, which we do on lines (12-
13).  

 We next store the address of the interrupt service routine in the CSR register (16).  

 We need to do many stores of data to memory starting at the given memory location, so we put that 
value in a register also on line (18).  

 We’ll need to enable interrupts quite often, so we leave a ‘1’ in x9 on line (19).  

 We then do a bunch of administrative work starting at the instruction with the “restart” label. As 
you’ll see later in this solution, we’ve arranged this solution such that we can reuse the three 
instructions at this label, lines (21-23), later in the program. This program does the same thing over 
and over again, so it makes sense to reuse as much code as possible.  

 The next this to do is wait for a button press, which is essentially the dreaded poll line lines (25-
27). We first load some data, mask it, and check for the right-most button being pressed.  

 If program execution falls through the poll, it is then that we enable interrupts on line (29). We 
generally keep interrupts disabled until we truly need them (or are ready for them). In this program, 
we don’t need to deal with interrupts until the button has been pressed.  

 After the interrupts are enable, we go into a second poll that is waiting for interrupts, which is on 
line (31). Once we receive an interrupt, we drop out of the poll and start doing more meaningful 
stuff. We first load some real data on line 33. This represents the first piece of data, so we don’t do 
anything with it because we’re going to store an average of two pieces of data in memory. We clear 
the flag on line (34), and enable the interrupts again on line (35).  

 We enter a third poll on line (31), waiting for more interrupts. The functionality is similar to the 
previous poll in that we first load some data on line (39). We next need to add the new data to the 
previous value on line (40) and average the two pieces of data using a shift right on line (41). This 
is the value we want to store, which we do one line (42). The last part of the body of this algorithm 
is to make the more recent data into the older data in preparation for receiving more interrupts.  

 The loop admin includes clearing the x8 flag on line (45), advancing the address on line (46), and 
decrementing the loop count one line (17). At this point, if the loop count is less than zero, we 
leave the algorithm by jumping to the restart label. The code at the restart label prepares the 
algorithm to happen again after yet another button press. If there are still more counts left in the 
loop count, we enable interrupts on line (51) and jump back to the third poll, which is associated 
with the “wait3” label.  
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 The ISR is relatively simple; it comprises of signaling the background task by putting a non-zero 
value in x8.  
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#-------------------------------------------------------------------------- 
# This program that does the following: When a button is pressed  
# (LSB of port address 0x11008888), the program waits for interrupts. 
# Each time it receives an interrupt, the program stores the average of  
# the current value it read from port address 0x11009999 with the  
# previous value it read from that port in contiguous memory addresses  
# starting at 0x0000FF00. After 100 values are written to memory  
# (101 interrupts), the program then waits for another button press  
# and repeats the same functionality. The buttons are not debounced.  
#-------------------------------------------------------------------------- 
   
.text     
.init:   li     x10,0x11008888  # button port address 
         li     x11,0x11009999  # input port address 
                   
         la     x6,ISR          # load address of ISR into x6 
         csrrw  x0,mtvec,x6     # store address as interrupt vector CSR[mtvec] 
          
         li     x29,0x0000FF00  # establish memory address 
         li     x9,1            # store 1 for interrupt enable 
          
restart: mv     x8,x0           # clear flag value 
         li     x17,100         # set loop count 
         mv     x30,x29         # make working copy of memory address 
 
wait1:   lw     x20,0(x10)       # get button data 
         andi   x20,x20,1        # mask button data 
         beq    x20,x0,wait1     # keep waiting 
          
         csrrw  x0,mie,x9        # enable interrupts 
 
wait2:   beq    x8,x0,wait2      # wait for first interrupt 
 
         lw     x25,0(x11)       # get first piece of data 
         mv     x8,x0            # clear flag value 
         csrrw  x0,mie,x9        # enable interrupts 
 
wait3:   beq    x8,x0,wait3      # wait for more interrupts 
 
         lw     x26,0(x11)       # get first piece of data 
         add    x25,x25,x26      # add to previous input 
         srli   x25,x25,1        # divide by 2 
         sw     x25,0(x30)       # store avg in memory 
         mv     x25,x26          # save previous input  
          
admin:   mv     x8,x0            # clear flag value 
         addi   x30,x30,4        # advance address 
         addi   x17,x17,-1       # decrement loop count 
          
         bltz   x17,restart      # start over if done 
          
         csrrw  x0,mie,x9        # enable interrupts 
         j      wait3            # wait for next interrupt          
#----------------------------------------------------------------------- 
        
#----------------------------------------------------------------------- 
#- The ISR: sets bit x8 to flag task code 
#----------------------------------------------------------------------- 
ISR:       mv   x8,x9 
           mret 
#----------------------------------------------------------------------- 

Figure 15.30: The solution to this example. 
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Example 15.24: Digital Averaging Filter 

Write a RISC-V assembly language subroutine that implements a digital averaging filter. 
This subroutine averages four memory locations of unsigned halfwords starting at 
mem[x10], and replaces the halfword at address x10 in memory with the average of the four 
contiguous values. The subroutine replaces the number of values passed to the subroutine in 
register x11. The average rounds up before written.  

Solution Notes: This is a classic subroutine that implements a digital filter. This is actually a potentially useful 
subroutine; you’ll probably see other filters in later subroutines because that’s all I can think of at this point in 
time. 

 First thing to note is the great header. We once again did not push/pop registers simply to save space on 
the paper. All good subroutines protect the registers they use. 

 We start the algorithm by loading four chunks of data (halfwords) into four registers, which we do on 
lines (17-20).  

 Starting as line (22), we add the four previous values we loaded. This takes three lines.  

 After we add the four values, we shift the values right one time (divide by two). We need to divide by 
four, but we divide by two because we need to round up the average we’re calculating. The first divide 
is on line (25). We mask that result (the LSB) on line (26), we later add that value to the calculation 
after we divide it another time, which we do on line (27). We add the roundup bit on line (28).  

 We have two forms of admin to do in the subroutine; we have both data admin and normal admin. We 
start the data admin on line (30), where we first store our calculated result. After that we shift the data 
in our data registers (x20-x23) on lines (31-33).  

 The normal admin includes advancing the memory address on line (35), loading some new data on line 
(36), and decrementing the loop count on line (38). After we decrement the loop count, we check the 
loop count and branch necessary.   
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#--------------------------------------------------------------------------- 
# Subroutine: Dig_smoothing_filt_4x 
#  
# This subroutine implements a digital smoothing filter, AKA a smoothing 
# filter, AKA, a low-pass filter. This subroutines replaces the 16-bit  
# value as mem[x] with the average of memory locations mem[x], mem[x+1],  
# mem[x+2] and mem[x+3]. The data is stored starting at the address  
# passed to the subroutine in x10. The number of values to filter is 
# passed to the subroutine in register x11. This subroutines assumes  
# there is enough data to generate valid averages for all data, which  
# means there needs to be more data than the count in x11.  
#  
# Tweaked registers: x10,x11,x20,x21,x22,x23,x24 
#----------------------------------------------------------------------------- 
 
Dig_smoothing_filt_4x:  
 
preload:     lhu    x20,0(x10)      # get first piece of data 
             lhu    x21,4(x10)      # get 3 more half words 
             lhu    x22,8(x10)  
             lhu    x23,12(x10)  
              
loop:        add    x20,x20,x21     # add first two locations 
             add    x20,x20,x22     # accumulate third value 
             add    x20,x20,x23     # accumulate fourth value 
             srli   x20,x20,1       # divide by 2 
             andi   x24,x20,1       # mask LSB 
             srli   x20,x20,1       # divide by 2 (again) 
             add    x20,x20,x24     # round up  
              
d_admin:     sh     x20,0(x10)      # store result in memory 
             mv     x20,x21         # shift data around  
             mv     x21,x22 
             mv     x22,x23 
              
admin:       addi   x10,x10,2       # advance data pointer 
             lhu    x23,12(x10)     # get new data 
              
             addi   x11,x11,-1      # decrement loop count 
             bgez   x11,loop        # jump if more data to process 
              
             ret                    # take it home jimmie 

Figure 15.31: The solution to this example. 

 

 

 

Example 15.25: Digital Median Filter 

Write a RISC-V assembly language subroutine that implements a digital median filter. This 
subroutine examines three contiguous memory locations of unsigned halfwords starting at 
mem[x10], and transfers the median value to the address passed to the subroutine in register 
x8. The subroutine thus does not change any of the original values in memory; it transfers 
the median of the original data to another area in memory. 

Solution Notes: This is a classic subroutine that implements yet another type of digital filter. This too is actually 
a potentially useful subroutine, and one of several filters you’ll see in this set of problems. Here are the details 
for this example:  

 The subroutine has both a meaningful description in the provided header, and also some test code 
that has been left in the text but commented out on lines (11-17).  
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 We generally stopped writing subroutines that protect the data by pushing it onto the stack at the 
start of the subroutine (to save space), but we do need to do something different in this subroutine. 
Because this subroutine calls another subroutine, we need to save the return address associated with 
this subroutine before we call the nested subroutine. We do this by pushing it on the stack on lines 
(21-22).  

 The algorithm then structured such that we’re ready to start, which we do by loading three 
halfwords into registers on lines (24-26). Using registers for the data is horrifically non-generic, 
which causes us to write a one-off sort algorithm. We call the sort algorithm on line (28).  

 The sort algorithm is on lines (43-69). Note the subroutine has a nice descriptive header that 
includes which registers are tweaked (we once again don’t bother saving/restoring registers). The 
algorithm is a hardcoded bubble sort, which hardcodes the inner loop, but does allow the outer loop 
to be parameterized. The sort uses the XOR register swapping trick to sort individual registers; fun 
stuff. 

 Once we’ve sorted the data, the data in the middle of the three register value-wise is the data we 
choose to store at the new memory location, which we do on line (30). The data “in the middle” is 
thus the median value, as the filter name implies, and becomes the “new” value.  

 The next part of the algorithm is the loop administrative tasks that include advancing the address 
pointer on line (32), decrementing the loop count on line (34), and checking to see if we need to do 
more iterations or not on line (35). We modeled this loop as a do-while loop, and we opted to make 
the subroutine less safe by not verify the loop count passed to the algorithm in x11 was non-zero. 
Once again, we did this to save space on the page.  

 When we run out of iterations, the algorithm is done and we prepare to exit by popping the return 
address off the stack on lines (37-38). Recall that we had to do this because we used nested 
subroutines in our approach.  

 We return from the subroutine on line (40); we opted to include a “done” label for clarity, even 
though the code itself never actually uses the done label (it’s there to make human readers happy).  
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#------------------------------------------------------------------------- 
# Subroutine: Dig_median_filter_3x 
# 
# This subroutine implements a digital median filter. The values from  
# three contiguous memory locations are sorted; the median value of these 
# three values are stored at a different memory location. The data to filter 
# is stored as unsigned halfwords starting at the address in x10. This  
# subroutine stores the filtered data starting at the address in x8.  
# The number of times to # filter these sets of data is stored in x11 
# 
# Tweaked registers: x8,x10,x20,x21,x22, and ra (x1) 
#--------------- test code ---------------------------- 
# .data 
# junk:       .half       23,26,25,28,29,30,32 
# .text 
#              la     x10,junk 
#              li     sp,0x6120 
#------------------------------------------------------                 
.text 
Dig_median_filter_3x:  
 
init:        addi   sp,sp,-4        # make space on stack 
             sw     ra,0(sp)        # push return address 
 
load:        lhu    x20,0(x10)      # get first piece of data 
             lhu    x21,2(x10)      # get 2 more half words 
             lhu    x22,4(x10)  
              
             call   Median          # sort three input values 
              
loop:        sh     x21,0(x8)       # sore median value 
                           
admin:       addi   x10,x10,2       # advance data pointer 
              
             addi   x11,x11,-1      # decrement loop count 
             bgez   x11,load        # jump if more data to process 
              
             lw     ra,0(sp)        # restore return address 
             addi   sp,sp,4         # pop from stack 
              
done:        ret                    # take it home jimmie 
#----------------------------------------------------------------------- 
 
#----------------------------------------------------------------------- 
#- Subroutine: Median 
# 
# This subroutine sorts the values in three register: x20,x21, & x22.  
# The sorting order does not matter because we are interested in  
# the median value, which will be in x21 at end of subroutine  
# 
# Tweaked - 418 -ource- 418 -y: x30,x20,x21,x22 
#----------------------------------------------------------------------- 
Median:      li    x30,2            # load loop count 
 
loop_m:      beq   x30,x0,sorted    # check loop count  
             bge   x20,x21,nswp_1   # compare regs 
             xor   x20,x20,x21      # swap if needed 
             xor   x21,x21,x20 
             xor   x20,x20,x21 
           
nswp_1:      bge   x21,x22,lp_admin # compare regs 
             xor   x21,x21,x22      # swap if needed 
             xor   x22,x22,x21 
             xor   x21,x21,x22 
              
lp_admin:    addi  x30,x30,-1       # decrement loop count 
             j     loop_m           # rinse, repeat 
      
sorted:      ret                   # done 
#----------------------------------------------------------------------- 

Figure 15.32: The solution to this example. 
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Example 15.26: Odd-Even Value Check 

Write a RISC-V assembly language subroutine that counts the number of odd, even, and 
zero values in a section of memory. The memory starts at the address in x10, and x11 holds 
the number of memory locations to analyze. The results of odd, even, and zero counts are 
stored contiguous words starting at the address passed to the subroutine in register x20. The 
input data to inspect is word values. 

Solution Notes: This is a classic subroutine that implements yet another type of digital filter. This too is actually 
a potentially useful subroutine, and one of several filters you’ll see in this set of problems. Here are the details 
for this example:  

 Once again, meaningful subroutine description including a list of tweaked registers and some test 
code that you can use to verify the subroutine actually works: lines (0-18).  

 Once again, we do not store context with pushes/pops of registers.  

 The initialization code for this subroutine consists of clearing three register that the subroutine uses 
as accumulators for the odd, even, and zero counts. The code starts at the “init” label on lines (22-
24).  

 We model this algorithm using a while loop, so we first check to see if we have more values to 
count on line (26).  

 The heart of the algorithm starts on line (26), where we grab some data. We then check to see if the 
date is zero on line (28); if the data is zero, we increment our zero count on line (29). If the data is 
non-zero, we need to examine the LSB to determine if it is odd or even, which we want to do in 
such a way as to increment the odd and even counters without looking at the value. We first mask 
the LSB of the original data on line (31), and then add the result to the odd counter on line (32). We 
then toggle that LSB on line (33) and add it to the even counter on line (34). Somewhat of a tricky 
algorithm, but it works with doing extra conditional statements.  

 Loop admin consists of advancing data address and decrementing the loop counter on lines (36-37).  

 When the loop count is zero, we save the three counts in three contiguous addresses on lines (40-
42).  

 We return from the subroutine on line (44); note that we include a “leave” label which brings 
comfort to human viewers of the code.  
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#--------------------------------------------------------------------------------- 
# Subroutine: Count_vals:  
# 
# This subroutine counts the number of odd, even, and zero values for words 
# starting at address x10 in memory. The subroutine uses x11 to hold the  
# count of the number of values to examine. The counts are stored at three 
# contiguous words starting at the address in x20. The subroutine considers 
# zero to be an even value. 
# 
# Tweaked register: x10,x11,x25,x26,x27,x30 
#--------------------------------------------------------------------------------- 
 
#--------------- test code ---------------------------- 
# .data 
# junk:       .word       23,26,25,0,0,0,34,23 
# .text 
#              la     x10,junk 
#              li     x11,8 
#------------------------------------------------------                 
#.text 
Count_vals:  
 
init:        mv    x25,x0          # odd count 
             mv    x26,x0          # even count 
             mv    x27,x0          # zero count 
              
loop:        beq   x11,x0,done     # see if we’re done 
             lw    x30,0(x10)      # get data 
             bne   x30,x0,not_z    # check for zero 
             addi  x27,x27,1       # increment zero counter 
              
not_z:       andi  x30,x30,1       # mask LSB 
             add   x25,x25,x30     # increment odd count 
             xori  x30,x30,1       # toggle 
             add   x26,x26,x30     # increment even count 
              
admin:       addi  x10,x10,4       # advance address counter 
             addi  x11,x11,-1      # decrement loop count 
             j     loop            # rinse, repeat (if necessary) 
              
done:        sw    x25,0(x20)      # store odd count 
             sw    x26,4(x20)      # store even count 
             sw    x27,8(x20)      # store zero count 
         
leave:       ret                   # come on up to the house  
#------------------------------------------------------------------------- 

Figure 15.33: The solution to this example. 
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Example 15.27: RGB Data Compressor 

Write a RISC-V assembly language subroutine that converts a register containing three 
bytes of RGB data (red, green, blue) into a register containing two bytes of RGB data. The 
subroutine removes the lower bits of data in each color byte according to the diagram below. 
The calling program places the data in x25; the subroutine returns the data in that same 
register. Don’t allow the subroutine to permanently change any register other than x25.  

 

Solution Notes: This is actually a useful algorithm that I’ve actually used on the job. This represents an instant 
compression of an image (compression means reduction in storage size) by 33.3%. You probably would not 
notice the chance in image quality on anything but a high-quality display. Here are the details for this example:  

 Yet another meaningful subroutine description including a list of tweaked registers and some test code 
that you can use to verify. 

 We first make copies of the passed data on lines (15-17). There are many approaches to performing the 
required tasks in this subroutine; we’ll take what we feel is the easiest.  

 We process data one color at a time starting with the red byte on line (19). We first shift the data right 
by as many bit locations as we need to clear the two other color bytes and the lower three bits of the red 
data on line (19). We then shift the data left into the location we need it to be, which is a 11 bit locations 
to the left.  

 We take a similar approach on the green data by first shifting is left by two bytes on line (22). We then 
shift it right by 21 bit locations to get the left-most bit into its final position on line (23). If you’re 
reading this, be the first person to mention it to me and I’ll give you a Starbucks gift certificate. We still 
have data on the right side that we don’t want, so we clear that data with a mask on line (25) after 
loading the mask value on line (24).  

 We next process the blue byte by shifting it right to lose the lower-end bits on line (27), then masking 
all but the good blue bits with an immediate mask on line (28).  

 Our final task is to combine the three colors which we have left in x10 (reg), x21 (green), and x22 
(blue) using two OR instructions on lines (30-31).  
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#--------------------------------------------------------------------------------- 
# Subroutine: Pack_rgb_24_16:  
# 
# This subroutine translates 24-bit color data (RGB) to 16-bits by making the 
# the red data (left most byte)to 5-bits, the green data (middle byte) to  
# 6 bits, and the blue byte (right-most byte) to 5-bits. These of total to  
# 16 bits. This approach uses truncation to reduce color values. Data is 
# passed to and returned from this subroutine in x10.   
# 
# Tweaked register: x10,x20,x21,x22 
#--------------------------------------------------------------------------------- 
Pack_rgb_24_16:  
 
# test data           li    x10,0x00FFFFFF 
 
init:      mv    x20,x10         # red: make working copies 
           mv    x21,x10         # green 
           mv    x22,x10         # blue 
            
           srli  x20,x20,19      # RED: clear right zeros 
           slli  x10,x20,11      # shift back left 
            
           slli  x21,x21,16      # GREEN: clear left zeros 
           srli  x21,x21,21      # shift into place 
           li    x20,0x000007E0 
           and   x21,x21,x20    # clear bottom bits 
            
           srli  x22,x22,3       # BLUE: shift off bottom 3 bits 
           li    x20,0x0000001F  # mask bottom bits 
            
           or    x10,x20,x10     # combind red & blue    
           or    x10,x10,x21     # include green 
            
           ret                   # bring it on home  

Figure 15.34: The solution to this example. 

 

 

 

Example 15.28: N Factorial 

Write a RISC-V assembly language subroutine that converts a calculates N!, where N is 
passed to the subroutine in x20. The result is returned in x30. Assume the value in x20 never 
will never be so large that the result exceeds the capacity of x30. Use the Mult: subroutine 
listed below in your solution (there is no header to save space). Don’t use recursion in your 
solution.  

Mult:   mv    x15,x0 
 
loop2:  beq   x11,x0,done1 
        add   x15,x15,x10 
        addi  x11,x11,-1 
        j     loop2 
         
done1:        ret 

 

Solution Notes: What would an assembly language programming course be without doing some version of a 
factorial program. The classic solution uses recursion, but this solution does not. We’ll save the recursive 
solution for another day.  

 The subroutine should be saving context, but we did not in order to save space.  
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 Since is subroutine makes a nested call to the Mult subroutine, we need to save ra, which we do by 
pushing it on the stack on lines (11-12).  

 The subroutine first clears the result register, which we do on line (14). We do this because we want to 
exit the subroutine if the passed value in x20 is zero, which we check for on line (15).  

 If the code makes it to line (17), then the passed value of N must be at least 1. At this point, we’re 
prepare to do the multiplication. If the N value is a 1, then we exit the subroutine on line (19) because 
that conditional fails because we subtracted 1 from N on line (18). If the original N value was ‘1’, the 
subroutine returns ‘1’ as it is now in x30. This approach provides checks for the N=1 and N=0 cases, 
which are special cases. If the subroutine continues, we know N was at least 2, and the generic code that 
follows actually works.  

 We prepare the values to send to the Mult subroutine on line (21) and line (23). We use a decremented 
N value on line (22) to give us the value to multiply by the result. Keep in mind that the value in x30 is 
the accumulated multiplication result that we eventually return from the subroutine.  

 Context is restored by popping ra off the stack on lines (29-30).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 

#------------------------------------------------------------------------------- 
# Subroutine: N_fact:  
# 
# This subroutine calculates N-factorial. The value of N is passed to the  
# subroutine in x20; the subroutine passes the result back in x30.  
# 
# Passed values: x20 
# 
# Tweaked register: x20,x30,x31,x10 
#------------------------------------------------------------------------------- 
N_fact:  
init:   addi  sp,sp,-1           # store return address on stack 
        sw    ra,0(sp) 
 
        mv    x30,x0             # clear register for final result  
        beq   x30,x20, done      # check to see if passed val = 0 
        
        mv    x30,x20            # move current N value to x30 
loop:   addi  x31,x20,-1         # move N-1 to x31 
        beq   x31,x0,done        # quit if N-1 is zero 
        
        mv    x10,x30            # prepare to call subroutine 
        addi  x20,x20,-1         # decrement other subroutine operand 
        mv    x11,x20            # put in proper register 
        call  Mult               # so the multiple 
        
        mv    x30,x15            # transfer result to accumulator  
        j     loop               # go back, check condition 
      
done:   lw    ra,0(sp)           # restore context 
        addi  sp,sp,4 
 
        ret                      # bring it on home 
#------------------------------------------------------------------------------- 
 
#------ header not included to save space ---------------------------- 
Mult:   mv    x15,x0 
 
loop2:  beq   x11,x0,done1 
        add   x15,x15,x10 
        addi  x11,x11,-1 
        j     loop2 
         
done1:  ret 

Figure 15.35: The solution to this example. 
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And to show that it can be done, and that it’s a cool exercise to do so, we can also solve this problem using a 
recursive algorithm. Figure 15.36 show a recursive solution to this example with the following highlights. This 
program runs; you should step it through the simulator to see the stack pointer decrement as the recursion 
becomes deeper and increment as the algorithm exits the recursion. :  

 There are three subroutines listed; we only provided a decent header for one of them in an effort 
to save space.  

 The program include checks for N=0 and N=1, where the answer is 0 and 1, respectively. If the 
sent value is neither of these numbers, then the algorithm does the recursion thing.  

 We must save the return address at all levels, which we do on lines (16-17), and then again on 
lines (28-20. The associated restorations are done on lines (22-23) and lines (38-39).  

 Nf_rec is the recursive subroutine. After saving context, the subroutine sets up for the call to the 
Multiply subroutine on lines (31-32), which it does by sending the current result and one less 
than the current N value to the subroutine. The algorithm exits if the decremented N value is zero 
on line (33).  

 After the Multiply subroutine call, the algorithm makes a recursive call on line (36). The key to 
making recursion work the fact that the N value is decremented at each level of recursion. At 
some point, N becomes zero and allows the algorithm to break out of the recursion.  

 The Multiply subroutine is dangerous because it does no checks before it operated; we did this to 
save space.  
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#------------------------------------------------------------------------------- 
# Subroutine: N_fact:  
# 
# This subroutine calculates N-factorial recursively. The value of N is passed  
# to the subroutine in x10.  
# 
# Passed values: x10 
# Returned values: x20 
# Tweaked register: x21,x30,x10 
#-------------------------------------------------------------------------------    
N_fact_recursive:  
           mv   x20,x0          # clear result register 
           beq  x10,x0,done     # quit if N=0 
           li   x20,1            
           beq  x10,x20,done    # quit if N=1 
            
           addi  sp,sp,-4       # push return address 
           sw    x1,0(sp) 
           mv    x20,x10        # move N to x20 
            
           call  Nf_rec         # call N! recursive 
            
           lw    x1,0(sp)       # restore ra 
           addi  sp,sp,4 
done:      ret                  # take it on home  
#------------------------------------------------------------------------ 
 
#------------------------------------------------------------------------ 
Nf_rec:    addi  sp,sp,-4       # push return address 
           sw    x1,0(sp) 
            
           addi  x10,x10,-1     # decrement N 
           mv    x21,x10        # put new N in x21 
           beq   x21,x0,exit    # quit if new N=0 
            
           call  Multiply       # do multiply 
           call  Nf_rec         # recursive subroutine dall 
 
           lw    x1,0(sp)       # restore return address (pop) 
           addi  sp,sp,4 
 
exit:      ret                  # take it to the home 
#----------------------------------------------------------------------- 
 
#----------------------------------------------------------------------- 
Multiply:  mv    x30,x0         # dangerous multiply routine 
loop:      add   x30,x30,x20    # accumulate 
           addi  x21,x21,-1     # loop admin 
           bne   x21,x0,loop 
           mv    x20,x30        # move result to x20 
           ret                  # go back  
#------------------------------------------------------------------------ 

Figure 15.36: The solution to this example. 

 

 

 

Example 15.29: Finding Largest Value in Memory 

Write a RISC-V assembly language subroutines that finds the largest value in a given span 
of memory. The values in the memory start at the address in x10; the number of values to 
check is given in x20. Store the largest unary value in x25 in binary format. The values in 
memory are words in stoneage unary format.  
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Solution Notes: This problem mixes two types of quite popular assembly language programs. First, the program 
must access memory in a generic manner. Second, the program does some type of number conversion, which is 
this case is the conversion of stoneage unary to binary. Exciting stuff indeed.  

 This problem is ideally suited to a subroutine call for the conversion part of the program. For both 
subroutines, we provide information-packed headers that make it easy for programmers to safely 
use the code. We also provide some test code so you can run the test yourself in case you are so 
inclined.  

 The program is structured to have the main subroutine use a while-loop to handle the memory 
access. The subroutine then uses a nested subroutine Calc_unary to convert a stoneage unary 
value in a register to a binary value. Note that because we use a nested subroutine call, we must 
save the return address (ra) on the stack before the nested call (lines (22-23)), and then pop it off 
the stack once the main subroutine is done calling the nested subroutine (lines (34-35)).  

 Saving the return address is part of the initialialization, the other part is to set up for the algorithm. 
We want to keep the algorithm generic, so we start the code with the smallest possible value in the 
x25, which we do on line (21). There are many ways to do this problem; this is probably the most 
straight-forward, which sounds good to me.  

 We then get the data from memory on line (26), send it to the subroutine on line (27), and then 
conditionally branch based on the result on line (28). If the newly converted value is less or equal 
to the current largest value, the we continue the loop. Otherwise, we make the currently input value 
as the new largest value, which we do on line (29).  

 The loop administration is for all iterations regardless of whether it was a new large value or not; 
this includes advancing the address pointer by four because we’re using words on line (30), and 
decrementing the loop count on line (31).  

 The Calc_unary counts the number of set bits in a register by masking the LSB and 
accumulating it, an algorithm we’ve used way too many times up to this point.  

 Note that we used labels such as “done1” and “done2” rather than just “done” because we can’t 
reuse the same label in an assembly language program.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(52) 
(54) 

#------------------------------------------------------------------------------- 
# Subroutine: Big_unary:  
# 
# This subroutine finds the largest stonage unary value in a given span of  
# memory. The memory starts at the value passed to the subroutine in x10 and  
# checks the number of values (words) store in x20. The result is passed back  
# to the calling routine x25.    
# 
# Passed values: x10,x20 
# 
# Tweaked register: x25, x30, x10 
#------------------------------------------------------------------------------- 
#---- test code ----------------------------------------------- 
.data                             # data segment 
junk:         .word  0x3, 0x7     # dummy data 
.text                             # text segment 
              la     x10,junk     # load address of junk 
              li     x20,2        # load count of data 
#---- test code ----------------------------------------------- 
 
Big_unary:  
init1:        mv    x25,x0        # designated large value         
              addi  sp,sp,-4      # make space for ra 
              sw    ra,0(sp)      # store return address 
 
loop1:        beq   x20,x0,done1  # quit if count is zero 
              lw    x30,0(x10)    # get value 
              call  Calc_unary    # find unary equivalent 
              ble   x31,x25,admin # jump if less than  
              mv    x25,x31       # set new greater value 
admin:        addi  x10,x10,4     # advance address 
              addi  x20,x20,-1    # decrement count 
              j     loop1         # repeat 
 
done1:        lw    ra,0(sp)      # pop return address   
              addi  sp,sp,4       # adjust sp           
              ret                 # going home, all the time 
 
#------------------------------------------------------------------------------- 
# Subroutine: Calc_unary:  
# 
# This subroutine converts the unary value in x30 and returns result in x31.  
# 
# Passed values: x30 
# 
# Tweaked register: x25, x31, x29 
#------------------------------------------------------------------------------- 
Calc_unary:  
init2:        mv    x31,x0        # init count 
loop2:        beq   x30,x0,done2  # see if no more ones 
              andi  x29,x30,1     # mask LSB 
              add   x31,x31,x29   # accumulate count 
              srli  x30,x30,1     # shift value 1 to right 
              j     loop2         # do it again 
done2:        ret                 # bring it home   

Figure 15.37: The solution to this example. 

 

15.4 C Code-Based RISC-V Programming Problems 

This section contains problems that relate to basic C coding principles and constructs. While this is not an 
exhaustive list, it does contain some of the more basic and important C constructs and subsequently shows their 
relation to the underlying RISC-V assembly language.  
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Example 15.30: for Loop 

Write a RISC-V assembly language code that implements the following C programming 
construct. Assume that x10 holds the “A” value, and x13 holds the “B” value.  

#define  VAL   48 
 
for (i = 0; i < VAL; i++)  { 
   A += B; 

  } 
 

Solution Notes: The code in the example is not a complete program, so the solution is not a complete program 
either. Both sets of code are examples of code fragments of C code (for the original problem) and assembly code 
(for the solution). Here are a few items of interest:  

 We use a .equ assembler directive in an attempt to match the #define preprocessor directive in 
the problem description.  

 We modeled the solution as a do-while loop because we knew based on the constant iteration 
count that we always need to execute the loop at least one time.  

 There are many ways we could model this C code, this is one of them. Please be receptive to other 
solutions.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

;----------------------------------------------------------------------- 
;- Assembler Directives (somewhere in the program) 
;----------------------------------------------------------------------- 
.equ      VAL,0x30                # constant definition 
;----------------------------------------------------------------------- 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:       li      x31,VAL        # initialize iterative count 
 
loop:       add     x10,x10,x13    # do addition: A = A + B 
   
admin:      addi    x31,x31,-1     # decrement loop count  
            bne     x31,x0,loop    # branch if loop count !=0  
            j       loop           # jump to attempt new iteration  
 
done:                              # code breaks out of loop 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 15.38: The solution to this example. 

 

 

 

Example 15.31: for Loop again 

Write some RISC-V assembly language code that implements the following C programming 
construct. Assume x8 holds the “c_cnt” value, x10 holds the “A” value, and x13 holds the 
“B” value.  

#define  VAL   48 
 
for (i = c_cnt; i < VAL; i+=2)  { 
   A += B; 
} 
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Solution: The code is similar to a previous example; both sets of code are examples of code fragments of C code 
(for the original problem) and assembly code (for the solution). This problem is eerily similar to the previous 
problem, so it is important you realize the differences, as they are rather special and somewhat tricky.  

 The previous example was a simple iterative loop, where we needed to do something a constant 
number of times. The loop in this example is not as simple. First, we’re not starting the loop count 
at zero; in this problem, we start it at what we could consider a variable value. Because we do not 
know what this value could be, we must model this loop as a while loop to ensure that it does not 
execute the body of the loop not even one time when the conditions are correct. Line (09) in the 
solution check the loop conditions before it can enter the body of the loop.  

 We also need to initialize the loop count in this problem, which we did not do in the previous 
problem based on the constant and known loop count. We initialize the loop count according to 
the program description on line (07). The previous problem knew at assemble time how many 
times the loop would iterate; the code in this problem does not know the iteration count until 
runtime.  

 This program adds two to the loop count each time through the loop, which is also different from 
the previous problem. We account for that on line (13) in the solution by advancing the count by 
two.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

;----------------------------------------------------------------------- 
;- Assembler Directives (somewhere in the program) 
;----------------------------------------------------------------------- 
.equ      VAL,0x30                # constant definition 
;----------------------------------------------------------------------- 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:       li      x31,VAL        # initialize iterative count 
            mv      x29,x8         # copy loop start count 
 
loop:       bge     x29,x31,done   # jump when loop is completed 
 
            add     x10,x10,x13    # addition: A = A + B (body of loop) 
   
admin:      addi    x29,x29,2      # advance loop count count  
            j       loop           # jump to attempt new iteration  
 
done:                              # code breaks out of loop 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 15.39: The solution to this example. 
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Example 15.32: if/else Statement 

Write RISC-V assembly language code that implements the following C programming 
construct. Assume x18 holds “a_val” and x25 holds “sensor_01”.  

#define  C_DUB      192 
#define  RESET_VAL   65 
#define  INIT_VAL    80 
#define  INC_VAL      3 
 
 
if (a_val == C_DUB) {        
  sensor_01 = RESET_VAL;              
} 
else  {                 
  sensor_01 = INIT_VAL + INC_VAL; 
} 

 

Solution: As you can see from the problem statement, this is a classic if/else construct. Recall that we have 
many ways to write if/else constructs, we always do so such that they contain one conditional branch and one 
unconditional branch. The code in Figure 15.40 shows that as well as some other interesting stuff:  

 We once again use assembler directives to encode the values we need to use in the code. The 
problem used these values as constants, we opt to do the same in our code.  

 We use labels to help identify the actual if and else lines in the code. The way we structured 
the code requires us to use the “else” label, but the “if” label is primarily a comment.  

 The if clause assigns a value to a register while the else clause assignment to the same register 
is a result of an addition instruction.  

 The conditional associated with the if clause on line (13) jumps over the if clause to the else 
when the condition is not true. If the code takes the if, it then unconditionally jumps over the 
else on line (15).  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

;----------------------------------------------------------------------- 
;- Assembler Directives (somewhere in the program) 
;----------------------------------------------------------------------- 
.equ      C_DUB,192                # constant definitions 
.equ      RESET_VAL,65        
.equ      INIT_VAL,80                 
.equ      INC_VAL,3                 
;----------------------------------------------------------------------- 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
init:       li      x10,C_DUB      # put constants into registers 
            li      x12,INIT_VAL   # 
            li      x13,INC_VAL    # 
 
            bne     x18,x10,else   # jump to else if not equal   
if:         li      x25,RESET_VAL  # make assignment 
            j       done           # jump over else  
 
else:       add     x25,x12,x13    # jump when loop is completed 
 
done:                              # code breaks out of loop 
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 15.40: The solution to this example. 
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Example 15.33: case Statement  

Write a fragment of  RISC-V assembly language code that implements the following C 
programming construct. Consider all variables to be declared as unsigned chars. Assume x10 
holds “val”, x11 holds “a_val”, x12 holds “b_val”, and x13 hold “c_val”.   

switch (val) 
{ 
   case 0x01: 
      a_val++;  
      break;  
 
   case 0x08 
      b_val++;  
      break;  
 
   case 0x02:  
      c_val++;  
      break;  
 
   default:  
      a_val = 0;  
} 

 

Solution: Once again, the code in the example is not a complete program. There are many ways to do this 
problem; the code below shows one possible and probably solution, with a few fun things to note:  

 The problem stated that all variable types were unsigned characters, which is a fact that does not 
matter for this program. All of the compare operations in the program fragment use registers, 
which are 32-bit value representations of the C unsigned characters, which are 8-bit values.  

 A case statement is simply a special compact form of a string of if/else statements, which is what 
the code below reflects. The code is of course sequential and it performs one compare at a time. 
We coded the compares in the order they were given in the program, but the order does not matter. 
If programmers know the value was most likely to be one of the values, then they would place that 
compare first in the code; this problem provided no such information.  

 This case statement contained a break statement for each compare, which is typically they way C 
uses case statements, but not always. A common C programming error is to not include a break 
where you actually meant to, which would alter the functionality of the code. This case statement 
also contained a default clause, which is also optional.  

 The case statement has three “cases”; there are thus three if/else clauses in the assembly code. We 
provided slightly helpful labels  on lines (01,06,11) with the “cx” terminology in the assembly 
code.  
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(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
c0:     li     x20,1             # load compare value 
        bne    x10,x20,c1        # branch if not equal 
        addi   x11,x11,1         # increment x11 (a_val) 
        j      done              # jump out of construct 
         
c1:     li     x20,8             # load compare value 
        bne    x10,x20,c2        # branch if not equal  
        addi   x12,x12,1         # increment x12 (b_val) 
        j      done              # jump out of construct 
         
c2:     li     x20,2             # load compare value 
        bne    x10,x20,def       # branch if not equal  
        addi   x13,x13,1         # increment x13 (c_val) 
        j      done              # jump out of construct 
         
def:    mv     x11,x0            # clear x11 
 
done:                            # continue with program  
#~~~~~~~~ program fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 15.41: The solution to this example. 

 

 

 

Example 15.34: Complex if/else Construct 

Write RISC-V assembly language code that implements the following C programming 
construct. Assume x17 holds x_val, x23 holds sensor_23, x24 holds sensor_24, and x11 
holds f_val. Consider all values to be unsigned.  

#define  C_INC        93 
#define  RESET_VAL    44 
#define  CLAMP_VAL   156 
 
 
if (x_val <= (C_INC + f_val) )  {        
  sensor_23 = CLAMP_VAL;              
} 
else  { 
  sensor_24 = RESET_VAL; 
} 

 

Solution: This is another if/else statement, but now the condition associated with the if statement is not as simple 
as the other versions. Programmers can implement if/else statements in many different ways, but there always an 
approach that minimizes instructions. The designers of the RISC-V instruction set provide six base conditional 
instructions, and another ten conditional pseudoinstructions based on those six base instructions. This 
instructional support provides the means for programmers to generate efficient code. Here are the exciting 
highlights for this problem:  

 We use assembler directives to encode the values provided as preprocessor directives in the 
original code. Both C compilers and RISC-V assemblers have such an option.  

 We must formulate the conditions for the conditional statement before we actually use the 
conditional statement, which essentially means we need to do the addition one of the 
conditional argument. We do this on line (07) by adding f_val to the provided constant and 
saving it in another register. We opted to save the value in another register, which was 
arbitrary; we could have also saved the result of the addition in the x11 register.  
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 The problem stated that everything was unsigned values, so we opted for a bgtu 
pseudoinstruction on line (09). There are many ways to do the compare; this is the one that felt 
most clear for us. Encoding statements such as these can become very confusing when you’re 
not used to working with them. Be sure to check over your final approach when you’ve 
completed the problem and be sure to check out your approach in a simulator.  

 We implemented the if/else clause with one conditional branch statement and one 
unconditional branch statement. This is the more efficient approach and is one you should 
always implement when you’re writing if/else clauses in yoru code.  

 We opted to use li pseudoinstructions in our code instead of addi instructions. Keep in mind 
that the assembler translates the li pseudoinstruction into an addi instruction, but seeing an 
addi instruction in the code can make human readers think there is an addition operation 
happening, which is not the case in this code. In this case, we would be using x0 as one of the 
operands to the addi instruction, which is not really addition.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

;----------------------------------------------------------------------- 
;- Assembler Directives (somewhere in the program) 
;----------------------------------------------------------------------- 
.equ      C_INC,192                # constant definitions 
.equ      RESET_VAL,65        
.equ      CLAMP_VAL,80                 
;----------------------------------------------------------------------- 
init:       addi    x15,x11,C_INC  # preliminary math 
 
compare:    bgtu    x15,x17,if     # start compare value build 
 
else:       li      x24,RESET_VAL  # add f_val 
            j       done           # jump over if 
 
if:         li      x23, CLAMP_VAL # do initial comparison 
 
done:                              # somewhat meaningful label 
;------------------------------------------------------------------------- 

Figure 15.42: The solution to this example. 

 

 

 

Example 15.35: while Loop  

Write RISC-V assembly language code that implements the following C programming 
construct. Assume x10 holds acc_val, x11 holds add_val, and x15 holds count. Consider the 
variables to be  

#define  VAL_X   0x77 
 
count = 0;  
acc_val = 0;  
 
while (acc_val <  VAL_X)  { 
   acc_val += add_val 
   count++; 
} 

 

Solution: This problem is the classic while loop, well known to check the condition before executing the body 
of the loop. There are many approaches to solving this problem; the code below shows a good approach in that 
the loop contains one conditional branch and one unconditional branch.  
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 The code uses an assembler directive to encode the preprocessor directive in the orginal 
problem description.  

 The code has an “init” section, where it set a value in a register (06), the sets the value of two 
registers to zero lines (07-08).  

 The while loop first check the contition on line (10); it the condition is not true, the body of the 
loop does nto execute.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

;----------------------------------------------------------------------- 
;- Assembler Directives 
;----------------------------------------------------------------------- 
.equ    VAL_X,0x77         
;----------------------------------------------------------------------- 
 
init:   li     x20,VAL_X          # put value in register  
        mv     x10,x0             # clear acc_val 
        mv     x15,x0             # clear count 
        
loop:   bltu   x10,x20,done       # check condition 
        add    x10,x10,x11        # body of loop, do add 
        addi   x15,x15,1          # increment count 
        j      loop               # jump to check condition 
         
done:                             # onto other good things       

Figure 15.43: A possible solution for this example. 

Any time we write assembly code, we should always wonder whether there is a more efficient way to code 
things. The following solution represents the output of such thoughts. In this solution, we attempt to use a 
sltiu instruction in an effort to make the code more efficient. As you can see the code has the same number 
of instrutions, so the second approach is not more space efficient. The while loop now uses to instructions 
to examine the condition on lines (09-10). Because the extra instruction is part of the loop, the second 
solution requires more instructions to execute, and is thus less runtime efficient. Nice try, though.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

;----------------------------------------------------------------------- 
;- Assembler Directives 
;----------------------------------------------------------------------- 
.equ    VAL_X,0x77         
;----------------------------------------------------------------------- 
 
init:   mv      x10,x0             # clear acc_val 
        mv      x15,x0             # clear count 
        
loop:   sltiu   x20,x10,VAL_X      # check condition 
        beq     x20,x0,done        # branch if condition fails 
        add     x10,x10,x11        # body of loop, do add 
        addi    x15,x15,1          # increment count 
        j       loop               # jump to check condition 
         
done:                              # onto other good things       

Figure 15.44: Another possible solution for this example. 
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Example 15.36: The Classic do-while Loop 

Write RISC-V assembly language code that implements the following C programming 
construct. Assume x10 holds acc_val, x11 holds add_val, and x15 holds count.   

#define  VAL_X   0x77 
 
count = 0;  
acc_val = 0;  
 
do  { 
   acc_val += add_val 
   count++; 
} 
while (acc_val <  VAL_X); 

 

Solution: This problem is purposely similar to the previous problem. The previous problem was a while loop 
but this problem is a do-while loop. We provided them for their pure comparison value.  

 As you can see, the code in the following solution is rather interesting because the do-while 
loop with similar statemnts executes using one less instruction. Keep in mind that although the 
problems appear the same, they operate inherently different in the code because on is a while 
loop and the other is a do-while loop. So the moral of this story is that if you know your loop 
always executes at least once, model it as a do-while loop and save an instruction, which 
means your loop executes in a shorter amount of time.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 

;----------------------------------------------------------------------- 
;- Assembler Directives 
;----------------------------------------------------------------------- 
.equ    VAL_X,0x77         
;----------------------------------------------------------------------- 
 
init:   li     x20,VAL_X          # put value in register  
        mv     x10,x0             # clear acc_val 
        mv     x15,x0             # clear count 
        
loop:   add    x10,x10,x11        # body of loop, the add 
        addi   x15,x15,1          # body of loop, increment count 
        bltu   x10,x20,loop       # check condition, loop if necessary 
         
done:                             # onto other good things       

Figure 15.45: A possible solution for this example. 
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Example 15.37: C-Type memcpy Function 

Write a assembly language subroutine that implements a C memcpy() function. See the C 
definition for a memcpy() below. For this subroutine, assume that s1 is provided in x11 and 
s2 is provided in x12, respectively; the value of n is provided in x10. Your function should 
copy n-bytes of data starting at the RAM location specified in x11 to the RAM locations 
specified in x12. For this problem, you can assume the n-bytes value is small enough not to 
cause any problems. Make your code as efficient as possible.  

memcpy(void *restrict s1, const void *restrict s2, size_t n); 

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object 
pointed to by s1.  

Solution: This is a standard C function that copies memory from one area in memory to another. We solve this 
two different ways. The first way is straightforward but sort of mechanical in that we did not think it out 
before writing the code. We took what we learning writing the code and rewrote the code for the second 
solution. Here are the highlights of the first solution:  

 The approach we take is to separately find the count of words, halfs, and bytes. The second half 
of the subroutines then uses those counts to read from one area in memory to another using 
words, halfs, then bytes. This is a real generic and certainly non-clever approach.  

 We use two while loops for thing the word and half count; the value that remains in x10 is then 
the byte count. We essentially repeated the first while loop for the second while loop and 
changed a few key values.  

 The second part of the subroutine uses the counts in the first part of the program to read data 
from one location and copy it to the other. It uses three while loops in the same way as the first 
part of the subroutine used two while loops.  
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#------------------------------------------------------------------------------- 
# Subroutine: memcpy:  
# 
# This subroutine stores a chunk of data where the size of the chunk is  
# passed to the subroutine in x10. This subroutine does it in the most 
# efficient way (fewest writes) possible.  
 
# Passed values x10 (size of a data chunk)  
# Passed values x11 (address of data to copy) 
# Passed value: x12 (address to copy data to) 
# Return values: none 
# Tweaked registers: x20,x21,x30,x10,x25,x10,x11,x12 
#------------------------------------------------------------------------------- 
memcpy:  
li          x10,12 
 
init:       mv      x20,x0           # clear word counter 
            mv      x21,x0           # clear halfword counter 
 
            li      x30,4            # load size of word 
             
word:       bltu    x10,x30,wdone    # branch if no more words 
            addi    x20,x20,1        # increment word count 
            addi    x10,x10,-4       # reduce by word size 
            j       word             # do again 
             
wdone:      srli    x30,x30,1        # divide word size by 2 
 
half:       bltu    x10,x30,st_words # branch if no more words 
            addi    x21,x21,1        # increment halfword count    
            addi    x10,x10,-2       # reduce by word size 
            j       half             # do again             
                       
st_words:   beq     x20,x0,st_halfs  # branch to half store is zero 
            lw      x25,0(x11)       # get a word 
            sw      x25,0(x12)       # store at new address 
admin1:     addi    x20,x20,-1       # decrement word count 
            addi    x11,x11,4        # advance mem address by word 
            addi    x12,x12,4        # advance mem address by word 
            j       st_words         # repeat 
 
st_halfs:   beq     x21,x0,st_bytes  # branch to half store is zero 
            lh      x25,0(x11)       # get a half 
            sh      x25,0(x12)       # store at new address 
admin2:     addi    x20,x20,-1       # decrement word count 
            addi    x11,x11,2        # advance mem address by word 
            addi    x12,x12,2        # advance mem address by word 
            j       st_halfs         # repeat            
 
st_bytes:   beq     x10,x0,done      # branch to half store is zero 
            lb      x25,0(x11)       # get a word 
            sb      x25,0(x12)       # store at new address 
admin3:     addi    x10,x10,-1       # decrement word count 
            addi    x11,x11,1        # advance mem address by word 
            addi    x12,x12,1        # advance mem address by word 
            j       st_bytes         # repeat 
 
done:       ret                      # take it home jimmie 

Figure 15.46: The unthoughtout solution to this example. 

The second version of the solution uses a much more intelligent and thus more efficient solution. Here are some 
of the highlights:  

 We don’t break the program into two parts; we instead copy as we need to. We don’t find the 
count of how many words and halfs to copy in advance, we mostly copy them on the fly. 
Additionally, we note that the after the algorithm deals with the words, there is only a possibility 



FreeRange Computer Design  Chapter 15 

 

 - 438 -  
 

of one or zero halfs to copy, and one or zero bytes to copy. Knowing this allows us to not use 
while loops for copy halfs and bytes, we use if/else statements instead.  

 The overall runtime increases for the second algorithm. There is less code as well, and the code 
uses less registers. Normally we would save and restore context in these examples, but that would 
make the code even longer. The fact that the second algorithm uses less registers means that if we 
chose to save/restore context, we could do it much faster than the first algorithm because that one 
used more registers.  
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(01) 
(02) 
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(35) 
(36) 
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#------------------------------------------------------------------------------- 
# Subroutine: memcpy:  
# 
# This subroutine stores a chunk of data where the size of the chunk is  
# passed to the subroutine in x10. This subroutine does it in the most 
# efficient way (fewest writes) possible.  
 
# Passed values x10 (size of a data chunk)  
# Passed values x11 (address of data to copy) 
# Passed value: x12 (address to copy data to) 
# Return values: none 
# Tweaked registers: x30,x25,x31,x10,x11,x12 
#------------------------------------------------------------------------------- 
memcpy:  
li          x10,15 
 
            li      x30,4            # load size of word 
             
word:       bltu    x10,x30,wdone    # branch if no more words 
            lw      x25,0(x11)       # get a word 
            sw      x25,0(x12)       # store at new address 
admin1:     addi    x10,x10,-4       # decrease word count 
            addi    x11,x11,4        # advance mem address by word 
            addi    x12,x12,4        # advance mem address by word 
            j       word             # repeat 
             
wdone:      srli    x30,x30,1        # divide word size by 2 
 
half1:      bltu    x10,x30,byte1    # branch if no more halfs 
            lh      x25,0(x11)       # get a half  
            sh      x25,0(x12)       # store at new address 
            addi    x10,x10,-2       # decrease size counter 
 
byte1:      beq     x10,x0,done      # branch if no bytes 
            lb      x25,0(x11)       # get a byte 
            sb      x25,0(x12)       # store at new address 
 
done:       ret                      # take it home jimmie 

Figure 15.47: The well-thoughtout solution to this example. 
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15.5 Chapter Summary 

 

 This chapter contained many example programs that show many common techniques to assembly language 
programming. The chapter started with easy problems that became; the chapter problems became more 
complicated as the chapter progressed.  

 The programming areas in this chapter include introductory problems, more complicated problems, and C 
programming-based problems. Yes, lots of happy stuff embedded in those many solutions.  

 The RISC-V uses memory-mapped I/O, which results in input/output using the load-type/store-type memory 
access instructions.  
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15.6 Chapter Exercises 

 

1) Briefly describe why we always write RISC-V assembly language programs using endless loops.  

2) Briefly describe what would happen if our RISC-V program could not be characterized by an endless loop.  

3) Briefly describe which type of divisions/multiplications can be done very efficiently using the RISC-V 
instruction set.  

4) Briefly describe if right-shifting by two results in a truncated or rounded-up number.  

5) What is the largest digital number that a RISC-V register can represent using a BCD format?  

6) Briefly describe how parity is typically determined in hardware.  

7) The bubble sort algorithm is famous for having nested loops; briefly describe what this means in the context 
of assembly language programming.  

8) Briefly describe why you should always attempt to use do-while loops rather than while loops for iterative 
constructs.  

9) Compilers have many ways to translater higher-level language code into assembly code. Briefly describe 
how you would know if the compiler is performing a correct and/or efficient job. 

10) Briefly describe the use of a flag register.  
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15.7 Chapter Programming Problelms 

 

For the following problems:  

 Minimize the amount of code in your solutions 

 Make your code looks exquisite in terms of readability  

 Fully comment your code, including proper headers for subroutines  

  

1) Write a RISC-V MCU assembly language subroutine that counts that examines and possibly modifies a 
value in memory. The memory location in question is stored in x20.  If the value at that location is even, 
then the number is multiplied by four and stored back at the same address; otherwise the value is divided by 
two and stored at the same address. Don’t worry about overflow and underflow for this problem 

2) Write a RISC-V MCU assembly language program that does the following (assume the associated hardware 
includes 16 switches at port address 0x11008000 and 16 LEDs at port address 0x1100C000): the program 
toggles the right-most LED each time the state of the left-most switch changes. When the program detects 
that change in switch value, it copies 100 bytes of data from the memory address starting at 0x0000D000 to 
the addresses starting at 0x0000E000. If the switch value is currently on, the data is copied directly; 
otherwise, a two’s complement of the data is copied.  

3) Write a RISC-V assembly language subroutine that clamps a span of 8-bit unsigned binary number in 
memory into the range [33,233]. This means if the number is in the given range, it is not altered. If the 
number is less than the lower bound, the number is clamped to the lower bound. If the number is greater 
than the upper bound, the number is clamped to the upper bound. The binary value is provided in x20; the 
beginning of the range is given by the address in x25, and the number of values to clamp is given in x30.  

4) Write a RISC-V fragment of assembly code that performs a firmware-based debounce of a button. The 
button is the right-most bit of the data from port address 0x11008004. Have the fragment call a subroutine 
Delay_bounce, but don’t bother defining that subroutine. The bounce should be associated with a 0→1 
transition.  

5) Write a RISC-V fragment of assembly code that performs a firmware-based debounce of a button. The 
button is the right-most bit of the data from port address 0x11008004. Have the fragment call a subroutine 
Delay_bounce, but don’t bother defining that subroutine. The bounce should be associated with a 1→0 
transition.  

6) Write a RISC-V assembly language program the implements the following FSM.  
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PART FIVE: RISC-V OTTER MCU Hardware Matters 
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16 RISC-V Architecture Details  
 

16.1 Introduction 

All of the previous chapters that dealt with the RISC-V MCU did so at primarily a programming level. We 
purposely limited our mention of hardware details in an effort to not frighten programmers who have no 
knowledge of the hardware implements an actual computer. This chapter delves into those details by describing 
the underlying hardware details of the RISC-V MCU’s submodules at both a low and high-level context. The 
notion here is that that act of executing an instruction makes certain things happen in the underlying RISC-V 
MCU hardware. In other words, there are certain actions the RISC-V MCU’s hardware must take to correctly 
implement any given instruction. This chapter describes the RISC-V various submodules and their relation to the 
execution of instructions in the RISC-V MCU’s instruction set.  

 

Main Chapter Topics 

 DESCRIPTION OF RISC-V MCU’S SUBMODULES: This chapter describes the 
various submodules in the RISC-V MCU architecture. These submodules include the 
control units, the program counter, the main memory, the branch address generator, 
the immediate generator, the branch condition generator, and the ALU.  

 HARDWARE DETAILS OF INSTRUCTION EXECUTION: This chapter provides 
pertinent hardware details regarding the execution of instruction.  

 OVERVIEW OF THE RISC-V MCU WRAPPER: This chapter describes the “wrapper” 
which we use to interface the RISC-V MCU with external hardware such as a 
development board or other modules.  

 

Why This Chapter is Important 

This chapter is important because it describes the low-level architecture details of the 
RISC-V MCU and its interfacing to the outside world with particular attention to 
instruction execution.  

 

16.2 The Big RISC-V MCU Overview   

The RISC-V MCU is simply a relative large and relatively complex digital circuit that has the ability to run 
programs. It can run roughly any program written using RISC-V assembly language, which means it’s quite 
versatile. Because it has the ability to run programs, we refer to this circuit as a computer, or probably better 
stated, as a microcontroller (MCU).  

The RISC-V OTTER MCU has a level of complexity that makes is tough to understand as one large circuit. The 
only way we (or at least me) can understand this circuit is to subdivide it into various modules. This act of 
subdividing large circuit is one of the primary characteristics of modern digital design in that modeling the 
circuit in a hierarchy facilitates the understanding of how the circuit operates. Because we are in the hardware 
portion of this text, we need to understand absolutely everything about this circuit, and thus why it is we are able 
to refer to it as a computer. Be sure to note that pure programmers don’t require the same level of understanding 
as hardware designer; programmers are only responsible for writing programs. There are a world full people who 
can program computers, but a whole lot less people who understand the hardware the programs execute on. I’m 
glad I’m a hardware person who knows how to write efficient programs. The relation here is not obvious, but so 
I’ll state it plainly, Mealy’s First and Only Law of Computer Programming (sorry pure programmers… it’s true):  
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Mealy’s First and Only Law of Computer Programming: If you understand the 
hardware of the computer your program will run on, then you can write better programs. 

In terms of the various operations computers perform, things don’t come for free. You use a MCU to solve 
problems by writing programs; the computer executes the instructions in your program in order to solve the 
problem. Executing instructions takes time, eats power, and generally speaking, you must solve every problem of 
interest using some sort of algorithm. If you understand the instruction set from a low level, you can write 
programs that are more efficient because you understand how to use the instructions in the given instruction set 
in an efficient way and also know how to not use instructions in inefficient manners. Pure programmers are not 
privy to the details.  

Figure 16.1 show a high-level view of the RISC-V MCU, which includes a listing of its main submodules. This 
chapter individually describes most of these submodules in the sections that follow. We do, however, save the 
description of the CSR module for the chapter describing the RISC-V MCU interrupt architecture.  

 

Figure 16.1: A high-level view of the RISC-V MCU and its submodules.  

16.3 The Control Units  

The current implementation of the RISC-V MCU uses two control-type modules what refer to as the control unit 
FSM (CU_FSM) and the control unit decoder (CU_DCDR). The two modules control the low-level operations 
of the RISC-V MCU. As their names’ imply, the CU_FSM is truly an FSM, which means it’s a sequential 
circuit, while the CU_DCDR is a decoder, meaning it is a combinatorial circuit. Keep these distinctions in mind 
in the following discussion. 

It is an arbitrary design decision to separate the control unit into two modules. There is no reason preventing us 
hardware designers from implementing both units in the same module. The thought is that we can comfortably 
classify the two outputs from the control unit modules into two categories, so we opt to do so to help simplify the 
understanding of the overall RISC-V operation. Additionally, the description in this section lists but does not 
describe in any meaningful detail the signals or functionality associated with interrupts. We’ll add the required 
signals as supporting hardware in Chapter 18.  

16.3.1 The Control Unit FSM (CU_FSM)  

The basic operation of the RISC-V MCU is to sequentially execute instructions stored in program memory. 
Because the execution of an instruction does not occur in “one step”1, we need an FSM to provide the control 
necessary to implement instructions in a specific sequence. If we could execute instruction in one step, we could 
probably get away with only have a decoder control the operation of the computer. In other words, the execution 
                                                           
1 Here “one step” means one clock cycle; this is a topic we discuss in an upcoming section.  
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of an instruction is a multi-step process; we synchronize each of the steps in the process with an active clock 
edge. Recall that the underlying RISC-V hardware comprises of a significant number of sequential circuit 
elements, which generally means the operation of these elements depends on and are synchronized to an active 
clock edge in the circuit.  

Most instructions in the RISC-V ISA require two clock cycles for execution, though the load instructions require 
three clock cycles. In essence, the execution of a program involves the repeated processing of these clock cycles. 
Other literature on computer architecture refers to these cycles as “T cycles”. These basic clock cycles are 
important so we give them names, which makes it easier to discuss them. The three clock cycles that we use in 
the RISC-V OTTER are 1) the fetch cycle, 2) the execute cycle, and for the load instructions only, 3) the 
writeback cycle. Roughly speaking, the fetch cycle involves “fetching” an instruction from program memory, the 
execute cycle involve executing the instruction, and the writeback cycle involve writing data from an external 
source to the register file. More details on these later.  

The main responsibility of the CU_FSM is to sequence though the various cycles to implement the instructions. 
Another way to view the CU_FSM’s responsibility is to control the flow of data through the underlying 
hardware, a task that it does by sending out the required control signals during each cycle. As you would 
imagine, control functionality such as this is ideally suited for a finite state machine (FSM).  

Figure 16.2 shows the black box diagram for CU_FSM. The signals on the left side of the module are effectively 
status signals (not including the clock signal), while the signals on the right side are control signals. The FSM 
basically reacts to the status inputs and sends out the appropriate control signals. Table 16.1 provides a brief 
description of the signals in the CU_FSM interface.  

 

Figure 16.2: The Control Unit FSM black box diagram. 
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Signal Type Comment 

INTR in An external asynchronous active high interrupt signal that the FSM uses to 
determine if an active interrupt is pending or not.  

ir[6:0] in These are the lower seven bits of the instruction word, which serves as the opcode 
field shared by all instructions.   

ir[14:12] in These are three bits that serve as the funct3 opcode share by some instructions.   

RST in An external asynchronous reset signal that the FSM synchronizes and uses to send 
out reset via the reset signal.  

clk in The system clock (not shown in Figure 16.2), a rising-edge-triggered signal.  

PCWrite out Controls the loading of data into the program counter (PC).  

regWrite out Controls the loading of data into the register file.  

memWE2 out Controls loading of data (writing) into main memory.  

memRDEN1 out Controls the reading of instruction data from main memory (output read enable).  

memRDEN2 out Controls the reading of generic data from main memory (output read enable).  

int_taken out Controls other modules (CU_DCDR & CSR) handling of interrupts  

reset out Controls synchronous resetting of the program counter (PC) 

Table 16.1: Description of CU_FSM inputs and outputs. 

Figure 16.3 shows the state diagram modeling the CU_FSM. This diagram shows three main states, but shows 
only one external input signal: RST. The state diagram shows a LOAD signal, but this is effectively an internal 
“condition” and not an external status signal. The first thing to notice about the state diagram is that it is missing 
all of the control signals (outputs) listed in Table 16.1. It is not conceivable to make the state diagram complete 
based on the basic functional requirements of the FSM acting as a controller for the RISC-V MCU. We’ll discuss 
those details soon. The LOAD label in Figure 16.3 signifies that the RISC-V hardware executes all instructions 
in two clock cycles (fetch & execute), except for the load-type instructions, which require the writeback cycle to 
complete execution.  

The state diagram in Figure 16.3 is actually not complete because we omitted all description of interrupt-based 
operations. Part of the mechanism includes the int_taken signal, which we list in Table 16.1. We’re saving the 
details of the interrupts architecture until Chapter 18, where we happily fill in all the gory details.  

The high-level description of the CU_FSM responsibilities is relatively simple. The fetch cycle retrieves an 
instruction from program memory. The instruction itself is comprised of field codes and opcodes. The right-most 
opcode connects to the CU_FSM; the CU_FSM uses this opcode to determine which instruction requires 
execution. We officially say the that CU_FSM “decodes” the opcode to determine which instruction is being 
executed, and then sends out the appropriate control signals to “make that instruction happen” in the underlying 
hardware.  
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Figure 16.3: The state diagram modeling the Control Unit FSM (no interrupts).  

Figure 16.4 shows how the system clock delineates the fetch and execute cycles. Figure 16.4 assumes that RISC-
V circuit elements are rising-edge triggered, and that the instructions are non-load-type. Figure 16.4 shows two 
and one half instructions cycles.  

 

Figure 16.4: An example cycle sequence for executing non-load-type instructions. 

16.3.1.1 Individual FSM States 

Each of the three states in the FSM has distinctive responsibilities. We’ll describe those responsibilities in 
general terms in this section in order to provide an intuitive notion of what each state does and the part they play 
in implementing instructions.  

The Fetch Cycle: The FSM’s fetch state implements the fetch cycle. This state’s single 
responsibility is to retrieve, or fetch, an instruction from program memory. Program memory is a 
part of main memory; all main memory reads are synchronous. Thus, the one responsibility of the 
fetch cycle it so assert the read signal associated with program memory.  

The Execute Cycle: The FSM’s execute cycle has several responsibilities, which is why we 
sometimes refer to this cycle as the “decode/execute” cycle. The decode/execute moniker is a 
better name but the name “execute” is far easier to write. As the state diagram indicates, the FSM 
unconditionally enters the execute cycle after the fetch cycle, which is a fact that never changes in 
the RISC-V MCU architecture. The fetch cycle provides (output of main memory) the machine 
code for the instruction the next instruction to execute. The various opcode fields in individual 
instructions indicate which instruction requires execution. The CU_FSM and the CU_DCDR 
examine the instruction opcodes (in other words, “decode” the opcodes) and then send out the 
correct control signals to implement the instruction on the underlying hardware. By “implement”, 
we mean make the underlying hardware perform the operation requested by the instruction’s 
opcodes in conjunction with the field codes in the instruction. The execute cycle is relatively 
complex in that it needs to “decode” about 40 instructions and then send out the appropriate 
control signals. Another way to look at instruction execution is that the control units are directing 
the flow of data through the hardware so as to implement the operation specified by the 
instruction.  

The Writeback Cycle: The FSM’s writeback cycle is associated with only the load-type 
instructions. If the instruction the MCU is implementing is a load-type instruction, the FSM 
transitions from the execute state to the writeback state; for all other instructions, the FSM 
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transitions from the execute state back to the fetch state. We can describe the load-type instruction 
operations execute state as needing to generate a memory address and the writeback state as using 
that address to read data from main memory. The hardware simultaneously writes the data read 
from main memory into the register file and transitions back to the fetch state.  

 

Example 16.1 

How many clock cycles does it require for the following RISC-V assembly language code 
fragment to execute from the starting at the start label and going through the done label? 

start:     add    x10,x0,x0 
           addi   x10,x10,4 
           sub    x13,x11,x12 
 
loop:      beq    x10,x0,done 
           lw     x20,0(x21) 
           lw     x21,8(x22) 
           sw     x21,4(x23) 
           addi   x10,x10,-1 
           j      loop 

done:      nop 
 

Solution: This is a classic problem that requires you to understand both iterative constructs and how the RISC-V 
hardware implements instructions. The first thing you need to do in these problems is to examine the code to 
look for iterative constructs. This code had a loop in it so this problem is not a matter of counting instructions, 
you must also consider how many times the code runs through the loop and what instructions on in the body of 
the loop.  

There are two things to be aware of in problems such as this. First, we need to look for load-type instructions, 
which are important because they require three clock cycles to execute. Second, you need to look for iterative 
constructs, which there almost always is simply to make these problems more exciting (and less boring).  

The value in x10 controls how many times the loop iterates, which we can see from the first two instructions. 
Register x10 is first cleared, then advanced by four, so the number of loop iterations is four. The loop itself has 
six instructions, which the loop executes each of the four times through the loop. There are two load-type 
instructions in the loop, so they require three clock cycles. All the instructions in the body of the loop execute 
four times, but the instruction that tests the loop count (the beq instruction) executes one more time than the 
number of times the loop body executes. Here is the painful gathering of information for the solution, we gather 
the final solution from adding the values in the third column in Table 16.2: A painfully detailed description of 
the solution., which is 66 clock cycles.  

Instructions  Number of Clock Cycles Total Comments 

The first three 6 6 3 @ 2 clock cycles 

The loop  4 * (2 + 3 + 3 + 2 + 2 + 2) 56 4 times @ 14 clock cycles 

The beq 2 2 Last time the loop 

The last one 2 2 The final instruction 

Table 16.2: A painfully detailed description of the solution. 
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Example 16.2 

How many clock cycles does it require for the following RISC-V assembly language code 
fragment to execute from the starting at the start label and going through the done label? 

start:     add    x10,x0,x0 
           addi   x10,x10,8 
 
loop:      slli   x10,x23,2 
           lw     x20,0(x21) 
           sw     x22,12(x28) 
           sw     x21,4(x23) 
           addi   x10,x10,-1 
           bne    x10,x0,loop 

done:      sub    x23,x24,x25 
 

Solution: At first glance, this problem looks similar to the previous problem, but looks can be deceiving, 
particularly when you’re really tired. The previous problem contained a while loop, whereas this problem 
contains a do-while loop. What this means is that we need to be careful about which instructions are part of the 
loop administration as this example is different from the previous example.  

Similar to the previous problem the first two instructions in this example establish the iteration count. The body 
of the loop has six instructions, one of which is a load-type instruction; this means the body of the loop requires 
13 clock cycles to execute. The final instruction adds two more clock cycles.  

The cool thing to note in this problem is that the do-while loop only has one loop administrative instruction per 
iteration. The while-loop in the previous example had two such instructions. Also, the do-while loop does not 
include that “extra” instruction, which the previous problem required to test the loop condition.  

Instructions  Number of Clock Cycles Total Comments 

The first two 6 4 2 @ 2 clock cycles 

The loop  8 * (2 + 3 + 2 + 2 + 2 + 2) 104 8 times @ 13 clock cycles 

The last one 2 2 The final instruction 

Table 16.3: Another relatively painful description of the solution. 

 

16.3.2 The Control Unit Decoder 

The RISC-V implements the control unit using two modules. The CU_DCDR works conjunction with the 
CU_FSM to implement instructions in the underlying hardware. As the name implies, the CU_DCDR is a type 
of decoder, which means it’s a combinatorial circuit. Each of the outputs from the CU_DCDR connects to MUX 
select inputs in other parts of the RISC-V MCU hardware. Figure 16.5 shows the high-level interface of the 
CU_DCDR module; Table 16.4 provides a brief description of the module’s inputs and outputs.  
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Figure 16.5: Black box diagram of the CU_DCDR module.  

Every input to the CU_DCDR is part of one the three opcode fields in the various instruction formats. Decoding 
all instructions is a relatively simple process and structured process based on the instruction opcodes. There can 
be up to three levels of decoding for each instruction, where the three levels correspond to the three possible 
opcode fields. The first step is to examine the opcode (ir[6:0]), which roughly determines the type of instruction. 
The CU_DCDR can decode some instructions using only the opcode field, but most instruction require at least 
the funct3 opcode field (ir[14:12]) as well. The second step, when necessary, requires the CU_DCDR to use the 
funct3 opcode field to further decode the instruction. A few instructions require a third step in the decoding 
process, which entails the use of the funct7 opcode field. The CU_DCDR only requires one bit of the funct7 
field (ir[30]) for instruction decoding, which is why we don’t route the other six bits of that field to the module. 
Note that not all instructions require all three decoding steps.  

Being that the CU_DCDR is a decoder, it is always outputting data. The only time this data is meaningful is after 
the valid opcodes become available after entering the execute cycle. Exiting the fetch cycle includes a 
synchronous read of the program memory data, which includes the instruction bits. Entering the execute cycle 
makes the opcode bits available to both the CU_FSM and the CU_DCDR. Once the CU_DCDR decodes the 
valid opcode during the execute cycle, the control outputs of the CU_DCDR become valid.  

The CU_DCDR effectively has two modes of operation: 1) decoding instructions, and 2) decoding interrupts. As 
for the decoding of instructions, all non-interrupt decoding is similar, including the decoding of the three-state 
load-type instructions. Once the valid instruction bits become available the execute cycle, they remain on the 
CU_DCDR’s output until the execute cycle of the next instruction. The CU_DCDR must also recognize when 
the CU_FSM is acting on an interrupt, which is does by examining the int_taken signal.  
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Signal 
Type 

Comment 

ir[6:0] in 7 bits of the instruction register, forming the opcode field in all instructions   

ir[14:12] in 3 bits of the instruction register forming the funct3 opcode field in instructions   

ir[30] in 1 bit in instruction register, part of the funct7 opcode bits  

int_taken in 1-bit signal indicating MCU entered an interrupt cycle 

br_eq 
br_lt 
br_ltu 

in Three 1-bit signals used by conditional branch instructions to determine 
appropriate program flow control actions.  

alu_fun out Controls the selection of ALU operations (4 bits)  

alu_srcA out Controls the selection of the source A (rs1) ALU operand (1 bit) 

alu_srcB out Controls the selection of the source B (rs2) ALU operand (2 bits) 

pcSource out Controls the selection of the address data for loading into the PC (2-bits) 

rf_wr_sel out Controls the selection of data for loading into register file (2-bits)  

Table 16.4: Description of CU_DCDR inputs and outputs. 

16.4 The Program Counter (PC) (no interrupt support) 

The program counter, or “PC”, is probably the most common sub-module in computer architecture. The PC’s 
basic responsibility in a computer architecture is providing a pointer (address) to an instruction in program 
memory. The official definition of the PC is that it holds the address of the instruction in program memory that 
the MCU is currently executing. As you’ll soon see, the correctness of this definition depends underlying timing 
considerations, which we’ll discuss in more detail later. More specifically, the PC points either to the currently 
executing instruction or to the instruction following the instruction that is currently executing.  

Figure 16.6 shows a high-level block diagram of the PC in the RISC-V MCU. The first thing you may notice 
about this diagram is that we don’t implement the PC as a counter; we instead implement it as a register. While a 
counter is a type of register, we choose to use a register for the PC because we are only loading values into the 
PC; we are never actually doing an increment operation as we would do in a normal counter. Even though it may 
cause initial confusion, we’ll keep referring to this module as the “PC”.  

Being the PC is only a simple register, it only has typical register inputs such as clear, load enable, data, and a 
clock input. We opt to include some external circuitry as part of what we consider the PC, which includes both a 
MUX and an adder. As we indicate in Figure 16.6, we refer to the entire module as the PC_MOD. Here are the 
interesting things to note about Figure 16.6.   

 The MUX in the PC_MOD includes some select functionality beyond a simple register. The 
CU_DCDR controls the select inputs to the MUX.  

 The adder is the box in Figure 16.6 that contains the “+4” label. While this notation is really 
handy, you must realize that using this notation essentially means that you’ll need some type of 
adder to implement the box.  

 The register heart of the PC is 32-bits wide; the MUX data inputs are also 32-bits wide.  

 The PC’s responsibility is to provide an address to program memory of an instruction that requires 
execution. We thus arbitrarily reduce the actual address lines from 32 to 14 using the reduction 
box (the box with the “-“ in it). We reduce the number of bits by removing the two most 
significant bytes and the two least significant bits. We can remove the top two bytes because the 
current RISC-V MCU OTTER memory is limited to two bytes worth of memory space. We can 
remove the two least significant bits because program memory is byte-oriented and every RISC-V 
instruction is four byte long.  
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Figure 16.6: The Program Counter block diagram. 

16.4.1 PC Inputs and Outputs 

There are relatively few connections to the PC; Table 16.5 lists the PC interface as including a description of the 
pertinent signals. There is truly nothing special about the PC: it’s just a relatively simple register. We’ll describe 
the functionality associated with the MUX in a future section in this chapter.  

Signal Type Comment 

pc output 
A 32-bit signal that reflects the current value stored in the PC; the PC 
uses this value as an address to access instructions in the main memory.  

ld input Controls the synchronous parallel loading of data to the PC. 

data input 
The data that is parallel loaded into the PC when the ld signal is asserted 
and synchronized to an active clock edge.  

rst input Synchronously resets the PC when asserted. 

clk input System clock 

Table 16.5: PC input/output signal description. 

16.4.2 PC Functionality 

The PC is a simple register but it has a few responsibilities that are key to the operation of the RISC-V MCU. 
This section describes the functionality of the PC as it relates to the diagram in Figure 16.6. Keep in mind as you 
read the following bullets that many of the implementation details that are arbitrary. There are many ways to do 
this; the current RISC-V OTTER MCU architecture chooses one of the simpler approaches.  

 We use the output of the PC to access instructions in memory, which requires two types of 
operations relatively to the instructions in the program. All RISC-V MCU instructions are one of 
two types: program flow control or otherwise. Instructions that are not program flow control 
related always load the address of the next instruction into the PC. As you can see from Figure 
16.6, the address of the next instruction is four greater than the address of the current instruction. 
The “+4” box in Figure 16.6 modifies the current address by adding four to it. This works because 
RISC-V instructions are 32-bits wide and the RISC-V MCU’s main memory is byte addressable. 
The fact that main memory is byte addressable means that we have to advance the PC output 
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forward by four (or our bytes) in able to access the next instruction in program memory. Note that 
the “+4” modification of the PC is an input to the MUX, which means the hardware has the ability 
to load it into the PC under control of the pcSource signal. 

 The PC is also responsible for implementing program flow control instructions. Recall that 
program flow control instructions are ones that cause program flow to transfer to an instruction 
other than the next instruction in program memory. The instructions are thus associated with 
conditional and unconditional branches. The pcSource signal is a control signal, and is an output 
of the control unit; the control unit is responsible for sending out the correct pcSource signal 
based on the instruction that the MCU is currently executing. If the MCU is currently executing a 
branch instruction, the hardware loads one of the three lower signals connected to the MUX in 
Figure 16.6 into the PC. Another module in the RISC-V MCU architecture determines the actual 
value of the data that loads. The three lower inputs to the MUX are jalr, branch, and jal. The jalr 
and jal inputs correspond to the jalr and jal instructions, respectively, which are both 
unconditional branch instructions. Be sure to recall that the jalr and jal instructions implement 
subroutines calls and returns. The branch input corresponds to all of the branch instruction; the 
BRANCH_COND_GEN module determines if the branch is taken or not, and then directs the 
CU_DCDR to output the correct pcSource signal. If the program does not take the branch, the 
hardware executes the next instruction in program memory, which is does by advancing the PC by 
four using the non-branch MUX input.  

 The output of the PC drives the program memory address input of main memory. As you’ll see 
later, main memory is quite specialized in that it serves as both program and data memory. The 
size of main memory is currently limited on the development board, so we do not use all the 
output bits of the PC to access instruction. There are 16k 32-bit locations (or 64k 8-bit locations) 
in main memory, which is why we opt to only connect 14 of the PC’s outputs to the address input 
of main memory.  

 

16.4.3 jal & jalr Instruction Details 

The RISC-V MCU has two unconditional branch instructions: jal and jalr. Recall that although the RISC-V 
ISA includes a call and ret instructions, they are pseudoinstructions that the assembler translates to the jal 
and jalr instructions (and sometimes includes others). This section examines the implementation details of 
these instructions.  

The jal and jalr instruction mnemonics stand for “jump and link” and “jump and link register”. These are 
very versatile instructions, though their versatility initially makes them rather challenging to understand. Table 
16.6 shows the pertinent information regarding the two instructions; here’s the full skinny:  

 The link part of the instruction is the same for both instructions; both instructions create a “link” 
by storing the address of the instruction following the current instruction (jal or jalr) in the stated 
register. This hardware can then use this value as a return address when returning from a 
subroutine. The RTL shows that the RISC-V MCU hardware stores the return address in the 
register listed as a destination operand. If the programmer provides no register, the assembler 
instructs the hardware to store the return address in x1, which we also refer to as “ra”. Note in the 
RTL that the value being stored is four greater than the current PC value, which is simply the 
address of the instruction following the jal or jalr instruction. Because the link part of the 
instructions is the same, programmers can use either instruction to call subroutines.  

 The jump part of the instruction (the part that modifies the PC) is not the same for the jal and 
jalr instructions; this is where the “register” in jump and link register comes in. Both versions 
modify the PC, but they do so in different ways, as indicated by the RTL. The RTL for the 
instructions show that the new PC is a function of a label, used as a relative offset value, and a 
second value. The second value for the jal instruction is a PC while the second value for the jalr 
instruction is a register. The notion here is that the register to use with the jalr instruction is the 
link register used by a jal or jalr instruction, which effectively allows the jalr instruction to 
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act as a return from subroutine instruction. Thus, while we can use either instruction to call 
subroutines, we can only use the jalr instruction to return from subroutines. The jalr 
instruction does not use the label value in the address calculation when returning from a 
subroutine; the hardware expects the value in the register used as the return address register to be 
an absolute address value (after all, it is a 32-bit register).  

Instr 
Type Instruction Form Instruction RTL Example Usage 

 
J-Type 
 

jal   rd,lab 
X[rd] ← PC + 4 

PC ← PC + lab 
jal   x8,lab 

jal   lab  
x1 ← PC + 4 

PC ← PC + lab 
jal   lab 

 
I-Type 
 

jalr  rd,rs1,lab 
X[rd] ← PC + 4 

PC ← rs1 + lab 
jalr  x5,x6,lab 

jalr  rs,lab 
x1 ← rs1 + lab 

PC ← rs1 + lab 
jalr  x7,lab 

Table 16.6: Two forms of the two unconditional branch instructions.  

These instructions are definitely tough to understand at first, but all is not lost. We actually rarely if ever have a 
need to use these instructions because the RISC-V includes four pseudoinstructions that are much more intuitive. 
Table 16.7 lists these four pseudoinstructions with usage information. This table underscores the fact that we 
don’t need to understand the exactly how the pseudoinstruction translate to base instructions because the 
assembler takes care of most of the details. Our mission becomes one of understanding the how the individual 
base instructions work on the hardware level so we can correctly implement them. Once we’ve correctly 
implemented the jal and jalr instructions, the assembler does the correct math and formats the correct fields in 
the machine code associated with the instructions such that when the hardware executes them, they simply work.  

Instruction Form 
Equivalent Base  
Instruction(s) Example Usage Comment 

j      label jal    x0,label  j     label Jump to instruction 
associated with label  

jr     rs1 jalr   x0,0(rs1) jr     x8 Jump to instruction at 
address in rs1 

call   rd,label 
auipc  rd,hi(label) 

jalr   rd,lo(rd) 
call   x5,subrot 

Jump to instruction 
associated with label;  
Store current address in rd 

call   label 
auipc  x1,hi(label) 

jalr   x1,lo(x1) 
call   subrot 

Jump to instruction 
associated with label;  
Store current address in x1 

ret    jalr   x0,0(x1) ret Jump to instruction at 
address in x1 

Table 16.7: The program flow control pseudoinstructions and their base instruction translations. 

Here’s the final summary of these two instructions. Keep in mind that RISC-V designers created these 
instructions to be versatile, but that design goal makes it hard for humans to easy understand how these 
instructions operate. Here is the final summary:  
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 Both jal and jalr are jump instructions that transfer program control to somewhere other than the next 
instruction the program. The hardware implements these jumps by loading absolute address values into 
the PC.  

 The assembler is responsible for encoding the correct immediate values into the underlying machine 
code for both instructions while the hardware is responsible for calculating the absolute address for both 
instructions.  

 The encoded immediate value for both instructions represents signed values, which allow program 
control to jump forward or backward in the program. The instruction uses both immediate in the 
absolute address calculations.  

 These two instructions jump; the primary difference between these two instructions is how they 
calculate the absolute address, which is the address in instruction memory to jump to (the new value 
loaded into the PC). The jal instruction uses the immediate value as a signed offset that will modify 
the current PC value; the jalr instruction also has an offset, but the instruction uses that offset to 
modify an address in a register to form the absolute address. Thus, the new absolute address in the jal 
instruction is a function of the current PC value, while the absolute address in the jalr instruction is not.  

 The fact that the jal instruction’s absolute address calculation is based on a signed offset value added 
to the PC, the instruction is limited to how far in program memory it can jump. It can jump in either 
direction, with the offset value effectively limited to a 21-bit value, which means 20 bits in either 
direction. The jalr instruction does not have limits on the jump distance because the register value in 
the jalr instruction’s address calculation can be an absolute address.  

Table 16.8 show the instruction formats for the jal and jalr instructions. Both of these formats use rd to 
specify the destination register and rs1 to specify the course register. The jalr instruction has a field for a source 
register because it uses a value in a register to calculate the address to jump to.  

Table 16.9 shows the underlying machine code formats for both the jal and jalr instructions. The jal 
instruction uses a 20-bit immediate field to encode the signed offset value. There are two things to notice 
regarding the immediate field in the jal instruction. First, the ordering is somewhat wacky. The RISC-V decoded 
upon this approach in an effort to save hardware by aligning some of the bits with similar bits in other instruction 
formats. Second, the LSB of the immediate value is not included in the machine code. Since these are jump in 
instruction memory, and instructions are 4-bytes wide, there is no need to encode the two LSBs. We only encode 
the LSB to allow RISC-V to support 16-bit wide instructions. This approach effectively doubles the jump range 
without having to encode an extra bit.  

The immediate field for the jalr instruction is typically set to zero, which supports the use of jalr in 
returning from subroutines. Recall that both jump instruction “link” the return address (store the value of the 
next instruction following the current instruction being executed) in ra.  

Instr 
Type Instruction Format 

I-type 

J-type 

Table 16.8: I-type and J-type instruction formats. 
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Instr 
Instr type Instruction Format 

jalr 
I-type  

jal 
J-type  

Table 16.9: Machine code format for jal and jalr instructions. 

16.4.4 Conditional Branch Instruction Details 

One of the other values that the PC can load are the branch address, which are the addresses the program flow 
jumps to when the conditions associated with the branch instruct the hardware to “take” the branch (as opposed 
to not taking that branch and instead continuing onto execute the next instruction in memory). All conditional 
branch instructions share the same B-type format. Table 16.10 shows the B-type instruction format; we use 
shading to indicate opcode fields, and no shading to indicate field codes. Table 16.11 shows the machine code 
formats for each of the branch instructions. Here is some other fun stuff to note about the B-type instruction 
format:   

 The B-type format includes two 5-bit source register fields; the underlying hardware uses the 
values in the registers designated by these fields as sources for the conditions that the branch 
instructions uses to determine whether to take the branch or not.  

 The B-type format includes a 12-bit immediate field, which it stores in some wacky order and 
divided into two chunks (done this way to save hardware resources). The immediate value serves 
as a signed offset that is added to the current PC value and loaded into the PC to effectively 
implement the branch (when the conditions determine that the branch needs to be taken). The 
instruction does not encode the LSB of the branch address because the value is always zero based 
on the width of the RISC-V instructions. Not encoding the LSB allows the branch range to double 
without requiring needing to store the extra bit. It is the assembler’s responsibility to form and 
encode the correct immediate value; it is the hardware’s responsibility to reconstruct the 
absolution branch address from the current PC and the encoded immediate value.  

Instr 
Type Instruction Format 

B-type 

Table 16.10: B-type instruction format. 
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Instr 
Instr type Instruction Format 

beq 
 

bge 
 

bgeu 
 

blt 
 

bltu 
 

bne 
 

Table 16.11: Machine code formats for the base branch instructions. 

16.5 Main memory 

The main memory in the RISC-V OTTER MCU serves three primary functions: 1) stores the program, 2) stores 
generic data, 3) acts as an interface for I/O operations. Additionally, some portion of data memory serves as the 
stack. This memory module is thus the most complex module in the RISC-V MCU architecture. In this section, 
we describe the memory’s functionality in terms of its three primary functions.  

Figure 16.7 shows the black box diagram for the memory module. The BBD in Figure 16.7 has all inputs to the 
module on the left side and all outputs from the device on the right side. We modified the ordering of the inputs 
and outputs to the module compared to the RISC-V MCU schematic to better describe the functionality of the 
device.  

 

Figure 16.7: Black box diagram for the main memory module. 

Table 16.12 lists and briefly describes the input and output signals associated with main memory. The main 
memory serves two primary functions: program memory and data memory. Although Table 16.12 appears 
daunting with the sheer number of entries, this one fact helps you grasp it better. We delineate the signals 
associated with the different memory functions (read and write enables, address, data input, data output) using 
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the number “1” and “2”, where signals associated with program memory have a “1” in the signal name and 
signals associated with data memory have a “2” in the signal name. Get used to it; we use it quite a bit.  

Signal 
Type/ 
width Comment 

ADDR1 in/14 The address lines providing access to program memory. This input is the output from 
the PC; the upper 16 bits and lower 2 bits are not connected.  

RDEN1 in/1 Enables the instruction addressed by ADDR1 to output to DOUT1; the instruction data 
output is synchronized to the memory’s rising clock edge.  

DOUT1 out/32 The instruction at the address specified by ADDR1. This output is often referred to as 
the “ir”, short for instruction register.   

ADDR2 in/32 The address lines providing access to data memory and I/O. The memory module uses 
the value of these address lines to differentiate between I/O and data access.  

RDEN2 in/32 Enables the instruction addressed by ADDR2 to output to DOUT2; the data stored in 
memory is output is synchronized to the memory’s rising clock edge. 

DIN2 in/32 The data written into memory at the address specified by ADDR2 input. Write 
operations require an asserted WE2 and are synchronized to the rising clock edge.  

DOUT2 out/32 The memory read operations, this is the data specified ADDR2. For input operations, 
this is a copy of the input data on the IO_IN input.  

WE2 in/1 The write enable signal for data memory. This signal must be asserted for data to be 
written to memory on the rising clock edge.  

SIZE in/2 Use for memory reads to determine placement of bytes and half words in destination 
word; for memory writes it determines which byte or halfword in source register are 
written to memory.  

SIGN in/1 Used in memory reads to sign extend byte and halfword read: SIGN=1 are for zero 
extension of read value and SIGN=0 are for sign-extending read values.  

IO_IN in/32 The data input to the RISC-V MCU from the outside world. This data is passed directly 
to the DOUT2 output for input operations.  

IO_WR out/1 This signal asserts during the execute cycle of the load instructions used as data output 
instructions. This signal is an output from the RISC-V MCU.  

CLK in/1 The clock input; all memory reads and memory writes are synchronous.   

Table 16.12: Description of main memory inputs and outputs. 

The physical main memory in the RISC-V MCU has a capacity of 16k x 32, or 64k x 8. We list the capacity in 
two ways to underscore the fact that it is byte addressable in terms of data transfers. This essentially means that 
we can read and write individual data at any address 64k physical memory space. The main memory stores both 
the program and generic data, however. Where exactly it stores the program and data is generally arbitrary, but 
in projects such as the RISC-V MCU and its probable implementation on an FPGA-based development board, 
we use the memory segmentation provided in Figure 16.8. If you know how to work with the assembler and 
know how the assembler interfaces with the development tools, you can construct your memory map any way 
you want. Otherwise, you should comply with the memory map in Figure 16.8.  

Due to resource limitations on the development board, the “physical portion” of main memory is limited to 16k 
locations of 32-bit data (or 64k of 8-bit data). The memory map in Figure 16.8 shows this by delineating the data 
storage portion of memory (code, data, and stack segments) in the address space spanning from 0x00000000 to 
0x0000FFFF. The memory module treats addresses above the physical memory address in a different way, 
which primarily is I/O.  
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There is no magic associated with the address delineations in the physical address space of main memory; the 
segment boundaries are once again arbitrary. The main mission for programmers is to prevent data in one 
segment from overwriting important data from another segment. This is a mission that’s easier to accomplish if 
the programmer understands the underlying limitations of physical memory.  

 

Figure 16.8: The RISC-V MCU memory map. 

16.5.1 Physical Memory 

Many MCUs, including the RISC-V, refer to the notion of address space. For example, we consider the RISC-V 
MCU as having a 32-bit address space. The notion of address space does not necessarily correspond to actual 
physical memory. For example, despite the RISC-V MCU having a 32-bit address space, 64k of that address 
space refers to physical memory, with each address location referring to a single byte. The hardware designer 
can “map” that 64k of physical memory anywhere in the 32-bit address space; thus, the memory map in Figure 
16.8 is arbitrary.  

We divide our description of main memory in this section into physical memory and “other” memory space (I’m 
trying not to say “virtual memory”). Once again, the physical memory holds instruction and data while we 
associate the non-physical memory with input/output operations.  

16.5.1.1 Program Memory 

We refer to the space in memory that stores the program as the program memory. The memory map in Figure 
16.8 arbitrarily places the program memory starting at the lower addresses in memory.  

All instructions in the RISC-V MCU are 32-bit wide, which can sometimes be confusing because the data in 
main memory is byte addressable. The main issue for program memory is that every instruction spans four-byte 
addresses in memory. The reason we don’t use a counter for the program counter is that counter typically 
increment (add 1). In the RISC-V MCU, it’s simply easier to include the hardware that adds four to go to the 
next instruction in program memory. Because of this, we can best implement the RISC-V OTTER MCU 
program counter as a register, but always referred to as a “counter”, and in particular, the “program counter”.  

There are versions of the RISC-V that use 16-bit instruction words, but that’s simply not what we’re using in our 
RISC-V MCU implementation. The RISC-V ISA designers included instruction level support to process 16-bit 
instructions, which you can see by the fact that the LSB is not stored in the relative addresses associated with the 
jal, jalr, and branch instructions.  

One of the issues involved in reading 4-byte chunks of data from a byte addressable memory is the issue of 
alignment. Our RISC-V instructions must grab the correct 4-byte chunk of memory, or the hardware can’t 
correctly decode and execute the instruction. For example, the program memory needs to output four bytes of the 
same instruction, not two bytes from one instruction and two bytes from another instruction. This is a common 
issue in many MCUs, as the width of the instruction word is not typically the same width as the data the 
instructions need to work with.  
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As it turns out, the main memory module we use in our RISC-V implementation works with the external 
hardware to ensure that all program memory accesses are properly aligned. The PC output, which is the address 
input to program memory portion of main memory, does not connect the two lowest LSBs to the ADDR1 input 
to the main memory. Related to that is the fact that physical memory does not extend past 0x0000FFFF, so the 
hardware does not route the two most significant bytes of the PC to the program memory address input 
(ADDR1). In the end, it then becomes the responsibility of the main memory module to create a 32-bit address 
from the 14 bits sent to the program memory from main memory.  

In theory, program memory is not officially writable. The notion here is that some outside entity using some 
unspecified mechanism put the machine code into program memory. That being the case, there is no need to 
write new data to program memory2, and thus the program memory portion of data memory does not have a data 
input or a write enable. You’ll see something different with “data” memory. On that note, all memory reads, 
which includes both program and data memory reads, are synchronous, which means the data at the given 
address only appears after the memory modules sees a rising clock edge with the appropriate read enable signal 
asserted. The RDEN1 signal is a positive logic signal that serves as the read enable for the instruction memory 
portion of main memory.  

The final comment for this section is the official starting point of the program. In order for the hardware to start 
any program, the hardware must know the location of the first instruction in the program. This fact requires some 
type of agreement between the hardware and the assembler. The instructions are a set of machine code that the 
programmer can place anywhere in program memory; the programmer must be able to somehow communicate 
with the hardware what the address of the first instruction is so that the hardware can load that value into PC 
before it does anything else. This escapes me right now, but there is a special name for this, such as entry point. 
There currently is no such mechanism in the RISC-V OTTER MCU hardware. Because the current RISC-V 
hardware will most likely be implemented on an FPGA, the hardware clears the PC when powered on, which 
means the PC output is 0x00000000. This means that we then must ensure that we place our program at address 
0x0000000 in main memory, which is clearly in the code segment according to Figure 16.8.  

16.5.1.2 Data Memory 

When we refer to data memory, we’re “probably” referring to the portion of main memory that is not the 
program memory but still part of physical memory. But then again, we can consider the entire physical main 
memory to be data memory because the underlying hardware does not know what you’re storing in it: it just 
stores the bits the instruction tells it to store. Unless we specify otherwise, we’ll use the term data memory to 
refer to part of physical memory not intending and/or not currently storing instruction data.  

Data memory of course stores data, but we can further classify it by the nature of the data it stores. In the RISC-
V architecture, we use data memory to store data in the “data segment”, or in the “stack segment”. Both areas 
store data, but the access is conceptually different. Conceptually speaking, we can access the data in the data 
segment using absolute addressing, which we access data in the stack segment according to the definition of an 
abstract data type called, wait for it, the stack.  

Though we’ve slapped a label on different chunks of memory, we use the same set of instructions to access all of 
physical main memory. In theory, we’re not supposed to write to program memory, but we can actually do so 
using memory write (store-type) instructions. Similarly, we use the same memory access instructions to work 
with both the data and stack segments: it’s just memory.  

The main memory uses a “2” postfix on the memory’s data input, output, control and address to signify data 
memory. Both data memory reads and writes are synchronous, where WE2 controls the data writes and RDEN2 
controls the data reads. The ADDR2 input is an absolute address used to index into that data segment. ADDR2 is 
a 32-bit value that effectively addresses 16-bits of physical memory, the meaning the hardware treats addresses 
above the maximum 16-bit value (0xFFFF) as I/O (see section 16.5.2). The DIN2 input is 32-bit data used to 
write to the RAM, the DOUT2 output is the 32-bit data read from RAM.  

The load and store instructions allow for the loading (reading) and storing (writing) of data to main memory. 
There are three flavors of load and store instructions, which differ by the size of data being loaded or stored. The 
RISC-V instruction set provides the ability to store words (four bytes), halfwords (two bytes), or bytes (one byte, 

                                                           
2 There of course is a notion of self-modifying code, but we don’t want to go there.  
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duh!). If all the memory had to do were load and store words, things would be relatively simple; things become 
slightly more complicated when we need to access something other than words.  

Store instructions can write one of three different sizes of data to physical memory: words, halfwords, or bytes. 
The three store instructions, sw, sh, and sb support the writing of these three sizes of data. The combination of 
the assembler and the RISC-V MCU hardware provides an absolute address to write the data to in memory; the 
hardware is ultimately responsible for providing this address from the summation of the base address provided 
by a register and a sign-extended offset value encoded in the immediate field in the instruction. The absolute 
address represents the lowest possible memory location address that the hardware can write the data to. This 
means that the sw instruction write a four-byte value starting at that address and includes the next three address 
values; the sh instruction writes a two-byte value starting at that address and includes the next address; the sb 
instruction writes a value at that address.  

The main memory handles the address portion of the store instructions in a special way. The memory module 
only includes the 14 MSBs of the lower two bytes from the 32-bit DIN2 address input for the address 
calculation. The SIZE signal provides the other two bits to the input to the memory. The size input from memory 
is the lower two bits of the funct3 field code (ir[13:12]) in the store instructions. The three store instructions are 
S-type instructions. Table 16.13 shows the instruction formats for the three store-type instructions. Note that bits 
[13,12] reflect the size of data to store with bytes=”00”, halfword=”01”, and words=”10”. The memory module 
formulates the absolute memory address by replacing the two lower bits of the two lower bytes of the ADDR2 
input with these values.  

Instr 
Instruction Form Instruction RTL Example Usage Comment type 

sb sb   rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2[7:0] sb   x11,0(x31) store byte in 
memory 

S-Type 
 

sh sb   rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2[15:0] sh   x11,0(x31) store halfword in 
memory 

S-Type 
 

sw sw   rs2,imm(rs1) M[rs1 + sext(imm)] ← rs2 sw   x11,0(x31) store word in 
memory 

S-Type 
 

Table 16.13: The store-type instructions.  

Reading from memory is inherently different from writing to memory in terms of how the memory modules 
respond. Writing to memory takes one of the three data sizes and places it starting at the specified location in 
memory. On the other hand, reading from memory always places the read value into a register, while the 
registers are all 32-bits wide. This works nicely for reading words, but it brings up the question of what to do 
with the non-used register bit locations when reading halfwords and bytes. As it turns out, the memory module 
fills the unused bits with either zeros (zero extension) or the sign-bit (right-most bit) of the data being read from 
memory (sign extension).  

The RISC-V MCU’s load-type instructions perform reads from memory and place the data into specified 
registers. There are five load type instructions, two each for loading bytes and halfwords, and one for loading 
words. Loading bytes and halfwords into registers can be specified as either signed or unsigned, which 
designates how the unused register bits are assigned (signed uses sign extension while unsigned used zero 
extension). Note that because there is no notion of unfilled bits in the register for reading words from memory, 
there is no need for two types of load words instructions as there are for loading bytes and halfwords.  
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Table 16.14 shows the instruction formats and other useful information associated with the five load-type 
instructions. Note that the instruction formats dedicate a single bit to indicate whether read instructions (load-
type) are of the signed or unsigned type. More specifically, the MSB of the funct3 field (ir[14]) indicates which 
of the load-type instructions (not including lw) require zero extension. This bit is input to the memory modules 
as the SIGN input. Table 16.14 uses “sext” and “zext” for sign and zero extending, respectively.  

Instr 
Instruction Form Instruction RTL Example Usage Comment type 

lb lb   rd,imm(rs1) rd ← sext(M[rs1+sext(imm)][7:0]) lb   x11,0(x20) load byte from 
memory signed 

I-Type 
 

lbu lbu   rd,imm(rs1) rd ← zext(M[rs1+sext(imm)][7:0]) lbu  x12,0(x30) load byte from 
memory unsigned 

I-Type 
 

lh lh   rd,imm(rs1) rd ← sext(M[rs1+sext(imm)][15:0]) lh   x15,0(x23) load halfword from 
memory signed 

I-Type 
 

lhu lhu  rd,imm(rs1) rd ← zext(M[rs1+sext(imm)][15:0]) lhu  x21,0(x21) load halfword from 
memory unsigned 

I-Type 
 

lw lw   rd,imm(rs1) rd ← M[rs1+sext(imm)][31:0] lw   x23,0(x22) load word from 
memory  

I-Type 
 

Table 16.14: The load-type instructions.  

16.5.2 Input/Output Memory Space 

The memory space in the RISC-V MCU involves input and output because the RISC-V uses memory-mapped 
I/O (MMIO). The memory map in Figure 16.8 provides a specific segment dedicated to I/O. This memory space 
is not associated with physical memory, however. In typical digital systems, part of the design includes 
configuring the system such a memory read or write (load or store) that happens at a particular address will be an 
I/O operation rather than a memory access operation. Recall that part of the memory mapped I/O mechanism is 
that the assembler does not know the different between load/store instructions used for physical memory access 
and the same instructions used for I/O. The same is true in the RISC-V MCU.  

The responsibility of interpreting load and store instructions as either memory reads or writes, or I/O instructions 
lies in the RISC-V MCU hardware. More specifically, we model the main memory model in such a way as to 
take full responsibility for this determination: no other RISC-V module is involved. The memory module makes 
this determination based solely on the value on the ADDR2 input: the module interprets load and store 
instructions specifying an address above 0x0000FFFF as I/O; the module interprets all other load and store as 
physical memory accesses.  

Figure 16.9 show a diagram that models how the memory module handles load-type instruction. In this diagram, 
we use two MUXes to indicate how the ADDR2 input controls the DOUT2 and IO_WR outputs. Both operations 
are associated with one of the RISC-V’s five load instructions. Here are the details listed by output signal name:  
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DOUT2: The memory modules transfers data from the IO_IN input to the DOUT2 output when 
the ADDR2 input is greater than 0xFFFF. This is an input operation in that IO_IN is 32-bit input 
signal that the RISC-V MCU uses to input data from devices external to the MCU. When the 
ADDR2 input is less than 0x10000, the memory module places 32-bits of data from a physical 
memory address on the DOUT2 output.   

IO_WR: This signal is an output signal on the RISC-V MCU. The MCU uses this signal to 
indicate to external devices that the MCU is executing an output operation. The circuitry that 
interfaces external hardware to the RISC-V MCU typically uses this signal to control the latching 
of data output from the MCU into external registers. When the ADDR2 input is greater than 
0xFFFF, the memory module transfers the WE2 signal to the IO_WR; the hardware only asserts 
WE2 during the writeback cycle of any load-type instruction. The hardware clears the IO_WR 
signal during all other instructions including load-type instructions used for physical memory 
reads.  

 

Figure 16.9: Model of memory data associated signals. 

16.5.3 Memory Timing Issues 

The specific nature of the underlying RISC-V hardware makes the instruction execution timing somewhat 
unique. The program counter (PC) provides the address of the “current” instruction the RISC-V MCU is 
currently executing. We put the word “current” in quotations because this is the official definition of the PC, but 
as you’ll see, it’s not always 100% accurate depending on the exact time you examine it.  

Figure 16.10 shows a partial RISC-V schematic highlighting the interface between the PC and the memory 
module. Figure 16.10 shows the signals found in the timing diagram of Figure 16.11; we don’t bother including 
less important signals.  
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Figure 16.10: Schematic diagram supporting Figure 16.11. 

Figure 16.11 shows the important timing features associated with reading instruction from the memory. In this 
context, reading instruction from memory is the responsibility of the “fetch” cycle part of instruction execution. 
Here are some of the more important features from Figure 16.11:  

 The timing diagram shows the execution of two full instructions and another fetch cycle. The 
instructions being executed don’t matter here except for the fact they are not load-type instructions 
or program flow-type instructions3.  

 The PC[15:0] output represents the lower two bytes of the PC output. The upper 14 bits of this 
output is becomes the address input to the memory. The address of the first instruction in the 
timing diagram is arbitrarily at 0x20, which only lists the lower byte of the PC[15:0] signal.  

 The PCWrite signal is an output from the CU_FSM that controls the latching of data to the PC. 
This signal asserts upon entering the fetch cycle. Loading data to the PC is synchronous, so the 
PCWrite signal does not do anything until the next clock edge, which also causes a transition to 
the fetch state of the following instruction.  

 The (1) note shows that the change in data is caused by the clock edge (and the PCWrite signal). 
All the RISC-V MCU instructions are 32-bits wide, which causes the PC to advance by four each 
instruction as the PC[15:0] lines show.  

 The DOUT1 signal is the output of program memory, which should show the underlying bits 
associated with each instruction. The diagram does not show machine code, but does show the 
address where the machine code lives.  

 Reading from memory is synchronous, which is why the instructions for a given address do not 
appear immediately after the address changes at (1). The instruction bits for the current instruction 
appear only after the next active clock edge, which is at the end of the fetch cycle and marked by 
the (2) note.  

 The PCWrite does not advance every clock edge, which is why we see the on/off pattern. It 
makes sense that the PC should advance only once per instruction cycle, which is what the 
diagram shows.  

 Most important to note is the fact that the instruction bit output appears to be delayed by one clock 
cycle from the PC output. We refer to this as “important” because it’s somewhat non-intuitive. 
The notion that the read operations on the memory module are synchronous causes this behavior.  

                                                           
3 To be precise, they could be branch instructions, but the branch is not taken.  
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Figure 16.11: Example timing diagram for PC and instruction memory output. 

16.5.3.1 Branch Instruction Timing 

Branch instructions are one of the flow control-type instructions, which by definition change the value of the 
program counter to something other than to point at the next instruction in memory. Recall that the definition of 
the branch is that it is an instruction that jumps conditionally based on a comparison between two registers made 
as part of the instruction. There are six conditional branch instructions as in the RISC-V base instructions, and 
ten other pseudo-branch instructions that the assembler translates to base branch instructions.  

When the MCU executes a branch instruction, the instruction actually causes a true branch when the condition 
associated with the instruction test as true. If the conditions are not true, program controls continues onto the 
next instruction in memory, exactly like a non-program flow control-related instruction. In this case, the only 
interesting thing to examine here is when the instruction causes a branch. Figure 16.12 show an example timing 
diagram associated with a branch-type instruction where the program conditions cause the program to take the 
branch. Here are some other fun facts to know about this example.  

 The PCWrite signal always asserts after entering the execute state. The (1) note indicates that the 
PC loads a new value at the clock edge between the fetch and execute states. The note at (2) shows 
the PCWrite signal asserted, which cases the PC to load the new value (PC+4) into the PC.  

 The instructions executed in the example are either non-program flow control (and non-load-type) 
or the beq instruction listed on the top of the diagram.  

 The bits associated with beq instruction become available after entering the execute cycle, the 
label (3) indicates. Once the instruction bits become available, the register addresses to the register 
file become valid, which outputs valid data from the associated registers. These register’s outputs 
are inputs to the combinatorial BRANCH_COND_GEN module, which then outputs relational 
data about the contents of the two registers to the CU_DCDR. The CU_DCDR uses the relational 
data in conjunction with the opcode data (that allowed the CU_DCDR to discern which instruction 
was being executed) to send out the appropriate value to the pcSource signal. When the MCU 
takes the branch, the pcSource signal is “10”, as the execute state associated with the branch 
instruction shows.  

 Because the pcSource signal is “10”, the PC MUX directs the value associated with the branch 
label to the PC. The branch label in this case is done; the note in the diagram indicates the 
numerical value of done is 0x80, which is then loaded into the PC at the end of the execute cycle 
as indicated with (4) label.  

 The instruction bits associated with the instruction at address 0x80 then appear on the memory 
output (DOUT1) at the beginning of the next execute cycle as noted by (5).  
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Figure 16.12: Example timing diagram showing a branch instruction with the branch taken. 

16.5.3.2 Memory Access: Load-Type Instruction  

When we speak of load-type instruction, we are referring to both memory read instructions and input 
instructions. Because the RISC-V uses memory mapped I/O, the load-type instructions thus serve as both 
memory reads and external data inputs. Recall that the assembler does not know the difference between memory 
read and I/O; the underlying RISC-V hardware, namely the main memory module, takes care of the difference.  

Load-type instructions in the RISC-V ISA all operate in the same manner: they take data from somewhere (from 
memory or from some external device) and place that data into a register. The only difference between these 
instructions is where get the data from. In either case, it is the memory module’s responsibility to place the 
correct data on the memory’s DOUT2 output. When the address associated with the load-type instruction is 
greater than 0x0000FFFF, data the memory modules transfer the data on the IOBUS_IN lines to the DOUT2 
output. When the address is 0x0000FFFF or less, the memory places the data at that memory address on the 
DOUT2 output.  

Figure 16.13 and Figure 16.14 show timing diagrams for load-type instruction for memory access and data input, 
respectively. The first thing to notice about these two figures is that they are essentially the same; the only 
difference is on the DOUT2 output signal, which the figures do not show. The following is a detailed description 
of Figure 16.13, which shows a load instruction performing memory access.  

 The only thing we know about the instruction before the load instruction is that it is not a load 
instruction, as it only has a fetch and execute cycle.  

 We know this instruction is performing a memory load based on the effective address in the 
instruction’s second operand. The effective address is the sum of the offset and the value in x8, 
which the diagram lists as 0x0000CD00. Because this address is less than 0x00010000, the 
instruction performs a memory read.  

 Load-type instructions require three t-cycles (states), which the RISC-V vernacular list as fetch, 
execute, and writeback. The instruction in Figure 16.13 is an lw; other load-type instructions also 
require three clock cycles.  

 The PCWrite signal asserted in the final state of any instruction execution. For two cycle 
instructions, that means PCWrite asserts during the execute state; for load-type instructions, 
PCWrite asserts during the writeback state. Following every PCWrite assertion, is the assertion 
of RDEN1 during the execute state of all instructions, which allows the instruction bits to appear 
on the output of program memory (DOUT1). The (5) note highlights this.  
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 The RDEN2 signal is a read enable signal for the data portion of the memory. This signal asserts 
at note (4) to allow the address in the memory’s ADDR2 input to have valid data. If for this 
memory access instruction, the memory outputs the data at the address on the ADDR2 input to 
the DOUT2 output. If this instruction were performing input, it would pass the IOBUS_IN input 
to the DOUT2 output.  

 Note (7) shows that the assertion of the regWrite signal allows the loading of the final data value 
(DOUT2), whether it be from memory (read) or an external device (input) into a register file. 
Note (3) shows that the data from the DOUT2 memory output is selected as the data that writes 
to the register; the value “10” selects the DOUT2 data output to be the written to the register file.  

 Note (1) and (2) show that no data needs writing to memory, so WE2 remains unasserted, and 
that nothing is being output, so IO_WR remains unasserted as well.  

 All but the load-type instructions follow a given two-cycle format. The three-cycle load-type 
instructions effectively stretch that cycle to three states with the inclusion of the writeback state. 
You can see this as a “one cycle delay” in the PC and DOUT1 lines associated with the load 
instruction.  

 

Figure 16.13: Example timing diagram showing a load instruction performing memory access.  

16.5.3.3 Inputting Data: Load-Type Instruction 

The RISC-V MCU also uses load-type instructions to input data. Figure 16.14 shows the timing associated with 
a load-type instruction that performs an input operation. This load-type instruction performs an input because the 
effective address is greater than 0x0000FFFF, as the note under the instruction in Figure 16.14 indicates. This 
difference causes the only other difference in the instructions: when the memory modules sees that the address is 
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greater than 0x0000FFFF, it transfers the IOBUS_IN value to the output. When it effective address was less than 
0x00010000, the memory module transferred the value in memory to the DOUT2 output (see Figure 16.13). The 
main point here is the similarity of Figure 16.13 and Figure 16.14; this being the case, we’ll not bore you with 
another detailed description.  

 

Figure 16.14: Example timing diagram showing a load instruction performing input.  

16.5.3.4 Memory Access: Store-Type Instructions 

When we speak of store-type instructions, we are referring to both memory write instructions (memory access) 
and input instructions (I/O). The RISC-V uses memory mapped I/O (MMIO), which means that the store-type 
instructions thus serve as both memory writes and internal data outputs to devices external to the MCU. One 
interesting artifact of MMIO is that fact that the assembler does not know the difference between memory read 
and outputting data; the differences are at the RISC-V MCU hardware level.  

Store-type instructions in the RISC-V ISA operate in the roughly the same manner: they take data stored in a 
register (internal data) and make that data available to other entities. When programmers use store instructions 
for writing memory, the instruction instructs the underlying hardware to copy data from the register to a location 
in memory. When programmers use the store instruction as I/O, the data in the register is “made available” to 
devices external to the RISAC-V MCU. We use the notion of being “made available” to mean that the MCU has 
no notion of what devices external to the MCU do with register data that the MCU made available. The only 
difference between these memory access and output instructions is where the register data goes.   

Recall that the memory module makes the determination of whether the store instruction performs a memory 
access or a data output. When the address associated with the store-type instruction is greater than 0x0000FFFF, 
the memory modules asserts the IO_WR signal on the memory module. When the address is 0x0000FFFF or 
less, the memory module does not assert IO_WR. In both cases, the control unit asserts the memory module’s 
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write enable WE2. It is the responsibility of the RISC-V MCU control units to ensure the data goes to the correct 
sources.  

Figure 16.15 shows an example timing diagram for one store-type instruction. The following is a description of 
the pertinent details, worthy of attention from mere humans:  

 The timing diagram shows one known instruction; all we now about the other instructions are that 
they are not load-type instructions because they don’t include writeback states.  

 The sw instruction performs a memory access based because the effective address is less than 
0x00010000. The effective address is the value in x9 because the instruction includes a zero offset.  

 Note (1) indicates that no instructions in the example include reading data from memory.  

 Note (2) indicates the instruction is a memory access and thus does not asset the IO_WR signal.  

 Note (3) indicates that no instructions are writing data to the register file. Recall that the 
instruction is “doing something” with data in the register file.  

 Notes (4) & (5) show the write pulse on the WE2 signal. The memory modules uses this signal as 
an actual write enable because the instruction is performing a memory write. This signal asserts as 
part of the execute cycle for all store instructions and remains unasserted otherwise.  

 Note (6) shows that the PCWrite signal cause the PC to advance by four, indicating that none of 
the instructions in this example are program flow control instructions. Note (7) reminds us of the 
fact that the program memory read enable (RDEN1) allows the instruction at the current PC 
address to output from program memory (DOUT1).  

 Worth noting here is that the instruction is writing data to the memory, which is a synchronous 
operation. Unlike load instructions, we can perform this operation in two clock cycles because we 
don’t have to read data from memory (memory reads are synchronous operations).  
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Figure 16.15: Example timing diagram showing a store instruction used for memory access.  

16.5.3.5 Outputting Data: Store-Type Instruction 

Because it uses a memory-mapped I/O architecture, the RISC-V MCU uses store-type instructions to output data. 
As with load-type instructions, the memory module is the only RISC-V hardware that knows the difference 
between a store instruction intended for memory access and a store instruction intended for output. Recall that 
the differences lies in the effective address value associated with the instruction. This implies that not even the 
control units in the RISC-V architecture know the difference either, which is a fact that we’ll run across in the 
timing diagram example that follows.  

Figure 16.16 shows the timing associated with a store-type instruction that performs an output operation. The 
store instruction performs an output because the effective memory address in the instruction is greater than 
0x0000FFFF, as the noted under the instruction in Figure 16.16. When the memory modules see this difference, 
it generates a slightly different output than the store instruction intended for memory access. Note that Figure 
16.16 doesn’t show the register file’s output data, which is the data the instruction provides to the outside world.  

The timing diagram in Figure 16.16 is similar to the timing diagram in Figure 16.15, so we won’t be describing it 
in the same painful level of detail as we did with Figure 16.15. The most important thing to note about these two 
timing diagram is their only difference: IO_WR asserts for output operations and does not assert for memory 
write operations. Once again, this difference is a responsibility of the memory module, as no other hardware 
modules know the difference between store-type instructions used as I/O or memory access.  

 Notes (1), & (3) show unasserted signals, indicating that the instructions do not read memory or 
write to the register file. Additionally, rf_wr_sel signal is always an unknown, which indicates 
that none of the instructions are writing the register file (regWrite=0) 
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 Notes (2), (4), and (5) show the difference special operation associated with output. The WE2 
signal asserts for all store instructions, but the IO_WR only asserts for when the store instruction 
performs a data output operation. Once again, the asserting of the WE2 signal is a function of the 
CU_FSM, but the assertion of the IO_WR signal is a function of only the memory module.  

 

Figure 16.16: Example timing diagram showing a store instruction used outputting data.  

16.6 The Immediate Value Generator (IMMED_GEN) 

The IMMED_GEN module’s function is to convert immediate values stored in the instruction bits (machine 
code) into 32-bit values. Five of the six RISC-V MCU instruction formats contain immediate fields of varying 
lengths and a bizarre mixture of formats. The immediate fields reside in the all but the right-most LSBs in the 
five instruction types that include immediate values. Figure 16.17 shows the block diagram for the 
IMMED_GEN module. The input to the IMMED_GEN module comprises of the left-most 25 bits of the 
instruction register; the outputs of the module include the 32-bit versions of the five instruction-type specific 
immediate values. R-type instructions don’t contain immediate fields so are not a part of the IMMED_GEN 
module. The IMMED_GEN module is a combinatorial circuit.  

 

Figure 16.17: Block diagram of IMMED_GEN module. 
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The RISC-V OTTER MCU includes the IMMED_GEN module primarily to simplify the understanding and 
implementation of the architecture. People who are implementing the RISC-V MCU in hardware can actually do 
one of two things. First, they can omit this module, which would require that other modules using the 32-bit 
immediate values do the reformatting themselves. Second, this module does not need to be an actual module; a 
better approach would be to provide the functionality this module provides as part of the higher-level hardware 
module.  

Table 16.15 lists the five instruction formats that contain immediate fields. Table 16.16 shows how the RISC-V 
hardware converts the five instruction immediate field in the instructions into 32-bit values. This IMMED_GEN 
module is thus responsible for decoding the immediate values from the assembler’s encoding and then 
converting the values to 32-bit numbers. Note in Table 16.16 that the conversions associated with I-type, S-type, 
and B-type include sign extensions. Also good to note that the J-type and B-type outputs represent relative 
address values. Be sure to note that immediate values are variables, while opcodes (the shaded values in Table 
16.15) are constant relative to individual instructions. Lastly, to note in Table 16.15 is that the strange numbering 
and omission of some values is one way the RISC-V supports efficient hardware implementations.  

 

Table 16.15: The 32-bit immediate value transformation map. 

 

Table 16.16: The 32-bit immediate value transformation map. 

16.7 The Branch Address Generator (BRANCH_ADDR_GEN) 

The BRANCH_GEN module is responsible for generating absolute instruction memory address from various 
input data. As the name implies, this module generates 32-bit branch address values to be loaded into the PC, 
which supports the RISC-V MCU’s program flow control instructions including branches and jumps. Another 
way to view this module is that it converts relative addresses from the immediate values associated with 
instructions into absolute addresses. This module’s inputs are the I-type, J-type, and B-type 32-bit immediate 
value, and also the 32-bit PC and rs1 values. Note that rs1 is one of the operands output from the register file. 
The BRANCH_GEN module is a combinatorial circuit.  
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Figure 16.18: Block diagram of the BRANCH_ADDR_GEN module. 

Table 16.17 shows the calculations required to convert the BRANCH_ADDR_GEN inputs to 32-bit values using 
three other forms of information including 1) relative addresses from the IMMED_GEN module (I-type, J-type, 
and B-type inputs), the program counter (PC), and, 3) one of outputs from the register file. From this table you 
can see that this modules main responsibility is to generate 32-bit absolute address from the relative addresses of 
the immediate values and the rs1 and PC registers. A few of the highly interesting things to note from Table 
16.17 are:  

 The branch-type and jal instruction include the value in the calculation. The hardware uses the 
jal instruction as a “branch to subroutine”, which means the instruction modifies the PC value to 
alter normal program flow.  

 The jalr instruction does not include the PC value in the calculation because the RISC-V MCU 
uses the jalr instruction to return from subroutines. The hardware stores the return address of 
the subroutine in a register, which is why the rs1 value appears in the absolute address calculation 
for the jalr instruction.  

 

BRANCH_ADDR_GEN 
output 

 
Comment Calculation 

jal  jump and link instruction  PC + J‐Type 

branch 
address for all branch‐type 

instructions 
PC + B‐Type 

jalr  jump and link register instruction   rs1 + I‐Type 

Table 16.17: Calculation of BRANCH_ADDR_GEN outputs. 

Similar the IMMED_GEN module, we provide the BRANCH_ADDR_GEN module for clarity. This section 
describes a set of functionalities that roughly share a similar purpose; it was convenient to call it a module and 
give that module a name. The important part of this module is thus the address calculations it forms, which 
people who are implementing the RISC-V MCU hardware can do without making a separate module.  

16.8 The Register File (REG_FILE) 

The register file provides storage for the operands associated with various “bit-crunching” operations in the 
RISC-V MCU. The register file is actually a RAM-type device despite have the word “register” in the module 
name. Conceptually speaking, the register file is a 32 x 32 RAM that performs the reads and writes typical of any 
RAM device. The RISC-V register file, however, has capabilities beyond a simple RAM, which is sometimes 
why we refer to it as a “dual port RAM”, or more aptly, a “multiport RAM”, or even “some freaking amazing 
RAM thang”.  

The extra names for the register file RAM come from the fact that the register file must be able to 
simultaneously read two different values from RAM and write a third one. The RISC-V bases these “worst case” 
requirements on the R-type instructions, which read to register and write one register in the same instruction. 
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This means that the register file requires three 5-bit address inputs: two for reading and one for writing. The 
register file read operations are asynchronous, which means the read output data changes whenever the input 
addresses change. The register file write operations are synchronous, meaning the actual data written to the 
register file is synchronized to the rising edge of the register file’s clock input.  

The three 5-bit field codes associated with instruction formats provide the read and write addresses to the register 
file. The data written to the register file is provided by one of four sources including the ALU output (result of 
bit crunching operations), the memory output (result of store and input operations), or the PC (storage associated 
with program flow control). Figure 16.19 shows a black box diagram of the RISC-V MCU’s register file; Table 
16.18 provides a description of the register file’s external interface (input and output signals).  

 

Figure 16.19: Block diagram of the RISC-V register file. 

Signal Type Comment 

adr1 

adr2 
in The address lines associated with the rs1 & rs2 source outputs. These addresses are five 

bits wide to provide read access to the register file’s 32 registers. The instruction 
register (output of program memory) provides data for these signals, which are five-bit 
field codes in the associated instruction formats. Register file reads are asynchronous.  

wa in The address lines for destination address, which is the address of data written to the 
REG_FILE. These addresses are five bits wide to provide write access to the register 
file’s 31 registers (excluding x0). The instruction register (output of program memory) 
provides data for this signal, which is a five-bit field code in the associated instruction 
formats. 

wd in The data written to the register file at the address provided by wa. The data is 32-bit 
wide and is provided by one of several external sources.  

en in The “en” (write enable) signal controls the writing of the wd data to the register file. 
Write register file write are synchronous.  

clk in The system clock; register files reads are asynchronous while register file writes are 
synchronous, which means they happen the active edge of the clk (rising edge)  

rs1 

rs2 
out The data outputs associated with the adr1 & adr2 inputs, respectively. Data outputs are 

32-bits wide, which match the width of the data inputs.  

Table 16.18: Description of register file inputs and outputs. 

16.9 The Arithmetic Logic Unit (ALU) 

Arithmetic Logic Units (ALUs) are similar to the PC in that all computers have one in some form or another. 
ALUs are one of those names in computerland that have misleading meanings. While it’s true the ALU performs 
arithmetic and logic, it most often performs other functions as well. Generally speaking, the ALU does all the 
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MCU’s required bit crunching no matter what specific types of crunching the MCU requires. Thus, the main 
responsibility of the ALU is to implement the bit crunching operations required by the RISC-V instruction set. 
The ALU also performs various simple bit transfers as needed by the instruction set. The RISC-V OTTER 
MCU’s ALU is a combinatorial circuit.  

Figure 16.20 shows the schematic diagram of the ALU module and a few supporting modules. The ALU portion 
of the circuit is the sideway “A-shaped” thing, which is common approach to model ALUs in circuit schematics. 
The ALU has a 4-bit signal, alu_fun, that determines the operation the ALU performs. The alu_fun signal is an 
output from the CU_DCDR module, the combinatorial portion of the control unit. Based on the width of the 
alu_fun signal, the ALU can perform up to 16 different operations. The ALU performs operations on up to two 
32-bit input operands and generates a 32-bit result on the result output.  

The ALU supports the operations required by various instructions by tweaking the select signals on the Source A 
and Source B MUXes. The alu_srcA and alu_srcB select signals are control signals output from the CU_DCDR 
control unit module. Table 16.19 shows the list of ALU operations based on ordered values of the alu_fun signal 
select signal.  

 

Figure 16.20: Block diagram of the ALU module and supporting modules. 
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Alu_fun mnem Description RTL Comment 
0000 add addition result ← srcA + srcB carry discarded 

0001 sll Shift left logical result ← srcA << srcB zero fills on right 

0010 slt Set if less than (signed) result ← (srcA <s srcB) ? 1 : 0 C notation 

0011 sltu Set if less than (unsigned) result ← (srcA <u srcB) ? 1 : 0 C notation 

0100 xor Logical bit-wise exclusive OR result ← srcA ^ srcB - 

0101 srl Shift right logical  result ← srcA >> srcB zero fills on left 

0110 or Logical bit-wise inclusive OR result ← srcA | srcB - 

0111 and Logical bit-wise AND result ← srcA  ∙  srcB - 

1000 sub Subtraction result ← srcA + srcB borrow discarded 

1001 lui Load upper immediate result ← srcA Copy 

1011 - not currently used  - - 

1100 - not currently used  - - 

1101 sra Shift right arithmetic result ← srcA >>s srcB sign fills on left 

1110 - not currently used  -  

1111 - not currently used  - - 

Table 16.19: List of ALU operations indexed with the alu_fun select signal. 

Important to note here is that the ALU module does not provide any type of status signal regarding the result of 
any given ALU operation. Because of this, programmers are required to use the flexibility of the instruction set 
in order to determine items such as when an ALU operation overflows the 32-bit register width.  

16.9.1 Addition and Subtraction 

The RISC-V supports three addition and subtraction instructions including two-register argument forms of add 
and sub, and a register-immediate form of the addi instruction. These instructions perform addition and 
subtraction as you know and love them; Table 16.20 shows an overview of these instructions including the 
underlying bit formats. The associated assembly language manual includes a more complete description of these 
instructions. Here are a few other facts to note about these instructions:  

 The hardware performs all operations on 32-bit registers.  

 The assembler encodes the immediate value for the addi instruction as a 12 bit signed value, 
which provides a specifiable range of [-2048,2047]. The RISC-V hardware is responsible for 
performing the sign extension, which it does in the IMMED_GEN module. Table 16.21 shows the 
mapping the hardware uses to translate the 12-bit immediate field in an I-type instruction to a 32-
bit value.  

 The underlying hardware discards any overflow (carry-outs and borrows) from each of these 
operations. It is possible to do 64-bit math by examining the operands after the operation.  
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Instr 
Instruction Form Instruction RTL Example Usage Comment format 

add add   rd,rs1,rs2 rd ← rs1 + rs2 add   x11,x21,x31 addition 

R-Type 
 

addi addi  rd,rs1,imm rd ← rs1 + sext(imm) addi  x7,x8,0x0F subtraction 

I-Type 
 

sub sub   rd,rs1,rs2 rd ← rs1 – rs2 sub   x15,x14,x17  

R-Type 
 

Table 16.20: The addition and subtraction instructions. 

 

Table 16.21: 32-bit immediate format for I-type instructions. 

16.9.2 Shifting Instructions 

The RISC-V supports both logical and arithmetic shifts4. Instructions supporting logical shifts are available for 
shifting in both directions; the RISC-V ISA only support arithmetic shifts for right shifts. Both logical and 
arithmetic shifts are available in both register and immediate forms. We typically use shifting instructions for 
integer math operations, which supports fast multiples (shift lefts) and divides (shift rights) by powers of two. 
We typically use logical shifts for unsigned arithmetic and arithmetic shifts for signed arithmetic.  

All of the six shift-type instructions are three operand instructions. Each of the six instructions performs shifts on 
register values and stores the results in register. The third operand specifies the number of bit positions to shift, 
which effectively makes these instructions fully capable of barrel shifts. The logical-type shift instructions fill 
vacated bit positions with zero while the arithmetic-type shift instructions consider the register being shifted as a 
signed value and fill the vacated bit positions with the sign bit of the register.  

The RISC-V hardware limits shifting to 32 bits, which the underlying instruction format can represent with a 5-
bit value. The instructions thus use only the five LSBs from right-most operand, which programmers can specify 
by either a register or immediate value depending on the instruction type. Bits that the hardware shifts out of 
registers by the set of shift instructions are gone forever; there is no available hardware to store any of the shifted 
out bits. Table 16.22and Table 16.23 provide an overview of the pertinent information associated with the logical 
and arithmetic shift instruction, respectively.  

                                                           
4 The RISC-V ISA only supports arithmetic right shifts.  
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Instr 
Instruction Form Instruction RTL Example Usage Comment type 

sll sll   rd,rs1,rs2 rd ← rs1 << rs2[4:0] sll   x11,x21,x31 logical shift left 
zero filled 

R-Type 
 

slli slli  rd,rs1,imm rd ← rs1 << imm[4:0] slli  x7,x8,0x0F logical shift left 
zero filled 

I-Type 
 

srl srl   rd,rs1,rs2 rd ← rs1 >> rs2[4:0] srl   x11,x21,x31 logical shift right 
zero filled 

R-Type 
 

srli srli  rd,rs1,imm rd ← rs1 >> imm[4:0] srli  x7,x8,0x0F logical shift right 
zero filled 

I-Type 
 

Table 16.22: The logical shift left & right instructions.  

Instr 
Instruction Form Instruction RTL Example Usage Comment type 

sra sra   rd,rs1,rs2 rd ← rs1 >> rs2[4:0] sra   x11,x21,x31 Arithmetic shift right 
Sign filled 

R-Type 
 

srai srai  rd,rs1,imm rd ← rs1 >> imm[4:0] srai  x7,x8,0x0F Arithmetic shift right 
Sign filled 

I-Type 

Table 16.23: The logic shift right instructions.  

16.9.3 Logic Instructions 

The RISC-V MCU contains has standard Boolean logic instructions including AND, OR, and XOR (exclusive 
OR). There are both register and immediate versions of the three logic-type instructions. These instructions 
perform bitwise Boolean logic operations on the instruction operands. Table 16.24 shows an overview of these 
instructions including the underlying bit formats. The associated assembly language manual includes a more 
complete description of these instructions. Here are a few other fun facts to chew on:  

 The hardware performs all operations on 32-bit registers.  

 The assembler encodes the immediate values for the immediate versions of these instructions as 
12-bit values, which are “sign extended” to create a 32-bit operand. In these cases, the RISC-V 
hardware interprets the left-most bit as the sign bit and then performs the sign extension using the 
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IMMED_GEN module. Table 16.21 shows the mapping the hardware uses to translate the 12-bit 
immediate field in an I-type instruction to a 32-bit value.  

Instr 
Instruction Form Instruction RTL Example Usage Comment type 

and and   rd,rs1,rs2 rd ← rs1 ∙ rs2 and   x11,x21,x31 bitwise AND 

R-Type 
 

andi andi  rd,rs1,imm rd ← rs1 ∙ sext(imm) andi  x7,x8,0x0F bitwise AND sign 
extend imm 

I-Type 
 

or or   rd,rs1,rs2 rd ← rs1 + rs2 or   x11,x21,x31 bitwise OR  

R-Type 
 

ori ori  rd,rs1,imm rd ← rs1 + sext(imm) ori  x7,x8,0x0F bitwise OR  
sign extend imm 

I-Type 
 

xor xor   rd,rs1,rs2 rd ← rs1 ^ rs2 xor   x11,x21,x31 bitwise XOR 

R-Type 
 

xori xori  rd,rs1,imm rd ← rs1 ^ sext(imm) xori  x7,x8,0x0F bitwise XOR  
sign extend imm 

I-Type 
 

Table 16.24: The Boolean logic-based instructions.  

16.9.4 Set-If-Less-Than Instructions 

The RISC-V ISA has two types of instructions that perform comparisons. The branch-type instructions perform 
comparisons based on two register and are program flow control instructions. We consider the branch-type 
instructions program flow control because they have the ability to branch based on the conditions in the registers 
and the given branch instruction. The RISC-V ISA can also perform comparisons using the slt-type instructions. 
Table 16.25 shows all the details of the two flavors of slt-type instructions. The slt-type instructions have two 
significant differences from the branch-type instructions:  

1) slt-type instructions are not program flow control instructions, meaning the MCU always 
executes the instruction following slt-type instruction. This is of course a fancy way of saying 
that the slt-type instruction never branch under any conditions. The result of this difference is that 
the hardware uses a different module to perform the comparison. The RISC-V OTTER uses the 
ALU to perform comparisons for the slt-type instructions (and also the setting or clearing of the 
destination register). The ALU output, or result, for the slt-type instruction is either a ‘1’ or ‘0’ 
based on whether the condition was true or not, respectively.  

2) There are two flavors of slt-type instructions: one type is similar to branch-type instructions 
where the given comparison is between two register values. The other flavor of slt-type 
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instruction allows a comparison between a register and immediate value. The good news is that 
programmers don’t have to stick the both compare values into registers; the bad news is that the 
compare value in the immediate flavor of the slt-type instruction only contains a 12-bit field for 
the immediate value. This means if you need to compare larger values, you must use the two-
register version of the instruction.  

 

Instr 
Instruction Form Instruction RTL Example Usage Comment type 

slt slt   rd,rs1,rs2 rd ← ( rs1 <s rs2 ) ? 1 : 0 slt  x10,x12,x13 Set if less than 
(signed) 

R-Type 
 

slti slti  rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slt   x10,x12,23  Set if less than imm 
(signed) 

I-Type 
 

sltu sltu  rd,rs1,rs2 rd ← ( rs1 <u rs2 ) ? 1 : 0 sltu  x10,x8,x9  Set if less than 
(unsigned) 

R-Type 

sltiu sltiu rd,rs1,imm rd ← ( rs1 <u sext(imm) ) ? 1 : 0 sltiu  x10,x8,78 Set if less than imm 
(unsigned) 

I-Type 
 

Table 16.25: The slt-type instructions.  

16.10 The Branch Condition Generator (BRANCH_COND_GEN) 

The BRANCH_COND_GEN is a module that provides branch information to the CU_DCDR. The 
BRANCH_COND_GEN thus supports the six base instructions in the RISC-V ISA. All six branch instructions 
are B-type instructions. Figure 16.21 shows the schematic diagram for the BRANCH_COND_GEN. The two 32-
bit inputs to the module are two source register outputs from the register file; the three outputs represent status 
signals describing the numerical relations between the two inputs; these become inputs to the CU_DCDR. Table 
16.26 provides a more detail description of the modules inputs and outputs. Based on the description in Table 
16.26, the BRANCH_COND_GEN is nothing more than a comparator that has the ability to do signed and 
unsigned comparisons.  
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Figure 16.21: Black box diagram of the CU_DCDR module.  

Signal 
Type 

Comment 

rs1 in 32-bit output of the register file (number 1 output)   

rs2 in 32-bit output of the register file (number 2 output)  

br_eq out 1-bit output indicating if rs1==rs2;  

br_lt out 1-bit output indicating if rs1 < rs2; result based on operands being signed 

br_ltu out 1-bit output indicating if rs1 < rs2; result based on operands being unsigned  

Table 16.26: Description of register file inputs and outputs. 

Table 16.27 shows a diagram of the B-type format, which supports the fact that the RISC-V bases all branch 
instructions on the result of a comparison between the rs1 & rs2 source registers. This means that you need to 
perform a branch based on an immediate value, you must first places that value into a register. The opcode field 
is the same for all B-type instruction; the hardware differentiates the branch-type instructions using the funct3 
opcode field.  

 

Table 16.27: B-type instruction format. 

The branch-type instructions require that programmers first must place the two values it compares into registers. 
Placing values to compare into registers does seem somewhat limiting at first, but the slt and slti 
instructions provide somewhat of a workaround of this limitation. Since the slt-type instructions are not program 
flow instructions (meaning they can’t branch), the BRANCH_COND_GEN does not make the comparison for 
those instructions and the CU_DCDR does not have the option to implement a branch. The ALU module 
performs the comparison required by slt-type instructions.  

Table 16.28 shows the relation between the BRANCH_COND_GEN outputs and the associated base branch 
instructions in the RISC-V ISA. What this table shows is the condition the CU_DCDR checks in the context of 
each base branch instruction to determine whether it takes the branch or not. The CU_DCDCR is effectively 
controlling which value the PC loads based on the result of the comparison made in the 
BRANCH_COND_GEN. Table 16.28 also shows that for any given branch instruction, the CU_DCDR only 
considers one of the three outputs of the BRANCH_COND_GEN. Note that the two possible signal values for 
each output signal support the six base branch-type instructions.  
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Instruction 

True Condition Indicator 

br_eq br_lu br_ltu 

beq 1 - - 

bne 0 - - 

blt - 1 - 

bge - 0 - 

bltu - - 1 

bgeu - - 0 

Table 16.28: Output indicators associated with individual base branch instructions. 

16.11 Then Control and Status Registers (CSR) 
The control and status register (CSR) currently is only associated with the RISC-V MCU interrupt architecture. 
For this reason, we won’t describe the CSR in this chapter, and delay that description until Chapter 18, which is 
the chapter on the RISC-V Interrupt architecture.  

16.12 The RISC-V MCU Wrapper 

I’m not actually sure where the term “wrapper” came from. Someone, possibly even me, may have made it up 
for all I can remember. Despite its dubious origins, the notion of a wrapper is rather important in the land of 
softcore MCUs. The sole purpose of the wrapper is to provide an interface between the MCU and the 
development board you implement it on. The MCU is a generic module in terms of its basic design, which means 
it is flexible enough to solve many different types of problems. The wrapper provides the interface between an 
outside world that has a given set of hardware (such as on a development board) and the generic MCU. In the 
context of this discussion, the notion of genericity refers to the MCU’s generic I/O interface.  

The notion of the wrapper is important for two reasons. First, because it helps you understand how to interface a 
softcore MCU such as the RISC-V MCU with a development board. Second, because it helps you understand 
how the input and output instructions work with the MCU and how the wrapper to actually implements I/O on 
the RISC-V MCU. For these reasons, you should make sure you understand everything all aspects of the RISC-V 
MCU wrapper.  

The main purpose of a development board is to provide a modest set of input and output devices that you can use 
to interface with the RISC-V MCU. This being the case, we have three types of I/O on typical development 
board: 1) input devices (such as a buttons), 2) output devices (such as an LED), and 3) generic pins (meaning 
you can assign the pins as either being an input or an output and associate them with an external device). For this 
discussion, we only mention the actual physical devices on the development board, though you can use the 
generic pins to connect any external peripheral to the system such that the MCU can monitor/control them.  

The mission for the Wrapper is to interface the RISC-V MCU with the development board. We currently use the 
Basys3 development board, which contains an FPGA-type PLD. Figure 16.22(a) shows a partial block diagram 
of the dev board; we refer to this as partial because there are some features on the board that we omit. The 
wrapper is the highest level of the design hierarchy that includes the RISC-V OTTER MCU. Figure 16.22(b) 
shows the black box diagram of the RISC-V OTTER MCU. Our mission is to use the Wrapper to interface with 
the RISC-V OTTER MCU in such a way as to create a working computer. There are many ways to do this; we 
present a generic approach with full explanation in this section.  

Figure 16.22(a) shows the black box diagram of the Basys3 development board. The PLD on the development 
board is an FPGA, which interfaces with various input and output devices on the development board. This board 
includes 16 inputs connected to switches (SWITCHES), five inputs connected to buttons (BUTTONS) and an 
external clock signal (CLK). The board contains 16 output connected to LEDs (LEDS), eight outputs connected 
to the segments of four 7-segment display devices (SEGMENTS) and four outputs connected to the anodes 
associated with the four 7-segment display (ANODES). Figure 16.22 does not list the various generic signals 
available for input or output on the board. Additionally, the LEDS output are positive logic while the 
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SEGMENTS and ANODES are both negative logic. The switches in the “up” position and pressed buttons 
generate a ‘1’ to the onboard FPGA, while switches in the down position and unpressed buttons generate a ‘0’.  

  

(b) (a) 

Figure 16.22: The block diagram for the Basys3 development board (a), and the RISC-V OTTER MCU. 

We implement the Wrapper as a simple Verilog model; you can find the full model in the appendix. The 
approach we’ll take here is to describe the more important parts of the wrapper model by examining the Verilog 
model and relating that model to real world digital parts that you know and love. If you are using the RISC-V 
OTTER MCU or any other version of the RISC-V MCU, the information contained in this section allows you to 
understand the interface requirements for your given device. The approach to interfacing a softcore MCU on a 
development board is the same; the particular I/O available on a given development board is probably different.  

16.12.1 Wrapper External Device Addressing 

Because the underlying RISC-V MCU needs to interface with the external I/O devices, the Wrapper and RISC-V 
MCU need to agree on a “port ID” for each I/O device. The RISC-V MCU uses these port_IDs as “port 
addresses”, or simply “addresses” in the memory-mapped I/O architecture. These addresses are for the most part 
arbitrary, but they do need to fall into the I/O portion of the RISC-V MCU address space (memory map), which 
is 0x1100000 and above for the RISC-V OTTER. Figure 16.23 shows the list of port IDs for the I/O devices on 
the development board. We assign the port IDs using the Verilog localparam in order to facilitate future 
hardware changes.  

  //- INPUT PORT IDS ------------------------------------------------------ 
  localparam SWITCHES_PORT_ADDR = 32’h11008000;  // 0x1100_8000 
  localparam BUTTONS_PORT_ADDR  = 32’h11008004;  // 0x1100_8004 
              
  //- OUTPUT PORT IDS ----------------------------------------------------- 
  localparam LEDS_PORT_ADDR     = 32’h1100C000;  // 0x1100_C000 
  localparam SEGS_PORT_ADDR     = 32’h1100C004;  // 0x1100_C004 
  localparam ANODES_PORT_ADDR   = 32’h1100C008;  // 0x1100_C008 

Figure 16.23: Fragment of wrapper showing assigned port_IDs. 

16.12.2 Wrapper Input Circuitry 

The RISC-V MCU has one signal (a bundle) that handles all the possible input to the RISC-V MCU from 
external devices. The IOBUS_IN in signal is the 32-bit input to the RISC-V MCU that “accepts” data from the 
outside world and writes that data to a register in the register file. The RISC-V MCU is a general purpose MCU 
so it is quite versatile; part of that versatility includes being able to interface with a high number of external 
inputs, but not more than 32 at a time. The width of the IOBUS_IN signal governs how many inputs the RISC-V 
can input in one operation, which is driven by a load instruction executed by the MCU. In this way, the wrapper 
includes the circuitry to allow the RISC-V MCU to choose which input it wants input, which it does by using the 
proper port_ID as listed in Figure 16.23.  

Anytime we need to “choose” something in hardware, we use a MUX. We thus use a MUX to determine which 
of the external input devices transfers their data from the MUX input to the MUX output, and thus connect to the 
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IOBUS_IN input on the RISC-V MCU. Figure 16.24 shows the Verilog code that the wrapper uses to handle 
external input devices. Here are the important features to notice about the model fragment in Figure 16.24:  

 The code models a combinatorial circuit, which we know primary because of the 
“always_comb” choice of procedural block. We also know this because the body of the 
procedural block uses a case statement that includes a default case. The always_comb is 
actually a System Verilog construct; we could also implement the model using an always 
construct using Verilog.  

 The variable expression in the case statement is the IOBUS_addr signal, which the I/O address 
output from the RISC-V MCU. This variable address is the absolute memory address associated 
with the load-type instruction output executed by the program running on the RISC-V MCU. 
Thus, the IOBUS_addr signal becomes the select input for the MUX modeled in Figure 16.24. 
Figure 16.25 shows the BBD associated with the interfacing the Wrapper to the RISC-V MCU; 
this diagram includes the input MUX.  

 When the data on the IOBUS_addr signal matches a port_ID associated with an external input 
device, the MUX assigns the output from that device to the IOBUS_in signal. Because the 
IOBUS_in signal is 32-bits wide and inputs are often less bits, the MUX model clears all 
unused input puts by pre-assigning the IOBUS_in value to zero. The actual data input signal 
overwrites any pre-assigned value of zero.  

   always_comb 
   begin 
       IOBUS_in=32’b0; 
       case(IOBUS_addr) 
           SWITCHES_PORT_ADDR : IOBUS_in[15:0] = switches; 
           BUTTONS_PORT_ADDR  : IOBUS_in[4:0] =  buttons; 
           default: IOBUS_in=32’b0; 
       endcase 
   end 

Figure 16.24: Fragment of wrapper code showing the input model. 

Figure 16.25 shows a high-level diagram of the hardware associated with the RISC-V MCU wrapper. This 
diagram provides an overview of the wrapper hardware including the input MUX. Note that the input MUX uses 
the IOBUS_addr signal output from the RISC-V MCU as select signals to the MUX.  

 

Figure 16.25: Block diagram of the RISC-V MCU wrapper and internal modules. 

16.12.3 Wrapper Output Circuitry 
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The RISC-V MCU has one signal (a bundle) to handle all the possible output to external devices. The 
IOBUS_out is an output signal from the RISC-V MCU. The data associated with all store operations sent from a 
register in the register file. The rs2 output of the register file serves as the IOBUS_out signal for the RISC-V 
MCU. The RISC-V MCU shares the addresses lines for output with the input data (IOBUS_in); this works 
because it is not possible to simultaneously perform both an input (load) and an output (store) in the RISC-V 
MCU hardware.  

Despite the fact that the output circuitry uses the same “selection” signals as the input circuitry (Figure 16.25), 
the circuitry is significantly different. The reason is that data outputs from the RISC-V MCU module are 
“temporary”, meaning that data, address, and control signals for the output operation only exist for the execute 
cycle of the associated store instruction that generated them. These outputs are typically not useable for any 
circuit depending on the outputs. The solution is similar to the inputs, where the input data is “stored” 
somewhere, which means the RISC-V MCU stores data input from external sources into a register in the register 
file. The Wrapper must then include registers that store the data output from the RISC-V MCU as a result of 
executing store-type instructions configured to be output. Each output device on the dev board must have 
corresponding registers in the wrapper circuitry. Figure 16.25(b) includes three registers to handle dev board 
output, which we list on AN, LEDS, and SEGS.  

Store instructions perform an absolute address calculation in hardware as part of the instruction. The absolute 
address then becomes an input the to the memory module. One of the source registers (the rs2 output of the 
register file) that is part of the store instruction provides the data associated with the store instruction. This 
source data becomes the data written to the memory or the data output to external devices based solely on the 
value of the absolute address associated with the store instruction. The hardware writes the data to memory if the 
absolute address is 0x0000FFFF or lower; otherwise, the data is “output” to external devices. There is no 
difference in the data output as the register file output (rs2) serves as both the data input to memory and the 
IOBUS_out signal.  

The only difference in the memory writes and data outputs is in how the main memory module in the RISC-V 
MCU interprets the absolute address. The hardware writes the data on the DIN2 input to memory if the write 
enable (WE2) is asserted and the value on the ADDR2 input (the rs2 output from the register file) is less than 
0x00010000. If the write enable is asserted and the value on the ADDR2 input is greater than 0x0000FFFF, the 
memory module asserts the IO_WR output. This output remains asserted for the duration of the execute cycle 
associated with the underlying store instruction.  

The IO_WR signal is an output signal from the RISC-V MCU. When the RISC-V MCU executes an output 
instruction (a store instruction with an address value in I/O space), the MCU asserts this signal to indicate to 
external circuitry that the MCU is implementing an output operation. We often refer to the IO_WR signal as a 
“write pulse”, because the signal is only asserted for one clock cycle (the duration of the execute cycle of the 
associated store instruction). The external circuitry then uses the IO_WR signal as a write enable for devices 
such as registers. The RISC-V MCU Wrapper stores all data outputs in registers, which provides the data with 
“persistence”. This means when you write to a specific output device, the Wrapper circuitry latches that data to 
the external registers on the wrapper level using the IO_WR signal as the write enable to those registers. If we 
did not store the output data in registers, the output data would essentially disappear after the MCU completes 
executing the store instruction, which make the data hard to use based on the relatively short time the MCU 
makes that data available.  

Figure 16.26 shows the portion of the wrapper model that handles outputs. The code has two main purposes. 
First, it generates three registers, one for the LED, cathodes (segments), and anodes, which are the three output 
devices on the development board. Second, the “chooses” which register the data is written to using the 
IOBUS_addr signal to discern the proper external output device. Figure 16.25 shows the output hardware in a 
high-level flavor, but clearly shows that the latching of data output form the RISC-V MCU is a function of 
IOBUS_addr, IO_WR, IOBUS_out, and the clock edge. Here are a few more items to note about this code.  

 We included declarations for the three required registers. We use a logic type for the declaration 
and provide a “r_” prefix in the associated label5. Using the “r_” prefix indicates to the human 

                                                           
5 The logic type is a feature of System Verilog, but not Verilog. If you were modeling this using Verilog, you would use 
either a register or wire-type. 
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reader that the model uses the declared signal as a register type, which is a great form of self-
commenting that all good hardware modelers use.  

 We use an “always_ff” block to model the actual input circuitry, which verifies the block actually 
models registers. The always_ff is another System Verilog construct that can easily be replaced by 
a Verilog always construct. The fact that we use the posedge function in the sensitivity list 
ensures that the model generates synchronous sequential elements.  

 The model only latches data to the registers when the IOBUS_wr signal is asserted. The 
IOBUS_wr is the external connection associated with the IO_WR signal generated by the main 
memory when the MCU executes an output instruction.  

 The IOBUS_addr signal is the address value associated with the underlying store instruction. If 
this address matches one of the port_IDs (port addresses) associated with an output device, the 
data on the IOBUS_out signal (which is the signal from the register file’s rs2 output) is latched 
into the correct register on the next active clock edge.  

 Overall, the code in Figure 16.26 models three registers and a generic decoder. The IOBUS_addr 
signal becomes the select input to the decoder; the decoder selects which register latches the 
IOBUS_out data.  

    //- register for dev board output devices ------------------------- 
    logic  [7:0]  r_segs;   //  register for segments (cathodes) 
    logic [15:0]  r_leds;   //  register for LEDs 
    logic  [3:0]  r_an;     //  register for display enables (anodes) 
    
    always_ff @ (posedge s_clk) 
    begin 
       if (IOBUS_wr == 1) 
       begin 
          case(IOBUS_addr) 
             LEDS_PORT_ADDR:   r_leds <= IOBUS_out[15:0];     
             SEGS_PORT_ADDR:   r_segs <= IOBUS_out[7:0]; 
             ANODES_PORT_ADDR: r_an   <= IOBUS_out[3:0]; 
             default:          r_leds <= 0;  
          endcase 
       end 
    end 

Figure 16.26: Fragment of wrapper code showing the output model. 

 

Example 16.3: Maximum Control and Status Bits 

How many unique status bits of can the current architecture read? Also, how many bits of unique 
output can the current architecture write.  

Solution: The best place to start on a problem like this is to examine the top-level RISC-V architecture diagram, 
which we conveniently provide in Figure 16.27. The first thing to note is that is that the RISC-V has 100 inputs 
and outputs, 98 of those (all but the RST and CLK) have to do with I/O. Another thing to note is that the RISC-V 
designers made the MCU as flexible and extensible as possible, meaning that if you needs to control either five 
or 500 signals, the RISC-V architecture can easily handles and do so in a generic manner.  

Input: There are 32 bits associated with input (IOBUS_IN), which means every different input operation can 
input 32 unique bits. The question is how many unique sets of 32 bits can the architecture manage? Recall that 
the various inputs connect to a MUX in the wrapper; the IOBUS_ADDR signal acts as the control inputs to the 
MUX. The next question is how many unique address values can the IOBUS_ADDR generate? The answer is 
embroiled with the notion of the RISC-V MCU’s memory mapped I/O (MMIO). The RISC-V has a 32-bit 
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address space, but the addresses range [0x00000000,0x0000FFFF] is associated with memory access 
instructions, which leaves the remaining addresses associated with I/O. Each of the unique addresses can input 
32, or 25 unique bits, so the final answer is:  

(232 – 216)* 25 = a lot of bit (you do the math).  

Output: Calculating the number of unique output bits is similar to the number of unique input bits. The 
IOBUS_OUT signal controls the number of outputs, which is 32. This means for any single output, the RISC-V 
can output 32 unique bits. The output also uses the IOBUS_ADDR to “decode” the bits the output are sent to. 
The IOBUS_ADDR is constrained by the RISC-V MCU’s MMIO, which gives the effective address space for 
outputs the same as the effect address space for inputs: [0x00010000,0xFFFFFFFF]. This range provides (232 – 
216) unique values, so the total number of output bits the RISC-V can control is (232 – 216)* 25 = many bits.  

 

Figure 16.27: The Control Unit FSM black box diagram. 

 

 

 

Example 16.4: Maximum Control and Status Bits 

The RISC-VMCU physical memory address space was increased form 16 bit to 18 bits. What is the 
resulting number of bits the RISC-V MCU can both input and output?   

Solution: In this problem, the address space grows by two bits up to 18 bits. This means that the memory 
address range is now [0x00000000,0x0003FFFF], which leaves the I/O address range based on 14 bits: 
[0x00040000,0xFFFFFFFF]. Based on the RISC-V architecture, the input and output can both manage the same 
number of unique bits, which is now based on a 14-bt address space. The final number of bits for both input and 
output are (232 – 218)* 25. That’s a lot of control (unwarranted editorial).   
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16.13 Chapter Summary 

 

 The RISC-V OTTER MCU is a relatively complex digital circuit that we can easily subdivide into a set of 
smaller modules.  

 Mealy’s First and Only Law of Computer Programming: If you understand the hardware of the computer 
your program will run on, then you can write better programs. 

 The RISC-V OTTER MCU has two modules that control the basic operations of the underlying hardware: 
the CU_FSM and the CU_DCDR. The CU_FSM is a finite state machine (and thus a sequential circuit) that 
sequences through the states associated with instruction execution. The CU_DCDR is a decoder (and thus a 
combinatorial circuit) that provides a set of signals that controls the operation of various MUXes in the 
MCU.  

 Most instructions require two clock cycle for for execution, but load-type instructions require three clock 
cycles. Instruction execution includes names for the states in the underlying FSM, which are fetch and 
execute cycles for all instructions and a writeback state for load-type instructions. The fetch cycle roughly 
fetches an instruction from program memory, the execute cycle roughly executes that instruction, and the 
writeback cycle retrieves data from memory for load-type instructions.  

 The program counter (PC) stores the address of the current instruction being executed. The PC is 
implemented as a 32-bit register with external support on the current RISC-V implementation. The PC 
addresses physical memory in the RISC-V OTTER, but because program memory uses 32-bit instruction, 
the program memory only requires the 14 most significant bits of the PC address.  

 The PC supports basic computer operations by loading a new value into the PC after executing an 
instruction. The new value can either be the address of the next instruction (normal operation) or the address 
associated with a branch-type instruction (both conditional and unconditional).  

 The RISC-V MCU main memory represents the total address space for the computer. Although main 
memory is considered to be 232 x 8, physical memory is only 216 x 8, where physical memory is the memory 
where data can actually be stored. The other part of the address space is reserved for other operations such 
as I/O. The physical memory stores the program and other data; the other data includes items such as the 
stack.  

 The RISC-V MCU uses memory-mapped I/O (MMIO). The RISC-V MCU interprets all memory accesses 
above the physical memory limit 0x0000FFFF as I/O.  

 The IMMED_GEN module creates 32-bit values from the smaller values and often strangely configured 
values associated with the immediate fields in the RISC-V instructions.  

 The BRANCH_ADDR_GEN module uses a combination of register data, PC values, and values output from 
the IMMED_GEN module in order to create 32-bit absolute address. The values the 
BRANCH_ADDR_GEN creates are loaded into the PC for conditional and unconditional branch instrutions.  

 The REG_FILE module stores the 32 32-bit general purpose register in the RISC-V MCU. All bit crunching 
operations in the RISC-V MCU are done using registers in the register files. All memory load operations are 
from main memory to the register file register; all memory store operations are from register file register to 
main memory. All input operations are from the outside world to registers; all output operations are form 
register to the outside world.  

 The ALU module peforms all bit-crunching operations. Although the name implies arithmetic and logic type 
operations, ALUs typically do other operations as well. The ALU inputs two 32-bit operands and outputs a 
32-bit result based on the selected operation.  

 The BRANCH_COND_GEN module controls the branches associated with branch-type instructions in the 
RISC-V MCU (which does not include slt-type instructions). This module inputs the two register outputs 
from the REG_FILE module and generates three output signals based on comparisons of these signals in the 
BRANCH_COND_GEN module. The CU_DCDR uses these three signals to control whether the MCU 
takes a branch or not.  
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 The Wrapper is a model that interfaces the MCU to a given development board. Development boards 
generally have a given set of input and output device; the Wrapper makes these devices available to the I/O 
operations of the underlying MCU.  

 Development board inputs are “selected” via a MUX to enter the MCU; the selection signals are the I/O 
address signals output from the MCU. Development board outputs are registered on the Wrapper level so 
that they are persistant and can more easily be used by external hardware devices. The I/O address signals in 
conjunction with the IO_WR pulse output from the MCU control which register will receive the data output 
from the MCU.  
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16.14 Chapter Exercises 

 

1) Briefly describe why Mealy’s One and Only Law of Computer Programming is patently obvious.  

2) Briefly describe how we use the notion of hierarchical design to understand the RISC-V MCU.  

3) Briefly describe why the CU_FSM and CU_DCDR are separate modules.  

4) Briefly describe the main responsibility of the CU_FSM.  

5) Briefly describe the function that the memRDEN1 and memRDEN2 signals serve.  

6) Briefly explain why the CU_FSM contains a clock input but the CU_DCDR does not. 

7) Briefly describe why the CU_FSM contains a memWE2 signal but not a memWE1 signal.  

8) We state that the program memory is not writable, but it actually is writeable. Briefly describe why you are 
able to write to program memory and briefly describe how exactly to do it.  

9) Each of the CU_DCDR outputs have a special commonality; what is that commonality?  

10) Briefly explain how long the CU_DCDR’s output remain unchanged for a given instruction.  

11) The outputs of the CU_DCDR in the fetch cycle still have the outputs associated with the previous 
instruction. Briefly describe why this is so and why it is OK.  

12) Briefly describe whether the CU_DCDR knows anything about instruction cycles. 

13) Briefly describe why the CU_DCDR does not need to do anything different for load-type and all other 
instructions.  

14) How many clock cycles does it require for the following RISC-V assembly language code fragment to 
execute from the starting at the start label and going through the done label? 

start:     add    x10,x0,x0 
           addi   x10,x10,8 
 
loop:      beq    x10,x0,done 
           lw     x20,0(x21) 
           sw     x21,4(x23) 
           sw     x21,4(x23) 
           addi   x10,x10,-1 
           slt    x23,x24,x35 
           j      loop 

done:      nop 

 

15) How many clock cycles does it require for the following RISC-V assembly language code fragment to 
execute from the starting at the go label and going through the stop label? 

go:        add    x10,x0,x0 
           addi   x10,x10,0x12 
 
loop:      beq    x10,x0,stop 
           lw     x20,0(x21) 
           lw     x22,0(x31) 
           addi   x10,x10,-1 
           addi   x21,x21,1 
           addi   x31,x31,4 
           xor    x23,x24,x25 
           j      loop 

stop:      nop 
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16) How many clock cycles does it require for the following RISC-V assembly language code fragment to 
execute from the starting at the go label and going through the stop label? 

go:        add    x10,x0,x0 
           addi   x10,x10,14 
 
loop:      sw     x23,0(x21) 
           lw     x22,0(x31) 
           addi   x10,x10,-1 
           ori    x21,x21,1 
           addi   x31,x31,4 
           xor    x23,x24,x25 
           beq    x10,x0,loop 

stop:      nop 

 

17) Briefly describe why the PC is a register and not a counter in the RISC-V OTTER MCU architecture.  

18) Briefly describe why the PC is 32-bits wide but only 14 of those bits are used to access instructions in 
program memory.  

19) Briefly describe why programmers can use either jal or jalr instructions to call subroutines.  

20) Briefly describe why programmers can use a jalr instruction but not a jal instruction to return from a 
subroutine.  

21) Briefly describe why the program memory is sometimes listed as 14k x 32, and other times listed as 16k x 8.  

22) Briefly describe why the immediate fields in the branch instruction formats are stored using a strange 
ordering.  

23) Briefly describe what entity forms the immediate values associated with branch instruction.  

24) Briefly describe what entity forms the absolute branch addresses from the signed immediate values 
associated with branch-type instructions.  

25) Briefly describe how it is that the RISC-V MCU can branch twice as far as the immediate value associated 
with a branch instruction seems to indicate.  

26) The RISC-V OTTER MCU memory module serves three functions: what are they?  

27) What is the byte and word capacity of the RISC-V OTTER MCU main memory?  

28) If the stack pointer grew larger than 0x0000FFFF, briefly describe what would happen if a program 
attempted to push a value onto the stack.  

29) Briefly describe the relationship between main memory and physical memory.  

30) Briefly describe whether program memory is writeable under program control.  

31) Briefly describe the potential proble associated with changing data in program memory.  

32) Briefly describe whether you can push and pop data from the code segment.  

33) Briefly describe whether the memory reads and memory writes on the RISC-V MCU are synchronous or 
not. Your answer should include both the main memory and the register file. 

34) Memory access instructions in the RISC-V MCU don’t officially use the lower two bits of the memory 
address lines. This being the case, briefly describe how the hardware is able to perform reads of individual 
bytes from any four-byte chunk of memory data.  

35) Briefly describe why the RISC-V instruction set includes five load-type instructions but only three store-
type instructions.  

36) Briefly describe what or who determines whether a memory access-type instruction will perform a memory 
access or an input/output operation.  
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37) We generally speak of the PC as being the address of the current instruction being executed; briefly describe 
why this definition is not always 100% accurate.  

38) Briefly describe the purpose the IO_WR signal serves to the RISC-V MCU hardware. Be careful, this is a 
trick question.  

39) Briefly explain whether the RISC-V assembler knows the difference between a memory access instruction 
and an I/O instruction.  

40) Briefly explain whether the RISC-V hardware (not including the main memory module) knows the 
difference between a memory access instruction and an I/O instruction.  

41) The current RISC-V OTTER outputs the IO_WR signal from the main memory module. Briefly explain 
how you could modify the RISC-V architecture such that the IO_WR signal was output from one of the 
control unit modules.  

42) Briefy describe the main purpose of the IMMED_GEN module.  

43) Briefly describe why some of the immediate value fields have strange bit orderings.  

44) Breifly explain why the final 32-bit immediate values associated with B-type and J-type instructions always 
encode the LSB as zero.  

45) Briefly explain why the jalr instruction does not include the PC in the calculation while the similar jal 
instruction does.  

46) Briefly describe the main purpose of the BRANCH_ADDR_GEN module.  

47) In the context of branch-type instructions (conditional and unconditional), the RISC-V MCU hardware 
converts relative offsets encoded as part of the instructions into absolute address. Briefly describe which 
modules in the RISC-V OTTER MCU hardware are responsible for this conversion.  

48) Briefly describe why we refer to the register file as a multiport RAM.  

49) Briefly describe whether the register file is a synchronous or asynchronous device.  

50) Breifly describe the main responsibilities of the ALU module.  

51) Briefly describe whether the ALU directly provides any information regarding the status of the operations it 
performs.  

52) Arithmetic shifts support the shifting of which type of number representations?  

53) Briefly describe why shift lengths are limited to 32 bit positions in the RISC-V OTTER MCU.  

54) Briefly describe what would happen if you attempted to shift more than 32 bit positions in the RISC-V 
OTTER MCU.  

55) List the two significant differences between branch-type instructions and slt-type instructions.  

56) Both the branch-type instructions and the slt-type instructions perform comparisons; briefly describe where 
those comparisons occur in the underlying RISC-V MCU hardware.  

57) Briefly describe any limits the slt-type instructions have regarding their ability to make comparisons.  

58) Briefly but completely describe the purpose of the MCU wrapper.  

59) Briefly describe why the Wrapper does not register the inputs to the MCU as it does the outputs.  

60) What limits the amount of data that can be input to the RISC-V MCU in a single operation?  

61) Briefly describe what causes data to be stores in the registers on the wrapper level.  

62) What three items need to happen to allow data from the RISC-V MCU to a register in the Wrapper?  

63) Briefly describe how it is possible for the IOBUS_addr signal to be shared by both input and outputs.  

64) Would it be possible to use the current Wrapper for another softcore MCU. Briefly but completely explain 
your reasoning.  
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65) Briefly but completely explain the main differences between the input and output portions of the MCU 
wrapper.  

66) The MCU can only control a fixed number of input and output bits. Describe what determines the number of 
input and output bits can be controlled by the MCU.  

67) How many total input bits can the current RISC-V OTTER MCU control? Show the calculation for this 
question.  

68) How many total output bits can the current RISC-V OTTER MCU control? Show the calculation for this 
question.  

69) If the RISC-VMCU physical memory address space was increased form 16 bit to 24 bits, what is the 
resulting number of bits the RISC-V MCU can both input and output?   

70) If the RISC-VMCU physical memory address space was increased form 16 bit to 30 bits, what is the 
resulting number of bits the RISC-V MCU can both input and output?   

71) If the RISC-VMCU physical memory address space was decreased form 16 bit to 12 bits, what is the 
resulting number of bits the RISC-V MCU can both input and output?   

72) If the RISC-VMCU physical memory address space was decreased form 16 bit to 8 bits, what is the 
resulting number of bits the RISC-V MCU can both input and output?   

73) Show a completed timing diagram based on the current RISC-V MCU wrapper that indicates exactly when 
the data is latched into the output registers.   
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16.15 Chapter HDL (Verilog) Exercises 

 

1) Show the modifications necessary to the wrapper code so that you can add two more input devices: a set of 
six buttons (map them to address 0x44) and a set of seven switches (map them to address 0x77).  

2) Show the modifications necessary to the wrapper code so that you can add three more input devices: a set of 
five LEDs, another four-digit 7-segment display, and a set of 16 LEDs. You can choose any port addresses 
you want for this question.  
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17 RISC-V Instruction Details  
 

17.1 Introduction 

All of the previous chapters that dealt with the RISC-V MCU did so at primarily a programming level. We 
purposely limited our mention of hardware details in an effort to not frighten programmers who have no 
knowledge of the hardware implements an actual computer. This chapter starts delving into some of the 
hardware aspects and other details of RISC-V MCU instructions and operations. We delve into the details of the 
underlying hardware of the RISC-V MCU in a later chapter.  

 

Main Chapter Topics 

 HARDWARE-BASED STACK IMPLEMENTATIONS: This chapter describes the 
approach to implementing stack ADTs in digital hardware.   

 INSTRUCTION FORMATS: This chapter describes the RISC-V instruction types and 
their various formats including opcodes and field codes.  

 SPECIAL INSTRUCTION HANDLING: This chapter describes the basic operations of 
miscellaneous pseudoinstructions and their relation to the base instruction they 
translate to. 

 

Why This Chapter is Important 

This chapter is important because it describes some of the low-level details regarding 
RISC-V instructions and instruction execution.  

 

17.2 Hardware-Based Stack Implementations 

The stack is an abstract data type that the RISC-V MCU uses for specific types of data storage including the 
implementation of nested subroutines. We covered the basic functionality of a stack in Section 12.2, but that 
coverage intentionally did not mention stack implementation associated with hardware. This section covers the 
same basic concepts but from the aspect of how we typically implement stacks in hardware.  

Figure 17.1 shows an example of a stack implemented in hardware, or more precisely, using a structured 
memory-type device such as a RAM. The example shows the highest memory locations of memory with 32k 
storage locations. In Figure 17.1, we use a small arrow as the stack pointer to indicate the top of the stack and 
listed the value in the box labeled “SP” (for “stack pointer”) below. We made this stack to be similar to the 
example in Section 12.2 to highlight the major implementation differences; you may want to go back and review 
that section, or equivalently stare out the window. Here are the descriptions of the state changes in Figure 17.1. 
We don’t need to state the exact width of the data for this example.  

 Image 1: the stack in its empty state. The stack pointer indicates the top of the stack (the box 
with the letters SP next to it). In its initial state, the stack pointer is officially not pointing to the 
memory associated with the stack. We initialize the stack pointer to point outside of the actual 
memory.  

 Image 2: the stack after one item has been pushed onto the stack. The figure uses a small arrow 
in addition to the stack pointer box to indicate the top of the stack.  
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 Image 3: the stack after four items (three more values since image 2) have been pushed onto the 
stack. The items on the stack were pushed in the following order: 34, 29, 19, and 17. Note that 
the stack pointer is pointing at the last thing that was pushed on the stack (17).  

 Image 4: the stack after one item is popped off the stack. Note that the item popped off the stack 
is not actually removed; the item is still there but the stack pointer is adjusted to point to a new 
top of the stack. If we were to push another item onto the stack after this point, it would 
necessarily overwrite the number 17 with new data.   

 Image 5: the stack after three items (two since image 4) are removed from the stack. Once again, 
we don’t remove items from the stack; we simply adjust the stack pointer. 

 

Figure 17.1: Implementation of a hardware-based (structured memory) stack. 

One final but important characteristic exhibited by the stack in Figure 17.1 is that we consider the stack to 
“grow” in the negative direction as we push items onto it. In other words, when we push data onto the stack, the 
stack pointer (which is an address value pointing at the stack area in main memory) value becomes smaller. 
Conversely, when we remove items from the stack, the stack pointer increases in magnitude. There is no 
particular reason why most MCUs do it this way other than tradition; we could implement stacks the other way 
just as easily. 

17.3 Instruction Types and Formats 

The best place to start any discussion on RISC-V hardware is with low-level descriptions of the instructions 
themselves. Recall that an assembly language is a set of mnemonics that represent instructions. We humans use 
the instructions to control the underlying hardware. That being the case, the instructions are nothing more than a 
set of bits that the hardware uses to know what instruction needs executing and how exactly to execute that 
instruction.  

There about approximately 40 base instructions and another 20 or so pseudoinstructions in the RISC-V MCU 
instruction set. While this seems like many instructions, it’s not as bad as it initially seems. First, we’re only 
required to understand the ins and outs of the base instructions because the assembler translates the 
pseudoinstructions. Additionally, we use various approaches to exploit the many similarities between the 
instructions to further expedite our understanding of both the instruction set and how we implement those 
instructions in the underlying hardware.  

17.3.1 Field Codes and Opcodes 

We divide all of the 40 base instructions fall into six different types. The thing that differentiates these 
instruction types is how they arrange the underlying bits. Because the instructions have different numbers and 
types of operands, it makes intuitive sense that the underlying bits that form those instructions will also be 
different. Table 17.1 shows the six RISC-V formats. We’ll look more closely at these formats when we look into 
individual instructions, but there are a few general items to notice about Table 17.1.  

 Although each instruction comprises of 32 bit, we arrange those bits in an organized manner by 
dividing them into groups according to their purpose. There are two types of groups, which we 
refer to as “field codes” and “operational codes” (or “opcodes”). These two different groups have 
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different purposes. The opcodes define the particular instruction being executed and cannot vary 
for a given instruction. The field codes are variable for a given instruction. The field codes define 
either register values or immediate values. While the field codes defining registers are always 5-
bits wide, the immediate values vary depending on the instruction.  

 We designate the opcodes in Table 17.1 using shading.  

 The field codes and opcodes have both common widths and common locations in the instruction 
across the set of instruction types. Organizing the field codes in this way makes the underlying 
RISC-V hardware less complex. 

 The numbering on the immediate value field codes can sometimes be strange. Once again, the 
RISC-V designers chose this organization to simplify actual RISC-V MCU implementations.  

 We designate the register-based field codes in Table 17.1 by either an “rd”, “rs1”, or “rs2”, where 
rd is the destination register and rs1 & rs2 are the source registers. The number of register-based 
operands depends on the instruction type. We give the register-based field codes common names.  

Instr 
Type Instruction Format 

R-type 

I-type 

S-type 

B-type 

U-type 

J-type 

Table 17.1: RISC-V Instruction types and associated formats. 

17.4 Notable Handling of Specific Instructions 

Some the RISC-V instructions are notable because of the way programs use them and because of their somewhat 
unique hardware implementations. The “uniqueness” of these instructions primarily refers to their non-intuitive 
usage and “lack” of direct use. Programmers use these instructions quite often, but in an indirect manner as these 
instructions are primarily what the assembler uses to implement various and common pseudoinstructions.  

17.4.1 Add Upper Immediate to PC Instruction: auipc 

The RISC-V ISA includes several pseudoinstructions involved in program flow control. These instructions then 
necessarily involve using the PC. The primary purpose of the auipc instruction is to load a copy of the current 
program counter to a register, where then other instructions can use that value. The primary use of the auipc 
instruction is as part of the call pseudoinstruction (the other part of the call pseudoinstruction is a jalr 
instruction) and the la pseudoinstruction (the other part being an lw instruction).  
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The auipc instruction loads the sum of the current PC and a modified immediate value into the destination 
register. The instruction sign-extends the immediate value and shifts it left by 12-bit locations before being 
adding to the PC value. Table 17.2 provides an RTL description of the auipc instruction while Table 17.3 
shows lower-level implementation details. The efficacy of this instruction relates to its usage as part the call 
pseudoinstruction, so we save insights into the operation of the auipc instruction when we describe the call 
pseudoinstruction in Section 17.4.3 and the la pseudoinstruction in 17.4.6.  

The RTL for the auipc instruction in Table 17.2 is misleading. The instruction essentially creates a 32-bit value 
from an immediate value and the PC. The instruction makes that value by placing the 20-bit immediate value in 
the 20 left-most bits of the register, and then adding the PC value. The notion of the shifting operation implies 
that the lower 12-bits are zero before the addition operation. The underlying RISC-V hardware does more of a 
reassignment of 20-bit immediate value for the lower 20 bits to the upper 20 bits; no shifting occurs. It is the 
programmer’s responsibility to handle overflows of the addition operation. If the immediate value associated 
with the instruction is zero, the instruction effectively moves the PC to the destination register, which is actually 
one way we commonly use the instruction.  

Instr 
Type Instruction Form Instruction RTL Example Usage 

U-Type auipc   rd,imm rd ← PC + (sext(imm) << 12) auipc   x8,imm 

Table 17.2: Usage and description of the auipc instruction.   

Type Instruction Type Format 

Instr Instruction Format 

U-type 
 

auipc 
  

Table 17.3: Type and Instruction format for the auipc instruction. 

17.4.2 Load Upper Immediate Instruction: lui 

The lui instruction is similar to the auipc instruction. It’s once again one of those instructions that programmers 
don’t use often in a direct manner, but use often in an indirect manner as a part of useful pseudoinstructions. The 
assembler translates the li pseudoinstruction into lui instruction.  

The lui instruction loads a modified immediate value into the destination register. The instruction sign-extends 
the immediate value and shifts it left 12-bit locations before loading it to the destination register. Table 17.4 
provides an RTL description of the lui instruction while Table 17.5 shows lower-level implementation details. 
The efficacy of this instruction is related to its usage as part the li pseudoinstruction, so we save insights into 
the operation of the lui instruction for Section 17.4.5, where we describe the li pseudoinstruction.  

The RTL for the lui instruction in Table 17.2 is misleading similar to the way the auipc instruction is 
misleading. The instruction essentially creates a 32-bit value from an immediate value by placing the 20-bit 
immediate value in the 20 left-most bits of the register. The notion of the shifting operation implies that the 
lower 12-bits in the destination register are always zero. The underlying RISC-V hardware does more of a 
reassignment of immediate value; no shifting occurs. If the immediate value associated with the instruction is 
zero, the instruction effect is to clear the destination register.  
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Instr 
Type Instruction Form Instruction RTL Example Usage 

U-Type lui    rd,imm rd ← sext(imm) << 12 lui    x8,imm 

Table 17.4: Usage and description of the lui instruction.   

Type Instruction Type Format 

Instr Instruction Format 

U-type 
 

lui 
  

Table 17.5: Type and instruction format for the lui instruction. 

17.4.3 Calling Subroutines: The call Pseudoinstruction 

Programmers use the call pseudoinstruction to transfer program flow control to another area of the program 
we refer to as a subroutine. The basic operation of a subroutine call is to load the address of the first instruction 
in the subroutine into the PC, but at the same time, storing the address of the instruction following the call 
instruction. We refer to the address of the instruction following the call instruction as the return address, as 
that is where program control transfers to after completing execution of the instructions in the subroutine. The 
subroutine code uses a label to mark the address of the first instruction in the subroutine.  

The call instruction has two primary responsibilities. First, it must formulate the absolute address of the 
subroutine from the label value. Absolute address formation is another exercise in using the RISC-V instructions 
and assembler to convert the relative addresses encoded in the instructions1 into a 32-bit address that the 
hardware loads into the program counter as part of the translated call instruction sequence. Second, the call 
instruction must store the return address in a register, which the return from subroutine instruction (ret) later 
uses to transfer program flow control back to the instruction following the call instruction listed in the 
program code.  

Table 17.6 shows an overview of the call pseudoinstruction including the associated RTL statements. The 
RTL statement in Table 17.6 is slightly misleading in that the information makes it seem like there is only one 
instruction required to execute the call pseudoinstruction. As you’ll see next, this is not the case.  

Instruction Form Instruction RTL Example Usage Comment 
 
call     label 

 
rd ← PC + 8  
PC ← &label 

 
call    my_sub 

 
Transfers program control 
to instruction associated 
with my_sub label.  

Table 17.6: The overview of the call pseudoinstruction. 

Table 17.7 shows the call instruction in two forms and includes some other usage information. Table 17.7 
shows that the assembler translates the call pseudoinstruction into an auipc & jalr instruction. We’re 
primarily interested in the form of the instruction in the second row, which is the one we primarily use when 
programming. The call pseudoinstruction form in the second row is a special case of the call form in the 
first row where the destination register defaults to x1.  

                                                           
1 call is a pseudoinstruction, but we commonly reference it as an instruction to save typing keystrokes.  
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Instruction Form 
Equivalent Base  
Instruction(s) Example Usage Comment 

call   rd,lab 
auipc  rd,hi(lab) 

jalr   rd,lo(lab) 
call   x5,subrut 

Jump to instruction 
associated with label;  
Store current address in rd 

call   lab 
auipc  x1,hi(lab) 

jalr   x1,lo(x1) 
call   subrut 

Jump to instruction 
associated with label;  
Store current address in x1 

Table 17.7: The two forms of the call pseudoinstruction and equivalent base instructions.   

Table 17.8 provides all the gory details as to how the auipc & jalr instructions work together to execute a 
call pseudoinstruction. Note that the following description is for the call form in the second row of Table 
17.7. Here is a full description of the code in Table 17.8:  

 The call pseudoinstruction has an associated label: Instr. The comment above the call 
pseudoinstruction states that the value of this label is 0xFEBA.  

 The assembler translates the call pseudoinstruction into the auipc and jalr instructions in 
the right column of Table 17.8. These two instruction perform three distinct functions (one for 
auipc and two for jalr):  

1) The auipc instruction stores the upper 20 bits of the address of the subroutine in the upper 
20 bits of register x6. The current PC value is 0x0000FEBA, which is the address of the call 
instruction in the left column. The value stored in x6 after this instruction is 0x0000F000.  

2) The jalr instruction stores the current PC value plus four (PC+4) in x1, which is the address 
of the “instruction after the call pseudoinstruction”. But since the call pseudoinstruction 
generates two base instructions, the address loaded into x1 is the address of the instruction 
after the jalr instruction, which is effectively the address 8 greater than the address of the 
call pseudoinstruction as it appears in the source code. This is why the RTL statement in 
Table 17.6 is misleading. The return address is officially the instruction after the jalr 
instruction in the translated code.  

3) The jalr instruction completes the subroutine address formulation started in the auipc 
instruction by adding the value in x6 to the lower 12 bits of the address of the first instruction 
of the subroutine (thus creating an absolute address) and storing that value in the PC.  

 Lucky for us programmer types that the assembler handles most of the ugly details. Namely, the 
assembler generates and assigns the right-most operands of both the auipc & jalr instructions.  

Pseudoinstruction Usage Pseudoinstruction Translation 
      
#Instr=0x0000FEBA 
 
Instr:   call    my_sub  
         nop      
 

 
 
 
inst1:   auipc    x6,0x0000F    # x6 = 0x0000F000 
 
inst2:   jalr     x1,x6,0xEBA   # PC <- (x6 + 0xEBA) 

Table 17.8: Example of the call pseudoinstruction translation. 

17.4.3.1 Subroutine Call Timing 

Calling subroutines is another common type of program flow control operation. There is no dedicated calling 
instruction in the RISC-V architecture, but there is a call pseudoinstruction that programmers can use. The 
call pseudoinstruction translates to two base instructions: auipc & jalr. Section 17.4.3 described the 
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operation of the call pseudoinstruction and underlying base instruction; this section provides an example 
timing diagram with verbose description. Figure 17.2 shows an example timing diagram associated with a call 
pseudoinstruction; here are the gory details:  

 This example shows the calling of a subroutine names “sub_rut”; the address of the first 
instruction in this subroutine is 0x4328, which arbitrary. The address of the call instruction is 
0x90. The assembler translates the call instruction to an auipc instruction (address 0x90) 
followed by a jalr instruction (0x94).  

 The PCWrite signal asserts at the beginning of the execute cycle, which causes the PC to advance 
to the next instruction as the diagram indicates with the (1) note. The actual instruction at 0x8C 
does not matter but it is not a program flow control-type instruction.  

 The note at (6) indicates the machine code associated with the auipc instruction become 
available starting at the execute cycle for the auipc instruction because part of the fetch cycle 
includes asserting the read enable for instruction memory.  

 The auipc instruction loads the upper 20 bits of the address of the subroutine to the upper 20 
bits of x6 as note (2) indicates. The auipc instruction essentially grabs the 20 MSBs of the 
subroutine address. The value of x6 does not matter before note (2), but it is loaded with the five 
most significant nibbles of the subroutine address as the control unit transitions from a execute to 
fetch cycle.  

 The assembler generates the jalr instruction shown at the top of the diagram. The left-most 
operand indicates the register where the MCU stores the return address. The hardware uses the 
values associated with the other two operands to complete the formation of the address of the 
first instruction in the subroutine. The “0x294” value in the jalr instruction is the lower 12-bits 
of the relative offset from the address of the current instruction to the address of the subroutine: 
(0x00004328 – 0x00000094). Yes, this seems like a lot of trouble, but the assembler handles all 
the math for you.  

 The jalr instruction has two responsibilities as the notes at (3) & (4) show. The note at (3) 
indicates the address of the instruction after the call pseudoinstruction is stored in x1. Recall 
that x1 is the designated register for holding return addresses. The value in x1 is the address of 
the first instruction that will execute after returning from the subroutine. The documentation for 
the call instruction indicates that the MCU stores “PC+8” in x1, but this is because the 
assembler translates the call instruction into two base instructions, which is eight greater the 
address of the call pseudoinstruction as it appears in the assembly language source code. The 
note at (4) indicates the new PC address is the address of the first instruction of the subroutine, 
which indicates program control has transferred to the subroutine.  

 The instruction bits for the first instruction in the subroutine become available during the execute 
cycle as the note at (5) indicates.  
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Figure 17.2: Example timing diagram for the call pseudoinstruction. 

17.4.4 Returning from Subroutines: The ret Pseudoinstruction 

The ret pseudoinstruction is another program flow control operation, typically associated with a call 
pseudoinstruction. Recall that the assembler translates the call pseudoinstruction into an auipc and jalr 
instruction. While the assembler could have used a jal instruction as part of the call translation, it uses a 
jalr. The same is not true for the returning from subroutines. When returning from subroutines, the assembler 
must use a jalr instruction because the return address is stored in in a register. The main difference between 
the jal & jalr subroutine is in the fact that the absolute address calculation to determine the value loaded into 
the PC includes a register. When programmers use the ret pseudoinstruction, the register used in the calculation 
defaults to x1. Table 17.9 shows all the important information for the ret pseudoinstruction.  
 

Instruction 
Form Instruction RTL 

Example 
Usage 

Equivalent  
Base Instruction Comment 

ret     PC ← x1 ret  jalr   x0,0(x1) Transfers program 
control to address in x1  

Table 17.9: The overview of the ret pseudoinstruction. 

17.4.4.1 Subroutine Return Timing 

We can best describe the operation of the ret pseudoinstruction by using a timing diagram. Figure 17.3 shows a 
timing diagram that uses the ret pseudoinstruction; this diagram is somewhat special because it works with the 
call instruction timing diagram in Figure 17.2.Here are the nitty-gritty details of the ret of the timing diagram 
in Figure 17.3:  

 The assembler translates the ret pseudoinstruction to a jalr instruction, which Figure 17.2 
indicates in the top of the diagram directly above the jalr instruction. The only responsibility of 
the jalr instruction is to load the value in the return address, x1 or ra, into the PC. Note that the 



FreeRange Computer Design  Chapter 17 

 

 - 504 -  
 

jalr instruction uses x1 as a base address and then includes a zero offset. The assembler does 
with translation for us programmers.  

 Register x1 contains the return address from Figure 17.3. This was the address two instructions 
after the call pseudoinstruction because the assembler translated the call pseudoinstruction to 
two base instructions. The address in x1 is effectively the instruction two instructions locations 
after the call pseudoinstruction.  

 Note (1) shows normal sequential instruction execution with the addition of 4 to the current PC. 
The value of 0x4400 is arbitrary. Note (2) shows when the instruction bits associated with the 
instruction become available at the start of the execute cycle.  

 The jalr instruction must select the absolute address associated with jalr input to the PC. 
Note (3) shows that the pcSource changes to “01” as a result of the MCU decoding the bits 
associated with the jalr instruction after the start of the execute cycle.  

 The control unit in the RISC-V hardware decodes the instruction and sends out the appropriate 
control signals; two of those signals are PCWrite and pcSource. These two signals direct the 
MCU to copy the address in x1 into the PC, as the note at (4) shows. The value in x1 was loaded 
there by the jalr instruction associated with the call pseudoinstruction.  

 Note (5) shows that the instruction bits associated with the instruction at the address in the PC 
become available after entering the execute cycle.  

 

Figure 17.3: Example timing diagram for the ret pseudoinstruction. 

17.4.5 Loading Immediate Value: li  

The li pseudoinstruction effectively loads an immediate value into a register. RISC-V MCU registers are 32-bit 
wide, but the various instruction forms represent immediate values using significantly less bits. The assembler 
translates the li pseudoinstruction into an addi instruction if the assembler can represent the immediate value 
using the 12-bit immediate field in the addi instruction. If the assembler can’t represent the immediate value 
with a 12-bit value, the assembler translates the li pseudoinstruction to an lui base instruction followed by an 
addi instruction. Table 17.10 shows an overview of the li instruction.  
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Instruction Form Instruction RTL Example Usage Comment 

li    rd,imm rd ← imm li    x8,20 Immediate value loaded 
into destination register 

Table 17.10: The overview of the li pseudoinstruction. 

Although the assembler handles the details of whether the li instruction translates to one or two base 
instructions, it’s instructive to know the mechanics of the assembler’s translations. Table 17.11 shows an 
example of two li pseudoinstructions in the left column; the right column shows how the assembler converts 
those instructions to base instructions based on the magnitude of the immediate operand in the li 
pseudoinstruction. Here are some extra items worthy of noting about Table 17.11:  

 For the first row in Table 17.11, the associated immediate value can fit into a 12-bit signed value 
range [-2048,2047] (the 12-bit range threshold is associated with the addi instruction). Because 
the immediate value can fit into a 12-bit range, the assembler translates the la pseudoinstruction 
into a single addi instruction.  

 For the second row in Table 17.11, the associated immediate value is does not fit into a 12-bit 
signed range. This larger immediate value thus causes the assembler to translate the la 
pseudoinstruction into two base instructions: lui & addi as follows:   

1) The lui instruction encodes the upper 20 bits of the immediate value into the upper 20 bits 
of the destination register x8, and clears the lower 12 bits of x8.  

2) The addi instruction places the lower 12 bits that were not included from the lui 
instruction into the lower 12 bits of the x8, which was also the destination register in the lui 
instruction.  

Pseudoinstruction Usage Pseudoinstruction Translation 
 
    li     x8,19 

 
         addi      x8,x8,19       # x8=19 
 

      
    li     x8,0x12345678 

 
inst1:   lui       x8,0x12345678  # x8=0x12345000 
 
inst2:   addi      x8,x8,678      # x8=0x12345678 

Table 17.11: Example of the la pseudoinstruction translation. 

17.4.6 Load Address Pseudoinstruction: la  

The la is a pseudoinstruction used to translate program labels into to numerical values and store those values in 
registers. Programmers typically use labels as symbolic addresses, which allow jump and branch instructions to 
transfer program control to instructions associated with label. This symbolic representation of addresses allows 
for 1) easy program modifications, and 2) absolves programmers from dealing with relative and absolution 
address calculations. One common use of labels to locate the base addresses of look-up-tables (LUTs). Table 
17.12 shows an overview of the la instruction usage. The RTL in Table 17.12 uses the “&” symbol, which is the 
“address of” operator in the C programming language. In this context, it refers to the fact that labels in RISC-V 
programs are address values of data (instruction or actual data) in memory.  
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Instruction Form Instruction RTL Example Usage Comment 

la    rd,label rd ← &label la    x8,my_label Numerical value of 
my_label copied to x8 

Table 17.12: The overview of the la pseudoinstruction. 

The assembler translates the la pseudoinstruction into an auipc base instruction followed by an addi base 
instruction. The la pseudoinstruction uses a two-step process to obtain the label value:  

1) The auipc base instruction places the value of the current program counter into a register.  

2) The addi base instruction adds an offset to the register value loaded by the auipc 
instruction. The offset is a relative value, specifically the relative offset from the address of 
the auipc instruction to the value (data or instruction) associated with the label in question.  

Table 17.13 shows an example of the la instruction with comments. Here are a few items to note about the la 
pseudoinstruction.  

 The auipc instruction is only interested in the PC, which is why it the assembler places a zero 
in the immediate operand in the instruction.  

 The addi instruction adds a relative offset to the PC valued stored in the register. The assembler 
makes the calculation and assignment of the result into x10. The assembler calculates and assigns 
the immediate value to the immediate operand in the addi instruction, which is: (address of 
auipc instruction) – (value of label).  

Pseudoinstruction Usage Pseudoinstruction Translation 
 
My_lab:  nop 
 
         la     x10,My_lab 

 
 
 
      auipc      x10,0        # x10 <- PC + 0 
 
      addi       x10,x10,-4   # x10 <- x10 – 4 

Table 17.13: Example of the la pseudoinstruction translation. 

17.4.6.1 Assembler Handling of Labels 

The assembler assigns a value to every label in a program; this value is effectively an absolute memory address. 
The memory stores two types of data: instructions and data. This means that a label can either be the address of a 
specific instruction in program memory (code segment or text segment) or the addresses of a data (data or stack 
segments).  

The value that the assembler assigns to labels is effectively the output of a counter used in the assembler in the 
assembly process. When the program encounters data (in the data segment) or instructions (in the code segment), 
this internal counter advances. For example, each byte of data in the data segment advances the counter by one; 
each halfword and word of data advances the counter by two and four, respectively. When the assembler 
encounters a label in the code, the assembler assigns the current value of that counter to that label. When the 
assembler encounters multiple labels without encountering data, all the labels receive the same value. Programs 
specify data (assigned values) or space (unassigned values) in the data segment using various assembler 
directives.  

While specifying data can advance the internal assembler counter by one, two, or four, instructions always 
advance the counter by four. Labels in the code segment are treated exactly the same as labels in the data 
segment, including the ability to have multiple labels (one per line though) without encountering an instruction.  
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The assembler translates the la pseudoinstruction into two base instructions: auipc & addi. The good part 
about this is that the assembler does the work for the programmer, but it’s a good to know exactly how the 
assembler does this. The code fragment in Table 17.14 provides an example to explain this mechanism. Here is 
the full explanations including the gory details:  

 The program has the “dog” label associated with the instruction on line (02). The assembler 
assigns the “dog” label the value of the internal counter, which is 0x00000080; this value is the 
address in the code segment where the nop instruction on line (02) is stored.  

 Two more generic instruction happen in the program on lines (02-03); nothing big here.  

 The assembler encounters the la instruction on line (06), which copies the value associated 
with the “dog” label into x10. The assembler does this by translating the la instruction into an 
auipc instruction followed by an addi instruction; the approach here is to use existing base 
instructions to load the address of the instruction associated with the “dog” label into a register. 
Once that value is in the register, programs can use this value for other very useful purposes.  

 The auipc instruction used in this context effectively loads the current PC value to a register. It 
does this by encoding a zero into the immediate value associate with the auipc instruction. 
The PC value that is encoded is the value of the la instruction as it appears in the program, 
which is the same address as the auipc instruction after the assembler translates the instruction.  

 The assembler then needs to “adjust” the current value in x10 to be the address of the instruction 
associated with the dog label, which are three instructions before the la instruction in the 
program. The assembler makes this adjustment by adding a relative offset from the address of 
the la instruction (or the auipc instruction) to the address of the instruction associated with 
the dog label: the relative offset value is -12. It’s a negative number because it’s going 
backwards in the code (instruction addresses are becoming smaller). It’s 12 because there are 
three instructions where each instruction is four bytes wide. It adds this offset value to the value 
in x10 using the addi instruction. What the addi instruction effectively does is creates an 
absolute address from the base PC address and the relative offset. I’m sure glad the assembler 
takes care of these details for me; very clever, but I have better things to do.  

(00) 
(01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.text 
dog:   nop               # generic instruction: addr=0x00000080 
       nop               # placeholder instructions 
       nop 
 
       la    x10,dog     # place associated value of dog (0x00000080) into x10 
 
#----- the assembler translates the la instruction to the following: ------- 
#     
#      auipc  x10,0      # zero is the immediate value 
# 
#      addi   x10,-12    # -12 is the relative offset from the la instruction 
#                        #  to the instruction associated with the dog label 
# 
#~~~~~~~~~~~~~~ code fragment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table 17.14: Code fragment example using the la instruction. 

17.4.7 Special Operations: the slt-Type Instructions 

The RISC-V ISA uses bases branching operations on the result of the comparison of the value in two registers. 
The RISC-V hardware makes the branching decision based on the values of the branch instruction operands and 
directs the loading of the appropriate value to the PC. The RISC-V ISA uses the set-if-less-than-type instructions 
to make comparisons between two registers or a register and an immediate value and store the result of the 
comparison in a register without the option of making a branch or not.  

Table 10.9 provides an overview of the set if less than (slt) instructions. There are two main types of slt-type 
instructions. All slt-type instructions set the destination register (writes ‘1’ to the register) if the result of the 
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comparison is true; the differences lie in the comparisons made by the instructions. The immediate forms of the 
instructions (slti & sltiu) compare a register to an immediate value, while the register-immediate forms of 
the instructions compare two register values. Additionally, the instructions either interpret the two operands 
differently, as both unsigned values (sltu & sltiu) or signed values (slt & slti).  

Table 10.9 uses some special vernacular in the associated RTL to describe the instructions. First, it uses “<u” and 
“<s” for unsigned and signed comparisons, respectively. Second, it uses a C programming language type 
operator to describe the result of the comparison. The “? :” is an arithmetic if operator. This operator includes an 
expression on the left of the question mark, and a value on each side of the colon; the RTL statements in Table 
10.9 use a comparison in place of the expression. If the comparison evaluates are true, the operator assigns the 
value on the left side of the colon (‘1’) to the destination register; otherwise, the operation assigns the value on 
the right side of the operator (‘0’). Thus, the destination register is either set or cleared as a result of executing 
any one of these slt-type instructions.  

The immediate forms of the slt-type instructions represent the immediate operand in a 12-bit field in the 
instruction format. The hardware interprets these values as signed values, which gives an effective range of [-
2048,2047]. The RISC-V MCU hardware sign-extends these values prior to the comparison. Table 10.9 indicates 
sign-extension of the immediate value with using the “sext(imm)” notation in the RTL statement.  

Instr 
Type Instruction Form Instruction RTL Example Usage Comment 

R-Type slt    rd,rs1,rs2 rd ← ( rs1 <s rs2 ) ? 1 : 0 slt    x10,x5,x21 signed compare 

I-Type slti   rd,rs1,imm rd ← (rs1 <s sext(imm)) ? 1 : 0 slti   x8,x9,0xF0 signed compare 
12-bit signed imm 

R-Type sltu   rd,rs1,rs2 rd ← ( rs1 <u rs2 ) ? 1 : 0 sltu   x5,x6,x16 unsigned compare 

 I-Type sltiu  rd,rs1,imm rd ← (rs1 <u sext(imm)) ? 1 : 0 sltiu  x7,x8,25 unsigned compare 
12-bit signed imm 

Table 17.15: The two forms associated with the four logic instructions. 
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17.5 Chapter Summary 

 

 The stack is an abstract data type that the RISC-V MCU uses to store data. Stacks are a common module in 
most computer architectures and are typically implemented using a structured memory device such as a 
RAM. There are many approaches to implementing stacks, but the most efficient approach in digital 
hardware is a structured memory device.  

 The auipc and lui instructions are similar in that they transfer an immediate value to a register. These 
instructions are not typically used directly in programs; they instead are part of pseudoinstructions such as 
li and la. The main difference between the auipc and lui instructions is that the PC value modifies the 
result for the auipc instruction.  

 The li pseudoinstruction places an immediate operand into a register. The li pseudoinstruction translates 
to one or two base instructions depending on the sign and magnitude of the immediate value.  

 The la pseudoinstruction places the value associated with a program label into a register. Programmers 
typically don’t keep track of the various addresses of items in programs; they instead use the la 
pseudoinstruction to work with only the addresses they require without ever actually knowing that address.  

 The slt-type instruction are similar to branch instructions in that the perform a compare operation, but differ 
because, unlike branch instructions, the result of a slt-type instruction can never be a branch.  
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17.6 Chapter Exercises 

 

1. Breifly describe what exactly the stack pointer is and what it does in terms of hardware-based stack 
implementations.  

2. Briefly describing the notion of stacks growing and shrinking in terms of digital hardware.  

3. Briefly describe the notion of stack overflow and underflow in terms of digital hardware.  

4. Breifly describe what occurs if the stack pointer value exceeds its designated bit width.  

5. Briefly describe what determines how many stacks a RISC-V based MCU can “easily” have.  

6. Briefly describe the drawbacks of having a high number of easily implemented stacks using the RISC-V 
architecture.  

7. Briefly describe why stacks implemented in hardware do not alter data that is popped off the stack.  

8. Briefly describe why the hardware has no need to implement pseudoinstructions.  

9. Briefly describe who or what decides how many instruction types a given computer ISA has.  

10. List the six types of RISC-V instructions.  

11. Briefly explain whether pseudoinstructions fall into the category of the six different types of RISC-V 
instructions.  

12. Briefly explain the main difference between a field code and an opcode.  

13. Briefly describe who or what determines the field code and opcode configuration for a given instruction set 
architecture.  

14. Briefly describe what differentiates the six different RISC-V instruction types.  

15. Briefly describe why there is significant overlap between with the field codes and opcodes in the RISC-V 
instruction types.  

16. Briefly describe why the immediate-type field codes sometimes have really wanky arrangements.  

17. Briefly describe how it is possible that you the programmer can write programs until the cows come how but 
never have a lui or auipc instruction in your source code.  

18. Breifly describe if the auipc and lui instructions actually do any shift operations as their RTL 
descriptions seem to indicate.  

19. What are the two primary responsibilities of the call pseudoinstruction?  

20. Briefly describe why the call pseudoinstruction adds 8 to the PC rather then 4, where 4 seems like it 
would be the addresses of the instruction following the call pseudoinstruction.  

21. Briefly describe the responsibilities of the two base instructions associated with a call pseudoinstruction. 

22. Briefly describe why the call pseudoinstruction translated to two base instruction while the ret 
pseudoinstruction translates to only one base instruction.  

23. Briefly desrcribe what determines whether the li pseudoinstruction translates into one or two base 
instructions.   

24. Briefly describe from an efficiency standpoint whether it is better to use a mv pseudoinstruction or a li 
pseudoinstruction to clear a register.  

25. Briefly describe why there is not one li-type pseudoinstruction or instruction that loads a full 32-bits at one 
time.  

26. Briefly describe when the la pseudoinstruction can find the addresses of data in both program and data 
memory.   
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27. Briefly describe whether it is possible to branch to an address in data memory.  

28. Briefly describe how branch instructions and set-if-less-than-type instructions are similar.  

29. Briefly describe the primary difference between branch instructions and set-if-less-than-type instructions.  
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18 RISC-V MCU Interrupt Architecture (Hardware) 
 

18.1 Introduction 

We previously discussed the notion of interrupts and real-time programming in Chapter 13. While that chapter 
was designed such that pure programmers could understand it, the discussion in this chapter is for people who 
have a solid understanding of standard digital design topics. We focus the discussion in this chapter on the low-
level hardware implementation details of the RISC-V OTTER MCU interrupt architecture and assume our gentle 
readers as well-versed with the theory of interrupts as the relate to MCUs. This chapter is somewhat stand-alone, 
but the best approach would be to become familiar with the topics in Chapter 13 before reading this chapter.  

The notion of interrupts forms the heart of most embedded systems. The interrupt mechanism essentially 
provides hardware with the ability to “call” subroutines, which means that devices outside of the MCU can affect 
program operation. The main purpose of interrupts is to reduce the response time to external inputs, which 
allows the MCU to avoid other less efficient approaches to I/O, which thus allows makes the architecture into a 
real-time system. There are many other advantages to using interrupts that we cover in both Chapter 13 and this 
chapter.  

 

Main Chapter Topics 

 HARDWARE DETAILS OF INSTRUCTION EXECUTION: This chapter provides pertinent 
hardware details regarding the RISC-V MCU interrupt architecture.  

 INTERRUPT SUPPORT HARDWARE: This chapter describes the structure in the RISC-V 
hardware that directly supports the interrupt architecture. 

 PROGRAM FLOW CONTROL: This chapter describes interrupts in the context of 
program flow control, which is an inherent quality of interrupts.  

 INTERRUPT TIMING ISSUES: This chapter describes the various timing issues involved 
with interrupts.  

 INTERRUPT INTERFACING ISSUES : This chapter describes common interrupt 
interfacing issues such as interrupt signal noise and signal duration requirements.  

 

Why This Chapter is Important 

This chapter is important because it describes the low-level architecture details of the 
RISC-V MCU interrupt architecture.   

 

18.2 RISC-V MCU Interrupt Overview 

The concept of interrupts is relatively simple due to their similarity to subroutines. You can generally connect 
external peripheral devices to an MCU in such a way as they can do what we refer to as “generate an interrupt”. 
While this may sound complicated, it simply means that the device has the ability to assert a signal; this signal is 
understood to be connected to the interrupt input on the MCU. When an external peripheral device “generates an 
interrupt”, the microcontroller stops what it is doing and starts processing a special subroutine known as the 
interrupt service routine, or ISR. When processing of the ISR is complete, the microcontroller resumes to its 
regularly scheduled programming. Simply stated, the ISR is nothing more than a subroutine initiated by 
hardware. The section covers the details of how the hardware processes the interrupts. 
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Because interrupts are similar to subroutines, the hardware portions of the RISC-V MCU’s interrupt architecture 
is minimal. Because the hardware already supports subroutines, most of the required hardware for interrupt 
processing is already in place. The hardware we describe in this chapter supports the interrupt cycle and 
interrupt-related instructions.  

18.2.1 The RISC-V Interrupt Input 

The RISC-V MCU has an input that allows external devices to indicate to the MCU that they require some type 
of attention. When the signal on this input is asserted, the MCU goes thought a specific process in order to give 
the external device the attention it’s requesting. Figure 18.1 shows the black box diagram for the RISC-V MCU; 
the INTR signal is the interrupt input. The current RISC-V OTTER MCU contains only one interrupt; if there 
were two interrupts, there would most likely be two different interrupt-type inputs to the RISC-V MCU.  

 

Figure 18.1: Black box diagram for the RISC-V MCU. 

18.2.2 The Interrupt Cycle 

The MCU responds to an asserted signal on the INTR input by entering an interrupt cycle. As with other cycles 
associated with the MCU (fetch, execute, and writeback), the interrupt cycle is associated with a given number 
of states in the FSM that controls the RISC-V MCU. A MCU’s particular interrupt architecture determines the 
number of states in the interrupt cycle. The interrupt cycle is thus a blanket term for all the “special” events that 
must happen when the MCU responds to an external interrupt signal. In other words, the interrupt cycle does the 
special operations to support the firmware entering the interrupt service routine; instruction execution controls 
the exits from ISRs (no special states required).  

Figure 18.2 shows the state diagram for the RISC-V FSM including the interrupt cycle. This is essentially the 
FSM in Figure 16.3 but now with support for interrupts. We’ve opted to describe the RISC-V OTTER MCU 
state diagram in two different ways: first without interrupts, and then with interrupts. The approach underscores 
the notion that interrupts are a feature  in the MCU; our intention was not to overload you with information by 
presenting interrupt topics simultaneously with basic computer architecture and programming concepts. The 
following items list the high-level details of the interrupt cycle as it relates to the RISC-V MCU’s FSM.  

 Transitions from the fetch state are unconditional, the fact that the state diagram is now supporting 
interrupts does not change that.  

 The state diagram does not show the fact that acting on an interrupts depends on a bit in an 
external register (the CSR) being set. In other words, the FSM can only enter the interrupt cycle if 
the interrupts are “enabled” by that external bit. The hardware controlling the enabling and 
disabling of interrupts is external to the FSM so we do not include it in the state diagram. We 
discuss the specifics of this in Section 18.3. 

 The state diagram supports interrupts, which means that the FSM can transition to the interrupt 
state. The FSM can transition to the interrupt state from either execute state (for most instructions) 
or the writeback state (for load-type instructions).  

 All instructions will complete execution before entering the interrupt state. If hardware is currently 
executing a load-type instruction and there is a pending interrupt, the FSM transitions to the 
writeback state to complete execution of the load-type instruction. Once again, any instruction that 
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the FSM is implementing must complete before having the possibility of entering an interrupt 
cycle.  

 The interrupt state in the FSM is responsible for controlling the various operations required to 
support the RISC-V interrupt architecture. We’ll save the details for a later section, but generally, 
the control units send out the control signals that implement the various operations associated with 
the interrupt processing, which is similar to the processing of a subroutine.  

 The interrupt cycle we speak of is associated with “going into an interrupt”; note that there are no 
special FSM states associated with exiting an interrupt cycle. Exiting interrupts is a notion 
associated with exiting the interrupt service routine, which the MCU does under program control 
(the mret instruction). We describe the full details in Section 18.4.3.   

 As the state diagram shows, it appears possible that the FSM can go immediately back into an 
interrupt cycle after it receives an interrupt. For reasons you’ll see later, one function of the 
interrupt architecture that we’ll discuss later prevents this from occurring.  

 The RISC-V MCU happens to have an interrupt cycle comprised of a single state. In general, the 
amount of “stuff” that needs to be done to support the interrupt architecture determines the length 
of the interrupt cycle. The MCU happens to be able to do everything it needs to do to implement 
the interrupt architecture in a single state; this would not necessarily be true of other MCUs.  

 The FSM includes an asynchronous reset signal, RST. This is signal connects to the reset signal on 
the RISC-V OTTER MCU.  

 

Figure 18.2: The RISC-V MCU control unit state diagram. 

18.3 Interrupt Support Hardware 

Implementing the interrupt architecture on the RISC-V MCU requires two new modules and modifications to 
existing modules. The support hardware as two basic functions. First, it provides a form of control by allowing 
the MCU to either act on or ignore the asserted interrupt signal. Second, it provides circuitry that basically 
mimics the RISC-V MCU’s support for subroutines. The next sections describe this hardware.  

18.3.1 The Interrupt Masking Circuitry 

The RISC-V MCU can ignore pending interrupts under program control (using instructions). In this context, a 
pending interrupt is an asserted signal external to the interrupt that has the ability to cause the MCU to go into an 
interrupt cycle. Figure 18.3 shows the RISC-V OTTER MCU circuitry that controls the interrupt enable; here are 
the pertinent things to notice about this diagram:  

 Entering an interrupt cycle depends on two conditions. First, some external device must assert the 
interrupt signal, which we list as the INTR signal in Figure 18.3. Second, the interrupts must be 
“unmasked”; the MIE signal in Figure 18.3 controls interrupt masking. 
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 The MIE signal is the output of a register that programmers can configure under program control. 
This register is one of the registers in the CSR module, which we describe in Section 18.3.2. The 
MIE signal of two inputs to an AND gates and essentially acts as a switch that either blocks the 
INTR signal or allows the INTR signal to pass through to the CU_FSM.  

 When the AND gates blocks the signal, the output of the AND gate is always zero; under this 
condition, the CU_FSM will never receive an interrupt. We refer to this blocking condition as the 
interrupts being “masked”, or disabled. In this case, the INTR signal may be asserted, but it can’t 
pass through the “dead” gate. When the signal is allowed to pass through this gate, we refer to this 
condition as the interrupts being “unmasked”, or simply, enabled. 

 The INTR external input signal in Figure 18.3 is the same INTR signal in the state diagram of 
Figure 18.2. 

 

Figure 18.3: The interrupt masking control circuitry.  

The controlling signal to the AND gate represents the output of a register in the CSR module. We refer to MIE 
as a register, but it is actually a flip-flop, which is a 1-bit register. Programmers can write to this register under 
program control, where setting and clearing the register is equivalent to unmasking and masking the interrupts, 
respectively. The masking control register is one of three registers in the CSR module, which we refer to as 
CSR[mie]. We describe the CSR register in the next section in more detail. The notion of “ie” such as in “mie” is 
common in MCU-related discussion; the acronym stands for “interrupt enable” and generally represents a 
positive logic signal.  

18.3.2 The Control and Status Registers (CSRs)  

The control and status register (CSR) is a module that controls various operations associated with the RISC-V 
OTTER interrupt architecture. The CSR module contains three registers: 1) the mie, 2) the mepc, and 3) the 
mtvec. Each of these registers has a distinct function supporting the interrupt architecture. Table 18.1 provides a 
brief summary of the three CSR registers. We describe these registers in more detail in the following sections.  

Register Width Addr Description 

MIE 1 0x304 
Interrupt enable. Interrupts are masked (disabled) when MIE=0 and 
unmasked when MIE=1 (enabled).  

MEPC 32 0x341 
Holds the return address to be loaded into PC upon return from 
interrupt, which is indicated in code with the mret instruction.  

MTVEC 32 0x305 
Holds the vector address (first instruction of ISR), which the hardware 
loads into PC upon entering the interrupt cycle.  

Table 18.1: CSR register names and descriptions. 

Figure 18.4 shows the interface to the CSR module. Table 18.2 provides a brief description of the 
input and output signals associated with the CSR module.  
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Figure 18.4: The CSR Module Interface.  

 

CSR Interface Description 

Input Signals Description 

RST Resets register values in the CSR. This input is output by the CU_FSM 

INT_TAKEN 
Indicates that the CU_FSM is in the interrupt cycle. This input is output from the 
CU_FSM.  

ADDR 
The address value which acts as a register select for reading and writing CSR 
registers. This input is the 12 MSBs from the current instruction.  

WR_EN The write enable for the CSR registers. This input is output from the CU_FSM.  

PC The current PC, which loads into CSR[mepc] when the MCU acts on an interrupt.  

WD The data to write to CSR registers. The input is output from rs1 of the register file.  

Output Signals Description 

CSR_MIE 
The current value of CSR[mie], which is the interrupt enable bit. This output is a 
control input to the CU_FSM.  

CSR_MEPC 
The current value of CSR[mepc], which the return address that loads into the PC 
when returning from an interrupt (upon issuing a mret instruction).  

CSR_MTVEC 
The current value of CSR[mtvec], which is the address of the ISR. This address is 
loaded into the PC when the MCU enters an interrupt cycle.  

RD 
The value of a CSR register as selected by the ADDR input. This signal is loaded into 
a selected register in the register file.  

Table 18.2: Description of CSR input and output signals. 

18.3.2.1 The mie Register 

The mie register, or CSR[mie], controls whether the external interrupt signal is passed to the RISC-V MCU’s 
control unit FSM. The output of this register is a control input to a simple AND gate. The CSR[mie] is set or 
cleared under program control using the csrrw instruction, an instruction mnemonic that roughly stands for 
CSR read and write.  

Table 18.4 shows an overview of the csrrw instruction; consult the RISC-V assembler manual for full details. 
The csrrw instruction has the ability to simultaneously read the value in a CSR register and write that register 
with a new value. For simply writing the individual CSR registers and not reading the same register, 
programmers can use x0 for the destination register as the usage column in Table 18.4 shows. The source 
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register (rs1) provides the value to write to the CSR[mie] register. The csr operand is effectively an address that 
the CSR module uses to differentiate the three registers in the CSR module. The csrrw is a base instruction.  

Inst
r 

Form Example 

csrrw csrrw   rd,csr,rs1 csrrw   x0,0x304,x8    # loads value in x8 into CSR[mie] 
 
csrrw   x7,0x304,x8    # loads value in x8 into CSR[mie] 
                       # loads value in CSR[mie] into x7 

Table 18.3: Instruction usage for the csrrw instruction. 

Table 18.4 shows the underlying instruction format for the csrrw instruction. Note that the instruction is not 
one of the six standard RISC-V instruction types. The CSR module uses the 12-bit csr field to choose the 
register in the CSR module to write to. Programmers use the csrrw instruction to configure each of the three 
regsiters in the CSR module. The instruction differentiates between the three regsiters in the CSR module by 
including a value in the csr field in the csrrw instruction that the CSR module treats as an address.  

Instr Format 

csrrw 
 

Table 18.4: Instruction format for the csrrw instruction. 

18.3.2.2 The mtvec Register  

The mtvec register, or CSR[mtvec], stores the location in program memory of the interrupt service routine. The 
CSR[mtvec] is a 32-bit register that we officially refer to as the “interrupt vector address”, or simply “interrupt 
vector”. When the MCU enters the interrupt cycle, the hardware loads the interrupt vector address into the PC 
under control of the interrupt cycle, which causes program control to “vector” to the ISR. Programmers are 
responsible for loading the mtvec register under program control using the csrrw instruction.  

18.3.2.3 The mepc Register  

The mepc register, or CSR[mepc], stores the address of the instruction that follows the instruction that was the 
hardware was executing directly before the MCU entered the interrupt cycle. The CSR[mepc] register is 
analogous to the return address (ra) associated with standard subroutine calls. After the MCU completes 
execution of the ISR, the MCU returns to the instruction at the CSR[mepc] address by loading this address into 
the program counter. The RISC-V OTTER hardware loads this value into the PC when it executes an mret 
instruction. Programmers have the ability to write the CSR[mepc] under program control, but they generally 
have no need to do so as the hardware writes this register as part of the interrupt cycle and reads this register as 
part of the mret instruction.  

18.4 Interrupts and Program Flow Control 

The notion of program flow control in interrupt processing is similar to the program flow control associated with 
subroutine processing. The processing of the instructions in the interrupt service routine represents normal 
instruction processing with no new details. What we are interested are the steps the hardware takes upon 
acknowledging interrupts and returning from interrupts. The following sections describe those details as they 
relate to the underlying MCU architecture.  

18.4.1 Interrupt Initialization 

The RISC-V MCU requires two steps for initialization. First, programmers must load the CSR[mtvec] register 
with the address of the ISR. The notion of the “address of the ISR” means the address of the first instruction in 
the ISR. Programmers load the CSR[mtvec] under program control using the csrrw instruction. 
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The second step required in initialization is the unmasking the interrupts. Programmers unmask interrupts by 
writing a ‘1’ to the CSR[mie] register also using the csrrw instruction.  

Instr Format 

csrrw 
 

Table 18.5: Instruction format for the csrrw instruction. 

18.4.2 Acting on Interrupts 

Normal program flow control is “interrupted” (for lack of a better word) when two conditions happen: 1) when 
the interrupts are unmasked (enabled), and, 2) then the value on the interrupt input pin (INTR) on the MCU is 
asserted. When these conditions are met, the MCU goes into an interrupt cycles.  

When the MCU goes into an interrupt cycle, the following things happen as part of that interrupt cycle. The 
control units issue the appropriate control signals to ensure the operations required by the interrupt cycle 
complete before starting execution of the first instruction in the ISR. The control units are then responsible for 
issuing the control signals that implement the following, which they complete as part of the interrupt cycle. Note 
that all of these items occur simultaneously, and are synchronous with the rising clock edge that ends the 
interrupt cycle:  

 The MCU completes execution of the current instruction, which is after the execute state for most 
instructions or after the writeback state for load-type instructions. Keep in mind that the signal 
connected to the RISC-V MCU can change asynchronously in relation to the MCU’s system clock, 
means interrupts can occur during any phase of the instruction cycle.  

 The hardware stores the address of the instruction following the instruction that the MCU was executing 
when the MCU received the interrupt in CSR[mepc]. This instruction address is effectively the current 
output of the PC.  

 Simultaneously to the previous bullet, the MCU loads the interrupt vector (CSR[mtvec]) into the PC, 
which is the interrupt vector address. The next instruction that executes after the interrupt cycle will 
then be the first instruction in the ISR.  

 Also simultaneously to the previous two bullets, the MCU hardware clears the CSR[mie] register, 
which masks interrupts. This, interrupts are masked automatically as a function of hardware and stay 
masked until they are unmasked under program control.  

There are two other items regarding interrupt processing work noting here. First, the hardware is not responsible 
for saving the operating context before entering the ISR. As with subroutines in the RISC-V MCU, all context 
saving is done under program control by pushing registers used by the ISR onto the stack, and popping them off 
the stack before returning from the interrupt. Second, interrupt nesting is not possible on the RISC-V MCU 
based on the notion there is only one register to store the return address (CSR[mepc]). Nesting interrupts is 
possible on other MCUs, but not currently in the RISC-V MCU.  

18.4.2.1 Interrupt Cycle Timing 

Examining an example timing diagram is always a good path to gaining a complete understanding of the 
interrupt cycle. Figure 18.5 provides such a timing diagram. The diagram in Figure 18.5 shows the pertinent 
signals associated with the interrupt cycle, not including control signals.  

The timing diagram in Figure 18.5 makes the following assumptions:  

 The CSR[mtvec] was pre-loaded the value 0x58, which is the address of the first instruction in the 
interrupt service routine.  

 Some external device generated the interrupt signal (intr). This intr signal connects to the MCU, 
which is actually the INTR signal of Figure 18.3.  
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 None of the instructions are load-type instructions, which means the diagram has no need to 
include writeback cycles.  

Here is a detailed description of the timing diagram in Figure 18.5.  

 The interrupt signal (intr) asserts asynchronously for approximately 2½ clock cycles; the duration 
is long enough to cause the MCU to go into an interrupt cycle because the interrupt input was 
asserted at the end of the execute cycle and the interrupts were unmasked (CSR[mie]=1).  

 We don’t know what instruction the MCU was executing when we entered the interrupt cycle, but 
we know it was not a load-type instruction because it entered the interrupt cycle instead of going 
onto the writeback state.  

 The MCU enters the interrupt cycle at the end of the execute cycle associated with the 0x3C 
instruction. Part of the execute cycle includes advancing the PC, so the PC is now pointing at the 
instruction that would have been executed had the MCU not entered the interrupt cycle. This 
instruction is now the first instruction that the MCU executes after it returns from the ISR, which 
officially makes this instruction’s address the “return address”.  

 Part of the interrupt cycle include storing the ISR return address, which is 0x40, into the 
CSR[mepc] register, which happens when the interrupt cycle exits and goes onto the fetch cycle. 
This loading happens because the CU_FSM asserts the csr_WE signal as part of the interrupt 
cycle.  

 Another part of the interrupt cycle is to clear the CSR[mie] bit, which masks the interrupts and 
thus prevents other interrupt from occurring until CSR[mie] is set under program control. This 
CSR clears this bit as a result of the CU_FSM asserting the int_taken signal as part of the 
interrupt cycle.  

 Normal processing continues after exiting the interrupt cycle (and entering the ISR). Be sure to 
note that the instruction at address 0x58 is the address of the first instruction in the ISR; 
instructions listed after the interrupt cycle are in the interrupt service routine. Because no 
instruction has a writeback state, none of the ISR instructions are load-type instructions.  

 

Figure 18.5: Timing Diagram for entering an interrupt cycle. 

18.4.3 Returning from Interrupt Processing 

When the ISR is complete, the MCU returns program control to the instruction after the instruction that it was 
executing when it received the interrupt, which the hardware stored in CSR[mepc] as part of the interrupt cycle. 
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The program indicates the ISR is complete by issuing a special return-type instruction for interrupts: mret. The 
mret instruction is base instruction with a format different from the standard six RISC-V instruction formats. For 
this description, we do not include any context restoration information as context saving and restoring must be 
done under program and is thus not a function of hardware. The complete sequence of events is as follows:  

 The program alerts the MCU hardware to the fact that it has completed processing of the interrupt 
service routine by issuing an mret instruction. The mret causes the hardware to load the address in 
CSR[mepc] into the program counter. Recall that CSR[mepc] was loaded with the return address as 
part of the MCU’s interrupt cycle.  

Table 18.6 shows an example of the mret instruction; Table 18.7 shows the underlying bit format for the mret 
instruction. As Table 18.7 shows, there are no field codes in the mret instruction. Note that the mret instruction 
shares the same opcode as the csrrw instruction. 

Instr Form Example 

mret mret mret        # return from ISR: PC  CSR[mepc] 

Table 18.6: Instruction usage for the return from interrupt instruction. 

Instr Format 

mret 
 

Table 18.7: Instruction format for the mret instruction. 

18.4.3.1 Return From Interrupt Timing 

Returning from interrupts refers to the notion that the interrupt service routine (ISR) has completed and program 
flow control returns from the foreground process to the background process. The program indicates the end of 
the ISR by issuing an mret instruction, which returns program control to the instruction following the 
instruction that the MCU was executing when it acted on the interrupt (entered the interrupt cycle). Returning 
from interrupt processing is inherently different from starting interrupt processing in that there is no special state 
associated with exiting the ISR. Thus, control units process the mret instruction using the same fetch-execute 
cycle as with all other non-load-type instructions.  

Figure 18.6 show an example of the timing associated with returning from interrupts. This image pairs with the 
image in Figure 18.5 in the timing diagram in Figure 18.6 represents the returning from the ISR that was entered 
using the timing diagram in Figure 18.5. Here are the most interesting things to note about Figure 18.6.  

 The instructions at addresses 0x78 → 0x84 are all part of the instructions in the ISR. The final 
instruction in the ISR is the mret instruction at address 0x84.  

 The execute cycle of the mret instruction is responsible for loading the CSR[mepc] value into the 
PC. Recall that the CSR[mepc] was loaded with the address of the instruction following the 
instruction that was executing when the MCU acted on the interrupt (entered the interrupt cycle). 
Had the MCU not entered the interrupt cycle, the MCU would have executed the instruction at 
address 0x40 following the instruction at address 0x3C. The timing diagram shows the 
CSR[mepc] value loaded into the PC at the end of the execute cycle. The MCU effectively reads 
the value in CSR[mepc] and loads that value into the PC; being a read operation, the value in 
CSR[mepc] does not change.  

 The CSR[mie] value remains low. Recall that the hardware cleared CSR[mie] as part of the 
interrupt cycle, which masked the interrupts. The fact the CSR[mie] is low in Figure 18.6 
indicates that no instructions in the ISR unmasked the interrupts; recall that CSR[mie] can only 
change under program control by executing a csrrw instruction.  
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Figure 18.6: Timing Diagram showing an example of exiting an ISR.  

 

Example 18.1: Interrupt Processing Timing 

What is the fewest number of clock cycles required to unmask the interrupts after the RISC-
V MCU acts on an interrupt? Why is this a killer important question?   

Solution: The problem does not provide many details, so it is up to the people reading the problem to figure out 
what the problem is really asking. And here are the details.  

Some external device made the RISC-V MCU go into an interrupt cycle. Part of the interrupt cycle includes the 
hardware automatically masking the interrupt, which it does by loading a ‘0’ into the CSR[mie] register. 
Therefore, what this question is asking is what is the minimum number of clock cycles required to unmask the 
interrupt. The only way to unmask the interrupts is under program control by issuing a csrrw instruction. The 
fastest way to do this is to make the csrrw instruction the first instruction in the interrupt service routine.  

The csrrw instruction is a two-cycle instruction. As part of the execute cycle on the csrrw instruction, the 
csr_WE signal asserts and writes enabling data to CSR[mie]. At the end of the execute cycle, the hardware 
latches the data into the CSR[mie] register and the interrupts are once again enabled.  

So in total, the interrupts were only disabled for two clock cycles, which was the fetch & execute associated with 
the csrrw instruction. This information is important because it the signal that generated the interrupt stays 
asserted, the RISC-V will immediately enter an interrupt cycle again based on the assertion event associated with 
the interrupt. In most every case, this would be a problem. The moral of the story is to constrain the assertion 
time-width of an interrupt signal because leaving signal asserted for too long could cause multiple interrupt 
cycles to be entered for the same interrupt-event. Specific to the timing diagram in Figure 18.7, if the intr signal 
was asserted at the end of the execute cycle (or writeback cycle for load-type instructions) associated with the 
instruction following the csrrw instruction that unmasked the interrupts, the MCU would go into another 
interrupt cycle for the same asserted intr signal, which is problematic for two reasons. First, it would overwrite 
the CSR[mepc] and the original return address would be lost. Second, it probably not what you want to do in the 
first place.   
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The timing diagram in Figure 18.7 shows what the words above were trying so desperately to say; here is are the 
fascinating highlights of Figure 18.7. 

 The intr line is the interrupt input on the RISC-V MCU (not on the CU_FSM). This inputs asserts 
sometime during the first listed fetch cycle but is not acted on until the end of the execute cycle, 
which means the instruction associated with the left-most FET & EX labels in the diagram is not a 
load-type instruction.  

 The FSM senses the asserted interrupt because the CSR[mie] is at a ‘1’ level, thus enabling the 
asserted interrupt signal intr to be sensed by the CU_FSM. The FSM then enters the interrupt 
state, or the interrupt cycle.  

 As a result of entering the interrupt cycle, three things happen: 1) interrupts are masked 
(CSR[mie ]=0), 2) the PC loads CSR[mtvec], and, 3) the current PC is stored in CSR[mepc].  

 The notion here is that the instruction at address 0x58, which is the first instruction in the ISR, re-
enables the interrupts. That instruction is the listed csrrw instruction, which does several things 
including asserting the csr_WE signal that hardware to write a ‘1’ to CSR[mie]. The result is that 
the CSR[mie] becomes a ‘1’ at the next clock edge, which transfers the FSM from an execute to a 
fetch cycle. You can see from Figure 18.7 that the interrupts can be re-enabled under program 
control in two clock cycles.  

 

Figure 18.7: Timing diagram showing how fast you can unmask interrupts once in the ISR. 

 

 

 

Example 18.2: Minimum Interrupt Pulse Requirement 

What is the shortest interrupt pulse width (in terms of clock cycles) that the interrupt signal 
can be and still guarantee the RISC-V MCU will respond to that interrupt?  
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Solution: When dealing with the signal connected to the MCU’s interrupt input, we always must consider the 
internal workings of the MCU in order to guarantee that the width of the signal is long enough so that the MCU 
is able to act on the interrupt. For the RISC-V MCU, this means that the interrupt must be present on the MCU’s 
interrupt input at the end of the execution of a given instruction. Recall here that we designed the MCU’s control 
unit such that the MCU always completes the instruction that it is executing when it receives the interrupt before 
it acts on the interrupt.  

For this problem, we must consider the worst-case timing for the solution. All RISC-V instructions execute in 
two or three clock cycles, so the worst-case timing would be associated with the load-type instructions, which 
execute in three clock cycles. Figure 18.8 shows the timing diagram, which provides a basis for description of 
this example’s solution. Here are the interesting particulars:  

The note at (1) show the interrupt signal asserting immediately after entering the fetch state for a load-type 
instruction. For the MCU to react to this asserted signal, the interrupt must still be asserted by the end of the 
writeback cycle for the instruction, which note (2) indicates. This diagram shows that the interrupt pulse must be 
at least three clock cycles to guarantee the signal is present at the completion of the instruction that requires to 
the most clock cycles to execute.  

Also worthy of note is the notion that the MCU asserts the int_taken signal upon entering the interrupt cycle as 
note (3) indicates. Leaving the interrupt cycle causes the int_taken signal to de-assert as note (4) indicates. The 
CU_DCDR and CSR use this signal as part of the RISC-V’s interrupt architecture implementation.  

 

Figure 18.8: Timing diagram showing the minimum interrupt pulse width.  

 

 

 

Example 18.3: Maximum Interrupt Pulse Limitation 

What is the longest duration of an interrupt pulse width (in terms of clock cycles) that the 
interrupt signal can be such that it guarantees the RISC-V MCU will not respond to that 
interrupt more than one time?  

Solution: The two problems with the interrupt signal connected to the MCU’s interrupt input is that it can be too 
short or too long. We’ve covered the case where it is too short; this example covers the issue of what interrupt 
pulsewidth can be too long. What this question is really asking is how long can the interrupt signal be without it 
being too long in the worst case. The timing diagram in Figure 18.9 shows the wosrt case scenario.  

 In this case, the intr signal is asserted immediately after entering the fetch state, as the note at (1) 
indicates. We’re looking for the shortest interrupt signal, so our example states that the instruction 
being executed when it receives the interrupt is a non-load-type instruction, as these instructions 
execute in two clock cycles.  
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 The asserted intr signal causes the MCU to enter the interrupt cycle, which inturn causes the 
int_taken signal to assert as note (2) indicates. The int_taken unasserted after leaving the 
interrupt cycle. Entering the interrupt cycle causes the RISC-V hardware to automatically disable 
the interrupts as note (5) indicates.  

 Our example then assumes the first instruction in the ISR is a csrrw instruction that renables the 
interrupts. This is a two cycle instruction that results in the csr_WE signal being asserted as note 
(4) indicates, which in turn causes the interrupts being unmasked as note (5) indicates.  

 The interrupts are now enabled as note (6) indicates. The next instruction after the csrrw is 
another non-load-type instruction. The constraint here is that the interrupt signal must unasserted 
before the end of the execute cycle associated with this instruction to ensure the MCU will not 
enter another interrupt cycles based on the same interrupt.  

 And the final answer is: six clock cycles. If the interrupt was seven clock cycles, it could still be 
asserted at the end of the execute state associated with the instruction following the instruction that 
unmasked the interrupts (csrrw).  

 

Figure 18.9: Timing diagram showing safe limitation on the interrupt pulse width.  

 

18.5 Other RISC-V Interrupt-Related Hardware Modifications  

Section 18.3 described the major modifications required by the RISC-V MCU to support interrupts. This section 
provides a description of the “less major” modifications. These modifications are in the PC support and the 
control units (CU_FSM and CU_DCDR).  

18.5.1 Program Counter (PC) Support 

The program counter needs to support the additions to the program flow control associated with the RISC-V 
interrupt architecture. While the PC itself is not modified, the MUX controlling the data inputs expand to include 
two extra jump locations. These two jump values are mtvec and mepc, are the interrupt vector address and the 
return from ISR address, respectively. The number of MUX inputs increases from four to six, which necessitates 
an increase in select control input width (pcSource) from two to three. Figure 18.10(a) shows the PC without 
interrupt support while Figure 18.10(b) shows the PC with interrupt support.  
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(a) (b) 

Figure 18.10: The PC-related hardware for no interrupts (a) and with interrupt support (b). 

18.5.2 Control Unit Support: FSM & DCDR 

The two control units require a modest amount of modifications in order to support interrupts. We group changes 
to the CU_FSM and CU_DCDR into one discussion because the changes closely involve both topics. Figure 
18.11(a) shows the control units without interrupt support and Figure 18.11(b) shows the control units with 
interrupt support.  

Modifications to the CU_FSM fall into two major areas. First, the state diagram needs to be modified in order to 
support the newly added interrupt cycle (interrupt state). This state controls the parts of the interrupt architecture 
having to do with acting on interrupts. The CU_FSM also needs to be modified in order to support two interrupt 
related instructions: csrrw & mret. The CU_DCDR needs to be modified such that it outputs the correct 
pcSource when the CU_FSM is in the interrupt cycle. Table 18.8 lists the required changes with an added 
amount of description.  
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(a) (b) 

Figure 18.11: The PC-related hardware for no interrupts (a) and with interrupt support (b). 

Interrupt  
Support Mod Wimpy Explanation 

INTR masking 
control  

The INTR input, which was previously connected directly to the CU_FSM, is now 
connected to a AND gate. The other input to the AND gate is CSR_MIE with is the current 
state of the CSR[mie] register. The AND gate acts as a switch controlled by the CSR_MIE 
input, which allows passage of the INTR signal to the CU_FSM.  

CU_FSM: 
csr_WE 

The CU_FSM now controls writing of data to the CSR register under program control 
using the csrrw instruction. The csr_WE output of the CU_FSM is the write enable 
signal for the registers in the CSR module.  

Int_taken The int_taken is an output of the CU_FSM and an input the CU_DCDR, which is why we 
left the connection symbols in the diagram.  

Ir[14:12] The ir[14:12] is the funct3 inputs associated with the instruction formats. The two new 
instructions added to the ISA to support interrupts (csrrw & mret) both share the same 
opcodes and are thus differentiated using the funct3 opcode. The funct3 opcode were 
previously only input to the CU_DCDR, but are now input to the CU_FSM.  

CU_DCDR: 
pcSource 

The pcSource signal is the select signal for the PC MUX, which expands from two bits to 
three bits. This expansion allows the MUX to support the added data inputs associated with 
the mtvec & mepc inputs.   

Table 18.8: Description of control unit changes to support interrupts. 

18.6 Interrupt Signal-Related Timing Issues 

Typical system clock signals for MCUs are relatively fast compared to how quickly you can press and release a 
hardware actuator device such as a button. This brings up two serious issues that the system designer must deal 
with in order ensure the overall circuitry (both hardware and firmware) will work properly under all possible 
conditions. The two issues are: 1) “noise” on the interrupt signal, and 2) the duration of the pulse physically 
connected to the interrupt input on the MCU.  
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18.6.1 Interrupt Signal Noise  

One type of noise that will affect the operation of interrupt processing is switch bounce. Recall that switch 
bounce is a characteristic associated with mechanical actuators such as buttons and switches. These mechanical 
properties of switches generally prevent them from being directly connected to the interrupt inputs on MCU 
hardware. Mechanical actuators connected to MCU typically are “debounced” in hardware or firmware before 
being connected to the MCU’s interrupt input.  

The problem with switch bounce in the context of MCUs involves timing issues. The specific problem is that 
typical bounce times are in the millisecond range while the MCU is operating in the nanosecond range. This 
means that if you press the switch once, the switch contacts can actually “bounce” a few times before arriving at 
a steady state value, which means that a single button press can generate a separate pulse from each switch 
bounce. Each of the bounces can generate a separate interrupt, which is generally not intended from a single 
button press.  

You can’t solve with this issue under program control outside of writing a debouncer in firmware. The main 
drawback of firmware debouncers is the notion that simple debouncers are computationally expensive because 
they typically require polling loops in their implementations. Debounce firmware that does not use polling loops 
require other MCU resources such as timer interrupts. The problem with timer interrupts is the fact that there is 
only one interrupt on the RISC-V MCU and no timers (typically an internal peripheral). Lastly, if you have many 
buttons that need debouncing, such as with a keyboard, you’ll want to think of an external hardware solution.  

18.6.2 Interrupt Signal Duration 

There is another issue you need to deal with in addition to noise on the interrupt input issue. The pulse width of 
signal interrupt signal connecting to the MCU must comply with two parameters: if the signal is too short or too 
long, it’s highly probably the interrupts will not work as expected. Here are the details.  

1. Interrupt Pulse Too Short: If the interrupt pulse is too short, the MCU may not recognize it and the 
interrupt will effectively go away without the MCU entering into an interrupt cycle. Recall that the 
interrupt must be present at the end of the execute cycle for most instruction or at the end of the 
writeback cycle for load-type instructions. An interrupt signal can thus be 2½ clock cycles in duration 
and still not be long enough to ensure the MCU will act on it in the case of load-type instructions. For 
most instructions, a pulse width two clock cycles wide is sufficient, but not for load-type instructions. 
Therefore an interrupt pulse with a minimum width of three clock cycles guarantees the pulse will be 
caught by the MCU’s FSM, but too short for that interrupt to cause the MCU to enter the interrupt cycle 
more than once.  

2. If the interrupt pulse is too long, it can cause the MCU to enter the interrupt cycle more than once for a 
single interrupt. The issue here is that we try to keep interrupt service routine short, which means that 
when we exit the ISR and unmask the interrupts, the MCU could re-enter the interrupt cycle if the 
interrupt signal was still asserted. Additionally, MCU’s have relatively fast clocks; even a “non-short” 
ISR executes extremely fast compared to something such as a human button press. In essence, the MCU 
may attempt to process more interrupts than what actually arrived. Note that automatic interrupt 
masking when entering the interrupt cycle does not solve this issue.  

In actuality, chances are good that when you press the button, the button will remain pressed long enough for the 
MCU to process the interrupt and return to normal program execution. This presents the situation that when the 
MCU exits the interrupt service routine and the interrupts are unmasked, the interrupt from your last button press 
will still be there because you have not yet lifted your finger. In this situation, the hardware notices that the 
interrupt line is still asserted and enters back into a second round of interrupt processing for the same interrupt 
(namely the initial single button press). In effect, the MCU would service the same interrupt multiple times, 
which probably is not what you want.  

The pulse-width of the one-shot’s output acts independently of the input to the one-shot. In this way, the input 
signal can remain high for an indefinite period while the output signal remains only briefly asserted before it 
returns to zero. The final result is that the pulse is long enough to cause the MCU to go into an interrupt cycle 
(meaning the pulse will be present at the end of the execute cycle) and that the pulse will be not so long that it 
gone before the end of the next execute cycle. In particular, these issues are:  
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To avoid the situation where a single “event” can generate multiple interrupts, you can connect the signal that 
indicates a device needs attention to a “mono-stable multivibrator”, commonly known as a ”one-shot”. As the 
name implies, this device has one stable state, and one non-stable state, or temporary state. The “on” state is the 
non-stable state, which means it’s only temporarily in that state. The stable state is the off state. When you 
connect a button to a one shot, the output of the one-shot is only asserted for a fixed length of time, which 
officially makes it independent of the length of time the button is pressed for. The input of the one-shot connects 
to the output of the device generating the interrupt signal; the output of the one-shot connects to the RISC-V 
MCU’s interrupt input. The one-shot circuitry thus provides a relatively short pulse output to the MCU input; 
this pulse is short enough to ensure that the MCU will only process one interrupt per button press.  

18.7 Interrupt Architecture Summary 

As you can see from the previous sections, the interrupt architecture of the MCU entails a definite sequence of 
steps. This sequence of steps ensures a smooth transition to and from the interrupt service routine, as well as 
protecting the pre-interrupt operating context of the MCU. Here is a brief summary of the steps involved with the 
acting on an interrupt, executing the interrupt service routine, and returning to the regularly scheduled 
processing.  

 The RISC-V MCU detects an asserted signal on the interrupt input (assume the interrupt is not currently masked 
on the RISC-V MCU) 

 Execution of the current instruction completes and the RISC-V MCU goes into an interrupt cycle 

 The Interrupt Cycle:  

o The hardware automatically masks the interrupt 

o The address of the instruction what would have been executed next is stored CSR[mepc] 

o The program counter is loaded with CSR[mtvec] 

 Execution of the ISR completes with the issue of an mret instruction 

o The mret instruction loads the address stored in CSR[mepc] into the PC 

 Execution resumes at the instruction following the one that was executing when the RISC-V MCU received the 
interrupt  

Table 18.9: Summary of the RISC-V interrupt architecture. 
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18.8 Chapter Summary 

 

 The interrupt architecture is a term we use to describe all the hardware and hardware-induced operations 
associated with the processing interrupts. The interrupt architecture is one of the first things you should 
examine when dealing with a new MCU or CPU, as interrupt driven programs have many distinct 
advantages over programs that are not interrupt driven.  

 The RISC-V MCU contains a state machine that is responsible for the decoding and execution of 
instructions and to implement the interrupt cycle. The interrupt cycle on the RISC-V OTTER MCU consists 
of a single state.  

 The RISC-V OTTER MCU interrupt architecture uses a set of three registers to implement the interrupt 
architecture. These three registers reside in the CSR module; we refer to them as the CSR[mie], the 
CSR[mtvec], the CSR [mepc].  

 The interrupt signal is a signal from a device external to the RISC-V MCU. When this signal asserts, it can 
cause the RISC-V MCU to enter an interrupt cycles. The RISC-V MCU can choose not to act on active 
interrupts if the interrupts are masked; in these case, the hardware ignores the asserted external interrupt 
signal. The interrupt masking hardware consists of a single bit, CSR[mie] that shares an AND gate input 
with the external interrupt signal. If the CSR[mie] bit is a zero, the AND gate output is a zero; otherwise, the 
AND gates passes the external interrupt signal to the CU_FSM.  

 Interrupts are similar to subroutines and they are thus part of the RISC-V MCU program flow control. 
Interrupts differ from subroutines in that they require initialization of the interrupt vector address and 
unmasking the interrupts, both of which are done under program control.  

 The RISC-V OTTER MCU “acts” on interrupts by entering the interrupt cycle. The interrupt cycle then 
does the following under hardware control: 1) mask the interrupt (CSR[mie]), loads a return address into 
CSR[mepc], and loads the interrupt vector address (CSR[mtvec]) into the PC. Returning from in interrupts 
are down with the mret instruction, which loads the return address from CSR[mepc] to the PC.  

 In order to support interrupts, the MUX that provides the PC with an address expands to include CSR[mepc] 
(for returning from interrupts) and CSR[mtvec] (branching to the ISR). Interrupt support for the CU_FSM 
includes an interrupt state and the addition of the funct3 opcodes as inputs. The CU_FSM also controls the 
CSR with the int_taken signal and the CSR_WE signal. The int_taken signal also notifies the CU_DCDR 
that the CU_FSM is in the interrupt cycle.  

 The interrupt signal input to the CU_FSM must have certain properties in order for the RISC-V MCU 
interrupts to work properly. The interrupt signal can’t be too short of the CU_FSM may miss it because the 
it only looks for it on the clock edge befrore transitioning back the fetch cycle. The interrupt signal can’t be 
too long or the signal may be still asserted when the program unmasks the interrupt under program control. 
The interrupt signal should be debounced if connected to a mechanical switch and connected to a one-shot if 
the signal could stay asserted for a long amount of time.  
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18.9 Chapter Exercises 

 

1) Interrupt service routines are very much like subroutine; briefly describe their main difference.  

2) Briefly describe the purpose of the interrupt cycle.  

3) Briefly explain why MCUs do or don’t require interrupt cycles.  

4) Briefly describe why transitions from the fetch state to the execute state are always unconditional; be sure to 
include a comment regarding interrupts in your answer.  

5) Briefly describe what determines the number of FSM states there need to be in an interrupt cycle. Briefly 
describe how the CU_FSM knows whether to enter an interrupt cycle or not.  

6) Briefly describe the four conditions that must be present in order for the CU_FSM to enter an interrupt 
cycle.  

7) Briefly describe how the MIE signal acts as a troll that allows the external interrupt signal to pass through to 
the CU_FSM or not.  

8) Briefly explain the following statement: The CU_DCDR only knows about only one state in the CU_FSM.  

9) Briefly describe whether it is possible to write a value to the CSR[mepc] register under program control.  

10) Briefly describe why programmers don’t have a pressing need to ever write the CSR[mepc] register.  

11) Briefly describe why the RISC-V OTTER MCU complete execution of the current instruction before acting 
on an interrupt.  

12) Briefly describe the three things that occur in hardware as part of the interrupt cycle.  

13) Briefly describe why there is a special state (the interrupt cycle) for entering interrupts, but no special state 
for exiting interrup service routines.  

14) Briefly describe how the CU_DCDR knows that the MCU is currently in an interrupt cycle.  

15) Briefly describe the CU_DCDR’s responsibilities during an interrupt cycles.  

16) Briefly describe any context saving mechanism that the RISC-V MCU hardware is responsible for.  

17) Briefly describe what a programmer must do to allow the nesting of interrupts on the RISC-V OTTER 
MCU.  

18) Briefly describe why the RISC-V OTTER MCU can’t support nested interrupts.  

19) The interrupt signal should be at least three clock cycles in duration to ensure that it “works” properly. 
Briefly describe the reason for three clock cycles.  

20) Briefly describe the problem with the interrupt signal being too short.  

21) Briefly describe the problem with the interrupt signal being too long.  

22) Briefly describe the difference between an ret and mret instruction.  

23) I decided that I wanted to use a ret instruction to return from an interrupt service routine. I did this by 
placing a return address in the return address register before issuing a ret instruction. Briefly describe 
whether this approach could work or not, and if it could work, under what conditions.  
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19 Miscellaneous RISC-V MCU and Other Architecture Details  
 

19.1 Introduction 

While the previous chapters discussed many aspects of the RISC-V MCU, there are a few more topics we need 
to introduce to provide the overall big picture. When we say “big picture”, we mean the big picture in terms of 
both the MCU and basic computer architectures in general. In truth, we could not easily introduce a few subjects 
out there earlier because we had not yet provided you with the background to facilitate that discussion. This 
chapter ties together many of the issues regarding the MCU and computer architecture in general. 

 

Main Chapter Topics 

 OVERVIEW OF RISC AND CISC ARCHITECTURES: This chapter describes the 
RISC and CISC architectures including their main accepted differences. 

 STANDARD ARCHITECTURES: This chapter introduces the standard architecture 
types of Harvard and Von Neumann architectures.  

 OVERVIEW OF LEVELS OF MEMORY: This chapter describes the notion of memory 
levels as they relate to basic computer systems.  

 SEVEN-SEGMENT DISPLAY MULTIPLEXING: This chapter describes the popular 
digital design topic of display multiplexing. 

 

Why This Chapter is Important 

This chapter is important because it describes some the non-architectural but still 
important details involving the RISC-V MCU.  

 

19.2 RISC vs. CISC Architecture Types 

Out there in computer land, you’ll find that people attempt to model computer architectures as one of two 
different types. Complex Instruction Set Computer (CISC) and Reduced Instruction Set Computer (RISC). The 
names probably meant something at one time, but they’re now something that you should not take literally.  

Since the dawn of computers, or even before, there has been an ongoing argument of which architecture 
is ”better”: RISC or CISC? To understand the parameters of the RISC vs. CISC argument, you must understand 
the current accepted differences between RISC and CISC architectures. Table 19.1 lists the commonly accepted 
characteristics and differences between RISC and CISC architectures.  
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RISC Architectures CISC Architectures 

 All instructions execute in the same number 
of clock cycles 

 Instructions are relatively simple compared 
to CISC architecture 

 System clock speed is relatively fast 

 Instruction set has relatively few addressing 
modes 

 Has a relatively large register file 

 Instructions require varying numbers of clock 
cycles for execution 

 Instructions are relatively complex compared 
to RISC architectures 

 System clock speed is not overly fast  

 Instruction set has relatively many addressing 
modes 

 Has a relatively small register file 

Table 19.1: The characteristics of RISC & CISC architectures. 

Generally speaking, the instructions on a RISC machine relatively simple, which allows them to execute in a few 
number of clock cycles. Conversely, instructions on a CISC machine can be complicated and thus require more 
instruction cycles or longer clock periods to execute. In the end, to complete the same task, programs written for 
a RISC architecture are longer (meaning more instructions) because the instructions are simple so there must be 
more of them to complete the same task. The same program functionality implemented on a CISC architecture is 
shorter (less instructions) because each instruction can generally do more stuff. Nevertheless, because each 
instruction is doing more stuff, the system clock period typically must be longer. The general thought here is that 
it takes more instructions for a RISC computer to perform a given task than it does for a CISC computer. 
However, the RISC instructions, because of their simplicity, allows for a higher clock speed. This is a classic 
trade-off in computer-land.  

So how do we classify the RISC-V MCU architecture? Wow, that’s a tough on. As the name implies, we 
consider it a RISC architecture because it contains most of the characteristics of a RISC architecture. The only 
characteristic that it violates is that the current RISC-V implementation does not implement all instructions in the 
same amount of clock cycles. Recall that the load-type instructions require three clock cycles to complete. Hey, 
what’s one instruction?  

The RISC vs. CISC thing is quite important. But then again, you’ve probably worked on many different 
computers without knowing whether the underlying architecture was a RISC or CISC. The thing to note here is 
even though you didn’t know this information, you were able to work with that computer. Often times in 
computer land we simply do all our work at a high level, such as with a higher-level computer programming 
language. We write our programs and let the compiler do the grunt work. Once again, if you know something 
about the underlying architecture, you’ll be able to write programs that are more efficient. This notion becomes 
even more important as the complexity of the underlying hardware increases. This knowledge includes both the 
architecture and the instruction set; this knowledge is something pure programmers could not use. Don’t ever be 
a pure programmer.  

19.3 Standard Computer Architectures 

Any study of computer architectures arrives at the notion of two common architectures: the Harvard architecture 
and the Von Neumann1 architecture. Everyone who studies computer architectures should be aware of the 
characteristics of these two architectures. The problem is that these definitions are not carved in stone and leave 
some amount of gray area as to their interpretation. Someone created these definitions a long time ago, so even 
though they’re becoming harder to use as a label for an architecture, we still use them. This is a standard 
interview question that someone is going to ask you if you state you took an architecture course.  

The best way to understand the characteristics of Harvard and Von Neumann architectures is to examine high-
level models side-by-side. Figure 19.1(a) shows examples of a Harvard architecture and Figure 19.1(b) shows an 

                                                           
1 The Von Neumann architecture is also known as the Princeton architecture. The story goes that Harvard and Princeton had 
some type of computer design competition; these two architectures were the result of that competition.  
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example of an Von Neumann architecture. Both diagrams show the CPU module with two submodules of the 
Control Unit and ALU. The main difference is evident in the Harvard architecture has a different memory for 
both instructions and data while the Von Neumann uses a single memory for instructions and data.  

The definition is somewhat more detailed than that though. The true definitions have to do with the datapath of 
data from the CPU to the memories. In rough terms, if there are separate paths from the CPU to the data and 
instruction memory, then we consider that to be a Harvard architecture. If there is one datapath from the CPU to 
memory, then data and instructions must share the datapath.  

  

(a)  (b)  

Figure 19.1: Diagrams of Harvard (a) and Von Neumann architectures (b). 

Yes, we still talk about Harvard and Von Neumann architectures. If one of these was clearly better than the other 
one, then that is what everyone would use and we would not care about it, so that is clearly not the case. The 
main ramifications of Harvard vs. Von Neumann has to do with advanced architectures. If there is only one 
memory for data and instructions, the architecture can face memory bandwidth limitations. Advanced 
architectures generally use a pipeline for instruction execution, which roughly means that instruction execution is 
divided into distinct sections such that all the sections can be simultaneously executed. Simultaneous execution 
of multiple parts of an instruction can require, for example, that a memory be read (such as an instruction for a 
fetch cycle) at the same time as memory is written to (such as with a store-type instruction).  

When you pick up a new MCU, looking at the general architecture is always one of the first things you must do. 
Often times MCU datasheets describe their processor as either being Harvard or Von Neumann, but modern 
architectures often run into the gray areas of these definitions. The best approach is to understand general 
computer architectures at a high level, which allows you to relatively quickly understand any new architecture 
you see. 

19.4 Levels of Memory 

A typical computer system has many types of memory and many memory entities. Even a relatively simple 
computer such can have several relatively large structured memories (such as register files and main memory), 
and several special register memories (program counter and special use registers supporting interrupts). 
Computer architects are always attempting to classify items in computer architecture, and one of the primary 
targets is the structured memories. For this discussion, we’re interested in the two writable structured memories 
in the RISC-V MCU architecture, which are the register file and the main memory.  

Computer architects often speak of “levels of memory” in the context of structured memories in a given 
computer system. In this way, they consider a typical computer model to have multiple levels of memory. We 
differentiate these different levels of memory by one thing: how long it takes to do something useful with the 
memory in those levels. We’re careful here not to classify these different memories solely by access times, as we 
typically do with structured memories because there are other special usage parameters involved. The RISC-V 
MCU has two structured memories: the register file and the main memory; these are the memories we’ll base 
this discussion on, knowing that we could also have large memories external to the RISC-V MCU as well.  
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We consider the register file to be a lower level of memory than the main memory, but not because it has a faster 
access time. For this discussion, we don’t care about access times; what we do care about is the amount of time it 
requires to do something useful with the data in those memories. Recall that all useful operations in the RISC-V 
MCU occur with instructions that access the register file, which means that if we have data in a register, we’re 
immediately ready to operate on it. This differs from data in the main memory in that if we want to operate on 
data stored in the main memory, we first must load it into a register in the register file. The notion of loading the 
value from memory into the register file requires an extra instruction (some type of load instruction), and thus 
doing something useful with the data in main memory is “slower” (takes more time) than doing something with 
data already in a register. Because of the extra time it requires to do meaningful work with the data in main 
memory compared with data in the register file, we consider main memory a higher-level of memory. And of 
course, what follows is the notion that the register file is a lower-level memory.  

A typical computer system such as your laptop computer has many different levels of memory. For example, the 
lowest level of memory may be some type of general-purpose registers such as the register file in the RISC-V 
MCU. More complex computer architectures typically have many more levels of memory; so for something like 
your laptop, the hierarchy of memory starts with low with registers, then goes to various cache memories (for 
data and/or instructions), main memory, external RAM, hard-drive, thumb drive, tape drive, etc.  

The general thought with levels of memory is that the lower the level, the more expensive it is, the faster it is in 
terms of usage and/or access, and the less your system has of it. You certainly see this with the RISC-V MCU, as 
there are several reasons why the register file memory is more “expensive” than the main memory. Note that if 
register file memory did not have associated expenses, the system architects would have provided a lot more of 
it. On the other end, memory in hard drive is cheap, plentiful, and requires a relative long time and a variable 
amount of time to access. It’s great that solid-state drives (SSD) are becoming cheap enough and large enough 
for people to invest in; having a spinning drive in your system is like having a campfire in your living room. 
Each level of memory has its place in a computer system; exactly what place that is, is something computer 
architects deal with constantly.  

The final note here is that the RISC-V has the ability to interface with external memory peripherals the standard 
I/O. We typically classify these memories as higher levels of memories depending on the particular memory. 
Keep in mind that when we think of memory, we tend to think of parallel interfaces. Because having large 
parallel interfaces uses up many resources, many discrete memory devices have serial interfaces, which would 
necessarily have slower access times than similar memories with parallel interfaces.  

19.5 Switch Bounce 

Every mechanical actuator device such as a button or switch has a physical characteristic known as bounce, or 
switch bounce. This means that if you press a button, for example, the button contacts usually “bounce” a few 
times before arriving at a steady state value2. The notion of bounce here means that the output of the switch goes 
on and off (or off and on) a few times before attaining a steady state (does not change any more). The result is 
that a single button press can generate a separate pulse from each switch bounce. Because the contacts can 
bounce for up to 50ms (which is a long time in MCU-land), they can cause unwanted effects in a MCU because 
MCUs typically operate in tens of nanoseconds range.  

Figure 19.2 show an oscilloscope output of switch bounce. The top trace in Figure 19.2 shows an idealized off-
to-on signal transition while the bottom trace shows the actual transition. Notice the glitches on the bottom trace. 
Realize that the time scale of the oscilloscope output is rather high (in the millisecond range), which means that 
each of the glitches in the lower trace of Figure 19.2 are actually pulse of a longer duration. This duration is long 
enough to allow MCUs to complete tasks associated with the switch activation. This means that although the 
switch activation in Figure 19.2 only intended for one activation, a MCU connected to the circuit sees eight 0→1 
transitions, with only the final 0→1 transition being the one of interest. The concept of bouncing from a 
mechanical actuator holds true for high-to-low transitions also.  

                                                           
2 Steady state in this context means the contacts have stopped bouncing.  
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Figure 19.2: Oscilloscope display capture showing actual switch bounce.  

Any device that utilizes a mechanical switch (or button) most likely uses some type of “debouncer”, particularly 
if the switch is in a MCU controlled circuit. System designers must debounce all mechanical switches, but they 
have two choices for debouncing: hardware of firmware. The model for both hardware and firmware debouncers 
is the same: the debounce mechanism works by first detecting a change in the signal value (off-to-on or on-to-
off, for example), waiting for a specific amount of time, and then checking the signal value again. If the signal 
value of the switch after the delay indicates the signal is “off”, then the transition on the signal must have been 
noise, so the debouncer does not pass the signal. On the other hand, if the value on the signal is still in the “on” 
state after the delay, the debouncer passes the “on” value of the signal. The good news is that the debouncer only 
passes along a clean signal; the bad news is that the debouncer introduces a delay in the circuit, which increases 
the response time.  

The solution for these types of noise is to apply a “debouncer” to the switch outputs. You must debounce all 
switches, but you have the choice of debouncing them in hardware of firmware. Figure 19.3(a) shows a block 
box diagram of a debouncer circuit. There are many approaches to a implementing a debounce circuit; the BBD 
in Figure 19.3(a) represents a digital approach, where we use the clock signal input to “time” the delay 
associated with the debounce circuit. The timing diagram in Figure 19.3(b) shows an example of the ideal and 
actual outputs of the debounce module in Figure 19.3(a).  

Figure 19.3(b) arbitrarily shows an example of a signal transitioning from low-to-high, which is a function of 
how the particular hardware and how the hardware designer connects the device in the circuit. The top trace in 
Figure 19.3(b) shows the idealized switch activation; the middle trace shows the actual characteristics of the 
switch activation, and the bottom trace shows the debounced switch activation.  

 

 

(a)  (b)  

Figure 19.3: A debouncer circuit BBD (a) and the associated timing diagram (b). 
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19.6 Monostable Multivibrators (One-Shots) 

Often times in digital systems we need to have control over signals in order to ensure they perform as designers 
intend them to in a digital circuit. We generally need to take an output provided by one circuit and operate on 
that signal such that it conforms to the input requirements of another circuit. We sometimes refer to this as 
synthesizing a new signal from a given signal; other times we refer to this as filtering the signal. Debouncing a 
signal is an example of this type of operation.  

When humans interface with computers, there are always special interface issues that designers need to deal 
with. The problem is that computers are fast, while humans pressing buttons are relatively slow. Even the fastest 
possible human button press looks like forever at the speeds typical MCUs run at. This difference in speed can 
cause problems if you don’t properly handle it.  

The notion of a human pressing a mechanical actuator (such as a button) can mean two things. If the “event” in 
question the notion that someone pressed a button, or is the associated “event” the fact the button continues to be 
pressed. The problem lies in the case where the event of interest is where someone presses a button (changes 
state). To ensure the fact that the “button press” event is not interpreted as a “button continues to be pressed” 
event, we modify the output of the button using a monstable multivibrator, which is longhand for “one-shot”.  

As the name implies, the one-shot device has one stable state, and one non-stable state, or temporary state. The 
“actuated” state is the non-stable state, which means it’s only temporarily in that state. The stable state is the 
“not-actuated” state, which is the state the one-shot resides in when it’s waiting for an event to happen. When 
you connect a button to a one-shot, the output of the one-shot is only asserted for a fixed length of time, which 
officially makes it independent of the length of time the button is actually pressed for. The one-shot circuitry 
thus takes a pulse of unknown length (including the signal transition) and transforms it into a pulse of known 
length.  

Figure 19.4(a) shows an example of digital one-shot circuitry3 while Figure 19.4(b) shows examples of two 
representative timing diagrams. Once the signal is actuated (goes high or low), the one-shot is activated. The 
output of the one-shot becomes a pulse independent of the duration that the input signal is high (rising-edge 
signal) or low (falling-edge signal). The output pulse width requirements are dictated by the input requirements 
of the circuit that the one-shot connects to. Any one-shot worth dealing with includes the ability to configure the 
pulse-width. We refer to the high state associated with the rising-edge pulse of the debounce circuit’s output as 
the unstable state (because it’s momentary) while the low state is the stable state. There is only one stable state, 
hence, the circuit exhibits mono-stability. 

Another item worth noting about the circuit in Figure 19.4(a) is the fact that it contains a clock input. Digital 
one-shots work by using internal counters to time the input sampling delay; the counter is a sequential circuit, 
which is driven by the clock input. One interesting artifact from this design is that the digital one-shot inherently 
synchronizes the in input to the system clock of the given circuit. The input to the one-shot can thus be 
asynchronous, but the output is always synchronous.  

 

 

(a)  (b)  

Figure 19.4: A one-shot circuit BBD (a) and an example timing diagram (b). 

Figure 19.5 shows a diagram showing a circuit that is both debounced and one-shotted. The signal labeled (A) 
represents the signal from the button. This signal shows a button press and the actual reaction on the signal due 
                                                           
3 We can implement one-shots as purely analog circuits as well.  



FreeRange Computer Design  Chapter 19 

 

 - 537 -  
 

to switch bounce. The signal labeled (B) represents the ideal output of the button press. Note differences between 
signal (A) and (B) are the toggling of the switch after the initial actuation. The signal labeled (C) represents the 
classic debounced button, which shows the switch actuates only after the switch has complete it bounce routine. 
The debounced characteristic in (C) is fine for some applications, but not for signals that connect directly to the 
RISC-V MCU’s interrupt input. The signal in (D) shows what the MCU requires, which is essentially a signal 
that is both debounced and connected to the one-shot.  

 

Figure 19.5: Timing diagram showing a signal both debounced and one-shotted.  

19.7 Seven-Segment Display Multiplexing 

The seven-segment display is one of the most common display devices in the universe; we generally use these 
devices to display decimal numbers. The seven-segment display can display any of the digital digits (0-9) using, 
wait for it, seven segments, which care typically LEDs (but sometimes are LCDs). The displays are relatively 
simple so it is an attractive approach to displaying numbers, particular numbers with a relatively large number of 
digits. Additionally, seven-segment displays do an adequate job of displaying alpha hex digits (a-f), though it’s a 
mix of upper and lower-case letters.  

There are two main reasons hardware uses seven-segment display multiplexing. First, it saves inputs. Imagine a 
four-digit 7-segment display that included decimal points. If the displays did not use multiplexing, they would 
require 32 separate pins (outputs) to properly drive the device, which is many outputs, but embedded systems 
programming considers outputs relatively expensive in embedded designs. A four-digit multiplexed display 
would require on 12 outputs to drive it, which is 20 less inputs than an equivalent non-multiplexed display.  

We represent individual decimal numbers by turning on specific sets of the segments. For this discussion, we’ll 
refer to 7-segment displays implemented with LEDs. Referencing the seven segments is done by assigning 
unique letters to each of the segments. Figure 19.6(a) shows the most common listing of these segments is. 
Figure 19.6(b) shows a 7-segment display creating the illusion of a ‘0’ by lighting all the segments except 
segment ‘g’. Figure 19.6(c) shows segments a, b, c, d, and g lit to simulate the number ‘3’. Most 7-segment 
displays actually have eight segments because they typically include a decimal point with each set of seven 
display segments.  

The seven-segment display can use fewer inputs because of the way it handles the individual digits. In a seven-
segment display, all of the segments are driven simultaneously (a-g and the decimal point) meaning that when 
you turn on one segment, all the segments are potentially activated. You control which segment actually turns on 
by actuating the correct gate device associated with each display4. Driving displays in this manner have the 
added benefit of requiring less power because only one display is on at a given time5. Actuating a segment on 
most 7-segment displays is a two-step process. You need to both turn on the LED and actuate the individual 7-

                                                           
4 Seven-segment displays come in either “common anode” or “common cathode” configuration, which you can effectively 
consider an on/off switch for a given display. Turning on a single segment on a single display requires that you both drive the 
segment and turn on the proper display.  
5 This is not a super strong reason as was the first, but people often consider it significant.  
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segment display. Both of these actuation steps involve sending a logical ‘1’ or ‘0’ to the device. You must 
consult the reference manual for the particular display you’re working with to figure out how it works.  

   

(a) (b) I 

Figure 19.6: The amazing 7-segment display (a), and ‘0’ (b), and a ‘3’ (c). 

The approach is to actuate each individual seven-segment display sequentially in a circular manner thus ensuring 
each display activates for the same amount of time before going onto the next display. This multiplexing action 
takes advantage of the human visual system’s characteristic of retinal persistence in order to make the display 
appear as if the individual digit displays activate simultaneously while in fact only one digit of the display 
actuates at a time.  

You can implement display multiplexing in either hardware or firmware; this section describes a firmware 
implementation6. Imagine a development board that contains four seven-segment displays; each display contains 
eight segments (including a decimal point). There is one signal per each segment for all of the four displays on 
the board; the activation of a single segment on a single digit display involves actuating that segment and 
actuating the display enable (anode) for that digit. Each individual segment of the seven-segment displays on the 
development boards connect to each other, so writing to one individual segment of a display is actually writing 
to that segment on all four seven-segment displays  

To make the displays appear as if they are constantly on without the appearance of flicker, you need to leave 
each display actuated for a given amount of time using a firmware delay function such as the one in Figure 19.7. 
The idea is to do no further processing for a set period of time after firmware actuates a display before going on 
to actuate the next display.  

The firmware delay in Figure 19.7, however, is not an efficient use of the microcontroller’s resources since the 
program execution is in a tight loop that effectively does no meaningful processing. It is for those reasons that 
we often refer to delays such as these as dumb loops. It is, however, a viable firmware-based approach to 
providing a time delay.  

#----------------------------------------------------------------- 
# Subroutine: delay_ff 
# 
# Delays for a count of FF. Unknown how long that is but it 
# is plenty of time for display multiplexing 
# 
# tweaked registers: x31 
#-----------------------------------------------------------------  
delay_ff:       
            li    x31,0xFF       # load count (relative big value) 
loop:       beq   x31,x0,done    # leave if done 
            addi  x31,x31,-1     # decrement count 
            j     loop           # rinse, repeat 
done:       ret                  # leave it all behind 
#------------------------------------------------------------------ 

Figure 19.7: A standard delay subroutine. 

There are two reasons why we need to use a delay. First, because the MCU is so fast, we need to provide enough 
time for the LED to turn completely one. Second, the way we need to multiplex the displays require that each 
display be off for at least a small amount of time relative to the amount of time they display is on. To make the 
number appear as bright as possible, we want to ensure that the percentage of time the display is off compared to 
when the display is one is relatively small. 
                                                           
6 You hopefully implemented a 7-segment display in your introductory digital design course.  
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Figure 19.8 shows a flowchart that models the approach to multiplexing two 7-segment displays in firmware 
using a common cathode-type seven-segment display. Note that code in Figure 19.8 shows one pass of the 
algorithm; the complete algorithm endlessly repeats the flowchart in Figure 19.8.  

 

Figure 19.8: Process flow for firmware multiplexing algorithm. 

19.7.1 Undesirable 7-Segment Display Effects 

Multiplexing 7-segment displays can have on of several undesirable effects if not done properly. Table 19.2 
shows a description of several types of effects, their causes, and some ideas on how to correct the issues. If your 
particular implementation is having issues, you can use Table 19.2 to help solve those issues.  

Effect Cause  Comment 

Dim display Multiplex delay too 
short 

If the segment display is not actuated for enough time, the 
ration of display off/on time is too small. Increasing the delay 
fixes this issue.  

Flickering Multiplex delay too 
long 

The operation of the multiplexed display requires that it fool 
the human visual system (HVS). In this case, the HVS is not 
getting fooled good enough. Decreasing the delay fixes this 
issue.  

Ghosting  Segment data 
displayed at wrong 
time  
 
Multiplex delay too 
short 

There are two causes of this problem. First, the wrong segment 
data is sent to the display that is on for a short time causes 
some segments to be at different brightness levels than other 
displays. Fix this by ensuring that displays are off before 
writing new segment data. Second, if all the segments are 
mostly dim, it indicates the multiplex delay is too short.  

Differing 
Digit 
Intensity 

Individual displays are 
not on for equal 
amounts of time.  

This generally means there is an error in the algorithm that 
implements the multiplexing.  

Table 19.2: Common problems when multiplexing displays in firmware. 

19.7.2 Lead-Zero Blanking 

Lead-zero blanking (LZB) is a simple notion that is typically associated with 7-segment displays. The issue is 
what to do with “lead zero”, which refers to the left-most zeros in a multi-digit display of a decimal number less 
than ten. Although placing zeros in to the left of a digital number does not change the value of that number, if 
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makes the number hard for humans to read. The better option is to “blank” the lead zeros, which means to not 
display them. For example, if you had the number 32 on a four-digit display, it is better to blank the lead zero so 
that the display shows “_ _ 3 4” rather than “0 0 3 4”. Then again, if the number you need to display is “0”, you 
want to display one “0” because a blank display would cause people to wonder if the display was actually 
working or not.  
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19.8 Chapter Summary 

 

 Despite the MCU being a relatively simple device, there are timing issues associated with the instructions 
that you must understand in order to understand the overall operation of the RISC-V MCU. If you’re just a 
programmer, you don’t really need to understand these timing details. But if you know/understand anything 
regarding the underlying RISC-V MCU hardware, you must understand basic timing issues.  

 The RISC-V MCU “wrapper” provides an interface between the RISC-V MCU and a development board. 
The RISC-V MCU wrapper is a relatively simple HDL model that interfaces the RISC-V MCU I/O with the 
various input (such as buttons and switches) and output devices (such as LEDs) on the development board. 
The highlights of the wrapper include a MUX for the development board’s inputs and a decoder and register 
for the development board’s outputs.  

 Reduced instruction set computers (RISC) and complex instruction set computers (CISC) are the two main 
classifications that we try to place computer architectures into. RISC architectures have instructions that 
execute in the same number of clock cycle, relatively large register files, few addressing modes, and 
relatively simple instructions. CISC architectures have all the opposite characteristics. Programs written for 
RISC architecture generally have more instruction than the same program for a CISC architecture, but the 
RISC instructions generally execute in a smaller amount of time.  

 The notion of levels of memory refers to how fast a system can access (read and write) that memory. 
Generally speaking, lower levels of memory have faster access times, are but lower storage capacity than 
higher levels of memory. 

 One-shots, also known as monostable multivibrators, filter signals to make them more effective to systems 
with special constraints on the input. The MCU interrupt input has special constraints in that the interrupt 
signal can cause problematic behavior if the signal is too short or too long. This one-shot solves this 
problem.  

 Switch bounce is a known characteristic of all mechanical switches. When switch contact is initiated or 
uninitiated, the switch contacts can be unstable (touch and retouch many times) before arriving at a steady 
state. The switch bounces issue must be handled in firmware or hardware to make the system work in a 
predictable manner.  

 There are two “standard” computer architectures that many computer people refer to: the Harvard and 
Princeton (usually referred to as Von Neumann architecture) architectures. The Harvard architecture uses a 
separate memory for instructions and data, while the Von Neumann architecture uses the same memory for 
both instructions and data.  

 Seven-segment display multiplexing is a method to have seven-segment displays show many numbers but 
only use a minimal amount of input pins. Input and outputs are expensive on computer devices; the main 
purpose of a multiplexed display is to reduce the number of I/O required to drive the device. In a 
multiplexed display, only one digit actuates at any given time. The displays take advantage of the human 
visual system’s retinal persistence to make it appear that all the display devices are on at the same time. It 
does not have leaving a single digit display on for a given amount of time, then switching to another digit to 
repeat the process. When this is done fast enough, the human visual system sees more than one number at a 
given time.  

 Seven-segment displays typically use lead zero blanking, which means they do not display higher-order 
digits if those digits are zero and do not change the value of the number. If the number to display is zero, the 
display shows that zero (does not blank it).  
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19.9 Chapter Exercises 

 

1) In your own words, explain which is better (or if one is not better) RISC or CISC architectures.  

2) Briefly describe why system clock speeds in RISC architectures are typically faster than the clock speeds in 
CISC-based computers.  

3) Briefly but completely explain why modern computer architectures often blur the accepted definitions of 
RISC and CISC architectures.  

4) Briefly describe whether the RISC-V OTTER MCU is a RISC or CISC computer.  

5) What is the alternative name for the Von Neumann architecture?  

6) Briefly describe which standard computer architecture better supports the notion of pipelining and why.  

7) Briefly describe why it is a good idea to discern the type of architecture the you’re working with early when 
working with a new computer architecture.  

8) Briefly describe whether the computer you’re working on now has a Von Neumann or Harvard architecture.  

9) If lower levels of memory are faster, briefly but completely explain why there is a need for higher levels of 
memory.  

10) Briefly describe the drawbacks of simply increasing the register file size in a computer architecture simply 
because it’s a faster memory because it is a lower-level of memory.  

11) Briefly describe why the notion of levels of memory is not necessarily dependent upon the data access times 
for a given structured memory.  

12) List the three typical characteristics of a lower level of memory.  

13) What is a lower level of memory: a tape drive or a hard drive? Briefly explain.  

14) In the RISC-V OTTER MCU, which module represents the lowest level of memory and briefly explain why.  

15) All mechanical switches have bounce when activated. Briefly explain whether silicon switches have switch 
bounce also.  

16) Briefly describe why debouncing switches and buttons is more important for systems utilizing MCUs.  

17) Briefly describe at least two drawbacks to using a switch debouncer in your circuit. Include both hardware 
and firmware debouncer in your answer.  

18) If you had a circuit with many switches but only one debouncer, briefly describe the conditions where you 
could effectively debounce each of the switches using one debouncer. 

19) Briefly describe how digital one-shots provide synchronization to the output of the one-shot.  

20) What is another name for a mono-stable multivibrator?  

21) What is another name for a bi-stable multivibrator?  

22) What is another name for an a-stable multivibrator?   

23) If you used both a debouncer and one-shot modules in your circuit, briefly describe if the order they appear 
in your circuit matters or not.  

24) Briefly describe the two main reasons why we use multiplexed seven-segment displays. 

25) Briefly describe the basic operation of a multiplexed display.  

26) Briefly describe why in firmware multiplexing applications we speak of a ratio of time the display is on/off.  

27) Briefly describes what happens when the 7-segment display on/off ratio is too small.  

28) List the two reasons why we need to leave the display on for a given amount of time.  
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29) Seven-segment displays are useful for two main reasons, list those reasons.  

30) Write a closed form formula showing the number of inputs required to drive a seven-segment display for 
any number of digits two or greater.  

31) Briefly describe the two main reasons we use lead zero blanking in a seven-segment display.  

32) Briefly describe why we never blank all zeros in a seven-segment display if the number to be display is zero.  
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20 RISC-V MCU Timing Issues  
 

20.1 Introduction 

In order to truly understand the RISC-V MCU, you must have a solid grasp on various issues regarding the 
RISC-V hardware. Computer programming is an exercise in writing text that some software (assembler and/or 
compiler) translates into machine code that drives the computer. That is not the end of the story. All operations 
on a computer, such as executing instructions, require time to complete. Because the underlying computer 
hardware implements the timing and actions taken by each instruction, we have a tendency to concentrate on 
programming as independent entity. But the truth is that to become complete excellent hardware designers as 
well as great programmers, we must understand all aspects of how the underlying hardware executes 
instructions. One of those important aspects of instruction execution is the associated timing diagrams.  

This chapter introduces timing characteristics of instructions. The bad news is that timing diagrams can 
potentially become really complex based on the number of important signals associated with a computer. But the 
good news is that there are a limited number of types of instruction execution we need to deal with. This of 
course means that there are many similarities between executing certain types of instructions, where these types 
generally follow the standard instruction types in the RISC-V OTTER MCU ISA.  

This chapter takes a higher-level approach to timing diagrams in an effort to save time and space. We present 
example that contain a limited number of signals, but these signals are the more important signals associated 
with the execution of those given instructions. The signals we utilize fall are a classic set of both data and control 
signals, where some of the data signals include addresses.  

 

Main Chapter Topics 

 RISC-V MCU TIMING ISSUE: This chapter shows the execution of RISC-V MCU 
instructions as a function of time.  

 RISC-V MCU DATA & CONTROL TIMING: This chapter shows a subset of the 
data changes and corresponding control signals in timing diagrams as a function of 
instruction execution.   

 

Why This Chapter is Important 

This chapter is important because it provides important insights into RISC-V MCU 
instruction execution by the use of timing diagrams.  

 

20.2 RISC-V OTTER MCU Timing Problems 

You can’t fully understand the lower-level operations of the MCU unless you have a firm grasp on the 
underlying timing issues associated with the MCU instruction set. This section outlines the underlying timing 
issues by solving a few key timing problems associated with MCU instructions. The idea behind this section is to 
convince you that the operation of the MCU is fully deterministic and relatively simple once you fully 
understand all aspects of the MCU hardware and how the MCU instructions interact with that hardware.  

We covered some the basic RISC-V MCU timing issues in previous chapters. In chapter, we take a more detailed 
look at some of the more important operations such as basic instruction execution timing, and subroutine calls 
and returns. The RISC-V MCU has many internal signals, so many that it would be near impossible to complete 
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a timing diagram with all the internal signals. Because of this, we limit our with timing diagrams in this chapter 
to a small set of meaningful data and control signals associated with instruction execution.  

20.2.1 Modeling Instructions Using Timing Diagrams 

These problems are rather unique compared to other problems we’ve worked with thus far. With programming-
type problems, we knew there were many approaches to find functionally equivalent solutions. The ultimate goal 
was to write code that solved the problem, and there were essentially an infinite number of ways to do that. 
There were many ways to arrive at the solution and there were many solutions (although the solutions were 
necessarily functionally equivalent). With timing diagram problems, there are typically many approaches to 
arrive at the solution, but there is only one solution. Another way to state this is that operation of the RISC-V 
MCU is deterministic, which roughly means everything is 100% predictable and nothing is left to chance. We 
base this determinism on the RISC-V instructions and the underlying hardware that implements the instructions.  

 

Example 20.1: RISC-V Instruction Timing Problem 

Complete the following timing diagram for all empty rows.   

 

 

Solution: Figure 20.1 shows the solution to Example 20.1. These timing diagram solutions are hard to describe 
after the fact, but we’ll do our best here. The best was to understand these problems is to watch them being done 
in class or in a video. With any luck, you’ll have one of those available. Here’s the skinny:  

 Because these instructions do not include program flow control instructions, we are not 
constrained to completing one instruction at a time and instead can complete one row at a time in 
many instances. 
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 The Instructional Opcode line shows the opcode associated with each instruction below it. Each 
instruction includes a fetch and execute cycle as the line below the Instruction Opcode indicates.  

 The CLK signal delineates the fetch and execute cycles, which the underlying FSM controls.  

 The Instruction line shows the instruction that the MCU is executing at any given time.  

 The PCWrite line is responsible to loading new values into the PC. It asserted soon after the start 
of each execute cycle; the actual loading of the new PC occurs at the next rising clock edge. The 
FSM asserts the PCWrite control signal after entry to the execute cycle; the loading of the PC 
occurs at the next active clock edge.  

 The regWrite line controls writing to the register file. The first two and last two instructions write 
the result to the register file, which is why the regWrite signal asserted by the FSM soon after the 
start of the execute cycle for those four instructions. The two store-type instructions write values 
to memory and not the register file, which is why regWrite is not asserted in the execute state for 
the two store-type instructions.  

 The memWE2 line asserts in the execute cycle for the two store-type instructions. Asserting the 
memWE2 signal allows the hardware to write the data in the register file to main memory.  

 The memRDEN1 signal asserts as part of the fetch cycle for every instruction. This allows the 
address that was loaded into the PC at the start of the fetch to serve as an index into main memory. 
The memory has synchronous reads so the output from the memory becomes available on the 
DOUT2 after the rising clock edge that transitions the FSM from the fetch to execute state.  

 We are not executing any load-type instructions, so the memRDEN2 input remains unasserted 
throughout the timing diagram.  

 The alu_fun chooses what operation the ALU performs. It performs XOR, OR, AND, and OR 
operations for the first two and last two instructions; the four bits shown in the timing diagram 
correspond to the operation chart on the RISC-V MCU schematic. The store-type instructions both 
require the ALU to do an addition operation as part of the address calculation for the instructions. 
This means that the alu_fun must choose an addition operation (0000) for all instructions 
requiring address calculations, which include all load-type and store-type instructions.  

 The alu_srcA signal remains unasserted for these instructions, which means the instructions are 
always choosing rs1 to as the srcA input of the ALU.  

 The alu_srcB choose the rs2 input for the logic instructions (00), and choose the S-type input (10) 
for the store-type instructions.  

 The pcSource always chooses (00) for this example, which is the PC  PC + 4 operation. This is 
normal operation, meaning that none of instructions are program flow control-type instructions.  

 The rf_wr_sel chooses the output of the ALU for the four logic-type operations, which is the (00) 
input on the register file MUX. The two store-type instructions do not use the rf_wr_sel signal, 
which is why we list the rf_wr_sel value as don’t cares for those instructions. There actually a 
value on the data output the register file MUX, but since we’re not loading values into the register 
file, the actual values do not matter.  
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Figure 20.1: The solution to Example 20.1.  
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Example 20.2: RISC-V Instruction Timing Problem 

Complete the following timing diagram for all empty rows.   

 

Solution: Figure 20.2 shows the solution to this example. Once again, and for the last time, these are much better 
explained in an incremental manner, rather than “here’s the complete diagram, let me try to explain it”. If you’re 
reading this (and I know you are), there is a video where I go through this one part at a time. Keep in mind that 
there are many approaches you can take to complete this problem. Here is the important stuff to know about this 
timing diagram:  

 Most signal operate “normally”, though there is a load-type instruction in there that is different 
because it requires three clock cycles, this means that some of the control signal outputs are 
persistence through both the execute and writeback cycles.  

 The PCWrite signal always asserts in the state before the fetch state of the next instruction. For 
the lhu instruction, this mean PCWrite asserts as part of the writeback state. The memRDEN1 
signal shows a similar behavior in that it always asserts as part of the execute cycle; this execution 
is delayed with the three-cycle lhu instruction.  

 The lhu instruction reads a value from memory and sticks it in a register, which requires the 
memRDEN2 signal to assert during the execute cycle of the lhu instruction. At this point, the 
ALU has calculated the effective memory address and the hardware can read the memory data.  

 None of the instructions write to data memory, so the memWE2 signal remains unasserted.  

 The auipc instruction and the lhu instruction both use the ALU for formulate values, which is 
why the alu_fun signal is configured for addition for both of these instructions.  

 Because j is a pseudoinstruction, we know that it translates to a jal base instruction. Part of the 
jal instruction is to write the new PC value to a register, which is why the regWrite signal is 
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asserted during the execute cycle. Accordingly, the rf_wr_sel signal chooses the “PC+4” input to 
be loaded into the register file.  

 Because the j instruction does not use the ALU, so the three ALU-controlling signals (alu_fun, 
alu_srcA, & alu_srcB) are “don’t cares” for this instruction.  

 The rf_wr_sel signal selects the memory output for the lhu instruction. Even though the 
rf_wr_sel signal is asserted to “10” for three clock cycles associated with the lhu instruction, the 
only time rf_wr_sel matters is at the end of the writeback cycle, which is when the regWrite 
signal asserts.  

 The alu_srcB signal typically follows the instruction type. For reg-reg instructions, the alu_srcB 
signal chooses the rs2 register output, but for other instructions, it inputs ether the PC (auipc), or 
the I-Type or S-Type immediate values. The lhu instruction is an I-Type instruction, which is 
why the alu_srcB signal is “10” for this instruction.  

 

Figure 20.2: The solution to this example. 
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Example 20.3: RISC-V Instruction Timing Problem 

Use the following program and information to complete the empty rows in the timing diagram.  

Cat:    slt    x20,xl0,xl3 
        jal    dog 
        andi   xl0,x8,0xF 
dog:    lw     x8,0(xll) 
        bgt    x8,xl3,done 
        xor    x8,xl0,xl3 
done:   jalr   xl 
        andi   x8,x8,0x0F 

x10   = 0xAA       
x13   = 0xCC      
x11   = 0x11001100      
cat   = 0x50      
IOBUS = 0x000000FF 
 

 

 

Solution: Figure 20.3 shows the solution to this example. This solution for this timing diagram is slightly more 
complicated in that we don’t know in advance if conditional branches are taken or not. This means we need to 
work through the solution on instruction at a time. We only are interested in the interesting signals below. Here 
is the cool stuff to know about this timing diagram:  

 No instructions write memory, so the WE2 is always unasserted.  

 The first instruction is an slt. Because it writes a ‘1’ or ‘0’ to the destination register, regWrite 
asserts during the execute cycle. The alu_fun selects the “0010” option supporting the slt 
instruction as the value that the hardware assigns to the destination register from the ALU output. 
The wd signal indicates that the instruction writes a ‘1’ to the destination register. The rs1 & rs2 
lines are the source operands, which are the values in the x10 & x13 registers, respectively.  

 The jal instruction causes a jump to the instruction associated with the “dog” label. The 
pcSource must choose the jal option to the PC MUX, which the pcSource signal indicates on the 
execute cycle with a value of “11”. The jal instruction also writes a PC+4 value to the register 
file, which is why regWrite asserts and rf_wr_sel is set to “00” to route the value in the PC to the 
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register file. The value that writes to the register file is four greater than the current PC, which is 
0x58, as indicated on the wd signal.  

 The instruction at the “dog” label is an lw, the infamous three-cycle instruction. This causes a 
memRDEN2 assertion during the execute cycle and regWrite assertion on the writeback cycle. 
The rf_wr_sel is set to “10” to allow the memory output to route to the register file. The data that 
writes to the register file is the IOBUS_IN data because the address in x11 is greater than 
0x0000FFFF, making this an input operation and not a memory access operations (read). The rs1 
& rs2 values are the base register and offset values for the load instruction, respectively. And 
finally, the actual input data writes to the register file, as the wd signal indicates.  

 The bgt instruction takes the branch because the value in x8 is greater than the value in x13. Note 
that the x8 & x13 values are output from the register file (rs1 & rs2, respectively). The ALU is not 
involved in comparisons, so ALU support signals are in “don’t care” space. The pcSource 
chooses the branch input to the PC MUX to be the next address loaded to the PC. The pcSource is 
a control output from the CU_DCDR, which acts on the comparison done in the 
BRANCH_COND_GEN module. The code takes the branch, which causes the value of the “done” 
label to load into the PC.  

 The jalr instruction is similar to the jal instruction; it causes a jump by using the pcSource to 
load the jalr input to the PC MUX into the PC. Also like the jal instruction, the jalr 
instruction causes the PC+4 value (0x6C in this case) to load into the register file, which requires 
the rf_wr_sel to be ”00” and the regWrite to assert. The jalr instruction uses a source register 
to calculate the absolute address, which is the value put in the ra as a result of the jal instruction; 
this value is 0x58, as the value of the rs1 signal indicates.  

 The final instruction performs an AND operation on the data in x8, which is trying to be some sort 
of masking operation. The data in x8 is 0xFF; ANDing it with 0x0F results in 0x0F, which is 
indicated on the wd signal for this instruction. The alu_fun chooses AND operation with a 
“0111”; alu_srcB chooses the lower ALU operand to be the I-Type immediate value from the 
IMMED_GEN module. The rs2 line is an unknown because the immediate operand is output from 
the IMMED_GEN module and not the register file.  
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Figure 20.3: The solution to this example. 

 

 

 

Example 20.4: RISC-V Instruction Timing Problem 

Use the following program and information to complete the empty rows in the timing diagram. Use 
the empty timing diagram from the previous example problem.   

cat:   addi   x10,x10,5 
       beq    x10,x11,dog 
       add    x10,x0,x0 
dog:   sb     x11,4(x30) 
       slli   x11,x11,1 
       jal    cat 

x30 = 0xC0    
x10 = x40    
x11 = 0x45    
cat = 0x80 
 

 

Solution: Figure 20.4 shows the solution to this example. This is another solution where we can’t write out the 
instructions because the program includes program flow control instructions in the form of conditional branches; 
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and we don’t know in advance if the program takes the branches. We only are interested in the signals that 
provide us with enlightenment in the discussion below. Here is the good stuff to know about this timing diagram:  

 The program fragment has no input instructions so the IOBUS_IN has no use in this example.  

 There are no instructions reading from data memory, so the memRDEN2 signal never asserts.  

 We know in advance what memRDEN1 looks like because only one of the instructions is a load-
type instruction.  

 The addi instruction is at 0x80 (cat label), which the problem description provides. This 
instruction adds the value in x10 (rs1=0x40) to the I-Type immediate value (5) and stores the 
result in x10. Note that we don’t know the rs2 value as the immediate value is an output the 
IMMED_GEN module. The requires the regWrite asserted and the alu_fun to select an add 
operation. The result of the addition operation is 0x45 appears on the wd line. The alu_srcA 
signal chooses the register value and the alu_srcB signal chooses the immediate input to the MUX 
to be the input to the ALU. The ALU result writes to the register file thus requiring the regWrite 
to assert.  

 The beq instruction compares two register value rs1 & rs2 as they appear on the rs1 & rs2 lines; 
both values are 0x45, which causes the instruction to take the branch. The instruction does not use 
the ALU so all ALU-based signals are don’t cares. The pcSource chooses the branch option 
(“10”), which is an output from the CU_DCDR. The program jumps a whopping one instruction to 
0x8C as the value on the PC line indicates.  

 The sb instruction copies data from a register to memory, which requires the assertion of 
memWE2 on the execute cycle. The ALU does an add operation to calculate the effective address 
with an offset of “4” (rs2) and a base register value of 0xC0 (x30 @ rs1). The sb is an S-Type 
instruction so the alu_srcB is set to “10” to have the appropriate immediate value input to the 
ALU. The rs2 line is an unknown because the immediate value is output from the IMMED_GEN 
module. The instruction does not involve the register file other than reading the base register (rs1) 
so the register file related control signals are don’t cares.  

 The slli instruction is an I-Type instruction. The ALU inputs are “1” for the I-Type input and 
0x45 for the other input (rs1). The shifted-left value appears on wd as 0x8A, which is the value 
that writes to the register file. The alu_fun chooses the “sll” option.  

 The jal instruction causes program control to unconditionally transfer to the instruction 
associated with the cat label, which is at address 0x80. This instruction causes the pcSource to be 
“11”. This instruction also writes the “PC+4” (0x98) address to x1, which requires the regWrite 
signal to assert on the execute cycle. Recall that the “PC+4” is a potential return address as 
programmers can use the jal instruction to call subroutines. The ALU is not used so associated 
signals are don’t cares.  

 The addi instruction is a repeat of the first instruction, so nothing new happens. The value in x10 
is now 0x45 because the first addi instruction advanced it by five. The wd line shows the result 
to that writes back to the register file.  
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Figure 20.4: The solution to this example. 

 

 

 

Example 20.5: RISC-V Instruction Timing Problem 

Use the following program and information to complete the empty rows in the timing diagram. Use 
the empty timing diagram from the previous example problem.   

Cat:   addi  sp,sp,-4 
       sw    x8,0(sp) 
       xor   x8,x8,x9 
hen:   beq   x8,x0,dog 
       slti  x7,x8,0x34 
       xori  x8,x10,0x40 
       andi  x8,x8,0x01 
dog:   lw    x8,0(sp) 
       addi  sp,sp,4 

 
# cat = 0xB0 

#  x2 = 0xF08 

#  x8 = 0xAA   

#  x9 = 0x55 

 

 

Solution: Figure 20.5 shows the solution to this example. This is another solution where we can’t write out the 
instructions as a first step in the solution because the program fragment includes program flow control 
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instructions in the form of conditional branches. We only are interested in the interesting signals and happenings 
in the solution, which we liberally describe below:  

 We don’t use the IOBUS_IN signal because the program fragment has no input instructions.  

 This example basically shows the pushing and popping of a single register on the stack. Both 
operations require a memory access and an adjustment of the stack pointer.  

 The problem description provides the addi instruction address, which is 0xB0 (cat label). This 
instruction adjusts the stack pointer, which it needs to do to make room for the register that the 
next instruction stores. The stack pointer is at address 0xF08, which the problem description 
provides. The rs1 value is one operand; the other operand is the output from the IMMED_GEN 
module, which is -4 (not shown in diagram). The result is loaded into the register file, which the 
0xF04 on the wd line shows.   

 The sw instruction asserts the memWE2 signal on the execute cycle to write x8 to memory. The 
instruction uses the ALU to create an effective address by adding the offset (0) to the base register 
(sp); note the address value on rs1 is 0xF04, which was the value written to sp by the previous 
instruction. This instruction does not use the register file, which is why the wd line shows a “???”.  

 The xor instruction performs an exclusive OR on the data in the x8 & x9 registers and stores the 
result in x8. We see the result on the wd line, which we conveniently designed to be zero when we 
created this problem.  

 The branch instruction compares the value in x8 & x0, which are equal, so the code takes branch. 
The code takes the branch by setting the pcSource to “10”, which chooses the branch address to 
be loaded into the PC. This branch causes a jump to the instruction with the “dog” label, which is 
at address 0xCC, as the PC value associated with the lw instruction indicates. The regWrite 
signal does not assert, as branch instructions don’t involve the register file.  

 This lw is the first instruction in the pop operation. The lw is a three-cycle instruction that 
formulates the memory address during the execute cycle (the memRDEN2 signal) and write that 
value to the register during the writeback cycle (the regWrite signal). The rf_wr_sel signal is set 
to “10” to select the memory output (DOUT2) to be input the register file. The effective address is 
the offset (0, not shown) plus the value in sp (x1=0xF04). The rs2 value is not known as the offset 
is an output of the IMMED_GEN module, which alu_srcB chooses (“01”)to input to the ALU. 
The alu_fun selects “0000” to perform the addition that generates the effective address. The value 
written to the register file is on the wd signal; 0xAA is the original value of x8 before the sw 
instruction operated on it. Note that for the lw instruction, the data that writes to the register file is 
not available until the effect address calculation completes and the memRDEN2 signal enables 
the reading of data. This timing is important, which is why we littered the diagram with the arrow.  

 The addi instruction adjusts the stack pointer, and is thus the second half of the pop operation. 
The first instruction in the program fragment decreased the sp; this addi instruction returns it to 
its original value. The rs1 signal shows the current sp value of 0xF04; the wd signal shows the 
new value for sp, which is 0xF08.  
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Figure 20.5: The solution to this example. 
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20.3 Chapter Summary 

 

 Computers do what they do over a given period of time, which allows us to model program execution units, 
such as instructions, as a function of time. The standard approach to viewing digital signals as a function of 
time is the timing diagram.  

 All RISC-V instructions require two clock cycles to execute, except for load-type instructions, which 
required three clock cycles to execute.  

 Most program flow is conditional, meaning that it is controlled by some type of conditional branch 
instruction. This means that we must complete timing diagrams using a vertical analysis going from left to 
right and completing all signals. We can complete timing diagrams associated with unconditional branches 
or no branches one signal at a time going from left to right. Calling subroutines is an example of 
unconditional program flow control.  
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20.4 Chapter Exercises 

 

1) Briefly describe why the timing diagrams in the problems examined in this chapter only contained an 
abbreviated set of control signals.  

2) Briefly describe what the term “timing diagram” refers to.  

3) Briefly describe why there is only one unique solution to timing diagram problems associated with the 
RISC-V MCU.  

4) Briefly describe what condition in a timing diagram problem allows us to complete entire signals at one time 
rather than one instruction at time.  

5) Briefly describe the main difference in analyzing problems containing conditional branch instructions 
compared to problems not containing conditional branch instructions.  

6) Briefly describe why we typically slightly delay the switching of control signals in timing diagrams. This 
delay manifests itself as a slight delay past the active clock edge in the timing diagram.  
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21 RISC-V Architectural Modifications 
 

21.1 Introduction 

As you extend your knowledge regarding computer architecture and assembly language programming, you’ll no 
doubt start questioning some of the design decisions that went into design the RISC-V MCU ISA and associated 
hardware. In truth, a countless number of design decisions went into the design. The main thought here is that 
these design decisions, though well thought out, were somewhat arbitrary all the same. As with any digital 
design, if you stare at it long enough, you’ll surely figure out a better approach to the design. The same goes for 
the RISC-V OTTER MCU instruction set. If you haven’t found yourself complaining that there is a 
useful/important instruction missing from the instruction set, you’re probably missing something.  

This chapter allows you to apply your knowledge and skills by asking you to describe various changes to the 
RISC-V MCU hardware and/or instruction set. The idea here is that if you can’t describe viable changes to the 
RISC-V MCU architecture and instruction set, you may not have a strong understanding of the MCU in general. 
In other words, to make meaningful changes to the RISC-V, you must understand all aspects of the RISC-V 
MCU, particularly how the hardware implements instructions in the RISC-V MCU. If you’re not quite at that 
point yet, the examples in this chapter quickly move you along in the direction of complete understanding of the 
RISC-V MCU. Recall that this course provided you with a schematic of a working RISC-V MCU, so there was 
no hardware design involved. But this course in general is about hardware and assembly language programming, 
so it makes more sense to divide the time between hardware and firmware rather than moving to strictly 
firmware after you’ve implemented the RISC-V MCU.  

Computer design continues to be an open book. While there is a significant amount of commonality between 
various computer architectures, they are still completely arbitrary. If you’re a computer user, you need to 
understand the hardware provided for you. If you’re a computer designer, you have the ability to design any 
computer you want.  

 

Main Chapter Topics 

 RISC-V HARDWARE ARCHITECTURE MODIFICATIONS: This chapter outlines 
hardware modifications in order to achieve various stated design goals.  

 RISC-V ASSEMBLER MODIFICATIONS: This chapter outlines changes to the 
RISC-V assembler in the context of desired hardware architecture modifications.  

 RISC-V INSTRUCTION SET ARCHITECTURE MODIFICATIONS: This chapter 
outlines changes in the instruction sets in response to proposed RISC-V hardware 
architecture changes.  

 

Why This Chapter is Important 

This chapter is important because it advances your knowledge of the RISC-V MCU 
by outlining hardware architecture changes in response to stated design goals.  

 

21.2 RISC-V Architectural Modifications and Extensions 

The chapter comprises of suggested modifications and changes to the RISC-V hardware architecture and/or 
instruction set. These problems represent my best take on these proposed changes; I have no doubt that I have 
mistakenly omitted important information in these examples and/or you can think of a better solution than the 
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ones I’ll present here. That’s good. These problems are quite open-ended, meaning there are many correct 
solutions. You can argue that one solution is better than another solution, but that’s not primarily what we’re 
after here. If you discover something that I did not see, then you definitely know the RISC-V MCU architecture 
and instruction set, which is the underlying goal of this text and associated course.  

Once again, these problems are open-ended. The only general guideline to follow is that you should always try to 
find the most “doable” solution. In the context of these problems, doable means you can describe what you’re 
going to do without having to massively increase the complexity of the RISC-V MCU hardware. One other 
guideline is the notion of “adding” or “removing” functionality from the RISC-V hardware or instruction set. 
Whenever you “add” something, you’re most likely increasing the complexity of the hardware include the 
amount of memory required to support that addition. Conversely, if you remove something, you’re probably 
reducing complexity and possibly removing memory requirements.  

In reality, you must consider each addition of removal individually in order to ascertain its full ramifications. For 
these types of problems, know that you’re going to need to pull out the assembler manual and architectural 
diagrams in order to help you generate a viable solution. In the real world, you must consult various sources 
when you’re working on problems; it’s strange why academia needs to be different.  

When writing your solutions, be as descriptively complete as possible. Humans grading these problems need to 
know what you know. If something requires modification, then be specific about the required modifications; you 
certainly can’t be too descriptive in this area. If you say something like “there are no changes required”, be 
specific about what is not changing and why that thing does not need to change. Note that problems such as these 
that appear on an exam or quiz is going to require you to do an organized brain dump so the wacky instructor can 
ascertain what you know or don’t know. The instructor won’t be giving you the benefit of the doubt on these 
types of problems.  

 

Example 21.1: Shift-Set Instructions 

Add a two new instructions to the RISC-V MCU:  

  sll_1  rd,rs1   # x[rd] ← { x[1’b1,rs1[30:0]] }  

  srl_1  rd,rs1   # x[rd] ← { x[rs1[31:1]],1’b1 }  

 

For this problem, describe the following 

a) Required changes to the RISC-V MCU hardware  

b) Required changes the RISC-V assembler 

c) Required changes in RISC-V memory requirements 

d) Describe why these instructions are potentially useful 

e) Describe why you don’t need a sll_0  &  srl_0 

Solution: There is nothing magic about this solution; it is somewhat arbitrary. I feel it’s about as simple as I 
can think of. The first thing to notice about this problem is that it requests that you add something to the RISC-
V MCU, which means we want to stay on the lookout for “things increasing”, such as memory and/or the 
width of MUX select lines, width of data lines, etc. Note that unlike the current shift instructions, these two 
new instructions are single shifts and not barrel shifts.  

a) Required changes to the RISC-V MCU hardware:  

 You would need to modify the ALU to recognize these new instructions. The alu_fun signal would 
not need to change width as there is room for five more instructions; these two instructions require 
only two more ALU choices. This also means that you can implement this instruction with only the 
ALU, and there is no need to modify the lower ALU MUX to include a ‘1’ input.  
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 You would need to modify the CU_FSM to include a new instruction type. This instruction would be 
similar to an I-type instruction as far as operands go. There are currently six I-type instructions that 
use the “0010011” opcode, so you can reuse this opcode for these instructions; in this case you would 
need to change the funct3 opcode value for these instructions to the two funct3 opcodes that are not 
currently included in the six ALU-oriented immediate instructions, which are “001” & “101” (check 
the spec).  

 You would need to modify the CU_DCDR to account for these instructions so it can send out the 
correct alu_fun signals in the case of ALU-based immediate instructions. The CU_FSM requires no 
changes because we were able to make this a true I-type instruction by reusing the immediate-type 
opcode and only tweaking the funct3 opcode.  

b) Required changes the RISC-V assembler:  

 You would need to make the assembler aware of the new instruction including the three new funct3 
opcodes from the previous step.  

c) Required changes in RISC-V memory requirements 

 You did not add states, change main memory, change the CSR, or change the PC, so there would be no 
changes in memory sizes.  

d) Describe why these instructions are potentially useful 

 If your application needs to shift 1’s into register rather than 0’s, this instruction would save an 
instruction or a register (depending on whether you would implement the shift as an immediate of reg-
type instruction).   

e) Describe why you don’t need a sll_0  &  srl_0 

 The current shift left and right instructions insert 0’s already, which means a shift-type instruction that 
shifts one bit location does the same thing.  
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Example 21.2: Reg-Reg Load Instructions 

You must modify the RISC-V OTTER to include three new instructions:  

 
     lb     rd,rs2(rs1)     # load rd with data at mem addr M[rs2+rs1]  

     lh     rd,rs2(rs1)     # load rd with data at mem addr M[rs2+rs1]  

     lw     rd,rs2(rs1)     # load rd with data at mem addr M[rs2+rs1]  

 
The lb and lh instruction should zero-extend data such that it fills the 32-bit destination 
register. 

 
For this problem, describe the following:  

a) changes you need to make to the RISC-V MCU hardware 

b) changes you need to make to the RISC-V MCU assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would or could be useful 

Solution: This problem asks you to add something to the MCU, which means there is a possibility that the 
width of some items such data widths or memory may increase. We don’t know anything for sure yet, but 
we’ll be on the lookout for stuff “growing”.  

a) Required changes to the RISC-V MCU hardware:  

 The first thing to notice about these instructions is that they have the same mnemonic as existing 
RISC-V MCU instructions. This is possible and programmers do it quite often. The trick here is 
even though the instructions are the same, the form of the operands is different, which thus 
allows the assembler to differentiate between the instruction types. So no need to worry there. 
We do then hope to make these I-type instructions similar to the other load-type instructions. 
There are currently five load-type instructions that share the “0000011” opcode; these 
instructions are differentiated by the funct3 opcode field. Since there are only five instructions, 
and the 3-bit funct3 opcode has three unused bit combinations, we can easily fit this instruction 
with the other instructions having the “0000011” opcode flavor.  

 We next need to examine the control units since we’re adding new instructions. The instructions 
as similar to other load-type instructions in that they provide an absolute address to the memory 
module; these instructions only differ in the way the instruction calculates the absolute address. 
This instruction chooses rs2 for the second operand rather than an immediate value, which 
means the only difference between a “lw  rd,imm(rs1)” and “lw  rd,rs2(rs1)“ is 
the data selection on the ALU’s srcB MUX. We thus need to modify the CU_DCDR to 
recognize these instructions and send out the correct alu_srcB signal. We don’t need to change 
the CU_FSM because the present support for the load-type signals works fine for our new 
instruction.  

b) Required changes the RISC-V assembler:  

 We would need to make the assembler aware of the three new instructions including whatever 
new opcodes you decided from the previous step.  

c) Required changes in RISC-V memory requirements:  

 We did not add states, change main memory, change the CSR, or change the PC, so there would 
be no changes in memory sizes.  

d) Why this modification would or could be useful:  
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 This instruction provides another memory addressing mode. Now this may not excite you the 
programmer and hardware person, but it make compiler writers slather at the mouth as they now 
have more options as to implementing higher-level language code. In reality, the previous 
address calculation used one register and one immediate value, while these two new instructions 
use two register values. In this context, registers are effectively variable, which renders these 
load-type instructions potentially more useful than the current RISC-V load-type instructions.  

 

 

 

Example 21.3: Branch Based on Memory Data 

Add the following instructions to the RISC-V MCU. These are conditional branches based on a 
comparison of a bit set in a register and a memory address.  

bm_eq   rs1,rs2,label   # branch to label if rs1 = mem[rs2]  

bm_ge   rs1,rs2,label   # branch to label if rs1 ≥ mem[rs2]  

bm_geu  rs1,rs2,label   # branch to label if rs1 ≥u mem[rs2]  

bm_lt   rs1,rs2,label   # branch to label if rs1 < mem[rs2]  

bm_ltu  rs1,rs2,label   # branch to label if rs1 <u mem[rs2]  

bm_ne   rs1,rs2,label   # branch to label if rs1 ≠ mem[rs2]  

 

example:    bm_eq    x10,x11,My_label 

 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

e) why you would or would not include these instructions in the computer you’re designing  

Solution: This is yet another branch-type instruction. Here’s what I see: 

a) Changes you need to make to the RISC-V hardware:  

 There are six instructions here, which seem like quite a few. What we want to do is use as much as the 
existing hardware as possible to implement these instructions. These looked like the regular branch 
instructions, so that is a good starting point for these problems. The BRANCH_COND_GEN module 
currently has two inputs, which are the two outputs from the register file. We can use one of those 
outputs, but the other output needs to come from the memory module. But since we need to support the 
regular branch instructions as well, the rs2 input to the BRANCH_COND_GEN needs a MUX in front 
of the rs2 input. This means the CU_DCDR needs another select output. The other input to the MUX 
connects to the DOUT2 output of memory.  

 We need to be able to use the register file’s rs2 output as an address to memory, which means we need 
a MUX to choose between the current input (the ALU output) and rs2. This requires that we add 
another select signal to the output of the CU_DCDR.  

 Our next concern involves timing. These new instructions are somewhat like load-type instructions in 
that the first needs to get a memory address, and then need to do something with that address. The load-
type instructions require three states because of the synchronous read nature of the memory. Therefore, 
these new types of instruction are going to require three states.  
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 We don’t need to change the BRANCH_COND_GEN module in any way, which simplifies the changes 
we need to make to the CU_DCDR.  

 We can make these new instructions have the B-type format, since it already contains the required 
fields. We need to have it a new 7-bit opcode and differentiate the instructions using the funct3 opcode 
field.  

 We need to modify the CU_DCDR to recognize these six instructions. Additionally, we need to add a 
control signals for the two MUXes we added to the MCU. One MUX chooses between the rs2 output or 
the memory output for the lower input of the BRANCH_COND_GEN; the other MUX chooses 
between the rs2 output of the register file or the ALU result output to act as the address to data memory. 
We’ll need to modify all load and store-type instructions to use the memory address MUX select; we’ll 
need to do the same thing with the regular branch-type instructions, but with the other new MUX.  

 We need to change the CU_FSM to recognize these instructions. Additionally, we can get either add a 
new state or make the current third state (the writeback) state more complex by supporting these new 
instruction. We’ll shoot for the more complex FSM to make the problem more interesting. This means 
we’ll add a special state for these new branch-type instructions, which is similar to the writeback state.  

b) Changes you need to make to the RISC-V Assembler:  

 The assembler needs to recognize the new instructions. We created a new opcode for a B-type 
instruction, and added a supporting set of funct3 opcodes.  

c) Required changes in RISC-V memory requirements:  

 Because we added a new “writeback” state especially for these new instructions, we increased the 
number of FSM states from four to five. Assuming we use the minimum number of bits to encode the 
FSM states, we then need to add another bit to the state registers, which means the state registers grow 
from two to three bits. We did not change main memory, the PC, the register file, or the CSR register, 
so their memory requirements do not change.  

d) Why this modification would be useful:  

 This modification would be useful to save instructions by accessing memory directly for branch 
instructions. If we did not have this instruction, we would need to do get the data from memory before 
executing the branch instruction.  

e) Why you would or would not include this instruction in the computer you’re designing:  

 If your application required that you do many branches based on the values in memory, these 
instructions would certainly save clock cycles. Once again, there are tradeoffs involved. These 
instructions require three clock cycles, so the saving are not overly significant. On other hand, the 
comparisons can be made without bring memory data to registers, so it does reduce register usage.  
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Example 21.4: Bit Set and Bit Clear Instructions 

Add the following instructions to the RISC-V MCU. These are conditional branches based on a bit 
set in a register.  

bbset   rs1,rs2,label  # branch to label if rs1[rs2] = 1 

bbclr   rs1,rs2,label  # branch to label if rs1[rs2] = 0 

 

example:    bbclr    x10,x11,My_label 

 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

e) why you would or would not include this instruction in the computer you’re designing  

Solution: The following is my take on this problem; my solution is has no magic associated with it. Please let me 
know if you have better ideas. This is another example where we are adding something, so we’ll stay attentive to 
parts of the architecture that require expanding.  

a) Changes you need to make to the RISC-V hardware:  

 These new instructions look just like branch instructions, meaning we can use the B-type format for 
these new instructions, which is good because we won’t need to define a new instruction format. 
There are currently six B-type instructions using the “1100011” format and differentiated by the 3-
bit funct3 opcode, so there are two unused funct3 opcodes we can use for these two instructions.  

 We first need to modify the BRANCH_COND_GEN module to include more functionality. We 
don’t need more inputs as we have both registers already input. We need to add one output, which 
would indicate whether a specific bit in a specific register was set or not, such as br_bb, similar to 
the other outputs from the modules. The hardware that we add to the BRANCH_COND_GEN 
module would drive the output to complete the given functionality.  

 We then need to modify the CU_DCDR to include these two new branch instructions, which would 
entail adding another input bit to the module to handle the new output from the 
BRANCH_COND_GEN module.  

 We can use the CU_FSM as is because we did not add a new OPCODE. This module will not need 
to change.  

b) Changes you need to make to the RISC-V Assembler:  

 The assembler needs to recognize the new instructions. We didn’t change the B-type OPCODE, but we 
did add two funct3 opcodes; the assembler needs to know about these.  

c) Required changes in RISC-V memory requirements:  

 The memory size does not change. We did not change main memory, the PC, the register file, or the 
CSR register. We also did not change the CU_FSM, which is where the last bits of memory reside.  

d) Why this modification would be useful:  

 This modification would be useful to save instructions. If we did not have this instruction, we would 
need to do masking and shift and other voodoo that makes adds extra instructions.  
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e) Why you would or would not include this instruction in the computer you’re designing:  

 The RISC-V designers probably didn’t add this instruction because it is somewhat specialized, and 
programmers would not use it a relative large amount of time in normal coding. However, if the 
application you’re designing your computer for could or would find this instruction useful, you would 
add it as it would have several instructions if you did not have it available. The again, implementing this 
instruction does take up much chip real estate, so you would only add it if it truly provided you with 
some meaningful benefit.  

 

 

 

Example 21.5: Reg-Reg Load Instructions 

Add the following instructions to the RISC-V MCU. Make as few modifications to hardware as 
possible. These are rotate left and right instructions based on words, two halfwords, or four bytes. 
For halfwords, the instructions perform rotates on the two individual halfwords in a register; for 
bytes the instructions perform rotates on each of the bytes in the register. These are similar to the 
shifts in that they are barrel rotates based on the lower bits of the immed value.  

rolw  rd,rs1,imm   # rotate word left by imm val; store result in rd 

rorw  rd,rs1,imm   # rotate word right by imm val; store result in rd 

rolh  rd,rs1,imm   # rotate 2 halfword left by imm val; store result in rd 

rorh  rd,rs1,imm   # rotate 2 halfword right by imm val; store result in rd 

rolb  rd,rs1,imm   # rotate 4 bytes left by imm val; store result in rd 

rorb  rd,rs1,imm   # rotate 4 bytes right by imm val; store result in rd 

# example:    rolw  x4,x5,4     # barrel left rotate v positions 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

e) why you would or would not include this instruction in the computer you’re designing 

Solution: This problem asks you to implement six instructions, all of which represent some type of left or right 
rotates. We are adding something to the current RISC-V MCU, so we want to be aware of possible changes in 
memory requirements.  

a) changes you need to make to the RISC-V hardware:  

 These six instructions look like just like immediate instructions so we’ll encode these as I-types. We 
don’t have enough code space to encode these instructions using the current I-type instruction opcodes, 
so we’ll give these instructions a new 7-bit opcode (it does not matter what exactly that is so long as it 
is unique). We’ll then differentiate these instructions by assigning the each of the instructions a 
different funct3 opcode, which works because there is space for eight instructions in the 3-bit funct3 
opcode space.  

 The ALU does all the work for these new instructions, so we need to modify the ALU to support these 
instructions. There is currently only enough room for five more instructions in the ALU based on the 
width of the alu_fun signal, so we need to increase the bit-width of the alu_fun signal from four to five 
bits. 
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 We need to modify the CU_DCDR so that it recognizes these instructions with their sporty new 
opcodes and associated funct3 codes. We also need to extend the width of the alu_fun output from four 
to five bits. This changes all the other 11 alu_fun values to account for the six extra instructions.  

 We need to make the CU_FSM recognize our new opcode for these instructions. They are I-type 
instructions, and the same as other I-type instructions, but with a different opcode. Recall that the 
CU_FSM does not use the funct3 opcode.  

b) changes you need to make to the RISC-V assembler  

 We need to make the assembler aware of the new instructions and send out the correct opcodes and 
funct3 codes.  

c) changes in RISC-V MCU memory requirements   

 We did not change main memory, the PC, the CSR, the reg file, or add new states to the FSM; so these 
changes do not cause the memory size to change.  

d) why this modification would be useful 

 Rotates are always nice to have in the instruction set. You don’t always have a use for them, but they 
really save time and effort when you do. Wimpy answer indeed.  

e) why you would or would not include this instruction in the computer you’re designing:  

 These are six instructions, which are significant, but also the hardware implementation requires a non-
trivial amount of hardware. Therefore, you must really have a specific use for these instructions or it 
may be a better choice to use the instructions currently available in the RISC-V and take a small hit on 
execution time and program space.  

 

 

 

Example 21.6: Push Instruction 

You want to add the following instruction to the RISC-V MCU. Make as few modifications to 
hardware as possible. Implement this instruction in two clock cycles. Note that this instruction 
assumes the stack pointer is always x2.   

push     rs2   # push rs2 on stack; assume stack pointer is x2 
 
examples:  

    push    x25       # push x25 on the stack 

 
For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

Solution:  This problem is a bit challenging, but we included it because it shows you the possibilities and 
accompanying thought process you need to take on when you do these types of problems. The first thing to be 
aware of is that we’re adding something to the RISC-V MCU, which means we may increase memory 
requirements.  

a) Changes you need to make to the RISC-V hardware:  
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 Push operations are generally two things: write something to memory at the correct address and change 
the address of the stack pointer. Write it out:  

     x2x2–4;   mem[x2–4]rs2  # these operations happen simultaneously    

 Writing it out shows that we need to access two registers at the same time, which is the data in rs2, and 
the SP address in x2. There is only one type of instruction outputs values from two registers, which is 
the R-type instructions, so we can thus model our push instruction as an R-type instruction. There are 
many R-type instructions using the “0110011” opcode, which leaves no space for any more instructions 
using this opcode (based on the funct3 opcode), so we give this instruction a new opcode and 
differentiate it with the 3-bit funct3 opcode.  

 We then need to get the right data to the places, which means adjusting addresses. We first need to write 
the data to the reg file into register x2. We can do this by hardcoding the value “00010” into the rd field 
in the push instruction (recall we’re using an R-type format). Therefore, we’ve taken care of the address 
that we need to write to the reg file.  

 The data we need to write to the register file is the data in x2 minus 4 (x2-4). We do this getting the x2 
data out of the register file by hardcoding the adr1 input to “00010”. Once on the output, we subtract 4 
from that value and feed it into the register file select MUX, which means we have to grow the MUX 
select (rf_wr_sel) by one select variable. The act of subtracting four from the value indicates that we 
also need to include some type of adder. Note that this approach opted to not use the ALU. We could 
have achieved the same result by adding a “-4” input to the srcB MUX, which also would have required 
we add an extra select bit to srcB MUX.  

 rs2 currently connects to the data input of the memory, so that does not need to change. The data 
address input connects to the ALU output, which is not going to help us. We need to place a 2:1 MUX 
on the memory ADDR2 input to allow either the ALU output or the x2-4 data for use as the data 
address.  

 We need to change the CU_DCDR because we added two new control signals and a new instruction. 
Recall that we need to expand the register file MUX to account for the adjusted SP, and the new MUX 
in front of the memory address. The two new control signals for the CU_DCDR are for extending the 
register file MUX and by one bit and adding a 2:1 MUX for the data address.  

 We need to change the CU_FSM to recognize the new 7-bit OPCODE, though it has the same control 
outputs as other R-type instructions.  

b) Changes you need to make to the RISC-V assembler:  

 The assembler needs to recognize the new instruction and assign the correct opcodes; recall that we 
hardcoded two of the R-type instruction register address fields.  

c) Changes in RISC-V memory requirements:  

 The memory size does not need to change to support this instruction. We did not change main memory, 
the PC, the register file, or the CSR register. Although we changed the CU_FSM, we did not add new 
states, which is the only way we could have increased memory size in that unit.  

d) Why this modification would be useful:  

 This mod would be useful because it would change a push operation from two instructions into one, 
thus providing a glimmer of hope for the free world.  
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Example 21.7: Conditional Jump Instructions 

Add the following instructions to the RISC-V MCU. Make as few modifications to hardware as 
possible. Implement these instructions in two clock cycles. These instructions are essentially 
conditional jump instructions. When we issue a jal instruction as a jump (not a subroutine call), 
we don’t utilize the destination register (rd). For the following instructions, we use the rd register as 
a source address register rather than a register to write to as in the normal jal instruction.  

jal_s   rd,imm      #  jump if reg_file[rd] != 0 

jal_c   rd,imm      #  jump if reg_file[rd] == 0 

examples:  

    jal_s    x25,my_label     # jump if value in x25 is non-zero 

    jal_c    x4,my_label      # jump if value in x4 is zero 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

e) why you couldn’t use these instructions for subroutine calls  
f) how these instructions differ from the other branch-type instructions 

Solution: Here is a possible solution. Keep in mind that we are adding something to the MCU, so we’ll stay 
attentive of the possibility of things growing.  

a) Changes you need to make to the RISC-V hardware:  

 This instruction is some type of jump so we can use the jal instruction format, which is a J-type 
instruction. What we need to do is to get a register value to the BRANCH_COND_GEN module; the 
registers already both connect to the module but the J-type instruction format has only one field for 
registers, which is a the destination register. We’ll use the rd field in the jal instruction as a source 
register and not a destination register. We can use either source register for this as both the rs1 and rs2 
outputs from the reg file connect to the BRANCH_COND_GEN. To make this work, we need to place 
a 2:1 MUX in front of the adr2 input on the reg file (this choice is arbitrary; you could use either source 
address for this) so that we can use the destination address (wa) field in the J-type instruction as a 
source address. The inputs to this MUX would be the current adr2 input (ir[24:20]); the other input 
would be the current wa input value (ir[11:7]). In this way, when we issue this instruction, we can use 
the rd value as a source address.  

 Due to the previous bullet, the rs2 has the address of rd. The rs2 output already connects to the 
BRANCH_COND_GEN, but we need to slightly modify the module. We need to add a single-bit 
output to the BRANCH_COND_GEN that indicates when the rs2 input is zero or non-zero; the new 
hardware would drive this output and connect to the CU_DCDR as in input.   

 We need to modify the CU_DCDR to recognize the new output from the BRANCH_COND_GEN and 
to recognize the new instructions. Since we are using a J-type format for our new instructions, there is 
no funct3 field, so each of these instructions would require its own 7-bit opcode to differentiate these 
instructions from the current jal instruction. The CU_DCDR would also now have a new control 
output, which would be the select input to the MUX we added in front of the reg file’s adr2 input. The 
CU_DCDR would decide to take the jump or advance the PC to the next instruction.  

 The CU_FSM would need to change to recognize the new 7-bit opcodes for these instructions and 
output the correct control signals, which would be different from the jal instructions.  
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b) Changes you need to make to the RISC-V assembler:  

 The assembler would need to be modified to recognize the two new instructions so it could generate the 
correct machine code for the instructions.  

c) Changes in RISC-V memory requirements:  

 We did not change main memory, the reg file, the CSR module, or the PC. We also did not add new 
states to the CU_FSM, so this change would require no memory changes.  

d) Why this modification would be useful:  

 This instruction would save a few instructions as it creates a conditional branch. The jal and jalr 
instructions are currently unconditional branches.  

e) Why you could not use these instructions for calling subroutines:  

 You could not use this instruction for subroutines calls because a subroutine call would use the 
destination register to store the return address, which is typically x1. The way we implemented this 
instruction took away to the rd write addresses and used it as a source address.  

f) How these instructions differ from the other branch-type instructions 

 These new instruction allow for farther jumps than branch-type instruction based on the width of the 
immediate field in the jal instruction as opposed to the branch-type instructions.  

 

 

 

Example 21.8: Reg-Reg Swap Instruction 

Add the following instruction to the RISC-V MCU. Make as few modifications to hardware as 
possible. This instruction swaps the data in two registers.   

reg_swp   rs1,rs2     # swaps the values in source registers 
 
example:  

          reg_swp   x10,x11   
 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

e) describe an algorithm where this instruction could particularly useful  

Solution: Here is a possible solution. Note that this problem requires you to add something to the RISC-V MCU, 
so there is a possibility that memory requirements will change.  

a) Changes you need to make to the RISC-V hardware:  

 The most obvious thing we see from this problem is that is has two reg file writes; that means there is 
no way to do this in one execute cycle. We’re going to have to add extra cycles for this instruction. We 
can do this problem in many ways, but they are all complicated. The problem is storing intermediate 
data while we do the swap. The solution is to use the XOR trick and swap the registers “in place”. This 
is what we want: xor   rs1,rs2,rs1   followed by   xor rs2,rs1,rs2    followed by   xor 
rs1,rs2,rs2 where the left-most operation is the destination register.  
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 First, let’s decide to use a B-type instruction as it has two source operands and no destination operand. 
We need both source operands as the destination operand (not at the same time), so we need to put a 
MUX in front of the wa input to the MUX. It needs to be a 4:1 MUX because we’ll need to choose 
between three different values as the wa input (the three current reg file addresses). This creates the 
need for two select inputs.  

 We don’t need to change the CU_DCDR other than to recognize this instruction in order send out the 
correct control signals. We need to make the CU_DCDR aware of the opcode for this instruction.  

 We need to add the two select signal for the new MUX to the CU_FSM. We need to add them here 
because we need to change the values for each execute cycle of the instruction. Since the CU_DCDR 
does not know of the cycles, we can’t add them to that module. We need to do three task reg file writes 
for this instruction, so we need to add two more states to the CU_FSM. We can get one write done with 
the current execute cycle, but we then need do add two more cycles for the other two required XOR 
operations for this instruction. On an exam, you would for sure want to draw the new state diagram for 
clarity.  

b) Changes you need to make to the RISC-V assembler:  

 The assembler would need to be modified to recognize the two new instructions so it could generate the 
correct machine code for the instructions.  

c) Changes in RISC-V MCU memory requirements:  

 We did not change main memory, the reg file, the CSR module, or the PC. We added two new states to 
the FSM, which currently has four states. We maxed out the code space for the two bits of state 
variable, so we need to add another bit, which gives us the option of coding eight states. This was a 
50% increase in memory for the CU_FSM.   

d) Why this modification would be useful:  

 This instruction would do two things: save a few instructions, and because it does an “in-place” swap, 
we used less registers.  

e) Describe an algorithm where this instruction would be useful:  

 This instruction would be ideal for sort algorithms.  

 

 



FreeRange Computer Design  Chapter 21 
 

 - 572 -  
 

 

Example 21.9: Pop Instruction 

Add the following instructions to the RISC-V OTTER MCU. Make as few modifications to 
hardware as possible. This instruction assumes x2 is used as the stack pointer.  

pop    rs1    # pop data from stack into rs1;  

example:  

       pop    x10   
 

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

Solution:  This is similar to the push instruction we described in a previous solution we conquered. We’re 
adding something to the MCU, so we may cause an increase in memory requirements. The first thing you want 
to do in a problem like this is to understand the underlying RTL. Here it is for a pop operation:  

          rs1  mem[sp];  sp  sp+4 

a) Changes you need to make to the RISC-V hardware:  

 The first thing to notice about this problem is that we’re doing two writes to the register file. That 
means there is no way we can implement this instruction with one execute cycle. This gets ugly; hang 
on. We need two cycles: the first cycle copies data from memory to the register file; the second cycle 
advances sp and stores the result in sp.  

 Make this an I-type instruction. Give it a new 7-bit opcode to differentiate it from other I-type 
instructions. Hardcode the immediate field in the I-type instruction to zero. Hardcode the rs1 in the 
instruction to 2, which is the address of the sp. The output of the ALU then has the memory address of 
the sp, which is the data we need to load into the register in the register file. The output of the memory 
already connects to the register file. This would be the first cycle. The second cycle would be to add a 
“+4” box to the rs1 reg file output, and connect that output to the register file MUX. This means we 
need to change the register file MUX to be an 8:1 MUX and add an extra bit to rf_wr_sel. We also need 
to place a MUX in front of the wa input to the reg file so we can route the adr1 reg file address there to 
be the write address for the second cycle. But wait, it gets worse.  

 We need to change the CU_FSM in a few ways. First, we need to add an extra state to the state machine 
for this instruction. Second, we need to override the entire register file MUX for this instruction. We 
need to do this because rf_wr_sel needs to different for each execute cycle for this instruction, and the 
CU_DCDR controls this signal. We need to add a MUX to the external hardware to have the CU_FSM 
take over the rf_wr_sel signal for this instruction. This would require an extra output from the 
CU_FSM to control this MUX.  

 We need to modify the CU_DCDR so that it recognizes this instruction with its new opcode. We need 
to add a select signal output from the CU_DCDR to control the MUX for the reg file’s wa input.  

b) changes you need to make to the RISC-V assembler 

 We need to make the assembler aware of this new instruction and send out the correct associated 
machine code.  

c) Changes in RISC-V memory requirements:  
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 We did not change main memory, the PC, the CSR, the reg file. We did add a new state to the CU_FSM, 
which put us at five states instead of four states. This requires an extra bit in FSM’s state registers.  

d) Why this modification would be useful:  

 This would save an instruction when you need to do a pop, and make the code more readable as 
opposed to tweaking the immediate values on the associated lw instruction.  

 

 

 

Example 21.10: Adding a HALT Instruction 

Add the ability to pause program execution. Many CPUs contain a “HALT” instruction, so I want 
the RISC-V to have one also. Describe the changes you need to make to the associated hardware 
and the assembler in order to implement this instruction and any other instruction I would need as a 
result of executing a “HALT” instruction. For this problem, do the following:  

For this problem, describe the following:  

a) changes you need to make to the RISC-V hardware 

b) changes you need to make to the RISC-V assembler  

c) changes in RISC-V MCU memory requirements   

d) why this modification would be useful 

Solution: The MCU is always doing something; the designers planned it that way. Recall that the never stopping 
feature is a characteristic of embedded systems. HALT-type instructions are useful in many ways, the ways are 
not worth going into here. The most obvious advantage would be to reduce power consumption by stopping the 
MCU from doing anything. There is nothing special about this solution, so you can definitely come up with a 
better one yourself.  

a) Changes you need to make to the RISC-V hardware:  

 Implementing this instruction would require the Control Unit to be modified in order to recognize 
this instruction and send out the appropriate control signals. Adding an instruction does not change 
the number of states in the control unit thus does not change memory requirements. We would 
implement this instruction by causing the MCU to go into a “HALT” state if the MCU executed 
this instruction. This could possibly cause an increase in the memory associated with the control 
unit as we’re officially adding a state.  

The main issue with this instruction is how you would restart the MCU once you executed a 
HALT instruction. The question is rather misleading on this issue as it suggests that you must add 
another instruction to “START” the CPU. But, if the MCU is HALTed, you won’t be able to 
execute an instruction. The only solution is to have some external signal “unhalt” the MCU. In 
this case, the HALT instruction would cause the Control Unit to go into a “HALT” state; in this 
case, some external signal, strangely similar to an interrupt, would be required to get the MCU 
doing something meaningful again by leaving the HALT state. This signal could be anything, 
such as a user button-press or something similar. Keep in mind in real life, CPUs do all they can 
to turn themselves off if they are not being used; these are referred to as power-saving modes. 
But, they need to quickly wake up when something important needs the CPUs computational 
abilities.  

b) changes you need to make to the RISC-V assembler 

 We need to make the assembler aware of this new instruction and send out the correct associated 
machine code.  

c) Changes in RISC-V memory requirements:  



FreeRange Computer Design  Chapter 21 
 

 - 574 -  
 

 We did not change main memory, the PC, the CSR, the reg file. We did add a new state to the 
CU_FSM, which put us at five states instead of four states. This requires an extra bit in FSM’s state 
registers.  

d) Why this modification would be useful:  

 This would essentially provide a power-saving mode to the MCU. This would also be a useful 
instruction if you were using the RISC-V in a multi-processor environment.  
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21.3 Chapter Summary 

 

 Because the RISC-V architecture was provided to you, it leaves little room for actual hardware design. In 
cause you may have not noticed, hardware design is a significant aspect of this course. If you truly 
understand the current RISC-V MCU hardware and how it interfaces with the RISC-V ISA, you should be 
able to make modifications to the RISC-V to extend the current functionality.  

 This chapter presented a bunch of possible modifications to the RISC-V MCU and/or RISC-V instruction 
set. The learning element here is comes by understanding the solutions.  

 Any changes to “additions” to the current RISC-V MCU may affect the complexity and storage 
requirements of the hardware; and “reductions” made to the RISC-V MCU may have the opposite affect.  

 You must reference the RISC-V assembly language manual and RISC-V MCU architectural diagram in 
order to complete these problems. No one should expect you to memorize reference data such as that stuff. 
A complete understanding of the instruction formats is vital when working with these problems.  
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21.4 Chapter Exercises 

 

1) The text describes these hardware modification problems as “open ended”. Briefly describe what that 
means.  

2) Briefly describe how it is possible to reuse instruction mnemonics for new instructions and not freak out the 
assembler.  
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21.5 xxxxChapter Design Problems 

 

1) Add the following instruction to the RISC-V OTTER MCU. Make as few modifications to hardware as 
possible. Implement this instruction in two clock cycles. This instruction stores the word in the rd 
register to memory and leaves the rd value cleared.  

mr_clr       rd,imm(rs)      : xd  0; mem[X(rs)+sext(imm)]  xd 

 

example:    mr_clr    x25,8(x10)     # write x25 to memory; clear x25 

 

a) Describe changes you need to make to the RISC-V hardware 

b) Describe changes you need to make to the RISC-V assembler  

c) Describe changes in RISC-V MCU memory requirements   

d) Describe why this modification could be useful 

 

 

 

2) xxxxImplement the following instruction: “INOUT”. This instruction has the form: “INOUT    r0,0x23” 
where the source operand is considered a port_id. This instruction will simultaneously input a value and 
write it to r0 (the destination operand) and also output the value to the port_id (the source operand).  

3) Implement the following instruction: “IN    0x37,0x23” where the source operand (right operand) is 
considered a port_id and the destination operand is an address used to index RAM. This instruction inputs 
the value from the input port to the given RAM address.  

4) Implement the following instruction: “ROLST    r1,(r2)” where the destination operand (r1) is rotated left 
and the result is stored in the RAM location referenced by the value in the source operand (r2).  

5) Implement an instruction that automatically increments the index register for indirect LD instructions. For 
example, when I write “LD    r0,(r1+)”, the value from address value in r1 is loaded from memory 
into r0 and the value in r1 is automatically incremented as part of this operation. For this problem, do the 
following:   

6) I want to implement the following instructions: “SRSWP” which stands for “RAM swap”. This instruction 
has the form “SRSWP     r1,(r2)”, which means it swaps the value in r1 with the contents of the memory 
location indicated by the value in r2.  
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Foundation Modeling Cheatsheet 
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RISC-V OTTER MCU Architecture Diagram (no Interrupts) 
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RISC-V OTTER MCU Architecture Diagram (with Interrupts) 
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Finite State Machine Modeling using Verilog Behavioral Models 
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RISC-V MCU Wrapper Source Code 
// Engineer:  James Ratner, Joseph, Paul Hummel, Celina Lazaro 
// Revision  1.04 – (02-08-2020) removed typo for anodes 
 
module OTTER_Wrapper( 
   input clk, 
   input [4:0] buttons, 
   input [15:0] switches, 
   output logic [15:0] leds, 
   output logic [7:0] segs, 
   output logic [3:0] an    ); 
        
   //- INPUT PORT IDS --------------------------------------------------------- 
   localparam SWITCHES_PORT_ADDR = 32’h11008000;  // 0x1100_8000 
   localparam BUTTONS_PORT_ADDR  = 32’h11008004;  // 0x1100_8004 
               
   //- OUTPUT PORT IDS -------------------------------------------------------- 
   localparam LEDS_PORT_ADDR     = 32’h1100C000;  // 0x1100_C000 
   localparam SEGS_PORT_ADDR     = 32’h1100C004;  // 0x1100_C004 
   localparam ANODES_PORT_ADDR   = 32’h1100C008;  // 0x1100_C008 
 
   //- Signals for connecting OTTER_MCU to OTTER_wrapper  
   logic s_interrupt;   
   logic s_reset;  
   logic s_clk = 0; 
 
   logic [31:0] IOBUS_out; 
   logic [31:0] IOBUS_in; 
   logic [31:0] IOBUS_addr; 
   logic IOBUS_wr; 
    
   //- registers for dev board output devices --------------------------------- 
   logic [7:0]  r_segs;   //  register for segments (cathodes) 
   logic [15:0] r_leds;   //  register for LEDs 
   logic [3:0]  r_an;    //  register for display enables (anodes) 
    
 
   assign s_interrupt = buttons[4]; 
   assign s_reset = buttons[3]; 
 
   //- Instantiate RISC-V OTTER MCU  
   OTTER_MCU  my_otter( 
      .RST         (s_reset), 
      .intr        (1’b0), 
      .clk         (s_clk), 
      .iobus_in    (IOBUS_in), 
      .iobus_out   (IOBUS_out),  
      .iobus_addr  (IOBUS_addr),  
      .iobus_wr    (IOBUS_wr)   ); 
    
    //- Divide clk by 2  
    always_ff @ (posedge clk) 
        s_clk <= ~s_clk; 
   
    //- Drive dev board output devices with registers  
    always_ff @ (posedge s_clk) 
    begin 
       if (IOBUS_wr == 1) 
       begin 
          case(IOBUS_addr) 
             LEDS_PORT_ADDR:   r_leds <= IOBUS_out[15:0];     
             SEGS_PORT_ADDR:   r_segs <= IOBUS_out[7:0]; 
             ANODES_PORT_ADDR: r_an  <= IOBUS_out[3:0]; 
             default:   r_leds <= 0;  
          endcase 
       end 
    end 
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    //- MUX to route input devices to I/O Bus 
    //-   IOBUS_addr is the select signal to the MUX 
    always_comb 
    begin 
        IOBUS_in=32’b0; 
        case(IOBUS_addr) 
           SWITCHES_PORT_ADDR : IOBUS_in[15:0] = switches;  
           BUTTONS_PORT_ADDR  : IOBUS_in[4:0] =  buttons; 
           default: IOBUS_in=32’b0; 
        endcase 
    end 
 
   //- assign registered outputs to actual outputs  
   assign leds = r_leds;  
   assign segs = r_segs;  
   assign an = r_an;  
 
endmodule 
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Verilog Style File 
James Mealy  v1.00 

The main goal of your Verilog source code is to model a digital circuit, which means that your only required 
mission is to satisfy the Verilog synthesizer. Good Verilog models must both work properly and be readable by 
humans. Poorly written Verilog models can be work properly but are not maintainable or reusable if humans 
can’t easily read and understand the code. Digital designers can generate good Verilog models by following a 
few relatively simple guidelines. The following code describes how digital designers can create superbly 
formatted Verilog models, but does not cover aspects of how to properly use the various Verilog constructs. Use 
this document in conjunction with the Verilog Coding Guidelines to help you create most excellent Verilog 
models. The overriding factor with your Verilog source code is to make it neat, organized, and readable; any 
specific items not listed in this style file should adhere to these principles. 

// The file contains a header describing the important features of the file.  
 
////////////////////////////////////////////////////////////////////////////////// 
// Company:  Ratner Surf Designs 
// Engineer:  James Ratner & Myron Bucketts 
//  
// Create Date: 07/07/2018 08:05:03 AM 
// Design Name:  
// Module Name: prime_gen_fsm 
// Project Name:  
// Target Devices:  
// Tool Versions:  
// Description: Model contains the names of the model creator, name of  
//    the module, and a description at the very least. You should also track  
//    revisions of the model also. This is the standard Xilinx header which  
//    contains other items we choose to remain blank.  
// 
// Dependencies:  
//  
// Revisions: 
// Revision 1.00 - (07-07-2018) File Created  
// 
// Additional Comments: 
//  
////////////////////////////////////////////////////////////////////////////////// 
 
// The module name describes the module’s purpose, separates inputs and outputs,  
//   and only places one item per line. We opted to include types (wire or reg),  
//   but this is not necessary.  
module prime_gen_fsm( 
    input wire PRIME,   
    input wire DONE, 
    input wire RCO,  
    input wire btn,  
    input wire clk,  
     
    output reg START,  
    output reg WE,  
    output reg UP1,  
    output reg UP2,  
    output reg CLR,  
    output reg SEL   ); 
 
    /* Longer comments are more easily modified if you delineate them using 
       block comments.  
     */  
 
    /* Note how we separate each “item” with whitespace (blink lines). We 
       Do this in the entire file. While this approach makes the code model 
       Longer, it does not affect the size of the synthesized hardware.  
     */  
 
    /* Note that we place all declarations at the top of the model and do  
       Not inter-mingle declarations throughout the code.  
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     */  
      
    // next state & present state variables 
    reg [1:0] NS, PS;  
 
    wire s_clk;   // divided (slowed) clock signal 
  
    // bit-level state representations 
    parameter [1:0] st_wait=2'b00, st_start=2'b01, st_work=2'b11;  
 
 
    /* We use the vertical “dot” form for instantiations. There is one  
       mapping per line, everything is nicely aligned, and we use self- 
       commenting names.  
     */  
 
    // divide the FSM clock down  
    clk_2n_div_test #(.n(25)) fsm_clk_divider ( 
        .clockin    (clk),  
        .fclk_only  (1’b0),           
        .clockout   (s_clk)   );       
 
    /* this is a sequential block based on the “posedge” argument in the 
       Sensitivity list. Note that we use non-blocking assignment statements 
       Because this block models a sequential circuit (state registers)  
     */  
 
    // the state registers 
    always @ (posedge s_clk) 
          PS <= NS;  
     
     
    // the next-state and output decoders 
    always @ (*) 
    begin 
 
       // we place many assignments on the same line because they serve 
       //  a similar purpose.  
       START=0; WE=0; UP1=0; UP2=0; CLR=0; SEL=0; // assign all outputs 
 
       /* All the cases in the case statement are nicely delineated. 
          The if clauses in the final cases are also separated using  
          whitespace (blank lines).   
 
          All cases are represented so the case statement does not rely 
          on the default clause to work properly.  
 
          Longer blocks use comments for “ends” to indicate what they 
          are ending.  
 
          If statements with compound requirements are delineated using 
          parenthesis.  
 
          This is a combinatorial block (a decoder) so all if statements  
          contain else statements, all case statements contain default 
          statements, and we use block assignment statements. 
        */   
 
       case(PS) 
        
          st_wait:  // waiting for button press  
          begin 
             if (btn == 0) 
             begin 
                CLR = 0;     
                NS = st_wait;  
             end   
             else 
             begin 
                CLR = 1;  
                NS = st_start;  
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             end   
          end 
           
          st_start:  // prepare FSM to start calculation 
          begin 
             START = 1; SEL = 1;  
             NS = st_work; 
          end    
              
          st_work:  // state doing the main work 
          begin 
             START = 0; SEL = 1;  
             if ( (RCO==1) && (PRIME==1) && (DONE==1) ) 
             begin 
                WE = 1;  
                NS = st_wait;  
             end 
           
             else if ( (DONE==1) && (PRIME==0) ) 
             begin 
                UP1=1; UP2=0; WE=0;  
                NS = st_start;  
             end 
           
             else if ( (RCO==0) && (DONE==1) && (PRIME==1) )  
             begin 
                UP1=1; UP2=1; WE=1; 
                NS = st_start;  
             end 
           
             else if (DONE==0)  
                NS = st_work; 
            
             else 
                NS = st_work; 
             
          end   // ends current case  
              
          default: NS = st_wait;  
             
          endcase 
      end   // ends always block           
endmodule  
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RISC-V MCU Assembly Language Style File 

The following file shows some of the more important issues regarding generating neat and readable RISC-V 
MCU assembly source code. No style file can show you everything and they rarely make such an attempt. The 
underlying factor in writing any source code is to be neat and consistent. Using proper indentation, white space 
and commenting helps you attain the goals of being neat and consistent. The code is some example problem that 
we edited for clarity and to make it shorter. The code does not assemble, but that is not the point; the program is 
presented primarily for appearance purposes. Also, you can’t see it in the following code, but never use the tabs 
of align items; use spaces instead.  
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#------------------------------------------------------------------------------- 
# Program Description:  
# 
# The entire program contains a header (or banner) describing the purpose of  
# the program. The more detail you can provide here the better, as you or anyone 
# else reading the program will want to know the details. Note that this banner  
# clearly delineated from the remainder of the program.  
#------------------------------------------------------------------------------- 
 
# the data segment is listed before code; all data in the data 
# segment is aligned and divided up between lines for clarity 
#---- data segment ------------------------------------------------------------- 
.data                             # data segment 
junk:         .word  0x3, 0x7     # describe purpose of data 
bugs:         .word  0x32, 0xDD   # don’t try to fit data on one line 
trash:        .byte  0x3, 0x7     # more description 
 
 
# Always declare a text segment even if you have no data segment 
# The first part of any program or subroutine should have some  
#  type of “init” label.  
.text                             # text segment 
init:         la     x10,junk     # load address of junk 
              li     x20,2        # load count of data 
 
# Use white space (blank lines) between sections of program 
#  that perform distinctively different tasks.  
 
# Align all labels, instructions, left-most operands and comments 
# One comment per line is a good assembly language programming approach.  
 
init1:        mv    x25,x0        # designated large value         
              addi  sp,sp,-4      # make space for ra 
              sw    ra,0(sp)      # store return address 
 
loop1:        beq   x20,x0,done1  # quit if count is zero 
              lw    x30,0(x10)    # get value 
              call  Calc_unary    # find unary equivalent 
 
admin:        addi  x10,x10,4     # advance address 
              addi  x20,x20,-1    # decrement count 
              j     loop1         # repeat 
 
done1:        lw    ra,0(sp)      # pop return address   
              addi  sp,sp,4       # adjust sp           
              ret                 # going home, all the time 
 
#------------------------------------------------------------------------------- 
# Subroutine: My_sub:  
# 
# All subroutines have banners describing that the subroutine does, the values  
# passed to and returned from the subroutine, and the register that the  
# subroutine permanently changes. 
# 
# Passed values: x30 
# Returned values: x29 
# 
# Tweaked register: x25, x31, x29 
#------------------------------------------------------------------------------- 
My_sub:  
init2:        mv    x31,x0        # init count 
loop2:        beq   x30,x0,done2  # see if no more ones 
              andi  x29,x30,1     # mask LSB 
              add   x31,x31,x29   # accumulate count 
              srli  x30,x30,1     # shift value 1 to right 
              j     loop2         # do it again 
done2:        ret                 # bring it home   
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Glossary of Computer Design Terms 
 
 

-A- 

Abstract Data Types: A data type that is described 
at a high-level, such as how the object should 
behave, rather than describing the type using low-
level implementation details.  

Academonic: The rallying cry for those who dare to 
expose the endemic corruption in academia.  

Active Edge: The portion of a logic signal used to 
synchronize digital circuit operation; can either be 
rising edge (‘0’ to ‘1’ transition) or falling edge (‘1’ 
to ‘0’) transition.  

Address: (or Memory Address), the way 
semiconductor memory devices (structured memory) 
specify memory locations. The address is analogous 
to an array “index” in higher-level programming 
languages.  

Address Space: The maximum amount of memory 
a given processor can access (or address). This does 
not refer to the actual amount of memory (physical 
memory) in any given system.   

Anode: The positive end of a diode (the end that 
accepts electrons). See cathode;  

Arithmetic Logic Unit (ALU): The ALU is 
generally a datapath submodule, which in turn is a 
submodule of CPU. The ALU is responsible for 
standard bit operations such as arithmetic and 
logical operations (and shifts and any other way you 
can think of to tweak bits). The ALU is responsible 
for generating status of various operations (zero, 
negative, overflow, carry, pointlessness, parity, etc.) 
which are typically individual bits that are latched 
outside of the ALU.  

Arithmetic shifts: Shift operations that protect the 
sign of data residing in a shift register when 
performing shift operations.  

Assemble Time: The notion of what values are 
known at the time a program is assembled. 
Generally speaking, the assembler knows constants 
values at assemble time but does not know constant 
values until run time.  

Assembler Directives: One of the three main parts 
of an assembly language program. Assembler 
directives provide a method for the programmer to 
send messages to the assembler.  

Assembler: An assembler is a computer program 
that translates assembly code (instruction 
mnemonics) into machine code.  

Assembly Language Program Parts: There are 
generally three types of information found in 
assembly language programs: 1) comments, 2) 
assembler directives, and, 3) assembly language 
instructions.  

Assembly Language: A computer language that 
uses mnemonics to represent the instructions 
available to the programmer (the instruction set) for 
a given computer architecture. The mnemonics 
roughly spell out what the instruction does in terms 
of the underlying hardware. Assembly language 
programs are translated to machine code by use of a 
software program referred to as an assembler. 
Assembly language is generally non-portable in that 
the assembly instructions are specific to a given 
computer architecture.  

Astable Multivibrator: A term referring to a signal 
with no stable states, typically an oscillator (clock 
signal).  

Asynchronous: A term that refers to digital circuits 
whose operations are not synchronized to any signal 
such as a clock signal. This term often is a synonym 
for combinatorial circuits.  

-B- 

Background Task: A term used to describe the 
program code associated with main code and not 
associated with interrupt service routines. The 
foreground task is generally all the code that is not 
initialization code or interrupt service routine code. 

Barrel shifts: A special type of shift register shift 
that shifts any number of bits (other than one bit) on 
a single clock cycle.  

Base Address: A value that is one of the values to 
calculate a physical address; another value, such as 
an offset, is used to modify the base address to create 
a physical address.  
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Big Endian: One of two ways to represent a 
multibyte value in a byte-oriented memory that 
places the most significant byte of the data at the 
lower address value. See little endian.  

Bit: A term commonly used to describe a binary 
digit.  

Bitwise: A really smart bit, or a term meaning that 
an operation on a set of bits is done at the bit level 
(on individual bit-pairs) and not on the entire set of 
bits. You typically hear this term associated with 
MCU’s logic-based instructions.  

Bistable Multivibrator: A device with two stable 
states (on and off); another term for a flip-flop.  

Bi-Directional Signals: A term that refers to the 
notion that data can flow through a line in two 
directions (though not at the same time) rather than 
only one direction. Bi-directions signals are 
generally associated with tri-state outputs because a 
given device cannot generally simultaneously drive 
a signal and read from that signal.  

Bit Masks: The term bit-mask describes a value that 
“selects” certain bit locations of a given word while 
disregarding other bit locations. The disregarded bits 
are generally cleared by the bit-masking operation. 
Bit masking is generally required because most 
operations in microcontrollers occur on the byte-
level.  

Bit-Banging: The process of using microcontroller 
outputs on a bit-level to control external peripherals. 
In this way, the general purpose outputs of a 
microcontroller are used to generate the control 
signals required to control and/or exchange 
information with external devices.  

Bit-Wise Operations: This term generally refers to 
operations that on done on individual sets of bits in 
registers, such as logic operations.  

Block Diagram: A modeling approach used in 
hardware to quickly transfer high-level knowledge 
regarding the operations of a given circuit to the 
human reader. Block diagrams can and should be 
hierarchical in nature when appropriate to expedite 
their understanding to the human reader.  

Branch: A computer instruction that can cause 
program flow to transfer to an instruction other than 
the instruction following the current instruction. 
Branch instructions are by definition conditional, 
meaning program control transfers based on the state 
of the hardware or a condition encoded into the 
instruction.  

Bus Contention: Bus contention occurs when two 
different busses attempt to simultaneously drive the 
same bus. In this context, the bus is a shared 
resource. Contention can also occur on individual 
signals as well as busses.  

Bus: A set of electrical signals that are grouped 
together because they share a common purpose. The 
term “bus” also refers to various standard data 
transmission protocols, and as a result, a bus, as 
defined here is often referred to as a bundle.  

Byte: A set of eight binary digits.  

-C- 

Carry: The bit that overflows or underflows from a 
mathematical or shift operation.  

Cathode: The negative end of a diode (or the end 
that sources electrons). See anode.  

Central Processing Unit (CPU): The CPU is 
generally considered the part of the computer that 
executes the instructions. Typical submodules of the 
CPU include the control unit, datapath, program 
counter, instruction memory, register files, 
accumulators, ALUs, secondary memory, roach 
motels, etc.  

CISC: An acronym for complex instruction set 
computer. See complex instruction set computer.   

Clear: The act of making a bit value into a ‘0’. 
Often used to refer to making a set of bit’s all zeros, 
such as “clear the register”.   

Clock: A signal that sequences or synchronizes all 
operations in a sequential digital circuit. Clock 
signals are typically periodic outputs from 
oscillators circuits such as astable multivibrators.  

Code Space: The part of a computer system’s 
memory dedicated to the program memory.  
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Complex Instruction Set Computer: This acronym 
officially stands for “Complex Instruction Set 
Architecture” and is generally used to describe 
computer architectures. CISC computers generally 
have the following characteristics:  
The architecture contains relatively few general 
purpose registers  
 The instruction word formats are of different 

lengths  
 Instructions require a different number of 

clock cycles to complete execution  
 Some instructions in the instruction set are 

complex (meaning they can generate a 
significant amount of processing internal to 
the architecture) 

System clock rates are generally slower than their 
RISC counter-parts. 

Complexicated: Something that is both complex 
and complicated.  

Constant: A value that never changes; the opposite 
of a variable.  

Combinatorial vs. Sequential Circuits: The 
outputs of a combinatorial circuit are a function of 
the current inputs while the outputs of a sequential 
circuit are a function of the combination of past 
inputs. Stated differently, combinatorial circuits do 
not have the ability to “remember” bits while 
sequential circuits are able to store values and are 
this considered to have memory.  

Compiler: A computer program that translates 
higher-level language code into machine code. 
Compilers generally also produce assembly 
language code listings, which are specific to the 
target computer. Compiling is generally a two-step 
process where the code is first translated to a generic 
intermediate form, then translated to a form specific 
to a given computer architecture.  

Computational Complexity: A term that provides a 
way to classify and/or describe the amount of 
resources required to execute a program, section of 
code or algorithm.  

Computer I/O: One of the three main subsections 
of a computer that allows the computer to interact 
with the outside world.  

Context: A term that refers to the state of the 
processor at any given time, where state is defined 
by the data the given processor is storing at a given 
time. This term is synonymous with operating 
context.  

Context Restoration: A term describing what a 
CPU does upon completion of servicing an interrupt. 
In this case, context restoration refers to the notion 
that the CPU must return to the state it was in (flags, 
registers, etc.) before the CPU executed the interrupt 
service routine.  

Context Saving: A term that describes what a CPU 
must do when an interrupt is acted upon. The 
general notion is that interrupts are asynchronous 
and can occur while the CPU is executing some 
important piece of code. In this case, the CPU saves 
the current state of the CPU (flags, registers, etc.) 
before processing executing the interrupt service 
routine.  

Counter: A hardware sequential device that 
generates a known sequence of values on the 
circuit’s outputs. The device is typically 
synchronous. Typical counter functions include 
increment, decrement, clear, and hold.  

-D- 

Data: A set of 1’s and 0’s.  

Data Segment: The part of an assembly language 
program used to declare and/or define data; no 
instructions can be listed in the data segment.   

Datapath: The hardware module that is generally 
considered to do the number crunching associated 
with instructions. Submodules of the datapath 
generally include the ALU, register file, 
accumulator, various selection logic, etc.   

Debouncer: An entity that “debounces” a switch, 
which means the entity provides a noiseless state 
transition. Switch debouncing can be done in 
hardware or firmware.  

Debug: The act or removing errors from an entity 
such as a computer program or hardware 
schematic/circuit.  

Decoder: A standard combinatorial hardware device 
the implements Boolean functions characterized by 
tables. Two flavors of decoders include generic and 
standard decoders.  
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Decrement: The act of increasing a value by one; 
it’s also one of the typical operations of a standard 
digital counter.  

Delay: A given span of time in a circuit where state 
of the circuit does not change in a meaningful way.  

Destination Operand: A given span of time in a 
circuit where state of the circuit does not change in a 
meaningful way.  

Deterministic: An event that is known to happen 
the same way each time it occurs and can thus be 
described in advance.  

Dev Board: A nickname for a development board.  

Development Board: A populated PC board 
containing hardware that allows you to prototype 
various electronic circuit projects.  

Diode: A two-terminal semiconductor device that 
passes current in only one direction (from anode to 
cathode). The diode causes a voltage drop across the 
device terminals when conducting.  

Direct Memory Access: One of three main type of 
computer I/O, characterized by the MCU initiating 
data transfers with external peripherals but not 
expending significant amount of clock cycles 
controlling that I/O operation. The programmed I/O 
and interrupt I/O are the other two types.   

Disassembly: The act of generating the assembly 
code that generated the machine code from the 
machine code.  

Display Multiplexing: An approach typically used 
by LED-based 7-segment displays that allows the 
driving device to control many digits without 
dedicating a signal to each LED in each segment. 
The general approach is to connect each type of 
segments with one signal and give each individual 
display an on/off control. Using this configuration, 
display multiplexing only actuates one display at a 
time, but does so at a rate that makes it appear as if 
all displays are on at the same time. Multiplexing 
works for humans because of the notion of retinal 
persistence.  

DMA: An acronym standing for direct memory 
access; see direct memory access.  

Do-While Loop: An iterative loop characterized the 
fact that the loop body is executed at least one time, 
which it does by checking the loop ending condition 
only after it executes one loop body. 

-E- 

Edge-Triggered: A term referring to a sequential 
digital circuit whose state can only be changed 
synchronized with an active edge of a given signal, 
typically, a clock signal. The edge in question can 
either be a “rising edge” (0→1 transition) or a 
“falling edge” (1→0 transition).  

Elementary Operation: A basic operation 
performed by a sequential circuit. Elementary 
operations are most often spoken of in terms of 
registers. Typical operations performed by registers 
include loading (generally a parallel load), setting 
(sets all bits in register), clearing (clears all bits in 
register), shifting/rotating (specifically for shift 
registers), and incrementing/decrementing (generally 
for counters).  

Embedded System: The hardware and software of a 
computer system that typically performs a dedicated 
task. Embedded systems are well known to be hard 
to test and debug based on a limited number of input 
and output features. The software that runs 
embedded systems is typically firmware because it 
is specialized to run only one particular set of 
hardware.  

Endianness: A term that describes how multibyte 
values are stored in byte-oriented memories; the 
choices are little endian and big endian.  

Ethics: A quality that you either have or don’t have. 
If you tell the world you have it, or you’re an 
academic administrator, then you don’t have any 
ethics.  

Event: An occurrence of something that has 
meaning and/or significance. In the context of 
computers, an event is typically some occurrence the 
computer is expected to react to.  

-F- 

Feature Creep: A condition where device or 
program specifications grow over time while 
typically bypassing the appropriate channels for 
such changes. 
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Feedback: A portion of an entities output is 
returned (fed back) to the input to allow the input to 
be modified accordingly. Feedback can either be 
positive or negative feedback. 

Fetch Cycle: The part of instruction execution that 
typically includes reading an instruction from 
program memory.  

Field Code: A term referring to an underlying bit 
field in an assembly language instruction. Field 
codes are variables for a given instruction (meaning 
they have no set value); opcodes are constants for a 
given instruction. 

Field Programmable Gate Array (FPGA): A 
programmable logic device (PLD) is an integrated 
circuit that contains internal devices that can be 
configured (or programmed) to implement a given 
digital circuit. The internal devices include logic, 
memory, routing, and input/output resources. 

Finite State Machine (FSM): An abstract machine 
that defines a finite set of states, actions performed 
in those states, and a set of rules defining how the 
machine transitions from state to state. FSM are 
generally classified as either Mealy or Moore 
machines. FSMs are one of two major hardware 
devices that are typically used to control other 
hardware entities. In these cases, FSM inputs are 
considered status inputs while FSM outputs are 
considered control outputs.  

Firmware: Firmware is a computer program that is 
written to run on a specific piece of hardware and is 
thus often associated with embedded systems. 
Firmware does not refer to the language-level in 
which the program is written thus can be written in 
machine code, assembly code, or a higher-level 
language. 

First Five Things for a New CPU: When you first 
examine a new CPU, the five things you should 
initially examine are 1) the programmer’s model, 2) 
the instruction set, 3) the interrupt architecture, 4) 
the memory model, and 5) the I/O architecture.  

Flag: A value used a Boolean variable to that 
indicates a two-stateness of something (on-off, true-
false, yes-no, etc.).  

Flag Register: A register used to represent a flag 
value.  

Flicker: An issue associated with display 
multiplexing where the multiplexing rate is slow 
enough for humans to note that displays are not 
“always on”.  

Flip-Flop: A synchronous single-bit store device 
(aka, bistable multivibrator). Typical flavors include 
D (data), T (toggle), and JK (unknown).  

Flowchart: A diagram that uses a few distinctive 
symbols to model the program flow associated with 
an algorithm. Computer programmers use flowcharts 
as an aid to program design and/or documentation 
support. Flowcharts can and should be hierarchical 
in nature when appropriate. The hardware analogy to 
a flowchart is the black-box diagram.  

Foreground Task: A term used to describe the 
program code associated with interrupt service 
routines.  

Fragile: A label attached to code that is 
unmaintainable. Fragile code breaks if you attempt 
to modify it, hence the name fragile. The roots of 
fragile code are a complete lack of planning of the 
code as well as modifications made by people who 
don’t know what the f**k they’re doing. 
 

-G- 

General Purpose Computer: A computer with an 
instruction set that is designed to be flexible to give 
it the ability to solve a wide range of problems.  

Generic Decoder: A generic decoder is a hardware 
implementation of a look-up-table (LUT). LUTs 
generally establish a functional relationship between 
inputs and outputs by assigning an output for every 
unique input. 

Ghosting: An issue associated with display 
multiplexing where an LED is on when it should be 
off resulting in dimly lit LED showing incorrect 
information.  

-H- 

Hardware: The part of an embedded system that is 
not software and/or firmware; the stuff you can hold 
in your hand.  

Harvard Architecture: A computer architecture 
that has separate memory space for both data and 
instructions.  
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Hex: A shorthand name for “hexadecimal”; see 
hexadecimal. Don’t look too hard on this one.   

Hexadecimal: A number represented with a radix of 
16 (base 16).  

HDLs (Hardware Description Languages): Text-
based languages used to model digital circuits. The 
main flavors of HDLs include VHDL and Verilog.  

Higher-Level Computer Language: A computer 
language that uses opened-ended expressions and 
functions to generate desired results. Higher-level 
languages are generally input to computer programs 
such as compilers, which translate the languages to 
both assembly code and machine code associated 
with the target machine. Higher-level languages are 
generally portable (processor independent) and thus 
various higher-level language code can be compiled 
to run on different target machines.  

High-Impedance: A term that refers to a device that 
effectively removes itself from a circuit by turning 
off its drive current. A device that cannot drive a 
circuit can no longer affect the circuit and is thus 
effectively not in the circuit.  

Hold Time: The amount of time a synchronous 
circuit’s non-clock inputs must remain stable after 
the active clock edge; violation of hold times cause 
the hardware to go “metastable” and makes your 
circuit act like an academic administrator.   

-I- 

I/O: An acronym for input/output.  

Immediate Operand: One of the operands of an 
assembly language instruction that is a constant 
value, but typically not an offset value.  

Increment: The act of increasing a value by one; 
it’s also one of the typical operations of a standard 
digital counter.  

Indentation: The act of using white space to align 
various parts of source code to make the code more 
readable to humans. In most meaningful computer 
languages, indentation is optional, but highly 
recommended. Chimpanzees can generate source 
code; intelligent people can generate museum 
quality source code.  

Infinite Loop: An iterative structure that never 
terminates; the main code in embedded systems 
applications are typically encoded as infinite loops.  

Information: A set of data that has a known 
meaning.  

Input/Output: One of the three basic computer 
subsystems; it’s the subsystem that allows a 
computer to interact with the external world.  

Initialization: A section of code that when 
executed, places a system in a known state. 
Typically, embedded applications and subroutines 
include a section of code dedicated to initialization.  

Instruction format: The bit-level description of 
instructions associated with assembly language 
instructions. Each instruction is comprised of op-
codes in every case, but also can include field codes 
in most cases.  

Instruction Register: A common register in 
computer architectures that holds the machine code 
of the current instruction being executed by the 
computer; often referred to as simply ir. 

Instruction Set: The instruction set describes the 
operations that the computer hardware can perform 
under program control (either software of firmware). 

Instruction Set Architecture (ISA): A term that is 
typically used to refer to the instruction set 
organization and purpose for a given architecture. 
This is a more global and inclusive term for 
instruction set. . 

Iteration: The act of repeating something, such as 
the body of a loop in a computer program.  

Iteration Count: The value that governs how many 
times something, such as a loop in a computer 
program, will iterate.  . 

Interrupt Architecture: A common term used to 
describe all the characteristics (both hardware and 
software considerations) of interrupts for a given 
processor. Every computer device generally has a 
different interrupt architecture and is thus one of the 
three important aspects of any computer device (the 
programmer’s model and instruction set are the two 
other important aspects).  
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Interrupt Cycle: The steps a CPU goes through in 
order to handle an interrupt. The interrupt cycle is 
generally different from “normal” processing cycles.  

Interrupt Driven I/O: Another form of I/O 
characterized by an external device having the 
ability to change the normal flow of a program by 
executing a special set of code referred to as the 
interrupt service routine.  

Interrupt Handlers: An alternate name for interrupt 
service routines (ISRs).  

Interrupt Masking: This refers to the notion that 
most interrupt architectures allow for the prevention 
of response to interrupts based on software control. 
Processor support for interrupts generally includes 
instructions that allow for processor response to 
interrupt signals (unmasking) or prevent system 
response to interrupt signals (masking). 

Interrupt Service Routine (ISR): When a 
processor responds to an interrupt, the given 
interrupt architecture responds by executing a set of 
instructions known as an interrupt service routine. 
The ISR is nothing more than a subroutine that is 
executed after being “called” by some device. ISRs 
are often referred to as “interrupt handlers”.  

Interrupt Service Routine: A section of code that 
the CPU executes automatically as a result of acting 
on an interrupt.  

Interrupt Vector Address: The address the CPU 
places into the program counter when the CPU acts 
on an interrupt. Thus, when an interrupt is 
processed, the first instruction executed is the one 
residing at the vector address. The instruction at the 
vector address is generally a branch to the interrupt 
service routine.  

Interrupts: An asynchronous signal from an 
external device to the processor. Exactly how the 
processor reacts when an interrupt is received is 
based on the interrupt architecture for a given 
processor. In simple terms, an interrupt can be 
considered a method for internal hardware or 
external devices to call a special subroutine (ISR). 
Interrupts signals are generally considered 
asynchronous in nature, which makes them vital to 
real-time embedded systems.  

ir: Common acronym standing for instruction 
register (see instruction register).   

Iterative: Something that repeats, such as a section 
of code in a loop.  

-J- 

JK Flip-Flop: A standard but antiquated type of 
flip-flop that has characteristics of both D and T 
flip-flops.  

Jump: A computer instruction that causes program 
flow to be unconditionally transferred to an 
instruction other than the instruction following the 
current instruction.  

-K- 

Karnaugh Map: A sophomoric approach to 
reducing Boolean functions, only taught by those 
who fear modern digital design.  

Kernel: Another word for operating system, typical 
a minimal operating system.   

-L- 

Label: A placeholder or alias that allows humans to 
understand computer programs. Labels are used in 
place of memory addresses. Some program 
statements reference labels, but labels can also be 
used for commenting purposes.  

Latches vs. Flip-flops: Both latches and flip-flops 
are 1-bit storage devices. Latches are considered 
level-sensitive devices and its outputs can change 
anytime a change in its inputs occurs. Flip-flops are 
considered edge-sensitive devices and changes in 
outputs are synchronized to an edge-sensitive input, 
which is often assigned as a clock signal. 

Latency: The span of time between the occurrence 
of an event and the beginning of the response to that 
event.  

Lead Zero Blanking: A term associated with 
seven-segment display devices, where the left-most 
digit(s) in a given number are not displayed if they 
don’t change the value of the number (meaning left-
most zeros are not displayed). If the given number to 
display is zero, one zero is displayed in the right-
most position.  

LIFO: An acronym standing for “last-in, first out”, 
which describes the general operating characteristic 
of a stack data object.  
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Little Endian: One of two ways to represent a 
multibyte value in a byte-oriented memory that 
places the most significant byte of the data at the 
higher address value. See big endian.  

Load: The act of latching data into a register. In 
terms of computer instructions, it’s the act of 
loading data from program memory into a register in 
the register file.   

Load-Store Architecture: A computer architecture 
that tweaks memory in registers rather than directly 
from memory. Data must first be loaded to registers 
for it to be tweaked.    

Logic Analyzer: A device that debugs actual 
hardware by interpreting all signals as digital signals 
and outputting timing diagrams and/or state charts.  

Look-Up Table (LUT): A LUT is a programming 
or hardware construct that translates an input value 
to a specific output value. Hardware LUTs are 
typically implemented with generic decoders while 
software LUTs are generally organized as a list of 
entries in successive memory locations. Hardware 
LUTs generally save on logic generation and can be 
used to speed-up hardware operations. 
Software/Firmware LUTs are typically used to avoid 
costly calculations at the cost of dedicating memory 
resources to the LUT.  

Loop: A portion of computer code that is iterative, 
which means it can repeat based on the structure of 
the code.  

Loop Count: A variable that controls the number of 
times the body of a loop is executed.  

Low Power Mode: Many MCUs have the ability to 
adjust to ambient circumstances and operate using 
less power. These special modes accomplish low-
power using means such as turning off unused 
portions of the circuit or lowering system clock 
speeds.  

-M- 

Machine Code: A computer program in its lowest-
level form. Machine code is comprised of the 1’s 
and 0’s that the computer hardware interprets to 
perform the given operations specified by the 
program. Machine code is the only level of 
programming that hardware can actually understand.  

Main Computer Components: The three main 
components of a computer include: 1) CPU, 2) the 
I/O, and 3) memory. The CPU is the brains/number 
crunching portion of the computer, the I/O allows 
the computer to interact with the outside world, and 
the memory is generally used for program and 
intermediate data storage.  

Main Memory: The term used described the large 
structured memory device in a computer system. 
This term does not include items such as register 
files.  

Main Task: The set of code that a program executes 
when it has no other tasks to attend to. The main 
task is often referred to as the background task.  

Main Types of Code in Assembly Language 
Programs: There are generally three main part of an 
assembly language program: 1) initialization code, 
2) main task code, and 3) interrupt service routine 
code.  

MCU: A common abbreviation for a 
microcontroller.  

Mealy vs. Moore FSM Models: There are two 
classes of finite state machine model which are 
referred to as Mealy and Moore “machines”, or 
“models”. The external outputs of a Moore machine 
are a function of state only and output changes are 
thus considered to be synchronized to state changes 
in the FSM. The external outputs of a Mealy 
machine are a function of both FSM state and the 
internal inputs. Changes in external outputs of a 
Mealy machine are not necessarily synchronized to 
the changes in FSM state since they are also a 
function of external inputs.  

Mealy’s First Law of Digital Design: If in doubt, 
draw some black box diagrams.  

Mealy’s Second Law of Digital Design: If your 
digital design is running into weird obstacles that 
require kludgy solutions, toss out the design and 
start over from square one. 

Mealy’s Third Law of Digital Design: Every 
digital design problem can have many different but 
equivalent solutions; the absolute right solution is 
eternally elusive.  
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Mealy’s Fourth Law of Digital Design: The digital 
design process is circular, not linear; you rarely 
generate the correct solution with one pass. The 
digital design process is circular; going back a few a 
few steps to fix unforeseen issues is part of the 
design process. Don’t try to make your design 
perfect from the get-go, make it simple to 
understand so that you can fix issues as they arise. 

Mealy’s First and Only Law of Computer 
Programming: If you understand the hardware of 
the computer your program will run on, then you are 
able to write better programs than someone who 
does not understand the hardware.  

Memory Access Time: A term referring to the 
amount of time require to either read data from or 
write data to a memory object.  

Memory Bandwidth: Memory bandwidth refers to 
the amount of data that can be transferred to and 
from memory. The speed of memory reads and 
writes are constrained by physical attributes of the 
device as well as the system in which the device 
operates in which thusly allow for a maximum 
amount of information to be transferred to and from 
the device.  

Memory Capacity: The amount of storage a given 
memory contains. Memory capacity is stated in 
various forms such as total number of bits, total 
number of bytes, or total number of words.  

Memory Configurations: This term refers to the 
notion that multiple memories can be configured in 
ways to obtain different memory capacities (number 
of accessible storage elements) and different storage 
characteristics (the width or word-length) of each 
storage element.  

Memory Levels: A term that encompasses the 
various types of memory in a given system. 
Generally speaking, the lower-level memories are 
faster but more expensive than higher-level 
memories. Computer system deal with a trade-off 
between program execution speed and expense.  

Memory Mapped I/O (MMIO): One of the two 
forms of programmed I/O, characterized the 
instruction set using memory access instructions, 
such as load & store, to perform input and output 
operations, respectively.  

Memory Model: A term that describes the general 
way a given CPU utilizes the memory resources it 
has at its disposal.  

Memory Performance Measures: Because systems 
rely heavily on memory, items such as read access 
times, write cycle times, and memory bandwidth are 
used to measure the specific performance of 
memory devices within the system.  

Memory Reading: An operation that accesses the 
contents of memory without changing those 
contents.  

Memory Writing: An operation that changes the 
contents of memory.  

Metastability: Digital circuits can become 
metastable when a set-up and/or hold time is not 
met. Metastability is a loose definition and means 
the circuit’s output is neither high nor low and may 
remain in that state there for an unstated amount of 
time.  

Microcontroller: An integrated computer system 
that contains a CPU, memory (program and data), 
and can also contain on-board peripherals.  

Microoperations: A microoperation is an 
elementary operation performed on data stored in a 
register. Microoperations can also include 
interactions with other registers such as storing the 
result of microoperations associated with other 
circuit elements. Microoperations are commonly 
used in higher-level descriptions of digital circuitry 
such as computers.  

Microprocessor: A hardware device containing a 
general-purpose central processing unit (CPU).  

MMIO: An acronym standing for memory mapped 
I/O.  

Mnemonic: A set of letters that represents a given 
operation. Generally speaking, mnemonics loosely 
describe, in an abbreviated manner, the operation 
they represent.  
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Model: A model is a representation of something. A 
more (definitive) descriptive description of a model 
is a description of something in terms that highlights 
the relevant information in that thing while hiding 
the less useful information. The purpose of a model 
is to quickly transfer important information to the 
entity reading the model (whether human, or 
computer, or member of the EE Faculty). Generally 
speaking, the quality of any model is determined by 
its ability to transfer information to the user.  

Mono-Stable Multivibrator: A device that has one 
stable state; the stable state can either be the ‘0’ or 
‘1’ state. The device’s output is only in the non-
stable state momentarily before transitioning to the 
stable state. This term is a fancy name for a device 
commonly referred to as a “one-shot” 
 

Museum Quality: A clever label attached to source 
code that is highly pleasing to the eye of intelligent 
humans. Such source code is easily readable, 
understandable, maintainable, and modifiable.  

-N- 

NAFT Engineer:  An acronym describing a certain 
type of engineering generally associated with the 
defense industry (speaking from personal 
experience); the acronym stands for Not A F*cking 
Thing. Usage: “what type of engineering do you do? 
Ans: “I’m a NAFT engineer”.   

Narcissistic Personality Disorder (NPD):  A 
disorder inflicting most faculty members in 
academia. Individuals must have this disorder in 
order to become a successful academic 
administrator.   

Nesting:  A term that common refers to two 
different items in programming of MCU. First, it 
refers to a subroutine that calls another subroutine 
(not including calling itself, which is recursion). 
Second, it refers to the nesting of interrupts, which is 
similar to the nesting of subroutines.  

NOP:  An acronym for “no operation”, which is a 
common executable instruction in assembly 
languages used exclusively to create delays in 
program throughput.  

Nibble: A 4-bit set of data.  

Non-Maskable Interrupt: An interrupt that can’t 
be disabled under program control.   

Non-Volatile: A term that refers to an electronic 
device that retains it memory when power is 
removed and reapplied. ROMs are considered non-
volatile memory devices.  

-O- 

Off-by-One Error: A common error where a loop 
iterates one too many or one too few times, typically 
based on the many non-intuitive ways instructions 
control loops and access memory. The C 
programming language is famous for this type of 
errors.  

Offset: A value that modifies another value, such as 
a base value, to calculate a final value. For example, 
a base address plus an offset is used to calculate the 
physical address. 

One-off: A solution that is specific to a given 
problem and won’t generally apply to other 
problems. This includes programs, subroutine, and 
digital circuits.   

One-Shot: The common name for a mono-stable 
multivibrator. One-shots are used to synthesize 
fixed-length pulse signals in response to signal 
events such as clock edges.  

Ones Complement: A mathematical term referring 
to complementing or toggling all bits in a set of bits.  

Opcode: A term that is shorthand for “operational 
code”. Opcodes are the bits of an instruction that are 
used by the control unit to decode which instruction 
is being executed. Opcodes are constant in any given 
instruction whereas field codes are variable.  

Operand: The computer code that acts as an 
interface between the hardware and the executing 
program.  

Operating Context: A term that refers to the state 
of the processor at any given time, where state is 
defined by the data the given processor is storing at 
that given time. This term is often referred to as 
simply context.  

Operating System: The computer code that acts as 
an interface between the hardware and the executing 
program.  

-P-  
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Parity: A term that describes a characteristic of a 
group of bits. If an odd number of bits in the group 
are set, the group of bits exhibits odd parity; 
otherwise, the set of bits exhibits even parity (even 
number or zero bits set).    

Parity Bit: A bit that describes the parity of a given 
set of bit, where typically ‘1’ represents odd parity 
and ‘0’ represents even parity.   

Passed Value: A value that is provided to a 
subroutine.     

Pig: A term that completely describes academic 
administrators, though the term can be insulting to 
our actual porcine friends.   

Persistence of Vision: An alternative term for 
retinal persistence, which is a characteristic of the 
human vision system utilized by some electronic 
devices.  

Physical Address: An value that appears on the 
address lines of a memory device such as a RAM or 
ROM.  

Physical Memory: The actual amount of memory 
present in a given system.  

Polling: Processors use polling to interface with 
external devices where the process constantly 
evaluates the status of the external device in order to 
determine if the device is in need of services from 
the processor. Polling is considered to be used in 
“programmed I/O” and is one of three major types 
of computer related I/O. Polling is generally 
associated with inefficient embedded system design 
in that the system is considered to have low overall 
throughput when executing a polling loop 

Pop: An operation associated with stacks where an 
item is removed from a stack; the stack pointer is 
appropriately adjusted.  

Port: A generic location in a computer system’s 
address space.  

Port Address: The numeric value associated with 
an external input or output device used by I/O 
instructions. The I/O instructions use these values to 
differentiate and communicate with various external 
peripheral devices.  

Port Mapped I/O (PMIO): One of the two forms 
of programmed I/O, characterized by dedicated 
instructions in the instruction set for performing data 
input and output.  

Princeton Architecture: A computer architecture 
where data and instructions share the same memory 
space. This architecture is also known as a Von 
Neumann architecture.  

Processor: A generic term that generally refers to 
some type of device that does processing such as a 
microcontroller or microprocessor.  

Program: Noun: a complete set of software that can 
be in different forms such as a listing or machine 
code. Verb: the act of writing text that can be used to 
control a computer.   

Program Memory: The part of a computer system 
memory that stores the machine code for programs 
the computer is running.  

Program Counter (PC): The program counter is a 
simple counter generally found in a computer’s 
control unit and whose output is generally used as an 
address that points to the next instruction in program 
memory to be executed by the program. The PC is 
typically expected to do standard counter 
microoperations such as parallel load and increment.  

Program Flow Control Instructions: Instructions 
that cause or potentially cause the CPU to execute 
an instruction other than the instruction following 
the current instruction. Examples of program flow 
control instructions are conditional/unconditional 
branches, and subroutine calls/returns.  

Program Flow Control: For computer programs to 
do useful things, they must appropriately respond 
accordingly to important “events”. This response at 
a low level includes executing different portions of 
the given computer program. Computer instructions 
that facilitate any computer operation other than 
simple incremental execution of instructions from 
the program memory are generally referred to as 
program flow control instructions. Program flow 
control is generally handled by clever manipulations 
of the program counter.  
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Programmable Logic Device (PLD):  Any 
integrated circuit used to create circuits in which the 
functionality of the internal circuit is not defined 
until the device is programmed (in this context, the 
term “program” does not typically refer to a 
computer programming language). One common 
type of PLD is the FPGA.  

Programmed I/O: One of three main forms of 
computer I/O. The two subtypes of programmed I/O 
include port mapped I/O (PMIO) and memory 
mapped I/O (MMIO). The other forms of I/O include 
Interrupt I/O and Direct Memory Access.  

Programming Language Levels: Computer 
programs can be written on one of three general 
levels (listed from low to high): machine code level, 
assembly code level, or higher-level. Higher-level 
languages include C, C++, C#, Java, Wanker, etc. 

Programming Model: The programming model, or 
programmer’s model, describes the hardware 
resources available on a programmable computer-
type device that the programmer is able to control 
via the program control. Program control is provided 
by the operations described by the device’s 
instruction set and can either categorized as software 
or firmware.  

Pseudocode: An approach to modeling programs 
that looks somewhat similar to the actual 
programming code; used often in the design of 
computer programs. .  

Pseudoinstruction: An instruction that you can uses 
with the RISC-V MCU, but that instruction is not 
actually implemented in hardware; 
pseudoinstructions are instead implemented by the 
assembler with one or more base instructions.  

Pure Programmer: A programmer who knows how 
to program using a particular language, but knows 
nothing about digital hardware, or particularly, the 
digital hardware the program they write will execute 
on.  

Push: An operation associated with stacks where 
data is placed onto a stack; the stack pointer is 
appropriately adjusted.  

-Q - 

Q: The letter commonly used to represent state 
variables when working with FSMs and flip-flops.  

Q+: The symbology commonly used to represent the 
next state when working with FSMs.   

Quizo-rama: A word I made up describing having 
many quizzes instead of few mid-term exams. 

Quizster: A person who loses sleep looking forward 
to and/or preparing for quizzes. 

-R- 

ra: A term the RISC-V MCU documentation uses to 
refer to the return address.  

Radix: A term describing the number of symbols in 
the symbol set associated with a given number 
system.  

Radix Point: The symbol, typically a small dot low 
in the symbol field, the separates the integral and 
fractional portions of a number.   

RAM: The acronym officially stands for Random 
Access Memory; a solid definition for RAM is 
fleeting due to advances in technology. RAMs are 
most often characterized as volatile, random access 
storage devices.  

Random Access: A memory device is considered 
random access if it can access any of its contents in 
a constant amount of time. Devices such as flash 
drives are considered random access while devices 
such as tape drives and hard drives are not random 
access.  

rd: A term that RISC-V documentation uses to refer 
to a generic destination register. 

Read: A term referring to copying data from a 
memory device to another location without changing 
the value in memory.   

Read Access Time: The amount of time required 
for memory output data to become available after an 
address and the correct control signals have been 
provided to the device.  

Read Only Memory: A memory device roughly 
meaning that you can only read from it and not write 
to it. The accepted definition is a memory that 
readable, but not writeable, and is non-volatile.  
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Real Time System: A computer system that has 
deadlines (response time to events) that must be met 
in order for the system to work properly. Interrupt-
driven systems are after referred to as real-time 
systems because programmers can leverage the 
interrupt architecture to reduce response time.  

Recursion: The notion of a subroutine calling itself. 
The “depth of recursion” refers to the number of 
times a subroutine calls itself before commencing 
returning from the subroutine calls.  

Reduced Instruction Set Computer: This acronym 
officially stands for “Reduced Instruction Set 
Architecture” and is generally used to describe 
computer architectures. In actuality, the term has 
little or nothing to do with the size of the instruction 
set. RISC architectures generally have the following 
characteristics:    
 The architecture contains a register file with 

many general purpose registers  
 The instructions word formats all contain the 

same number of bits (no extended opcodes)  
 The instructions are executed in the same 

number of clock cycles 
 The instructions generally are not overly 

complicated (meaning they don’t generate 
great amounts of processing within the 
architecture) 

They have higher system clock frequencies than 
non-RISC architectures 

Register File: An abstract device that is used to 
model a given number of general purpose registers 
that are directly accessible by the given computers 
instruction set. Register files are typically modeled 
as multiport RAMs that can read and/or write 
multiple registers, roughly speaking, in a 
simultaneous manner.  

Register Transfer Language (RTL): A 
syntactically loose approach to specifying a digital 
circuit that can be modeled as the synchronous 
transfer of data between sequential circuits such as 
registers. A RTL statement generally describes a 
microoperation (or set of micro-operations) 
generally associated with a digital circuit. The two 
parts of an RTL statement are 1) the register transfer 
specification, and 2) the specific conditions that are 
necessary for that transfer to occur. Generally 
speaking, only signals necessary for the stated 
transfer to occur are listed in the RTL statement 
while non-listed signals are assumed to be “properly 
handled” elsewhere. Each RTL statement is assumed 
to occur in one clock cycle. RTL is also known as 
register transfer notation (RTN).  

Register: An n-bit wide sequential circuit that is 
primarily known for its ability to store bits. 
Registers are generally modeled as “n” D flip-flops, 
which share a common clock. Register generally 
have synchronous parallel load inputs and 
sometimes other features (elementary operations) 
such as asynchronous or synchronous presets and 
clears. Specialized registers include shift registers 
and counters.  

Retinal Persistence: The notion associated with the 
human visual system that does not allow humans to 
perceive an off state of an LED at the exact time the 
LED is turned off. The notion of retinal persistence 
is what allows display multiplexing to work for 
humans.  

Return Address: The address of an instruction that 
is the next instruction to execute after a returning 
from a subroutine or interrupt service routine. 

Return Value: A value that is returned, or passed 
from a subroutine back to the part of the program 
that called the subroutine.    

RISC vs. CISC: The age-old computer argument of 
which is better that has never been solved. Generally 
speaking, RISC architectures require more 
instructions to complete a given operation than a 
CISC architecture would for that same operation, but 
those instructions are executed “more quickly” than 
a CISC architecture.  

RISC: This acronym for reduced instruction set 
computer”; see reduced instruction set computer.  

ROM: The acronym officially stands for Read Only 
Memory  
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rsx: An abbreviation used by the RISC-V literature 
to indicate a numbered source register, such a rs1 or 
rs2.   

Round-Up: The act of adjusting a value to better 
reflect the parts of a value that was truncated. 
Numbers are typically rounded up if the truncated 
value is 0.5 or greater, which is digital is the 
weighting of the first bit to the right of the radix 
point.  

Run Time: A term that refers to the active of 
running a program, as opposed to compile time, 
which is an important term but necessarily occurs 
before a program is actually run.  

Run Time Complexity: A term that refers to the 
amount of time required to run a section of code, a 
program, or an algorithm; this term is closely related 
to computational complexity in that more complex 
coder requires more time to execute.  

Running Time: A term that refers to the amount of 
time required for a program, section of code, or 
algorithm to execute in hardware. Running time can 
be measured in time units or other time-related 
metrics such as rate of instruction execution.  

-S- 

Self-serving: The defining characteristic of all 
academic administrators and most engineering 
faculty.  

Set: The act of making a bit into a ‘1’.  

Sequential Circuit: A circuit whose output is a 
function of the sequence of the circuit’s inputs. 
Another common definition is a circuit that has 
state, meaning it can store data.   

Set-up & Hold Times: Digital devices that are edge 
sensitive (circuit changes state on a rising or falling 
clock edge) must hold inputs stable (the inputs must 
not change state) for a certain amount of time before 
the active clock edge arrives; this time is referred to 
as the set-up time. Digital devices must also hold the 
inputs stable for a certain amount of time after the 
active clock edge which is referred to as the hold 
time. Failing to meet set-up and/or hold times leads 
to the circuit going metastable. 

Shift Register: A special flavor of register designed 
to perform contiguous bit-level transfers (or serial 
transfers) of data between the bit storage elements of 
the register. Shift registers generally shift all the 
storage elements to a contiguous storage element 
once per clock cycle.  

Simulator: A piece of software that outputs the 
expected output from another piece of software or a 
model of a digital circuit.  

Signed Extension: A term associated with 
expanding the bit-width of signed data by adding 
extra bits to the left side of the data and setting all 
the added bits to the value of the original sign bit.   

Softcore MCU: An MCU that has been or will be 
synthesized on a programmable logic device.  

Signed Value: A set of bits or other numbers that is 
to be interpreted as either negative, zero, or positive.   

Software: In the specific case, software is a 
computer program that is written in a generic way so 
that it can run on a more than one type computer. 
Software does not refer to the language-level in 
which the program is written and thus can be written 
in machine code, assembly code, or a higher-level 
language. In the less specific case, the term software 
is often means any code written to run on a 
computer.  

Source Operand: The term used in assembly 
languages to describe where an instruction gathers 
data from, such as from main memory or a register.  

sp: A shorthand notion for stack pointer.  

Space Efficient: Refers to the storage requirements 
for a given program. If two programs are 
functionally equivalent, the program that uses less 
program memory is the more space efficient 
program. The more space efficient program may not 
be more time efficient than that other program.  

Spaghetti code: Programming code that does not 
follow standard structured programming concepts. 
Spaghetti code is by definition fragile; it is hard to 
understand, maintain, modify, and reuse.  

Stack pointer: A term that refers to an entity that 
contains information that describes the “top of the 
stack”.  
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Stack: An abstract data type that implement a last-
in/first-out (LIFO) queue (or list of things). Stacks 
can be implemented in hardware or software with 
hardware implementation of stacks employing the 
use of a stack pointer to increase efficiency of the 
device. Stacks are typically used in computer 
architectures to keep track of hierarchically nested 
processes such as subroutines and interrupts.  

Stack Segment: The part of the main memory 
dedicated to the system’s stack operations.  

Stack Overflow/Underflow: Stacks require a given 
amount of memory space. Stacks operations (pushes 
and pops) can cause the stack beyond that memory 
space which results in overflow or underflow 
conditions. Overflow and underflow can overwrite 
important information such as program memory and 
data memory.  

Standard Decoder: A standard decoder is a 
hardware device that implements a one-hot or one-
cold output based on a given set of inputs. There is 
typically a binary relationship between the number 
of select inputs and the number of outputs and come 
in such flavors as 1:2, 2:4, 3:8, etc.  

Start-up code: The code that is inserted 
automatically by the assembler as a result of 
declaring data in the program that requires 
initialization. The start-up code is typically 
comprised of instructions that initialize data 
memory.  

State: The currently value(s) being stored by a 
sequential digital circuit.   

Store: A common term that refers to the act of 
writing a value to memory. This term is most often 
synonymous with write.  

Structured Code: Code that can be decomposed 
Into three basic structures: 1) sequence, 2) if-then-
else, and, 3) iterative. Structured code is easily 
understood, maintained, modified, and reused.  

Stupathetic: A term used to describe people who 
are both stupid and apathetic; we all know who they 
are.  

Structured Memory: A term used to describe 
relatively large semiconductor memories, such as a 
RAM or ROM. Structured memory does not include 
distributed registers in a circuit. The notion of 
“structure” is derived from regular structures, which 
have a repeatable pattern on the silicon die. 

Subroutine: A set of instructions that a computer 
explicitly transfers to and returns from. In terms of 
program flow, the program transfers program 
execution to a set of instructions referred to as the 
subroutine. When the instructions in the subroutine 
have completed executing, control is returned to the 
instruction after the instruction, which caused the 
program to initially transfer to the subroutine.  

SWAG System: An acronym standing for scientific 
wild ass guess, which can be the first step in getting 
something done when you know nothing. However, 
it sure sounds good when you use the term because 
most people are afraid to ask what it means.  

Switch Bounce: A condition associated with all 
mechanical switches were upon actuation, the switch 
contacts make and break connections several times 
before the “settling” to the connected state. Switch 
bounce can last up to 20ms, depending on what 
source you consult. 

Synchronous: The process of converting a circuit 
described using an HDL model into a gate-level 
representation of that circuit.  

Synthesis: The process of converting a circuit 
described using an HDL model into a gate-level 
representation of that circuit.  

System Verilog: System Verilog is one of several 
modeling systems referred to as “hardware 
description languages”, or HDLs. System Verilog is 
a superset of Verilog and contains a rich set of 
programming-like functionality to support the use of 
System Verilog as a circuit verification tool. Most of 
the added functionality is not synthesizeable.    

-T- 

Tab: A shorthand approach to indentation in source 
code that astute programmers and designers never 
use because different editors and printer interpret 
them differently and can make your code look like 
garbage.   
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Task: Typically a set of operations that “need 
doing”. This term has a richer definition in the 
context of real-time operating systems.  

Test Vector: A set of numbers used by a simulator 
to verify a given hardware design; can be machine 
generated.  

Three State: This is an alternative term for tri-state, 
where the issue here is that someone had a 
trademark on one of the terms.  

Throughput: The throughput of a system is the total 
amount of useful information processed or 
communicated during a specified time period. Note 
that this definition is really general. Systems with 
high throughput are generally desired over systems 
with low throughput with the exception of 
administrative systems on university campuses.  

Time Efficient: Refers to the running time, or the 
time to generate a meaningful result, for a given 
program. If two programs are functionally 
equivalent, the program that generates the result in a 
shorter amount of time is the more time efficient 
program. The more time efficient program may not 
be more space efficient program. 

Timing Diagram: An illustration that provides 
digital signal values as a function of time, where the 
vertical axis is represents the digital value and the 
horizontal axis represents time.  

Tool Chain: The set of software programs that 
allow humans to go from a concept to a working 
system, typically an embedded system. These tools 
typically include assemblers and/or compilers, 
linkers, and a mechanism to insert programs onto 
hardware.   

Top-of-stack: A term that generally refers to the 
more recent item placed onto a stack. The stack 
pointer typically points to the top of the stack.  

Tri-State: A term that refers to a devices ability to 
effectively remove itself from a circuit. Thus, a tri-
state device in a digital circuit can either be high, 
low, or high-impedance. The notion of tri-stating is 
used to share routing resources in a circuit; the only 
possible drawback of tri-stating is that only one 
device can drive the resource at a given time, 
otherwise the condition of contention occurs, which 
is ungood.  

Truth Table: A matrix that displays all possible 
input and output values for a given Boolean equation 
or digital circuit.  

Truncation: The act of removing part of something. 
In digital design, we often chop off lower bits of 
value such as in shift operations. The chopped bits 
are lost, with no possibility of round-up.  

Two’s Complement: A common representation for 
signed binary numbers. Additionally, taking the 
“two’s complement” of a number is equivalent to 
taking the one’s complement of the number and 
adding one to the result.  

-U- 

Universal Shift Register: A special flavor of shift 
register that performs actions other than simple one-
directional shifts including some or all of the 
following operations: shift left, shift right, barrel 
shifts, arithmetic shift, and rotates.  

Unsigned Value: A set of bits or other numbers that 
is to be interpreted as a zero or positive value.  

-V- 

Verification: The act of testing HDL models to 
discern the correctness before the models are 
synthesized. Verification is thus one form of testing.   

Verilog: Verilog is one of several modeling systems 
referred to as “hardware description languages”, or 
HDLs. Verilog is typically used to model digital 
circuits; the resultant models can be used to simulate 
circuits, or synthesize circuit implementations on 
PLDs or silicone. Verilog uses a “C-like” syntax, 
which makes it popular with software-type people.   

VHDL (Very High Speed Circuit Hardware 
Description Language): VHDL is one of several 
modeling systems referred to as “hardware 
description languages”, or HDLs. VHDL is typically 
used to model digital circuits; the resultant models 
can be used to simulate circuits, or synthesize circuit 
implementations on PLDs or silicone.  

Volatile/Non-Volatile: A device is considered 
volatile if its contents are lost when power is 
removed from the device while non-volatile devices 
retain their memory when power is removed and 
subsequently returned. The term volatile is most 
often associated with memory devices and PLDs 
such as FPGAs.  



CPE 233  Computer & Digital Term Glossary 

 

 - 606 -  
 

Von Neumann Architecture: A computer 
architecture where data and instructions share the 
same memory space. The term Von Neumann 
machine is often used to mean Von Neumann 
architecture. Von Neumann architecture is 
sometimes referred to as a “Princeton” architecture.  

-W- 

While Loop: An iterative programming construct 
characterized by the condition to continue the 
iteration is checked before performing the first 
iteration.  

White Space: Empty space in source code files 
including indentation (not tabs), blank lines, and 
extra spaces (such as to align parts of the listing). 
White space is used by good programmers and 
hardware designers.  

Wrapper: A term used to provide a higher-level 
interface to a circuit. The wrapper circuit is thus a 
superset of the circuit it wraps.  

Write Cycle Timing: The amount of time required 
for data to be written to memory after a valid 
address, valid input data, and the appropriate control 
signals have been provided to the device.  

-X- 

X:  The symbol typically used to represent input 
variables in finite state machines. 

XOR:  A common shorthand notion for exclusive 
OR.  

-Y- 

Y: The symbol typically used to represent state 
variables in finite state machines. 

-Z 

Z: The symbol typically used to represent high 
impedance. This symbol is also used to represent 
output variables state machines. 

Zero Extension: A term associated with expanding 
the bit-width of unsigned data by adding extra bits 
to the left side of the data and clearing those bits. 
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architecture ∙ ‐ 159 ‐ 
Arithmetic Logic Unit ∙ ‐ 161 ‐ 
arithmetic shift ∙ ‐ 74 ‐ 
arithmetic shifts ∙ ‐ 73 ‐ 
array ∙ ‐ 366 ‐ 
arrow ∙ ‐ 55 ‐ 
assemble time ∙ ‐ 253 ‐, ‐ 280 ‐ 
assembler ∙ ‐ 160 ‐, ‐ 170 ‐, ‐ 171 ‐ 
assembler directive ∙ ‐ 222 ‐, ‐ 428 ‐ 
assembler directives ∙ ‐ 189 ‐ 
assembly language ∙ ‐ 170 ‐ 

B 

background task ∙ ‐ 331 ‐ 
bad press ∙ ‐ 171 ‐ 
bag of tricks ∙ ‐ 229 ‐ 
barrel shift ∙ ‐ 72 ‐ 
barrel shifts ∙ ‐ 478 ‐ 
base address value ∙ ‐ 280 ‐ 
base instruction ∙ ‐ 203 ‐ 
base instructions ∙ ‐ 194 ‐ 
Basys3 ∙ ‐ 483 ‐ 
BFD ∙ See Brute Force Design 
bi‐directional ∙ ‐ 68 ‐ 
bit banging ∙ ‐ 265 ‐ 
bit crunching ∙ ‐ 229 ‐ 
bit manipulations ∙ ‐ 194 ‐ 
bit masking ∙ ‐ 174 ‐ 

bit‐addressable ∙ ‐ 115 ‐ 
bit‐masks ∙ ‐ 265 ‐ 
bit‐tweaking ∙ ‐ 265 ‐ 
bit‐twiddling ∙ ‐ 163 ‐ 
bit‐wise ∙ ‐ 230 ‐ 
black block diagram ∙ ‐ 176 ‐ 
bottleneck ∙ ‐ 119 ‐ 
bounce ∙ ‐ 534 ‐ 
brain dump ∙ ‐ 560 ‐ 
brains ∙ ‐ 159 ‐ 
branch ∙ ‐ 194 ‐, ‐ 221 ‐ 
branches ∙ ‐ 245 ‐ 
BRUTE FORCE DESIGN ∙ ‐ 29 ‐ 
bulletproof ∙ ‐ 305 ‐ 
bulletproof code ∙ ‐ 182 ‐ 
bus contention”. ∙ ‐ 67 ‐ 
butthead friends ∙ ‐ 181 ‐ 

C 

C programming language ∙ ‐ 248 ‐, ‐ 505 ‐ 
call ∙ ‐ 500 ‐ 
cascadeability ∙ ‐ 53 ‐ 
Cascadeable ∙ ‐ 47 ‐ 
case structure ∙ ‐ 179 ‐ 
Central Processing Unit ∙ ‐ 161 ‐ 
CIRCUIT CONTROL ∙ ‐ 29 ‐ 
Circular ∙ ‐ 47 ‐ 
CISC ∙ ‐ 531 ‐ 
clearing ∙ ‐ 265 ‐ 
clever ∙ ‐ 265 ‐ 
code segment ∙ ‐ 349 ‐ 
co‐design ∙ ‐ 158 ‐ 
code‐word ∙ ‐ 47 ‐ 
Combinatorial ∙ ‐ 32 ‐ 
Combinatorial circuits ∙ ‐ 36 ‐ 
Comments ∙ ‐ 188 ‐ 
common cathode ∙ ‐ 539 ‐ 
comparator ∙ ‐ 43 ‐ 
compiler ∙ ‐ 160 ‐, ‐ 171 ‐ 
Complex Instruction Set Computer ∙ ‐ 531 ‐ 
complex programs ∙ ‐ 175 ‐ 
computationally expensive ∙ ‐ 72 ‐ 
computer ∙ ‐ 21 ‐, ‐ 158 ‐ 
computer architecture ∙ ‐ 159 ‐ 
computer architectures ∙ ‐ 170 ‐ 
computer language ∙ ‐ 160 ‐ 
computer peripherals. ∙ ‐ 30 ‐ 
computer program ∙ ‐ 160 ‐ 
computer programmer ∙ ‐ 159 ‐ 
computer user ∙ ‐ 159 ‐ 
computerland ∙ ‐ 230 ‐ 
computersaureses ∙ ‐ 171 ‐ 
conditional branch ∙ ‐ 248 ‐ 
conditional branches ∙ ‐ 245 ‐ 
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conditionally ∙ ‐ 221 ‐ 
constant ∙ ‐ 223 ‐, ‐ 253 ‐ 
control signals ∙ ‐ 57 ‐ 
control unit ∙ ‐ 161 ‐ 
Control Unit ∙ ‐ 161 ‐ 
cost effective ∙ ‐ 176 ‐ 
Count Enable ∙ ‐ 47 ‐ 
counter ∙ ‐ 46 ‐ 
Counter Overflow ∙ ‐ 47 ‐ 
Counter Underflow ∙ ‐ 47 ‐ 
CPU ∙ ‐ 161 ‐ 
cross‐coupled NAND cell ∙ ‐ 44 ‐ 
cross‐coupled NOR ∙ ‐ 44 ‐ 
crunch data ∙ ‐ 159 ‐ 
CU_DCDR ∙ ‐ 445 ‐ 
CU_FSM ∙ ‐ 446 ‐ 
cursory glance ∙ ‐ 181 ‐ 

D 

data ∙ ‐ 112 ‐ 
data memory ∙ ‐ 461 ‐ 
datapath ∙ ‐ 533 ‐ 
dead gate ∙ ‐ 515 ‐ 
debouncer ∙ ‐ 535 ‐ 
debugger ∙ ‐ 351 ‐ 
debugging ∙ ‐ 180 ‐ 
Decision ∙ ‐ 178 ‐ 
decision point ∙ ‐ 179 ‐ 
decode/execute cycle ∙ ‐ 448 ‐ 
decoder ∙ ‐ 38 ‐ 
Decrement ∙ ‐ 47 ‐ 
design libraries ∙ ‐ 34 ‐ 
destination register ∙ ‐ 85 ‐, ‐ 197 ‐, ‐ 202 ‐, ‐ 498 ‐ 
deterministic ∙ ‐ 545 ‐ 
development board ∙ ‐ 483 ‐, ‐ 484 ‐ 
digital bag of tricks ∙ ‐ 27 ‐ 
Digital tricks ∙ ‐ 174 ‐ 
direct memory access ∙ ‐ 214 ‐ 
Direct Memory Access ∙ ‐ 214 ‐ 
DMA ∙ See direct memory access, See direct memory 

access 
don’t care ∙ ‐ 58 ‐ 
do‐while loop ∙ ‐ 179 ‐ 
do‐while loops ∙ ‐ 253 ‐ 
Down Counter ∙ ‐ 47 ‐ 
drive the bus ∙ ‐ 67 ‐ 
driving the bus ∙ ‐ 67 ‐ 
dumb loop ∙ ‐ 327 ‐ 
dumb loops ∙ ‐ 538 ‐ 

E 

eloquence and beauty ∙ ‐ 181 ‐ 
embedded system ∙ ‐ 190 ‐, ‐ 197 ‐, ‐ 328 ‐ 
enable interrupts ∙ ‐ 333 ‐ 

endless loop ∙ ‐ 190 ‐ 
entry point ∙ ‐ 179 ‐ 
ESX MCU ∙ ‐ 22 ‐ 
execute cycle ∙ ‐ 446 ‐, ‐ 448 ‐ 
EXTERNAL CONTROL ∙ ‐ 29 ‐ 
external interrupts ∙ ‐ 327 ‐ 

F 

FA ∙ See full adder 
fast multiplication ∙ ‐ 74 ‐ 
feature creep ∙ ‐ 182 ‐ 
feature set ∙ ‐ 53 ‐ 
fetch cycle ∙ ‐ 446 ‐, ‐ 448 ‐ 
fetching ∙ ‐ 446 ‐ 
field codes ∙ ‐ 498 ‐ 
file banner ∙ ‐ 190 ‐, ‐ 222 ‐ 
file header ∙ ‐ 190 ‐ 
filtering ∙ ‐ 536 ‐ 
finite state machine ∙ ‐ 30 ‐, ‐ 446 ‐ 
Finite State Machine ∙ ‐ 53 ‐ 
firmware ∙ ‐ 176 ‐, ‐ 197 ‐ 
flag register ∙ ‐ 336 ‐ 
Flip‐flops ∙ ‐ 33 ‐ 
floating point numbers ∙ ‐ 72 ‐ 
flow arrows ∙ ‐ 178 ‐ 
flowchart ∙ ‐ 175 ‐ 
foreground task ∙ ‐ 331 ‐ 
forward slash ∙ ‐ 57 ‐ 
FPGA ∙ ‐ 483 ‐ 
fragile ∙ ‐ 173 ‐ 
Full Adder ∙ ‐ 37 ‐ 
function ∙ ‐ 297 ‐ 
Functionally Complete ∙ ‐ 32 ‐ 

G 

general purpose ∙ ‐ 197 ‐ 
general purpose registers ∙ ‐ 195 ‐ 
General‐Purpose Computer ∙ ‐ 187 ‐ 
general‐purpose register ∙ ‐ 194 ‐ 
generic decoder ∙ ‐ 38 ‐ 
Generic Decoder ∙ ‐ 39 ‐ 
Good‐looking code ∙ ‐ 181 ‐ 

H 

HA ∙ ‐ 36 ‐, See half adder 
Half Adder ∙ ‐ 36 ‐ 
handles ∙ ‐ 329 ‐ 
hard drives ∙ ‐ 113 ‐ 
hardcoded to 0 ∙ ‐ 196 ‐ 
Harvard architecture ∙ ‐ 532 ‐ 
header ∙ ‐ 222 ‐ 
hierarchical ∙ ‐ 165 ‐ 
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higher‐level language ∙ ‐ 171 ‐ 
high‐impedance ∙ ‐ 64 ‐ 
hi‐Z ∙ ‐ 66 ‐ 
HLL ∙ See higher‐level language 
holding ∙ ‐ 265 ‐ 
Hold‐times ∙ ‐ 32 ‐ 
human visual system ∙ ‐ 538 ‐ 

I 

I/O ∙ ‐ 159 ‐ 
if/else constructs ∙ ‐ 174 ‐ 
if‐then‐else construct ∙ ‐ 175 ‐ 
if‐then‐lese structure ∙ ‐ 179 ‐ 
IMD ∙ See Iterative Modular Design 
immediate instruction ∙ ‐ 206 ‐ 
in‐case‐of ∙ ‐ 179 ‐ 
incidental memory ∙ ‐ 112 ‐ 
Increment ∙ ‐ 47 ‐ 
information ∙ ‐ 112 ‐ 
information content ∙ ‐ 112 ‐ 
Input/Output ∙ ‐ 159 ‐ 
Input/Output architecture ∙ ‐ 174 ‐ 
instruction memory ∙ ‐ 161 ‐ 
instruction set ∙ ‐ 162 ‐ 
Instruction Set ∙ ‐ 172 ‐ 
instruction set architecture ∙ ‐ 186 ‐ 
instructions cycles ∙ ‐ 448 ‐ 
integer‐based math ∙ ‐ 72 ‐ 
INTERNAL CONTROL ∙ ‐ 29 ‐ 
internal interrupts ∙ ‐ 327 ‐ 
interrupt architecture ∙ ‐ 327 ‐, ‐ 329 ‐ 
Interrupt architecture ∙ ‐ 174 ‐ 
interrupt cycle ∙ ‐ 513 ‐ 
interrupt enable ∙ ‐ 332 ‐, ‐ 515 ‐ 
interrupt mask bit ∙ ‐ 333 ‐ 
interrupt nesting ∙ ‐ 334 ‐ 
interrupt service routine ∙ ‐ 329 ‐, ‐ 512 ‐ 
interrupt vector ∙ ‐ 517 ‐ 
interrupt vector address ∙ ‐ 517 ‐ 
ISA ∙ ‐ 186 ‐, See instruction set architecture 
ISR ∙ See interrupt service routine 
iterative construct ∙ ‐ 175 ‐ 
iterative design ∙ ‐ 37 ‐ 
iterative modular design ∙ ‐ 43 ‐ 
ITERATIVE MODULAR DESIGN ∙ ‐ 29 ‐ 
iterative structure ∙ ‐ 179 ‐ 

J 

job security ∙ ‐ 173 ‐, ‐ 181 ‐ 
jump ∙ ‐ 221 ‐ 
jump and link register ∙ ‐ 454 ‐ 
jumps ∙ ‐ 245 ‐ 

K 

kludgy ∙ ‐ 28 ‐, ‐ 597 ‐ 
knarly ∙ ‐ 208 ‐ 

L 

Labels ∙ ‐ 189 ‐ 
Last In, First Out ∙ ‐ 293 ‐ 
Latches ∙ ‐ 33 ‐ 
lazy professors ∙ ‐ 181 ‐ 
lead‐zero blanking ∙ ‐ 539 ‐ 
level sensitive ∙ ‐ 44 ‐ 
levels of memory ∙ ‐ 533 ‐ 
LIFO ∙ ‐ 293 ‐ 
link ∙ ‐ 454 ‐ 
look‐up‐table ∙ ‐ 505 ‐ 
loop overhead ∙ ‐ 359 ‐ 
loops ∙ ‐ 253 ‐ 
low power ∙ ‐ 330 ‐ 
low‐power mode ∙ ‐ 328 ‐ 
LUT ∙ See look up table 
LUTs ∙ ‐ 182 ‐ 
LZB ∙ See lead zero blanking 

M 

machine code ∙ ‐ 162 ‐, ‐ 170 ‐ 
machine language ∙ ‐ 162 ‐, ‐ 170 ‐ 
main memory ∙ ‐ 348 ‐ 
masked ∙ ‐ 333 ‐ 
maybe ∙ ‐ 250 ‐ 
MCU ∙ See microcontroller 
Mealy ∙ ‐ 32 ‐ 
memory ∙ ‐ 159 ‐ 
Memory ∙ ‐ 193 ‐ 
memory address space ∙ ‐ 349 ‐ 
memory elements ∙ ‐ 54 ‐ 
memory map ∙ ‐ 214 ‐ 
memory mapped ∙ ‐ 194 ‐ 
memory mapped I/O ∙ ‐ 213 ‐ 
messages from the programmer to the assembler ∙ ‐ 189 

‐ 
messages to assembler ∙ ‐ 189 ‐ 
messages to humans ∙ ‐ 188 ‐ 
method ∙ ‐ 297 ‐ 
Microcomputer ∙ ‐ 22 ‐ 
microcontroller ∙ ‐ 30 ‐ 
Microcontroller ∙ ‐ 22 ‐ 
mnemonics ∙ ‐ 170 ‐ 
model ∙ ‐ 159 ‐ 
modular code ∙ ‐ 182 ‐ 
MODULAR DESIGN ∙ ‐ 29 ‐ 
monstable multivibrator ∙ ‐ 536 ‐ 
Moore ∙ ‐ 32 ‐ 
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mtvec ∙ ‐ 333 ‐ 
multiplexor ∙ ‐ 42 ‐ 
MUX ∙ ‐ 42 ‐, See multiplexor 

N 

n‐bit Counter ∙ ‐ 47 ‐ 
next state ∙ ‐ 54 ‐ 
Next State ∙ ‐ 55 ‐ 
next state decoder ∙ ‐ 54 ‐ 
Next State Decoder ∙ ‐ 53 ‐ 
next state forming logic ∙ ‐ 54 ‐ 
next state logic ∙ ‐ 54 ‐ 
NO CONTROL ∙ ‐ 29 ‐ 
non‐normal operation ∙ ‐ 243 ‐ 
non‐volatile ∙ ‐ 113 ‐ 
normal operation ∙ ‐ 243 ‐ 

O 

off‐page connection ∙ ‐ 178 ‐ 
offset value ∙ ‐ 280 ‐ 
off‐the‐shelf ∙ ‐ 30 ‐ 
Ohm’s Law ∙ ‐ 64 ‐ 
old guys ∙ ‐ 21 ‐ 
one‐off ∙ ‐ 158 ‐ 
one‐shot ∙ ‐ 536 ‐ 
opcodes ∙ ‐ 498 ‐ 
operands ∙ ‐ 194 ‐ 
ort addresses ∙ ‐ 484 ‐ 
oscilloscope ∙ ‐ 534 ‐ 
Output decoder ∙ ‐ 53 ‐ 
Output Decoder ∙ ‐ 54 ‐ 
overhead ∙ ‐ 361 ‐ 

P 

Parallel Load ∙ ‐ 47 ‐ 
peripherals ∙ ‐ 327 ‐ 
physical memory ∙ ‐ 461 ‐ 
PicoBlaze2 ∙ ‐ 22 ‐ 
PicoBlaze3 ∙ ‐ 22 ‐ 
pipeline ∙ ‐ 533 ‐ 
PLD ∙ ‐ 483 ‐, See Programmable Logic Device 
pointers ∙ ‐ 390 ‐ 
polling ∙ ‐ 213 ‐, ‐ 327 ‐ 
polling loop ∙ ‐ 327 ‐, ‐ 328 ‐ 
portable ∙ ‐ 171 ‐ 
Predefined Process ∙ ‐ 178 ‐ 
preprocessor directive ∙ ‐ 428 ‐ 
Present State ∙ ‐ 55 ‐ 
Process ∙ ‐ 178 ‐ 
processor ∙ ‐ 159 ‐ 
Processor ∙ ‐ 161 ‐ 
profiler ∙ ‐ 172 ‐ 

program ∙ ‐ 160 ‐ 
program control ∙ ‐ 245 ‐ 
program counter ∙ ‐ 193 ‐, ‐ 195 ‐ 
program flow control ∙ ‐ 221 ‐, ‐ 243 ‐, ‐ 454 ‐ 
program memory ∙ ‐ 349 ‐ 
programmable logic device ∙ ‐ 174 ‐ 
Programmed I/O ∙ ‐ 212 ‐ 
programmers model ∙ ‐ 162 ‐ 
Programmers Model ∙ ‐ 172 ‐ 
programming efficiency ∙ ‐ 358 ‐ 
Programming Model ∙ ‐ 192 ‐ 
programming style ∙ ‐ 176 ‐ 
Pseudo code ∙ ‐ 175 ‐ 
pseudoinstruction ∙ ‐ 202 ‐, ‐ 203 ‐ 
pseudoinstructions ∙ ‐ 194 ‐ 
psychic ∙ ‐ 182 ‐ 

R 

ra ∙ ‐ 454 ‐ 
RAM ∙ ‐ 113 ‐ 
random access memory ∙ ‐ 113 ‐ 
RAT ∙ ‐ 22 ‐ 
RCA ∙ See ripple carry adder 
read only memory ∙ ‐ 113 ‐ 
real‐time clock ∙ ‐ 327 ‐ 
real‐time programming ∙ ‐ 328 ‐ 
recursion ∙ ‐ 311 ‐ 
recursive subroutine call ∙ ‐ 311 ‐ 
Reduced Instruction Set Computer ∙ ‐ 531 ‐ 
reg file ∙ ‐ 201 ‐ 
register ∙ ‐ 54 ‐ 
register addressing ∙ ‐ 206 ‐ 
register file ∙ ‐ 474 ‐ 
relative addresses ∙ ‐ 473 ‐ 
replacement operator ∙ ‐ 86 ‐ 
restoring context ∙ ‐ 304 ‐ 
retinal persistence ∙ ‐ 538 ‐ 
retirement ∙ ‐ 21 ‐ 
return ∙ ‐ 298 ‐ 
return address ∙ ‐ 306 ‐, ‐ 454 ‐, ‐ 519 ‐ 
ripple carry adder ∙ ‐ 37 ‐ 
Ripple Carry Out ∙ ‐ 47 ‐ 
RISC ∙ ‐ 531 ‐ 
RISC vs. CISC ∙ ‐ 531 ‐ 
robot ∙ ‐ 180 ‐ 
robot grader ∙ ‐ 181 ‐ 
ROM ∙ ‐ 113 ‐ 
rotates ∙ ‐ 73 ‐ 
run time ∙ ‐ 253 ‐ 
running ∙ ‐ 160 ‐ 
runtime ∙ ‐ 280 ‐ 

S 

saving context ∙ ‐ 304 ‐ 
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segments ∙ ‐ 348 ‐ 
self‐loop ∙ ‐ 55 ‐ 
sequence construct ∙ ‐ 175 ‐ 
sequence of code words ∙ ‐ 46 ‐ 
sequence structure ∙ ‐ 178 ‐ 
Sequential circuits ∙ ‐ 44 ‐ 
Sequential Circuits ∙ ‐ 32 ‐ 
sequential execution ∙ ‐ 194 ‐ 
setting ∙ ‐ 265 ‐ 
Set‐up ∙ ‐ 32 ‐ 
seven‐segment display ∙ ‐ 537 ‐ 
shift register ∙ ‐ 49 ‐ 
shift register cell ∙ ‐ 49 ‐ 
sign extended ∙ ‐ 479 ‐ 
sign extension ∙ ‐ 462 ‐ 
signed offset ∙ ‐ 457 ‐ 
signedness ∙ ‐ 74 ‐ 
Simple code ∙ ‐ 181 ‐ 
simple registers ∙ ‐ 44 ‐ 
single purpose ∙ ‐ 158 ‐, ‐ 197 ‐, ‐ 359 ‐ 
societal norms ∙ ‐ 327 ‐ 
softcore MCUs ∙ ‐ 483 ‐ 
software ∙ ‐ 176 ‐, ‐ 197 ‐ 
software‐based interrupts ∙ ‐ 327 ‐ 
software‐land ∙ ‐ 292 ‐ 
solid‐state drives ∙ ‐ 534 ‐ 
source register ∙ ‐ 85 ‐, ‐ 202 ‐, ‐ 498 ‐ 
source registers ∙ ‐ 197 ‐ 
space efficient ∙ ‐ 204 ‐, ‐ 233 ‐, ‐ 270 ‐, ‐ 295 ‐ 
spaghetti code ∙ ‐ 175 ‐ 
Specific Purpose Computer ∙ ‐ 187 ‐ 
spiritually enlightening ∙ ‐ 251 ‐ 
stack pointer ∙ ‐ 293 ‐ 
standard decoder ∙ ‐ 38 ‐ 
Standard Decoder ∙ ‐ 40 ‐ 
state ∙ ‐ 53 ‐ 
state bubble ∙ ‐ 57 ‐ 
state diagram ∙ ‐ 53 ‐ 
state registers ∙ ‐ 54 ‐ 
State Registers ∙ ‐ 53 ‐ 
state transition ∙ ‐ 55 ‐ 
state transition arrow ∙ ‐ 55 ‐ 
state variables ∙ ‐ 54 ‐ 
status signals ∙ ‐ 54 ‐ 
stop running ∙ ‐ 190 ‐ 
structured code ∙ ‐ 175 ‐ 
structured memories ∙ ‐ 533 ‐ 
structured memory ∙ ‐ 112 ‐ 
structured programming ∙ ‐ 178 ‐, ‐ 249 ‐ 
Structured programs ∙ ‐ 181 ‐ 
style file ∙ ‐ 182 ‐ 
subroutine ∙ ‐ 296 ‐ 
subroutine call ∙ ‐ 194 ‐ 
switch bounce ∙ ‐ 534 ‐ 
symbology ∙ ‐ 59 ‐ 
synthesizing ∙ ‐ 536 ‐ 
system clock ∙ ‐ 55 ‐ 

T 

T cycles ∙ ‐ 446 ‐ 
tape drives ∙ ‐ 113 ‐ 
task code ∙ ‐ 331 ‐ 
terminal ∙ ‐ 178 ‐ 
testing ∙ ‐ 180 ‐ 
text editor ∙ ‐ 160 ‐ 
three‐state ∙ ‐ 64 ‐ 
throughput ∙ ‐ 330 ‐ 
time delay ∙ ‐ 538 ‐ 
time efficient ∙ ‐ 204 ‐, ‐ 295 ‐ 
time slots ∙ ‐ 54 ‐ 
toggling ∙ ‐ 265 ‐ 
toolchain ∙ ‐ 174 ‐ 
top of the stack ∙ ‐ 293 ‐ 
transition ∙ ‐ 55 ‐ 
tricks ∙ ‐ 229 ‐ 
tricky code ∙ ‐ 182 ‐ 
tri‐state ∙ ‐ 64 ‐ 
tri‐state register ∙ ‐ 66 ‐ 
twiddles ∙ ‐ 158 ‐ 

U 

Unconditional branch ∙ ‐ 194 ‐ 
unconditional branches ∙ ‐ 245 ‐ 
unconditionally ∙ ‐ 221 ‐ 
Understandable code ∙ ‐ 181 ‐ 
universal shift register ∙ ‐ 70 ‐ 
unmasked ∙ ‐ 333 ‐ 
Up Counter ∙ ‐ 47 ‐ 
Up/Down Counter ∙ ‐ 47 ‐ 

V 

variable ∙ ‐ 253 ‐ 
vector address ∙ ‐ 332 ‐ 
vectors ∙ ‐ 332 ‐ 
vernacular ∙ ‐ 195 ‐ 
volatile ∙ ‐ 113 ‐ 
Von Neumann architecture ∙ ‐ 532 ‐ 
voodoo ∙ ‐ 565 ‐ 

W 

wacky instructor ∙ ‐ 560 ‐ 
while loop ∙ ‐ 179 ‐ 
while loops ∙ ‐ 253 ‐ 
white space ∙ ‐ 182 ‐ 
whitespace ∙ ‐ 190 ‐ 
word ∙ ‐ 115 ‐ 
working register ∙ ‐ 281 ‐ 
wrapper ∙ ‐ 483 ‐ 



CPE 233  Index 

 

 - 612 -  
 

write enable ∙ ‐ 486 ‐ 
write pulse ∙ ‐ 486 ‐ 
writeback cycle ∙ ‐ 446 ‐, ‐ 448 ‐ 

Z 

zero extension ∙ ‐ 462 ‐ 

 


