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Preface

Game theory has already proved its tremendous potential for conflict
resolution problems in the fields of Decision Theory and Economics.
In the recent past, there have been attempts to extend the results
of crisp game theory to those conflict resolution problems which are
fuzzy in nature e.g. Nishizaki and Sakawa [61] and references cited
there in. These developments have lead to the emergence of a new
area in the literature called fuzzy games. Another area in the fuzzy
decision theory, which has been growing very fast is the area of fuzzy
mathematical programming and its applications to various branches of
sciences, Engineering and Management.

In the crisp scenario, there exists a beautiful relationship between
two person zero sum matrix game theory and duality in linear pro-
gramming. It is therefore natural to ask if something similar holds in
the fuzzy scenario as well. This discussion essentially constitutes the
core of our presentation.

The objective of this book is to present a systematic and focussed
study of the application of fuzzy sets to two very basic areas of decision
theory, namely Mathematical Programming and Matrix Game Theory.
Apart from presenting most of the basic results available in the litera-
ture on these topics, the emphasis here is to understand their natural
relationship in a fuzzy environment. The study of duality theory for
fuzzy mathematical programming problem plays a key role in under-
standing this relationship. For this, a theoretical framework of duality
in fuzzy mathematical programming and conceptualization of the solu-
tion of the fuzzy game is made on the lines of their crisp counterparts.
Most of the theoretical results and associated algorithms are illustrated
through small numerical examples.
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After presenting some basic facts on fuzzy sets and fuzzy arithmetic,
the main topics namely fuzzy linear and quadratic programming, fuzzy
matrix games, fuzzy bi-matrix games and modality constrained pro-
gramming are discussed in Chapters 4 to 10. Our presentation is cer-
tainly not exhaustive and some topics e.g. fuzzy multi-objective pro-
gramming and fuzzy multi-objective games have been left deliberately
to remain focussed and to keep the book to a reasonable size. Never-
theless these topics are important and therefore appropriate references
are provided whenever desirable.

This book is primarily addressed to senior undergraduate students,
graduate students and researchers in the area of fuzzy optimization
and related topics in the department of Mathematics, Statistics, Oper-
ational Research, Industrial Engineering, Electrical Engineering, Com-
puter Science and Management Sciences. Although every care has been
taken to make the presentation error free, some errors may still remain
and we hold ourselves responsible for that and request that the er-
ror if any, be intimated by e-mailing at chandra@maths.iitd.ernet.ac.in
(e-mail address of S.Chandra).

In the long process of writing this book we have been encouraged
and helped by many individuals. We would first and foremost like to
thank Professor Janusz Kacprzyk for accepting our proposal and en-
couraging us to write this book. We are highly grateful to Professors I.
Nishizaki, M. Inuiguchi, J. Ramik, D. Li, T. Maeda and H-C. Wu for
sending their reprints / preprints and answering to our queries at the
earliest. Their research has certainly been a source of inspiration for us.
We would also like to thank the editors and publishers of the journals
“Fuzzy Sets and Systems”, “Fuzzy Optimization and Decision Mak-
ing” and “Omega” for publishing our papers in the area of fuzzy linear
programming and fuzzy matrix games which constitute the core of this
book. We also appreciate our students Ms. Vidyottama Vijay and Ms.
Reshma Khemchandani for their tremendous help during the prepara-
tion of the manuscript in LATEX and also reading the manuscript from
a student point of view. We also acknowledge the book grant provided
by IIT Delhi and thank Prof. P.C. Sinha for all help in this regard.
Our special thanks are due to Dr. J.L.Gray, Dean, Faculty of Manage-
ment, University of Manitoba for his encouragement and interest in this
work. Last but not the least, we are obliged to Dr. Thomas Ditzinger
and Ms Heather King of International Engineering Department, and
Mr. Nils Schleusner of Production Department, Springer-Verlag for all
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their help, cooperation and understanding in the publication of this
book.

(Winnipeg), C.R.Bector
(New Delhi), S.Chandra
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1

Crisp matrix and bi-matrix games: some basic
results

1.1 Introduction

There is a vast literature on the theory and applications of (crisp)
matrix and bi-matrix games, and some of which have been very well
documented in the excellent text books e.g. Jianhua [30], Karlin [31],
Parthasarathy and Raghavan [64], and Owen [62]. Therefore in this
chapter we only review certain basic results on these topics along
with results concerning duality in linear programming. The chapter
is divided into six main sections, namely, duality in linear program-
ming, two-person zero-sum matrix games, linear programming and ma-
trix game equivalence, two person non-zero sum (bi-matrix) games,
quadratic programming and bi-matrix games, and constrained matrix
games.

1.2 Duality in linear programming

In this section, we will just be quoting certain important results from
duality theory of crisp linear programming. We know that, the dual of
the standard linear programming problem (called the primal problem)
(LP) max cTx

subject to,

Ax ≤ b, x ≥ 0,

is defined as
(LD) min bT y

subject to,
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AT y ≥ c, y ≥ 0,

where x ∈ Rn, y ∈ Rm, c ∈ Rn, b ∈ Rm and A is an (m× n) real matrix.
The above primal-dual pair (LP)-(LD) is symmetric in the sense that
the dual of (LD) is (LP). Therefore, out of these two problems (LP) and
(LD), anyone could be called primal and the other as its dual. We shall
call (LP) as primal and (LD) as its dual.

The following theorems for duality hold between (LP) and (LD).

Theorem 1.2.1 (Weak duality theorem). Let x be a feasible solu-
tion of (LP) and y be a feasible solution of (LD). Then, cTx ≤ bT y.

Corollary 1.2.1 Let x̂ be a feasible solution of (LP) and ŷ be a feasible
solution of (LD) such that cTx̂ = bT ŷ. Then x̂ is an optimal solution of
(LP) and ŷ is an optimal solution of (LD).

Theorem 1.2.2 (Duality theorem). Let x̂ be an optimal solution
of (LP). Then there exists ŷ which is optimal to (LD) and conversely.
Further, cTx̂ = bT ŷ.

Theorem 1.2.3 (Existence theorem). If (LP) is unbounded then
(LD) is infeasible, and if (LP) is infeasible and (LD) is feasible, then
(LD) is unbounded. Further it is possible that both (LP) and (LD) are
infeasible.

Theorem 1.2.4 (Complementary slackness theorem). If in any
optimal solution of (LP), the slack variable x∗n+i > 0, then in every
optimal solution of (LD), y∗i = 0. Conversely, if y∗i > 0 in any optimal
solution of (LD), then in every optimal solution of (LP) x∗n+i = 0, i.e.
for a pair of optimal solutions of primal and dual, x∗n+iy

∗
i = 0 (i =

1, 2, . . . ,m).

The above theorem can also be stated in the following equivalent
way as well.

Let x∗ be optimal to (LP) and y∗ be optimal to (LD). Then

(i)
n∑

j=1

aijx∗j < bi ⇒ y∗i = 0, and

(ii)
m∑

i=1

aijy∗i > cj ⇒ x∗j = 0.



1.3 Two person zero-sum matrix games 3

1.3 Two person zero-sum matrix games

In this section, we present certain basic definitions and preliminaries
with regard to two person zero-sum matrix games.

Let Rn denote the n-dimensional Euclidean space and Rn
+ be its

non-negative orthant. Let A ∈ Rm×n be an (m × n) real matrix and
eT = (1, 1, . . . , 1) be a vector of ‘ones’ whose dimension is specified as
per the specific context. By a (crisp) two person zero-sum matrix game
G we mean the triplet G = (Sm,Sn,A) where Sm = {x ∈ Rm

+ , e
Tx = 1} and

Sn = {y ∈ Rn
+, e

T y = 1}. In the terminology of the matrix game theory,
Sm(respectively Sn) is called the strategy space for Player I (respectively
Player II ) and A is called the pay-off matrix. Then, the elements of Sm

(respectively Sn) which are of the form x = (0, 0, . . . , 1, . . . , 0)T = ei,
where 1 is at the ith place (respectively y = (0, 0, . . . , 1, . . . , 0)T = ej,
where 1 is at the jth place) are called pure strategies for Player I (re-
spectively Player II). If Player I chooses ith pure strategy and Player II
chooses jth pure strategy then aij is the amount paid by Player II to
Player I. If the game is zero-sum then −aij is the amount paid by
Player I to Player II i.e. the gain of one player is the loss of other player.
The quantity E(x, y) = xTAy is called the expected pay-off of Player I
by Player II, as elements of Sm (respectively Sn) can be thought of
as a set of all probability distribution over I = {1, 2, . . . ,m} (respec-
tively J = {1, 2, . . . ,n}). It is customary to assume that Player I is a
maximizing player and Player II is a minimizing player. The triplet
PG = (I, J, A) is called the pure form of the game G , whenever G
is being referred as the mixed extension of the pure game G. We shall
refer to a two person zero-sum game always as G = (Sm, Sn, A) and
if the game is in the pure form it will be clear from the context itself.
Thus, for us Sm refers to the (mixed) strategy space of Player I, Sn

refers to the (mixed) strategy space of Player II, and A refers to the
pay-off matrix which introduces the function E : Sm × Sn → R given by
E(x, y) = xTAy, called the expected pay-off function .

The meaning of the solution of the game G = (Sm, Sn, A) is best
understood in terms of maxmin and minmax principles for Player I and
Player II respectively. According to this principle, each player adopts
that strategy which results in the best of the worst outcomes. In other
words, Player I (the maximizing player) decides to play that strategy
which corresponds to the maximum of the minimum gain for his differ-
ent courses of action. This is known as the maxmin principle .
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Similarly, Player II (the minimizing player) also likes to play safe and
in that case he selects that strategy which corresponds to the minimum
of the maximum losses for his different courses of action. This is known
as the minmax principle.

Employing the maxmin principle for Player I, we obtain v =
max
x∈Sm

min
y∈Sn

(xTAy), called the lower value of the game. Similarly the min-

max principle for Player II gives v̄ = min
y∈Sn

max
x∈Sm

(xTAy), called the upper

value of the game. It is well known that v̄ ≥ v. The main result of
two-person zero-sum matrix game theory asserts that, in fact, these
are equal, i.e v̄ = v = v∗, which is then called the value of the game.
The following theorem is very useful in this regard.

Theorem 1.3.1 If there exists (x∗, y∗, v∗) ∈ Sm × Sn ×R such that

(i) E(x∗, y) ≥ v∗, ∀ y ∈ Sn, and,
(ii) E(x, y∗) ≤ v∗, ∀ x ∈ Sm,

then v̄ = v∗ = v and conversely.

Definition 1.3.1 (Saddle point). Let E : Sm × Sn −→ R be given by
E(x, y) = xTAy. The function E is said to have a saddle point (x∗, y∗)
if E(x∗, y) ≥ E(x∗, y∗) ≥ E(x, y∗), ∀ x ∈ Sm and ∀ y ∈ Sn.

In view of the above definition we have the following corollary for
Theorem 1.3.1.

Corollary 1.3.1 A necessary and sufficient condition that v̄ = v i.e.
min
y∈Sn

max
x∈Sm

xTAy = max
x∈Sm

min
y∈Sn

xTAy, is that the function E(x, y) has a

saddle point (x∗, y∗). Here v∗ = E(x∗, y∗) = v = v̄.

Theorem 1.3.1 leads to the following definition of the solution of the
game G.

Definition 1.3.2 (Solution of a game). Let G = (Sm, Sn, A) be the
given game. A triplet (x∗, y∗, v∗) ∈ Sm × Sn × R is called a solution of
the game G if

E(x∗, y) ≥ v∗, ∀ y ∈ Sm,
and

E(x, y∗) ≤ v∗, ∀ x ∈ Sn.
Here x∗ is called an optimal strategy for Player I, y∗ is called an optimal
strategy for Player II, and v∗ is called the value of the game G .
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Remark 1.3.1. In view of Theorem 1.3.1 and its Corollary 1.3.1,
(x∗, y∗, v∗) is a solution of the game G if and only if (x∗, y∗) is
a saddle point of E and in that case v∗ = E(x∗, y∗). Such a sad-
dle point is guaranteed to exist if v = v̄ and conversely. Here it
may be noted that only the existence of (x̄, ȳ) ∈ Sm × Sn such that
min
y∈Sn

max
x∈Sm

xTAy = max
x∈Sm

min
y∈Sn

xTAy = x̄TAȳ, is not a sufficient condition

in order that (x̄, ȳ) be a solution of the matrix game G, i.e. this may not
imply that (x̄, ȳ) constitutes an optimal pair of strategies. For example,

if G = (S2, S2, A) with A =
[

2 0
0 2

]
then v = v̄ = 1. Also x∗ =

(1
2
,

1
2

)T
= y∗

constitutes a saddle point of E and therefore a pair of optimal strate-

gies. However x̄ =
(1
2
,

1
2

)T
, ȳ = (1, 0)T also gives E(x̄, ȳ) = 1, but ȳ is

obviously not optimal to Player II. The main reason being that (x∗, y∗)
is a saddle point of E(x, y) but (x̄, ȳ) is not.

Next we answer the basic question regarding the existence of a so-
lution for the game G. The following theorem is very fundamental in
this context as it asserts that every two-person zero-sum matrix game
G always has a solution.

Theorem 1.3.2 (Fundamental theorem of matrix games). Let
G = (Sm, Sn, A). Then min

y∈Sn
max
x∈Sm

xTAy and max
x∈Sm

min
y∈Sn

xTAy both exists

and are equal.

Here the problem max
x∈Sm

min
y∈Sn

xTAy (respectively min
y∈Sn

max
x∈Sm

xTAy)

is called Player I’s (respectively Player II’s) problem. If there exists
(io, jo) ∈ I × J such that aio, j ≥ aio, jo ≥ ai, jo for all i and j then (io, jo) is
called a pure saddle point and in that case we say that the game G has
a solution in the pure form. In this situation(

min
j∈J

max
i∈I

ai j

)
=

(
max

i∈I
min

j∈J
ai j

)
= aio, jo

and therefore io gives an optimal pure strategy for Player I, jo gives an
optimal pure strategy for Player II, and aio, jo becomes the value of the
game G. In this case it may be noted that aio, jo is the smallest element
in the itho row and the largest element in the jtho column.

Thus Theorem 1.3.2 above guarantees that every two person zero-
sum matrix game G has a solution. If there is no solution in the pure
form then there is certainly a solution in the mixed form. Therefore,
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the question “How to obtain the solution for this matrix game G?” is
to be addressed in the next section.

1.4 Linear programming and matrix game equivalence

We shall now establish an equivalence between two person zero-sum
matrix game G = (Sm, Sn, A) and a pair of primal-dual linear pro-
gramming problems. This equivalence besides being interesting mathe-
matically, is also very useful as it provides a very efficient way to solve
the given game G.

Let us consider the Player I’s (respectively Player II’s) problem:
max
x∈Sm

min
y∈Sn

xTAy (respectively min
y∈Sn

max
x∈Sm

xTAy). Since Sm and Sn are

compact convex sets and for a given x (respectively given y), the func-
tion E(x, y) is a linear function of y (respectively x), the min

y∈Sn
xTAy(

respectively max
x∈Sm

(xTAy)
)

will be attained at an extreme point of Sn

(respectively Sm). Therefore for a given x ∈ Sm,

min
y∈Sn

(xTAy) = min
1≤ j≤n

(xTAej),

where ej = (0, 0, . . . , 1, . . . , 0)T with ‘1’ at the jth place, is the jth pure
strategy of Player II. Thus

max
x∈Sm

min
y∈Sn

(xTAy) = max
x∈Sm

min
1≤ j≤n

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

aijxi

⎞⎟⎟⎟⎟⎟⎠ .

If we now take v = min
1≤ j≤n

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

aijxj

⎞⎟⎟⎟⎟⎟⎠, then the maxmin value for

Player I is obtained by solving the following linear programming prob-
lem
(LP1) max v

subject to,

m∑
i=1

aijxi ≥ v, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0.
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Similarly the minmax value for Player II is obtained as a solution
of the following linear programming problem
(LD1) min w

subject to,

n∑
j=1

aijyj ≤ w, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0,

where w = max
1≤i≤m

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

aijyj

⎞⎟⎟⎟⎟⎟⎟⎠.
Now it can be verified that (LP1) and (LD1) constitute a primal-

dual pair of linear programming problems. Since both maxmin and
minmax are attained, these two LPPs have optimal solutions (x̄ and
ȳ) and therefore by the linear programming duality, the optimal values
of (LP1) and (LD1) will be equal. Let this common value be v̄. Then
the way (LP1) and (LD1) have been constructed, it is obvious that

m∑
i=1

aijx̄i ≥ v̄, ( j = 1, 2, . . . ,n) and
n∑

j=1

aij ȳ j ≤ v̄, (i = 1, 2, . . . ,m) implying

that (x̄)TAy ≥ v̄ for all y ∈ Sn and xTAȳ ≤ v̄ for all x ∈ Sm.
The above discussion then leads to the following equivalence theo-

rem.

Theorem 1.4.1 The triplet (x̄, ȳ, v̄) ∈ Sm×Sn×R is a solution of the
game G if and only if x̄ is optimal to (LP1), ȳ is optimal to (LD1) and
v̄ is the common value of (LP1) and its dual (LD1).

Thus, we have concluded that the matrix game G = (Sm, Sn, A)
is equivalent to the primal-dual linear programming problems (LP1)-
(LD1).

The pair (LP1)-(LD1) can further be expressed in the form (LP2)-
(LD2) where duality is much more obvious and it does not need any
checking. For this we need to assume that v∗, the value of the game G,
is positive. This assumption can be taken without any loss of general-
ity since matrix games G = (Sm, Sn, A) and G1 = (Sm, Sn, A1), A1 =
(aij + α), α ∈ R will have same optimal strategies but different values
as v∗ and v1

∗ where v1
∗ = v∗ + α. The consequence of the assumption

that v∗ > 0 is that in (LP1) and (LD1) we have v > 0 and w > 0. Now
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by defining xi
′
=

xi

v
, yj

′
=

yj

w
(i = 1, 2, . . . ,m, j = 1, 2, . . . ,n) and noting

that eTx
′
=

1
v

eTx =
1
v

and eT y
′
=

1
w

eT y =
1
w

, and max v (respectively

min w) = min
(1
v

) (
respectively max

( 1
w

) )
, the problems (LP1) and

(LD1) become

(LP2) min eTx
′

subject to
m∑

i=1

aijxi
′ ≥ 1, (i = 1, 2, . . . ,m),

x
′ ≥ 0,

and

(LD2) max eT y
′

subject to
n∑

j=1

aijyj
′ ≤ 1, ( j = 1, 2, . . . ,n),

y
′ ≥ 0.

Since (LP2)-(LD2) constitutes a primal-dual pair, it is enough to
solve only one of these as the solution of the other will be obtained
directly because of the duality theory. Once optimal solution x∗′ of
(LP2) and y∗′ of (LD2) are obtained, the value of the game G is obtained

as v∗ = w∗ =
1

eTx∗′
=

1
eT y∗′

. Also, optimal strategies for Player I and

Player II are obtained as x∗ = v∗x∗′ and y∗ = v∗y∗′ respectively.
In the above discussion we have constructed a primal-dual pair

(LP1)-(LD1) (or (LP2)-(LD2)) for a given general two person zero-sum
matrix game G. It is now natural to ask what happens if we are given
any general pair of primal-dual linear programming problems say (LP)
and (LD). Can we construct an equivalent matrix game G? The answer
is in affirmative and that is what we discuss now.

Consider the linear programming problems (LP) together with its
dual (LD) as follows
(LP) max cTx

subject to,
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Ax ≤ b,
x ≥ 0,

and
(LD) min bT y

subject to,

AT y ≥ c,
y ≥ 0,

where c ∈ Rn, x ∈ Rn, b ∈ Rm, y ∈ Rm, A = (aij) is an (m × n) real
matrix.

Now, consider the matrix game associated with the following (n +
m + 1) × (n +m + 1) skew-symmetric matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 −AT c
A 0 −b
−cT bT 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Since B is a skew-symmetric matrix, the value of the matrix game

associated with B is zero and both players have the same optimal strate-
gies. In the following, the matrix game B will mean the matrix game
associated with B and indices i and j will run from 1 to m and 1 to n re-
spectively. Also a strategy for either player will be denoted by (x, y, z)
where x ∈ Rn, y ∈ Rm and z ∈ R.

The following result shows that the primal-dual pair (LP)-(LD) is
equivalent to the matrix game B.

Theorem 1.4.2 Let x̄ and ȳ be optimal to (LP) and (LD) respectively.

Let z∗ = 1

1 +
∑

j

x̄ j +
∑

i

ȳi

, x∗ = z∗x̄, y∗ = z∗ ȳ. Then (x∗, y∗, z∗) solves

the matrix game B.

Proof. First we show that Z∗ = (x∗, y∗, z∗) will be an optimal strategy
for both the players. For this we note that

x∗ + y∗ + z∗ =
∑

x̄ jz∗ +
∑

ȳiz∗ + z∗ = (1 +
∑

x̄ j +
∑

ȳi)z∗ = 1,
and therefore (x∗, y∗, z∗) ∈ Sm+n+1. Now to prove that Z∗ = (x∗, y∗, z∗)
is an optimal strategy for Player II, we have to show that BZ∗ ≤ 0.
But x̄ and ȳ are solutions of (LP) and (LD) and therefore by the duality
theory
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Ax̄ − b ≤ 0,
c − AT ȳ ≤ 0,

−cTx̄ + bT ȳ ≤ 0.

On multiplying these inequalities by z∗, we have

cz∗ − AT y∗ ≤ 0,
Ax∗ − bz∗ ≤ 0,

−cTx∗ + bT y∗ ≤ 0,

which on writing in matrix form gives BZ∗ ≤ 0.
Now we note that B is skew symmetric and therefore BZ∗ ≤ 0 gives
(Z∗)TB ≥ 0, which implies that Z∗ is an optimal strategy for Player I as
well.

Theorem 1.4.3 Let (x∗, y∗, z∗) be an optimal strategy of the matrix

game B with z∗ > 0. Let x̄ j =
x∗j
z∗ , ȳi =

y∗i
z∗ . Then x̄ and ȳ are optimal

solutions to (LP) and (LD) respectively.

Proof. Since both players have the same optimal strategies, it is suffi-
cient to take Z∗ = (x∗, y∗, z∗) as an optimal strategy for either player,
say Player II. Similar arguments are valid if Z∗ is taken as an optimal
strategy for Player I. Therefore, let Z∗ = (x∗, y∗, z∗) be an optimal
strategy for Player II with z∗ > 0. Then we have

−AT y∗ + cz∗ ≤ 0,
Ax∗ − bz∗ ≤ 0,

−cTx∗ + bT y∗ ≤ 0.

Now −AT y∗+cz∗ ≤ 0 gives AT
(

y∗

z∗

)
≥ c. Similarly the other two inequal-

ities gives A
(x∗

z∗
)
≤ b and cT

(x∗
z∗

)
≥ bT

(
y∗

z∗

)
. Therefore we have

AT ȳ ≥ c,

Ax̄ ≤ b,

and
cTx̄ ≥ bT ȳ.

But the first two inequalities imply
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cTx̄ ≤ ȳTAx̄ ≤ ȳTb = bT ȳ,

and therefore we have cTx̄ = bT ȳ.
This proves that x̄ and ȳ are optimal for the primal and dual problems
respectively.

Thus the equivalence between two person zero-sum matrix game
theory and duality in linear programming is complete in the sense that
given any general two person zero sum matrix game G, there is a related
pair of primal-dual linear programming problems, and given any general
pair of primal-dual linear programming problems, there is an associated
matrix game B.

1.5 Two person non-zero sum (bi-matrix) games

In the earlier sections, we have studied two person zero-sum games in
which the gain of one player is the loss of the other player. But there
may be situations in which the interests of two players may not be
exactly opposite. Such situations give rise to two person non-zero sum
games, also called bi-matrix games . Some well known examples of bi-
matrix games are “The Prisoner’s Dilemma”, “The Battle of Sexes”
and “The Bargaining Problem”.

A bi-matrix game can be expressed as BG = (A, B, Sm, Sn), where
Sm , Sn are as introduced in Section 1.3 and, A and B are (m × n) real
matrices representing the pay-offs to Player I and Player II respectively.

Definition 1.5.1 (Equilibrium solution). A pair (x∗, y∗) ∈ Sm × Sn

is said to be an equilibrium solution of the bi-matrix game BG if

xTAy∗ ≤ x∗TAy∗,

and
x∗TBy ≤ x∗TBy∗,

for all x ∈ Sm and y ∈ Sn.

Remark 1.5.1. A two person zero sum matrix game G = (Sm, Sn, A)
is a special case of the bi-matrix game BG with B = −A. Therefore for
B = −A, the definition of an equilibrium solution reduces to a saddle
point for the two person zero sum game G. This can easily be verified
by putting B = −A in Definition 1.5.1.
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In the context of bi-matrix game, the following theorem due to Nash
[60] is very basic as it guarantees the existence of an equilibrium solu-
tion of the bi-matrix game BG.

Theorem 1.5.1 (Nash existence theorem [60]). Every bi-matrix
game BG = (Sm, Sn, A, B) has at least one equilibrium solution.

Proof. For any (x, y) ∈ Sm × Sn, let us define

ci(x, y) = max (Aiy − xTAy, 0)

and
dj(x, y) = max (xTBj − xTBy, 0),

where Ai and Bj respectively are the ith row of the matrix A and the
jth column of the matrix B.

Then we consider the function T : Sm × Sn −→ Sm × Sn given by
T(x, y) = (x′, y′), where

x′i =
xi + ci(x, y)

1 +
m∑

i=1

ci(x, y)

, y′ j =
yj + dj(x, y)

1 +
n∑

j=1

dj(x, y)

.

Now for i = 1, 2, . . . ,m, ci(x, y) ≥ 0 and therefore x′i ≥ 0. Similarly for
j = 1, . . . ,n, dj(x, y) ≥ 0 and therefore y′j ≥ 0. Also it can be verified

that eTx′ =
m∑

i=1

x′i = 1 and eT y′ =
n∑

j=1

y′j = 1. Hence x′ ∈ Sm and y′ ∈ Sn.

Further Sm and Sn are compact convex sets and therefore so is Sm×Sn.
Now noting that T : Sm × Sn −→ Sm × Sn is a continuous, one to
one mapping and Sm × Sn is a compact convex set, the Brouwer’s
fixed point theorem asserts that T has at least one fixed point, say
(x∗, y∗), T(x∗, y∗) = (x′, y′) = (x∗, y∗). We shall now show that (x∗, y∗)
is an equilibrium solution of the bi-matrix game BG. If possible let
(x∗, y∗) be not an equilibrium solution of BG. This means that either
there exists some x̄ ∈ Sm such that x̄TAy∗ > x∗TAy∗ or there exists
some ȳ ∈ Sn such that x∗TBȳ > x∗TBy∗. We are here assuming that
the first case holds. The proof in the second case is similar. The first
case namely, x̄TAy∗ > x∗TAy∗, implies that there exists some i such that
Ai.y∗ > x∗TAy∗, which means that ci > 0 for some i = i0. But ci ≥ 0 for

all i and additionally ci0 > 0, and therefore
m∑

i=1

ci > 0.
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Now x∗TAy∗ =
m∑

i=1

n∑
j=1

xi
∗aijyj

∗ =
m∑

i=1

xi
∗
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

aijyj
∗
⎞⎟⎟⎟⎟⎟⎟⎠ , is the weighted

arithematic mean of m scalars
n∑

j=1

aijyj
∗ (i = 1, . . . ,m), and there-

fore x∗TAy∗ ≥ min

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

a1 jyj
∗, . . . ,

∑
j

amjyj
∗
⎞⎟⎟⎟⎟⎟⎟⎠ =

∑
j

apjyj
∗ for some

1 ≤ p ≤ m. The above inequality implies that Ap.y∗ ≤ x∗TAy∗ and
xp
∗ > 0. Here it may be noted that xp

∗ > 0 otherwise the corresponding
term

∑
j

apjyj
∗ will not be present in the minimization.

Therefore cp(x∗, y∗) = 0 which gives x′p =
xp
∗

1 +
∑

ci1 (x∗, y∗) < xp
∗ and so

x′ � x∗. Similarly in the second case we can show that y′ � y∗. Hence
(x′, y′) � (x∗, y∗), which is a contradiction to the fact that (x∗, y∗)
is a fixed point. Therefore (x∗, y∗) is an equilibrium solution of the
bi-matrix game BG.

1.6 Quadratic programming and bi-matrix game

In Section 1.4 we have shown that every two person zero-sum matrix
game G = (Sm, Sn, A) can be solved by solving a suitable primal-dual
pair of linear programming problems. Mangasarian and Stone [52] es-
tablished a somewhat similar result to show that a Nash equilibrium
solution of a bi-matrix game BG can be obtained by solving an appro-
priate quadratic programming problem .

The main result of this section is to obtain the quadratic program-
ming problem that has to be solved in order to obtain an equilibrium
solution of the given bi-matrix game BG.

Let us now recall Definition 1.5.1 and note that (x∗, y∗) ∈ (Sm × Sn)
is a Nash equilibrium solution of the bi-matrix game BG if and only
if x∗ and y∗ simultaneously solve the following problems (P1) and (P2),
where
(P1) max xTAy∗

subject to,

eTx = 1,
x ≥ 0,
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and
(P2) max (x∗)TBy

subject to,

eT y = 1,
y ≥ 0.

Therefore, a Nash equilibrium solution (x∗, y∗) is a pair of strategies
x∗ and y∗ such that

x∗TAy∗ = max
x
{ xTAy∗ : eTx − 1 = 0, x ≥ 0 },

and
x∗TBy∗ = max

y
{ x∗TBy : eT y − 1 = 0, y ≥ 0 }.

The following lemma provides necessary and sufficient conditions
for an equilibrium solution.

Lemma 1.6.1. A necessary and sufficient condition that (x∗, y∗) be an
optimal solution of (P1) and (P2) is that there exist scalars α∗ and β∗
such that (x∗, y∗, α∗, β∗) satisfy

x∗TAy∗ − α∗ = 0
x∗TBy∗ − β∗ = 0

Ay∗ − α∗e ≤ 0
BTx∗ − β∗e ≤ 0

eTx∗ − 1 = 0
eT y∗ − 1 = 0

x∗ ≥ 0
y∗ ≥ 0.

Proof. The proof of the necessary part of the above lemma follows
directly by employing the Karush-Kuhn-Tucker conditions to problems
(P1) and (P2).
Let us now prove the sufficient part of the above lemma; i.e assuming
that the given conditions are holding, we have to show that (x∗, y∗) is
an optimal solution of (P1) and (P2). Let (x, y) ∈ Sm × Sn be arbitrary.
Since from the given conditions

Ay∗ ≤ α∗e,
we have
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xTAy∗ ≤ α∗xTe = α∗,

i.e
xTAy∗ ≤ x∗TAy∗.

Similarly x∗TBy ≤ x∗TBy∗. Hence (x∗, y∗) is an equilibrium solution and
therefore an optimal solution of (P1) and (P2).

Theorem 1.6.1 (Equivalence theorem). Let BG = (Sm, Sn, A, B)
be the given bi-matrix game. A necessary and sufficient condition that
(x∗, y∗) be an equilibrium solution of BG is that it is a solution of the
following quadratic programming problem.

max xT(A + B)y − α − β
subject to

Ay − αe ≤ 0
BTx − βe ≤ 0

eTx − 1 = 0
eT y − 1 = 0
x ≥ 0, y ≥ 0,
α ∈ R, β ∈ R.

Further, if (x∗, y∗, α∗, β∗) is a solution of the above problem then
α∗ = x∗TAy∗, β∗ = x∗TBy∗ and x∗T(A + B)y∗ − α′ − β′ = 0.

Proof. Let S be the set of all feasible solutions of the above problem.
Then because of Lemma 1.6.1 and Theorem 1.5.1, S � ∅. Now for any
arbitrary (x, y, α, β) ∈ S

xT(A + B)y − α − β = xTAy + xTBy − α − β
= xTAy − αeTx + xTBy − βeT y
= xT(Ay − α) + yT(BTx − β) ≤ 0

and therefore max
x,y,α,β

(
xT(A + B)y − α − β

)
≤ 0. Now suppose that (x∗, y∗)

is an equilibrium solution of the bi-matrix game BG. Then (x∗, y∗)
is optimal to (P1) and (P2) with α∗ = x∗TAy∗ and β∗ = x∗TBy∗.
Therefore (x∗, y∗, α∗, β∗) ∈ S and x∗T(A + B)y∗ − α∗ − β∗ = 0. But
max
x,y,α,β

(
xT(A + B)y − α − β

)
≤ 0 and hence x∗T(A + B)y∗ − α∗ − β∗ =

max
x,y,α,β

(
xT(A + B)y − α − β

)
= 0 which proves the result.

Conversely, let (x∗, y∗, α∗, β∗) be a solution of the above quadratic
programming problem. Since
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max
x,y,α,β

xT(A + B)y − α − β ≤ 0,

we have
x∗T(A + B)y∗ − α∗ − β∗ ≤ 0.

But from Nash’s Existence Theorem (Theorem 1.5.1) and the Lemma
1.6.1, there exists (x̂, ŷ, α̂, β̂) ∈ S such that

x̂T(A + B)ŷ − α̂ − β̂ = 0.

Therefore the maximum value of the given quadratic programming
problem is attained. Since (x∗, y∗, α∗, β∗) is optimal, we have

x∗T(A + B)y∗ − α∗ − β∗ = 0.

Rest of the proof now follows from the above equation and the given
QPP as x∗TAy∗−α∗ = 0 and x∗TBy∗−β∗ = 0. Hence (x∗, y∗) is an optimal
solution of (P1) and (P2), which gives that (x∗, y∗) is an equilibrium
solution of the bi-matrix game BG.

Remark 1.6.2. For B = −A, the bi-matrix game BG = (Sm,Sn,A,B)
reduces to the two person zero-sum matrix game G = (Sm, Sn, A).
For this case, the quadratic programming problem of Theorem 1.6.1
decomposes itself into following pair of linear programming problems:
(LP) max −α

subject to,

Ay ≤ αe,
eT y = 1,

y ≥ 0,

and
(LD) max −β

subject to,

−ATx ≤ βe,
eTx = 1,

x ≥ 0.

Now calling −β as λ, we have (LP) and (LD) as
(LP) min α

subject to,
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Ay ≤ αe,
eT y = 1,

y ≥ 0,

and
(LD) max λ

subject to,

ATx ≥ λe,
eTx = 1,

x ≥ 0,

which is the standard primal-dual pair associated with the two person
zero sum game G = (Sm, Sn, A).

1.7 Constrained matrix games

There are certain matrix game theoretic problems in real life where
the strategies of the players are constrained to satisfy general linear
inequalities rather than being in Sm or Sn only. These decision prob-
lems give rise to constrained matrix games which have initially been
studied by Charnes [13] and then later in some what more generality
by Kawaguchi and Maruyama [34].

Let S1 = { x ∈ Rm, Bx ≤ c, x ≥ 0 },S2 = { y ∈ Rn : DT y ≥ d, y ≥ 0 }
and k : S1×S2 → R given by k(x, y) = xTAy, where x ∈ Rm, y ∈ Rn, c ∈
Rs, d ∈ Rt, A ∈ Rm×n, B ∈ Rs×m, and D ∈ Rn×t. Then the Constrained
matrix games CG is denoted as CG = (S1, S2, A).

Definition 1.7.1 (Solution of the constrained game CG). An el-
ement (x̄, ȳ) ∈ S1 × S2 is called a solution of the constrained game CG
if (x̄, ȳ) is a saddle point of the function k(x, y) = xTAy, x ∈ S1, y ∈ S2.
In that case the scalar x̄TAȳ is called the value of the constrained game
CG.

The following is the main theorem of the constrained matrix game the-
ory which, as in the case of usual matrix games, asserts that every
constrained matrix game CG is equivalent to two linear programming
problems (CLP) and (CLD) which are dual to each other, where
(CLP) max dTu

subject to,
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−ATx +Du ≤ 0,
Bx ≤ c,

x,u ≥ 0,

and
(CLD) min cTv

subject to,

−Ay + BTv ≥ 0,
DT y ≥ d,
y, v ≥ 0.

Theorem 1.7.1 An element (x̄, ȳ) ∈ S1 × S2 is a solution of the con-
strained game CG = (S1, S2, A) if and only if there exist ū ∈ Rt, v̄ ∈ Rs

such that (x̄, ū) and (ȳ, v̄) are optimal to the mutually dual pair of
linear programming problems (CLP)-(CLD)

Proof. Let us first assume that (x̄, ȳ) ∈ S1 × S2 is a solution of the
constrained game CG. This by definition implies that k(x, ȳ) ≤ k(x̄, ȳ) ≤
k(x̄, y), for all x ∈ S1 and y ∈ S2. But then the left hand side of the
above inequality means that x̄ is an optimal solution of the linear pro-
gramming problem
(LP(ȳ)) max xT(Aȳ)

subject to,

Bx ≤ c,
x ≥ 0.

Hence, by the duality theorem, there exists v̄ ∈ Rs which is optimal to
the dual (LD(ȳ)) where
(LD(ȳ)) min cTv

subject to,

BTv ≥ Aȳ,
v ≥ 0.

Also cTv̄ = (x̄)TAȳ.
Similarly, the right hand side of the saddle point inequality gives that
ȳ is an optimal solution of the linear programming problem
(LP(x̄)) min (x̄TA)y

subject to,

DT y ≥ d,
y ≥ 0,
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Hence, by the duality theorem, there exists ū ∈ Rt which is optimal to
the dual (LD(x̄)), where
(LD(x̄)) max dTu

subject to,

Du ≤ ATx̄,
u ≥ 0.

Also dTū = x̄TAȳ.
Now looking at the linear programming problem (LD(ȳ)), and also not-
ing that ȳ ∈ S2 and x̄TAȳ = cTv̄, we note that (ȳ, v̄) is optimal to the
linear programming problem

min cTv
subject to,

−Ay + BTv ≥ 0,
DT y ≥ d,
y, v ≥ 0,

which is same as the problem (CLD).
Similarly from (LP(x̄)) and the fact that x ∈ S1 and x̄TAȳ = dTū, we
note that (x̄, ū) is optimal to the linear programming problem

max dTu
subject to,

−ATx +Du ≤ 0,
Bx ≤ c,

x,u ≥ 0,

which is the same as the problem (CLP).
It is simple to verify that problems (CLP) and (CLD) are dual to each
other and dTū = cTv̄ = x̄TAȳ.
Conversely, suppose that corresponding to (x̄, ȳ) ∈ S1 × S2, there exist
ū ∈ Rs and v̄ ∈ Rt such that (x̄, ū) and (ȳ, v̄) are optimal to (CLP)
and (CLD) respectively. We shall show that (x̄, ȳ) is a saddle point of
k(x, y) = xTAy, x ∈ S1, y ∈ S2. For this we observe that from the given
hypothesis

−ATx̄ +Dū ≤ 0,
Bx̄ ≤ c,

−Aȳ + BTv̄ ≥ 0,
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DT ȳ ≥ d,
cTū = dTv̄,

x̄, ȳ, ū, v̄ ≥ 0.

Therefore,
xTAȳ ≤ xTBTv̄ = (Bx)Tv̄ ≤ cTv̄, x ∈ S1,

and
x̄TAy ≥ ūTDT y = ūTd = dTū, y ∈ S2.

The above inequalities imply

xTAȳ ≤ cTv̄ = dTū ≤ x̄TAy, x ∈ S1, y ∈ S2.

But
xTAȳ ≤ cTv̄, x ∈ S1

gives
x̄TAȳ ≤ cTv̄.

Similarly
x̄TAy ≥ dTū,

gives
x̄TAȳ ≥ dTū,

and hence
cTv̄ = dTū = x̄TAȳ.

Thus for all x ∈ S1, y ∈ S2, we have xTAȳ ≤ x̄TAȳ ≤ x̄TAy.

1.8 Conclusions

In this chapter we have presented certain basic results on duality in
linear programming, two person zero-sum matrix games, and bi-matrix
games. The discussion on Karush Kuhn-Tucker (K.K.T) conditions and
duality in quadratic programming has not been included here, and for
that we may have to refer to excellent texts like Bazaraa, Sherali and
Shetty [2], and Mangasarian [53].



2

Fuzzy sets

2.1 Introduction

The purpose of this chapter is to review the basic definitions and re-
sults on fuzzy sets and related topics. The chapter is divided into six
main sections, namely, basic definitions and set theoretic operations, α-
cuts and their properties, fuzzy relations, Zadeh’s extension principle,
convex fuzzy sets, triangular norms (t-norms) and triangular conorms
(t-conorms).

Most of the results in this chapter are without proofs. Some appro-
priate references for this chapter are Dumitrescu, Lazzerini and Jain
[17], Klir and Yuan [35], Lin and Lee [45] and Zimmermann [91].

2.2 Basic definitions and set theoretic operations

In this section we introduce some of the basic terminologies of fuzzy
set theory and present various set theoretic operations.

Definition 2.2.1 (Fuzzy set). Let X be the universe whose generic el-
ement be denoted by x. A fuzzy set A in X is a function A : X −→ [0, 1].

We frequently use µA for the function A and say that the fuzzy
set A is characterized by its membership function µA : X −→ [0, 1]
which associates with each x in X, a real number µA(x) in [0,1]. The
value µA(x) at x represents the grade of membership of x in A and is
interpreted as the degree to which x belongs to A. Thus the closer the
value of µA(x) is to 1, the more x belongs to A.

A crisp or ordinary subset A of X can also be viewed as a fuzzy set
in X with membership function as its characteristic function, i.e.
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µA(x) =
{

0, x � A,
1, x ∈ A.

Sometimes a fuzzy set A in X is denoted by listing the ordered pairs
(x, µA(x)), where the elements with zero degree are usually not listed.
Thus a fuzzy set A in X can also be represented as A = {(x, µA(x))}
where x ∈ X and µA : X −→ [0, 1]. As µA : X −→ [0, 1], the following
definitions are natural in this context.

Definition 2.2.2 (Support of a fuzzy set). Let A be a fuzzy set in
X. Then the support of A, denoted by S(A), is the crisp set given by

S(A) = {x ∈ X : µA(x) > 0}.
Definition 2.2.3 (Normal fuzzy set). Let A be a fuzzy set in X.
The height h(A) of A is defined as

h(A) = sup
x∈X
µA(x).

If h(A) = 1, then the fuzzy set A is called a normal fuzzy set, otherwise it
is called subnormal. If 0 < h(A) < 1, then the subnormal fuzzy set A can
be normalized, i.e. it can be made normal by redefining the membership
function as µA(x)/h(A), x ∈ X.

Example 2.2.1. Let X={30, 50, 70, 90} be possible speeds (kmph) at
which cars can cruise over long distances. Then the fuzzy set A of
“comfortable speeds for long distances” may be defined subjectively by
a certain individual as

µ(x = 30) = 0.5,
µ(x = 50) = 0.8,
µ(x = 70) = 1,
µ(x = 90) = 0.4,

where µ(·) is the membership function of the fuzzy set A of X. This
fuzzy set can also be represented as A={(30, 0.5), (50, 0.8), (70, 1),
(90, 0.4)}.
Example 2.2.2. Let X be the set of reals R and A be the fuzzy set of
real numbers which are in the “vicinity” of 15. Then a precise though
subjective characterization of A by specifying µA as a function on R
can be given as

µA(x) =
(
1 + (x − 15)4

)−1
.
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Some representative values of this function will be

µA(12) = 0.01,
µA(14) = 0.5,
µA(14.5) = 0.9,
µA(15) = 1,
µA(15.5) = 0.9,
µA(17) = 0.06.

Here the fuzzy set of both Examples 2.2.1 and 2.2.2 are normal.
However let in the Example 2.2.1, µ(x = 70) = 0.9 instead of 1. Then the
fuzzy set A of “comfortable speeds for long distances” is a subnormal
fuzzy set of height 0.9 which can be normalized by dividing each µA(x)
by 0.9.

Next we proceed to define certain standard set theoretic operations
for fuzzy sets. We shall have more discussions on these operations in
Section 2.7 where t-norms and t-conorms are introduced. In the follow-
ing let A and B be two fuzzy sets in X.

Definition 2.2.4 (Empty fuzzy set). A fuzzy set A is empty if its
membership function is identically zero, i.e. µA(x) = 0 for all x ∈ X.

Definition 2.2.5 (Subset). A fuzzy set A is a subset of a fuzzy set B
or A is contained in B if µA(x) ≤ µB(x) for all x ∈ X. This is denoted
as A ⊆ B.

Definition 2.2.6 (Equality of fuzzy sets). Two fuzzy sets A and B
are said to be equal if A ⊆ B and B ⊆ A, i.e. µA(x) = µB(x) for all x ∈ X.

Definition 2.2.7 (Standard complement). The standard comple-
ment of a fuzzy set A is another fuzzy set, denoted by A′, whose mem-
bership function is defined as µA′(x) = 1 − µA(x) for all x ∈ X.

Definition 2.2.8 (Standard union). The standard union of two
fuzzy sets A and B is a fuzzy set C whose membership function is given
by

µC(x) = max
(
µA(x), µB(x)

)
for all x ∈ X. This we express as C = A ∪ B.

Definition 2.2.9 (Standard intersection). The standard intersec-
tion of two fuzzy sets A and B is a fuzzy set D whose membership
function is given by

µD(x) = min
(
µA(x), µB(x)

)
for all x ∈ X. This we express as D = A ∩ B.
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Due to the associativity of min and max operations, definitions of
union and intersection can be extended to any finite number of fuzzy
sets in an obvious manner. Here it can be verified that the following
properties of crisp sets hold for fuzzy sets as well:

(i) A ∪ B = B ∪ A (commutativity)
(ii) (A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C) (associativity)
(iii) (A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′ (De Morgan’s laws)
(iv) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributive laws).

The following two properties of crisp sets do not hold for fuzzy sets

(i) A ∩ A′ = ∅ (law of contradiction),
(ii) A ∪ A′ = X (law of excluded middle).

2.3 α-Cuts and their properties

In the following, certain crisp sets, called α-cuts, are introduced for a
given fuzzy set A in X. These (crisp) sets play an important role in the
study of fuzzy set theory because every fuzzy set A in X can uniquely
be represented by a family of such sets associated with A. Further, the
employment of the notion of α-cuts becomes very handy and convenient
in the study of the fuzzy arithmetic, to be studied in Chapter 3.

Definition 2.3.1 (α-cut). Let A be a fuzzy set in X and α ∈ (0, 1].
The α-cut of the fuzzy set A is the crisp set Aα given by

Aα = {x ∈ X : µA(x) ≥ α}.
One can check that in the Example 2.2.1, A0.5 = {30, 50, 70} and

A0.8 = {50, 70}.
From the definition of α-cut, it immediately follows that for any

fuzzy set A and pair α1, α2 ∈ (0, 1], α1 ≤ α2, one has Aα2 ⊆ Aα1 .
Therefore, all α-cuts of any fuzzy set form families of crisp sets which
can be used to represent a given fuzzy set A in X. This is summarized
in the form of following theorems.

Theorem 2.3.1 Let A be a fuzzy set in X with the membership func-
tion µA(x). Let Aα be the α-cuts of A and χAα(x) be the characteristic
function of the crisp set Aα for α ∈ (0, 1]. Then
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µA(x) = sup
α∈(0,1]

(
α ∧ χAα(x)

)
, x ∈ X.

Proof. Since χAα(x) is the characteristic function of the crisp set Aα it
takes the value 1 if x ∈ Aα and it takes the value 0 if x � Aα. Therefore
combining them with the definition of α-cut we have

x ∈ Aα =⇒ χAα(x) = 1 (and also µA(x) ≥ α)
and

x � Aα =⇒ χAα(x) = 0 (and also µA(x) < α).
Now

sup
α∈(0,1]

(
α ∧ χAα(x)

)
=

⎛⎜⎜⎜⎜⎝ sup
α∈(0, µA(x)]

(
α ∧ χAα(x)

)⎞⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎝ sup
α∈(µA(x), 1]

(
α ∧ χAα(x)

)⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝ sup
α∈(0, µA(x)]

(α ∧ 1)

⎞⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎝ sup
α∈(µA(x), 1]

(α ∧ 0)

⎞⎟⎟⎟⎟⎠
= sup
α∈(0, µA(x)]

α

= µA(x).

Remark 2.3.1. Given a fuzzy set A in X, one can consider a special
fuzzy set, denoted by αAα for α ∈ (0, 1], whose membership function is
defined as

µαAα(x) =
(
α ∧ χAα(x)

)
, x ∈ X.

Also, one may introduce the set

ΛA = {α : µA(x) = α for some x ∈ X},
called the level set of A. Then the above theorem states that the fuzzy
set A can be expressed in the form

A =
⋃
α∈ΛA

(αAα),

where
⋃

denotes the standard fuzzy union. This result is called the
resolution principle of fuzzy sets. The essence of resolution principle is
that a fuzzy set A can be decomposed into fuzzy sets αAα, α ∈ (0, 1].
Looking from a different angle, it tells that a fuzzy set A in X can
be retrieved as a union of its αAα sets, α ∈ (0, 1]. This is called the
representation theorem of fuzzy sets. Thus the resolution principle and
representation theorem are the two sides of the same coin as both of
them essentially tell that a fuzzy set A in X can always be expressed
in terms of its α-cuts without explicitly resorting to its membership
function µA(x).
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2.4 Convex fuzzy sets

The notion of convexity of crisp sets in Rn plays an important role in
crisp mathematical programming and game theory. Here this notion of
convexity is extended to fuzzy sets in Rn and some of their properties
are discussed. The convexity of fuzzy sets is very crucial to the very
definition of a fuzzy number and related fuzzy arithmetic as will be
observed in the next chapter.

Definition 2.4.1 (Convex fuzzy set). A fuzzy set A in Rn is said
to be a convex fuzzy set if its α-cuts Aα are (crisp) convex sets for all
α ∈ (0, 1].

Definition 2.4.2 (Bounded fuzzy set). A fuzzy set A in Rn is said
to be a bounded fuzzy set if its α-cuts Aα are (crisp) bounded sets for
all α ∈ (0, 1].

A fuzzy set A in Rn which is both bounded and convex is called
bounded convex fuzzy set. The following result gives an equivalent def-
inition of a convex fuzzy set.

Theorem 2.4.1 A fuzzy set A in Rn is a convex fuzzy set if and only
if for all x1, x2 ∈ Rn and 0 ≤ λ ≤ 1,

µA

(
λx1 + (1 − λ)x2

)
≥ min

(
µA(x1), µA(x2)

)
.

Proof. Let A be a convex fuzzy set in the sense of Definition 2.4.1. Let
α = µA(x1) ≤ µA(x2). Then x1 ∈ Aα, x2 ∈ Aα and also λx1 + (1 − λ)x2
∈ Aα by the convexity of Aα. Therefore

µA(λx1 + (1 − λ)x2) ≥ α = min (µA(x1), µA(x2)).

Conversely, if the membership function µA of the fuzzy set A satisfies
the inequality of Theorem 2.4.1, then taking α = µA(x1), Aα may be
regarded as set of all points x2 for which µA(x2) ≥ α = µA(x1). Therefore
for all x1, x2 ∈ Aα,

µA(λx1 + (1 − λ)x2) ≥ min
(
µA(x1), µA(x2)

)
= µA(x1) = α,

which implies that λx1 + (1 − λ)x2 ∈ Aα. Hence Aα is a convex set for
every α ∈ (0, 1].
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Remark 2.4.1. The convexity of a fuzzy set does not mean that its
membership function µA is a convex function in the crisp sense. In fact,
membership functions of convex fuzzy sets are functions that, according
to standard definitions in the mathematical programming literature are
quasi-concave (a generalization of the usual concave function) and not
convex.

The following diagrams depict a convex fuzzy set and also a nonconvex
fuzzy set.

x

          

A
u  (x)

1

− cut

A

Fig. 2.1. a convex fuzzy set

x

          

A
u  (x)

− cut

1

A

Fig. 2.2. a nonconvex fuzzy set

Remark 2.4.2. It can be easily verified that if A and B are two convex
fuzzy sets in Rn then so is their intersection. However the union of A
and B need not be a convex fuzzy set. This is depicted in the below
given Figure 2.3.
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x

A
u  (x)
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A

1

A U B

A    B

U

Fig. 2.3. A ∩ B is a convex fuzzy set but A ∪ B is not a convex set.

One of the important results in the theory of convex crisp sets of
Rn is the classical separation theorem which essentially states that if
A and B are disjoint convex sets of Rn then there exists a separating
hyperplane H such that A is on one side of H and B is on the other
side of H. This result has a counter part in the theory of convex fuzzy
sets which is being discussed in the following.

Definition 2.4.3 (Degree of separation by a hyperplane). Let A
and B be two bounded fuzzy sets in Rn. Let H be a hyperplane in Rn such
that there exist a number KH (depending on H) with µA(x) ≤ KH on one
side of H and µB(x) ≤ KH on the other side of H. Then DH = 1 −MH,
where MH = inf KH is called the degree of separation of A and B by the
hyperplane H.

In practice, it makes sense to consider a family H of hyperplanes H
and aim to find a member of the family, i.e. a hyperplane H∗ for which
the degree of separation is maximum. Thus given two bounded fuzzy
sets A and B in Rn, one can define D = 1 −M, where M = inf

H∈H
MH.

This number M is called the degree of separability of A and B.

Theorem 2.4.2 Let A and B be two bounded convex fuzzy sets in Rn

with height h(A) and h(B) respectively. Let D be the degree of separability
of A and B. Then D = 1 − h(A ∩ B).

This theorem of Zadeh [89], which is not being proved here, essen-
tially tells that the highest degree of separation (i.e. the degree of sep-
arability) equals 1− h(A∩B) and this can be achieved by a hyperplane
H∗ ∈ H .
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2.5 Zadeh’s extension principle

The extension principle of Zadeh is a very important tool in the fuzzy
set theory which provides a procedure to fuzzify a crisp function or pos-
sibly a crisp relation. This type of fuzzification helps to study mathe-
matical relationships between fuzzy entities and thereby facilitates the
study of various real life fuzzy systems. One direct application of this
principle will be seen in the next chapter on fuzzy numbers and fuzzy
arithmetic.

Let f : X → Y be a crisp function and F(X) (respectively F(Y)) be
the set of all fuzzy sets (called fuzzy power set) of X (respectively Y).
The function f : X → Y induces two functions f : F(X) → F(Y) and
f−1 : F(Y)→ F(X), and the extension principle of Zadeh gives formulas
to compute the membership function of fuzzy sets f (A) in Y (respec-
tively f−1(B) in X) in terms of membership function of fuzzy set A in
X (respectively B in Y).

Definition 2.5.1 (Zadeh’s extension principle). In terms of the
notation introduced above, the extension principle of Zadeh states that

(i) µ f (A)(y) = sup
x∈X, f (x)=y

(
µA(x)

)
, for all A ∈ F(X), and

(ii) µ f−1(B)(x) = µB
(

f (x)
)
, for all B ∈ F(Y).

Sometimes the function f maps n-tuple in X to a point in Y i.e.
X = X1 × X2 × . . . × Xn and f : X → Y given by y = f (x1, x2, . . . , xn).
Let A1,A2, . . . ,An be n fuzzy sets in X1,X2, . . . ,Xn respectively. The
extension principle of Zadeh allows to extend the crisp function y =
f (x1, x2, . . . , xn) to act on n fuzzy subsets of X, namely A1,A2, . . . ,An
such that B = f (A1,A2, . . . ,An).

Here the fuzzy set B is defined by

B =
{ (

y, µB(y)
)

: y = f (x1, . . . , xn), (x1, . . . , xn) ∈ X1 × . . . × Xn
}

and
µB(y) = sup

x∈X, y= f (x)
min

(
µA1(x1), . . . , µAn(xn)

)
.

Example 2.5.1. (Lin and Lee [45]). Let X = {−2, −1, 0, 1, 2} and
A be a fuzzy set in X given by A = {(−1, 0.5), (0, 0.8), (1, 1), (2, 0.4)}.
Let the function f : X→ R be given by y = f (x) = x2. From this data,
one can make the following calculations.
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x µA(x) y = x2 µB(y) = µ f (A)(y)
−1 0.5 1 max {0.5, 1.0} = 1.0
0 0.8 0 0.8
1 1 1 max {0.5, 1.0} = 1.0
2 0.4 4 0.4

Here x = 1 and x = −1 both are mapped to the point y = 1 under the
mapping y = x2 and therefore the membership grade of y = 1 is taken
as max (0.5, 1.0) = 1.0. Therefore

B = f (A) =
{
(1, 1), (0, 0.8), (4, 0.4)

}
.

2.6 Fuzzy relations

Let X and Y be two crisp sets and X × Y be their cross product. A
crisp binary relation R is a subset of X × Y. It indicates the presence
or absence of certain association between the elements of sets X and
Y. If one allows the presence of this association to be of varying degree
between 0 and 1 then a binary fuzzy relation is obtained.

Definition 2.6.1 (Binary fuzzy relation). A binary fuzzy relation
R(X,Y) on X × Y is defined as

R(X,Y) =
{(

(x, y), µR(x, y)
)

: (x, y) ∈ X × Y
}
,

where µR : X × Y→ [0, 1] is a grade of membership function. If X = Y
then R(X,Y) is called a binary fuzzy relation on X.

Although an n-ary fuzzy relation on a product space X = X1 ×
X2 × . . . × Xn may be defined by an n-variate membership function
µR(x1, . . . , xn) in the similar way, but the discussion here will be confined
to binary fuzzy relations only.

Given a binary fuzzy relation R(X,Y), the fuzzy set dom R in X
whose membership function is defined by

dom R(x) = max
y∈Y

R(x, y),

is called the domain of R. Similarly the fuzzy set ran R in Y whose
membership function is defined by

ran R(y) = max
x∈X

R(x, y),
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is called the range of R. Further, the number h(R) is given by

h(R) = max
y∈Y

max
x∈X

R(x, y),

is called the height of the fuzzy relation R. Here we are using the same
notation for the fuzzy relation R and its membership function µR.

If X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, then the binary fuzzy
relation R(X,Y) can be represented by an (m × n) matrix R(X,Y) =(
µR(xi, yj)

)
m×n

, called the fuzzy matrix of R.
Similar to the inverse of a crisp relation, the inverse of a binary

fuzzy relation R(X,Y) on X × Y, denoted by R−1(Y,X), is a relation on
Y × X given by R−1(y, x) = R(x, y) for all x ∈ X and all y ∈ Y. Here
(R−1)−1 = R and, in case the relation R(X,Y) is represented by a fuzzy
matrix M, the matrix for R−1 will be MT.

Example 2.6.1. Consider the binary fuzzy relation R on reals R de-
scribed by “y is much larger than x”. Then a subjectively chosen mem-
bership function for R could be taken as

µR(x, y) =

⎧⎪⎪⎨⎪⎪⎩0 , y ≤ x,(
(1 + (y − x)−2

)−1
, y > x.

Definition 2.6.2 (Standard fuzzy composition). Let P(X,Y) be a
binary fuzzy relation on X × Y and Q(Y,Z) be a binary fuzzy relation
on Y ×Z. Then the standard fuzzy composition of P(X,Y) and Q(Y,Z),
denoted by P(X,Y)◦Q(Y,Z), is a binary fuzzy relation R(X,Z) on X×Z
defined by

R(x, z) = (P ◦ Q)(x, z) = max
y∈Y

(
min

(
P(x, y),Q(y, z)

))
for x ∈ X and z ∈ Z. This standard composition is also called the max-
min composition of relation P and Q.

Using the above definition it can be verified that similar to crisp
binary relations(

P(X,Y) ◦ Q(Y,Z)
)−1
= Q−1(Z,Y) ◦ P−1(Y,X),

and (
P(X,Y) ◦ Q(Y,Z)

)
◦ R(Z,W) = P(X,Y) ◦

(
Q(Y,Z) ◦ R(Z,W)

)
.
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In this context it may be noted that the standard composition is,
in general, not commutative, i.e.

P(X,Y) ◦ Q(Y,Z) � Q(Y,Z) ◦ P(X,Y).

Here, of course it is assumed that Z = X, otherwise Q◦P is not well
defined. If X and Y are discrete sets then the composition of binary
fuzzy relation can be performed very conveniently by using the corre-
sponding fuzzy matrices. Such approach can be very useful for certain
situations in the area of fuzzy decision making. The following example
may be taken as an illustration for the same.

Example 2.6.2. (Lin and Lee [45]). Let in a department four
courses, say C1, C2, C3 and C4 be offered. Three students, say S1, S2
and S3 are planning to take one of these courses based on different pref-
erences for certain properties, say theory (T), application (A), hardware
(H) and programming (P). Let X = (S1, S2, S3), Y = (T, A, H, P) and
Z = (C1, C2, C3, C4). Let the following data be given.

(i) The student’s interest for various attributes T, A, H and P is rep-
resented by binary fuzzy relation

T A H P

R(X,Y) =
S1
S2
S3

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0.2 1.0 0.8 0.1
1.0 0.1 0.0 0.5
0.5 0.9 0.5 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
(ii) The properties of the courses C1, C2, C3 and C4 are indicated by

the fuzzy relation Q(Y,Z) where
C1 C2 C3 C4

Q(Y,Z) =

T
A
H
P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1.0 0.5 0.6 0.1
0.2 1.0 0.8 0.8
0.0 0.3 0.7 0.0
0.1 0.5 0.8 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then one may compute the standard max-min composition of
R(X,Y) and Q(Y,Z) as follows

R ◦ Q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.2 1.0 0.8 0.1
1.0 0.1 0.0 0.5
0.5 0.9 0.5 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ◦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.5 0.6 0.1
0.2 1.0 0.8 0.8
0.0 0.3 0.7 0.0
0.1 0.5 0.8 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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C1 C2 C3 C4

=

S1
S2
S3

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0.2 1.0 0.8 0.8
1.0 0.5 0.6 0.5
0.5 0.9 0.8 1.0.

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Here the (1, 1)th element of R ◦Q is obtained as (0.2 ∧ 1.0) ∨ (1.0 ∧ 0.2)
∨(0.8 ∧ 0.0) ∨ (0.8 ∧ 0.1) i.e. 0.2. Similarly the other elements of R ◦ Q
are computed.

The fuzzy matrix for the composition R◦Q indicates that the student
S1 should be advised to take the course C2, S2 the course C1 and S3
the course C4.

Remark 2.6.3. Once a binary fuzzy relation R(X,X) on X is defined,
one can define R to be reflexive if µR(x, x) = 1 for all x ∈ X. Further
R can be called symmetric if µR(x, y) = µR(y, x) for all x, y ∈ X and
it can be called transitive if µR(x, z) ≥ max

y
min

(
µR(x, y), µR(y, z)

)
for

all x, z ∈ X. This will eventually lead to the fuzzy analogue of an
equivalence relation and that in the fuzzy context is called as a sim-
ilarity relation. Thus a relation R(X,X) on X is a similarity relation
if it is reflexive, symmetric and transitive. If R(X,X) is only reflexive
and symmetric then it is called a resemblance relation. Further one
can define R(X,X) to be antisymmetric if µR(x, y) � µR(y, x) for all
elements in the support of the relation R. A binary fuzzy relation R
on X that is reflexive, antisymmetric and transitive is called a fuzzy
partial ordering. Though such studies are extremely useful in the areas
of fuzzy databases and fuzzy pattern recognition theory, they will not
be pursued here and one can refer to the texts already mentioned in
the introduction.

2.7 Triangular norms (t-norms) and triangular conorms
(t-conorms)

While discussing the standard union, standard intersection and stan-
dard complement of fuzzy sets, it was noted in Section 2.2 that because
of the unsharp boundary, a fuzzy set A in X and its standard comple-
ment A′ overlap and therefore do not satisfy the law of excluded middle
and law of contradiction, i.e. A ∪ A′ = X and A ∩ A′ = ∅ do not hold.
As it happens, the standard operations of union, intersection and com-
plement for fuzzy sets in X are not the only possible generalization of
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corresponding crisp set operations. It is possible to define these oper-
ations for fuzzy sets in a more general way by using the concept of
triangular norms (t-norms) and triangular conorms (t-conorms), which
have been developed by Schweizer and Sklar [69] in the context of sta-
tistical metric spaces. Although there is a large amount of literature
on t-norms and t-conorms, the presentation here is very brief and for
a more detailed account one may refer to texts like Dubois and Prade
[15] and Dumitrescu, Lazzerini and Jain [17].

Definition 2.7.1 (t-norm). A function T : [0, 1] × [0, 1] → [0, 1] is
called a t-norm if it satisfies the following axioms

(i) T(a, 1) = a for all a ∈ [0, 1] (boundary condition),
(ii) T(a, b) ≤ T(u, v) for a ≤ u, b ≤ v (monotonicity),
(iii) T(a, b) = T(b, a) (commutativity),
(iv) T

(
T(a, b), c

)
= T

(
a,T(b, c)

)
(associativity).

Definition 2.7.2 (Archimedean t-norm). A t-norm T is said to
Archimedean if T(a, a) < a for all a ∈ (0, 1).

Remark 2.7.1. From the axioms of t-norm it can be proved that
T(0, a) = T(a, 0) = 0 and also T(a, a) ≤ T(a, 1) = a for all a ∈ [0, 1].
Therefore the t-norm T is Archimedean if and only if there does not
exist any a ∈ (0, 1) with T(a, a) = a.

Definition 2.7.3 (t-Conorm). A function S : [0, 1] × [0, 1] → [0, 1]
which is commutative, associative and monotonic in every variable with
S(a, 0) = a for all a ∈ [0, 1], is called a triangular conorm or t-conorm.

Definition 2.7.4 (Archimedean t-conorm). A t-conorm S is said
to be Archimedean if S(a, a) > a for all a ∈ (0, 1).

Let T be a t-norm. The function S : [0, 1]× [0, 1]→ [0, 1] defined by
S(a, b) = 1 − T(1 − a, 1 − b) for all a, b ∈ [0, 1] is called a t-conorm or the
dual of t-norm T.

Remark 2.7.2. Using the axioms of t-norm and the definition of its
dual, it can be proved that S is monotone, commutative and associative.
Also S(a, 0) = a, S(a, 1) = 1 and S(a, a) ≥ a for all a ∈ [0, 1]. Further if
T is an Archimedean t-norm then so is its dual t-conorm. Some of the
most common and useful t-norms and t-conorms are following

(i) T0(a, b) = min (a, b), S0(a, b) = max (a, b),
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(ii) T1(a, b) = ab, S1(a, b) = a + b − ab,
(iii) T∞(a, b) = max (a + b − 1, 0), S∞(a, b) = min (a + b, 1).

Here it can be verified that T0 is not Archimedean but T1 and T∞ are
Archimedean. There are various other families of t-norms and t-conorms
(e.g. Frank’s fundamental family, Yager’s family, Hamacher’s family,
Schweizer and Sklar’s family, Sugeno’s family and Dubois and Prade’s
family), but these are not discussed here. In fact (T0, S0), (T1, S1)
and (T∞, S∞) are particular members of Frank’s fundamental family
(Ts, Ss), 0 ≤ s ≤ ∞. For these and other details one may refer to
Dumitrescu, Lazzerini and Jain [17].

As t-norms and t-conorms are more general connectives than the
usual min and max operators, one can define operations on fuzzy sets
using these triangular norms and conorms.

Definition 2.7.5 (Intersection of fuzzy sets). Let A and B be two
fuzzy sets in X. The intersection of A and B with respect to a given
t-norm T is defined as a fuzzy set A∩ B whose membership function is
given by

µA∩B(x) = T
(
µA(x), µB(x)

)
, x ∈ X.

Definition 2.7.6 (Union of fuzzy sets). Let A and B be two fuzzy
sets in X. The union of A and B with respect to a given conorm S is
defined as a fuzzy set A ∪ B whose membership function is given by

µA∪B(x) = S
(
µA(x), µB(x)

)
, x ∈ X.

Here it may be noted that in the above definitions, T and S are
not necessarily dual norms. Also the standard union and intersection
of fuzzy sets using min and max operations are special cases of above
definitions for the pair (T0, S0). The pair (T0, S0) still remains popular
and useful in the theory of fuzzy sets because of the following theorem
due to Bellman and Giertz [8] whose proof is not given here.

Theorem 2.7.1 Let F, G : [0, 1] × [0, 1] → [0, 1]. Then F = T0 and
G = S0 are the only functions that satisfy the following:

(i) F and G are commutative,
(ii) F and G are associative,
(iii) F and G are mutually distributive,
(iv) F(x, y) ≤ T0(x, y), G(x, y) ≥ S0(x, y) for all x, y ∈ [0, 1],
(v) F(1, 1) = 1, G(0, 0) = 0,
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(vi) F and G are continuous,
(vii) F(a, b) ≤ F(u, v) and G(a, b) ≤ G(u, v) for all a ≤ u, b ≤ v,
(viii) F(x, x) < F(y, y) and G(x, x) < G(y, y) if x < y.

Definition 2.7.7 (Complement function). A complement function
is a function C : [0, 1]→ [0, 1] if

(i) C(0) = 1, C(1) = 0 ,
(ii) C ◦ C(a) = a for all a ∈ [0, 1],
(iii) C is strictly decreasing and
(iv) C is continuous.

Definition 2.7.8 (Fuzzy complement). Let A be a fuzzy set in X.
The complement of the fuzzy set A with respect to a complement func-
tion C is a fuzzy set A′ whose membership function is given by

µA′(x) = C
(
µA(x)

)
, x ∈ X.

Remark 2.7.3. The standard complement of a fuzzy set A in X is
obtained when the complement function C is taken as the standard
negation function i.e.

N(a) = 1 − a for all a ∈ [0, 1].

Definition 2.7.9 (C-dual). Let T and S be a t-norm and t-conorm
respectively. The pair (T, S) is said to be dual with respect to a comple-
ment function C or C-dual if

T
(
C(a),C(b)

)
= C

(
S(a, b)

)
, a, b ∈ [0, 1].

Remark 2.7.4. (i) Let N be the standard negation. Then T and S are
N-dual if and only if S is the dual conorm of T i.e.

S(a, b) = 1 − T(1 − a, 1 − b), a, b ∈ [0, 1].

(ii) It can be proved that for any t-norm T and any complement function
C, the t-conorm S defined by

S(a, b) = C
(
T(C(a), C(b))

)
, a, b ∈ [0, 1],

gives a C-dual conorm of T.
(iii) The notion of C-duality is nothing but a generalization of standard

De Morgan law (A ∪ B)′ = A′ ∩ B′.
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Remark 2.7.5. Taking the standard intersection, union and comple-
mentation, i.e. with respect to the pair (T0, S0) and the standard
negation N, it has been observed earlier that the excluded middle law
(A ∪A′ = X) and law of contradiction (A ∩A′ = ∅) do not hold for the
fuzzy sets. What is interesting in this context that no matter which
complement function C is taken, the fuzzy set operations induced by
the pair (T0, S0) do not satisfy these laws with respect to C.

Remark 2.7.6. For the pair (T∞, S∞) the intersection and union of
two fuzzy set A and B in X are defined by

µA∩B(x) = max
(
µA(x) + µB(x) − 1, 0

)
µA∪B(x) = min

(
µA(x) + µB(x), 1

)
for x ∈ X. Here it can be proved that for the fuzzy set operations
induced by the pair (T∞, S∞), the laws of excluded middle and contra-
diction hold if and only if fuzzy complement is induced by the standard
negation. However for the pair (T∞, S∞), the intersection and union are
not idempotent i.e. A ∪ A � A and A ∩ A � A.

Further for the pair (T∞, S∞) and the complementation given by the
standard negation function, the intersection and union are not mutually
distributive. This later result holds in somewhat more generality as
stated in the below given theorem.

Theorem 2.7.2 Let the pair (T, S) be the C-dual. If for the fuzzy set
operations induced by the pair (T, S) the laws of excluded middle and
contradiction hold with respect to the complement function C, then the
intersection and union are not mutually distributive.

For the proof of Theorem 2.7.2 and various results mentioned in
Remarks 2.7.5 and 2.7.6, one may refer Dumitrescu, Lazzzerini and
Jain [17].

Remark 2.7.7. In this section, it has been emphasized that contrary
to the crisp scenario, the fuzzy set theoretic operations of intersection,
union and complementation are not uniquely defined. These operations
depend on the specific choice of the pair (T, S) and the complement
function C. Therefore membership function of fuzzy sets as well as
operations on fuzzy sets depend on the particular context in which
the specific problem is being studied. For a meaningful application of
fuzzy set theory to real life problems the correct subjective choice of
membership functions and a meaningful choice of the pair (T, S) is
important.
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2.8 Conclusions

In this chapter we have presented certain very basic definitions and
results on fuzzy sets and related topics. There are many more mathe-
matical generalizations of fuzzy sets but from the applications point of
view the notion of type-2 fuzzy sets is rather interesting. The type-2
fuzzy sets have recently been applied to areas like AI, forecasting of
time series, knowledge-mining, and digital communications etc. An ap-
propriate reference for type-2 fuzzy sets is the book by Mandel [51].



3

Fuzzy numbers and fuzzy arithmetic

3.1 Introduction

While modeling certain problems in the physical sciences and engi-
neering, it is often observed that the parameters of the problem are not
known precisely but rather lie in an interval. In the past, such situations
have been handled by the application of interval arithmetic (Moore [55],
[56]) which allows mathematical computations (operations) to be per-
formed on intervals and obtain meaningful estimates of desired quan-
tities also in terms of intervals. Fuzzy arithmetic (arithmetic of fuzzy
numbers) can be taken as a generalization of the interval arithmetic
where rather than considering intervals at one (constant) level only,
several levels in [0,1] are considered. This is primarily because of the
basic definition of a fuzzy set which allows gradation of membership for
an element of the universal set. Because of this, the modeling based on
fuzzy arithmetic is expected to express the situation more realistically.

This chapter is divided into five main sections, namely, interval
arithmetic, fuzzy numbers and their representations, arithmetic of fuzzy
numbers, special types of fuzzy numbers and their arithmetic and rank-
ing of fuzzy numbers. Some appropriate references for this Chapter are
Dubois and Prade ([14], [15]) and Kaufmann and Gupta ([32], [33]).

3.2 Interval arithmetic

To understand the fundamentals of fuzzy arithmetic one needs to learn
about interval arithmetic, i.e given two closed intervals in R, how to
“add”, “subtract”,“multiply” and “divide” these intervals. In this con-
text, a closed interval in R is also called an interval of confidence as
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it limits the uncertainty of data to an interval. Let A = [a1, a2] and
B = [b1, b2] be two closed intervals in R. Then we have the following
definitions:

Definition 3.2.1 (Addition (+) and subtraction (−)). If x ∈ [a1, a2],
y ∈ [b1, b2] then x + y ∈ [a1 + b1, a2 + b2] and x − y ∈ [a1 − b2, a2 − b1].
Therefore the addition of A and B, denoted by A(+)B, is defined as

A(+)B = [a1, a2](+)[b1, b2] = [a1 + b1, a2 + b2].

Similarly, the subtraction of A and B, denoted by A(−)B is defined as

A(−)B = [a1, a2](−)[b1, b2] = [a1 − b2, a2 − b1].

Definition 3.2.2 (Image of an interval). If x ∈ [a1, a2] then its im-
age −x ∈ [−a2, −a1]. Therefore the image of A, denoted by A is defined
as

A = [a1, a2] = [−a2, −a1].

Definition 3.2.3 (Multiplication (·)). The multiplication of two closed
intervals A = [a1, a2] and B = [b1, b2] of R, denoted by A(·)B, is defined
as

A(·)B = [a1, a2](·)[b1, b2]
=

[
min (a1b1, a1b2, a2b1, a2b2), max (a1b1, a1b2, a2b1, a2b2)

]
.

In case these intervals are in R+, the non-negative real line, the
multiplication formula gets simplified to

A(·)B = [a1b1, a2b2].

Definition 3.2.4 (Scalar multiplication and inverse). Let A =
[a1, a2] be a closed interval in R+ and k ∈ R+. Identifying the scalar k
as the closed interval [k, k], the scalar multiplication k ·A is defined as

k · A = [k, k](·)[a1, a2] = [ka1, ka2].

Also, for A = [a1, a2] in R+, if x ∈ [a1, a2] and 0 � [a1, a2] then(
1
x

)
∈

[
1
a2
,

1
a1

]
. Therefore the inverse of A, denoted by A−1, is defined

as

A−1 = [a1, a2]−1 =

[
1
a2
,

1
a1

]
,

provided 0 � [a1, a2].
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Definition 3.2.5 (Division (:)). The division of two closed intervals
A = [a1, a2] and B = [b1, b2] of R, denoted by A(:)B is defined as the

multiplication of [a1, a2] and
[ 1
b2
,

1
b1

]
provided 0 � [b1, b2]. Therefore

A(:)B = [a1, a2](:)[b1, b2]

= [a1, a2](·)
[

1
b2
,

1
b1

]

=

[
min

(
a1

b2
,

a1

b1
,

a2

b2
,

a2

b1

)
, max

(
a1

b2
,

a1

b1
,

a2

b2
,

a2

b1

)]
.

In case these intervals are in R+ and as before 0 � [b1, b2], this
formula for the division gets simplified to

A(:)B =
[

a1

b2
,

a2

b1

]
.

Further, one can identify A(:)B ≡ A(·)B−1 provided 0 � B = [b1, b2]
and obtain the same formula as given earlier. Along the lines of scalar
multiplication, the division by a scalar k > 0 can also be defined as

A(:)k = [a1, a2](·)
[
1
k
,

1
k

]
=

[
a1

k
,

a2

k

]
.

Definition 3.2.6 (Max (∨) and min (∧) operations). Let A =
[a1, a2] and B = [b1, b2] be two closed intervals in R. Then the max (∨)
and min (∧) operations on A and B are defined as

A(∨)B = [a1, a2](∨)[b1, b2] = [a1 ∨ b1, a2 ∨ b2],
A(∧)B = [a1, a2](∧)[b1, b2] = [a1 ∧ b1, a2 ∧ b2].

Remark 3.2.1. It can be verified that addition (+) and multiplication
(·) operations on closed intervals as defined above are commutative and
associative but subtraction (−) and division (:) are neither commutative
nor associative. Also, A(+)A = [a1, a2](+)[−a2, −a1] � [0, 0] ≡ 0. In
case A = [a1, a2] is in R+ and 0 � [a1, a2], A(·)A−1 = A−1(·)A � [1, 1] ≡
1.

We now proceed to the next section to introduce fuzzy numbers and
their associated arithmetic. As it turns out, the fuzzy arithmetic is
essentially the arithmetic of α-cuts Aα which are given by closed and
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bounded intervals of type Aα = [aL
α, aR

α], α ∈ (0, 1], when the fuzzy
set A in R is a fuzzy number. Therefore all the ideas presented in this
section can be borrowed for intervals of type [aL

α, aR
α], α ∈ (0, 1] and a

meaningful arithmetic of fuzzy numbers be developed.

3.3 Fuzzy numbers and their representation

There are many real life situations, in areas like decision making and
optimization, where rather than dealing with crisp real numbers and
crisp intervals, one has to deal with “approximate” numbers or intervals
of type “number that are close to a given real number” or “numbers that
are around a given interval of real number”. The purpose of this section
is to understand that how such fuzzy statements can be conceptualized
by certain “appropriate” fuzzy sets in R to be termed as fuzzy numbers.

For the motivation to define a fuzzy number, let us consider the
fuzzy statement “numbers that are close to a given real number r”.
Since the real number r is certainly close to r itself, any fuzzy set A
in R which tries to represent the given fuzzy statement must have the
property that µA(r) = 1, i.e. A must be a normal fuzzy set. Also, just
prescribing an interval around r is not enough. The intervals should be
considered at varying levels α ∈ (0, 1] to have the proper gradation i.e.
the α-cuts of A must be closed intervals of the type [aL

α, aR
α]. Further,

to carry out interval arithmetic as described in the previous section,
the intervals [aL

α, aR
α] for α ∈ (0, 1] must be of finite length and for that

one needs that the support of A is bounded. Therefore it makes sense
to define a fuzzy number as follows.

Definition 3.3.1 (Fuzzy number). A fuzzy set A in R is called a
fuzzy number if it satisfies the following conditions

(i) A is normal,
(ii) Aα is a closed interval for every α ∈ (0, 1],
(iii) the support of A is bounded.

The theorem presented below gives a complete characterization of
a fuzzy number.

Theorem 3.3.1 Let A be a fuzzy set in R. Then A is a fuzzy number
if and only if there exists a closed interval (which may be singleton)
[a, b] � φ such that



3.3 Fuzzy numbers and their representation 43

µA(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x ∈ [a, b],
l(x), x ∈ (−∞, a),
r(x), x ∈ (b, ∞),

where (i) l : (−∞, a) → [0, 1] is increasing, continuous from the right
and l(x) = 0 for x ∈ (−∞, w1), w1 < a and (ii) r : (b, ∞) → [0, 1] is
decreasing continuous from the left and r(x) = 0 for x ∈ (w2, ∞),w2 > b.

In the above theorem the term “increasing” is to be understood in
the sense that “x ≥ y =⇒ l(x) ≥ l(y)” i.e. l is non-decreasing. Although
the proof of this theorem is not given here. but one can refer to Klir and
Yuan [35] for the detailed proof. Its consequence is of special significance
which tells that if a fuzzy set A in R represents a fuzzy number, how
will its membership functions µA will look like.

Remark 3.3.1. In case the membership function of the fuzzy set A in
R takes the form µA(x) = 1 for x = a and µA(x) = 0 for x � a, it be-
comes the characteristic function of the singleton set {a} and therefore
represents the real number a. A real interval [a, b] can also be iden-
tified similarly by its characteristic function. In most of the practical
applications the function l(x) and r(x) are continuous which give the
continuity of the membership function. The following figures are self
explainary.

x

1

l(x)

r(x)

a

u (x)
A

Fig. 3.1. Fuzzy number a, with continuous l and r.
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x

1
r(x)

l(x)

b                      c

u (x)
A

Fig. 3.2. Fuzzy interval [b, c] with continuous l and r.

Remark 3.3.2. It may be recalled that a fuzzy set A in X is a convex
fuzzy set if and only if all its α-cuts Aα are convex (crisp) sets for α ∈
(0, 1]. Here in the context of fuzzy numbers, X ≡ R and it is known that
the only convex sets in R are intervals. Further when the membership
function of the convex fuzzy set A in R is upper semicontinuous, then
all these α-cuts Aα, for α ∈ (0, 1], are closed intervals. Since the basic
requirement to define a fuzzy number is that all its α-cuts Aα, α ∈
(0, 1], are closed and bounded intervals, we may also have the following
alternate definition of a fuzzy number as per Definition 3.3.2 given
below.

Definition 3.3.2 (Fuzzy number). Let A be a fuzzy set in R. then
A is called a fuzzy number if

(i) A is normal,
(ii) A is convex,
(iii) µA is upper semicontinuous, and,
(iv) the support of A is bounded.

3.4 Arithmetic of fuzzy numbers

In this section we shall develop the arithmetic of fuzzy numbers from
two different but equivalent approaches. The first approach is to use
the interval arithmetic as developed in Section 3.2 on the α-cuts of
given fuzzy numbers. The mathematical basis for this approach is the
resolution principle (Theorem 2.3.1) which decomposes a fuzzy set A
in terms of special fuzzy sets αAα, α ∈ (0, 1]. The second approach is
based on the extension principle of Zadeh which has been presented in
Section 2.5.
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Approach based on α-cuts

Let A and B be two fuzzy numbers and Aα = [aL
α, aR

α], Bα = [bL
α, bR

α]
be α-cuts, α ∈ (0, 1], of A and B respectively. Let ∗ denote any of the
arithmetic operations (+), (−), (·), (:), ∧, ∨ on fuzzy numbers. Then
we have the following definition.

Definition 3.4.1 (∗ Operation on two fuzzy numbers). Let A, B,
Aα and Bα be as described above. Then the ∗ operation on fuzzy numbers
A and B, denoted by A ∗ B, gives a fuzzy number in R where

A ∗ B =
⋃
α

α(A ∗ B)α,

and

(A ∗ B)α = Aα ∗ Bα, α ∈ (0, 1].

Here it may be remarked that the reason for A ∗ B to be a fuzzy
number, and not just a general fuzzy set, is that A and B being fuzzy
numbers, the sets Aα, Bα, (A ∗B)α are all closed intervals for α ∈ (0, 1].
Also for a given α ∈ (0, 1], the closed interval (A ∗B)α can be computed
by applying the interval arithmetic on the closed intervals Aα and Bα
with respect to the operation ∗. In particular,

Aα(+)Bα = [aL
α + bL

α, aR
α + bR

α],
Aα(−)Bα = [aL

α − bR
α, aR

α − bL
α].

Further for fuzzy numbers A and B in R+,

Aα(·)Bα = [aL
αbL
α, aR

αbR
α],

Aα(:)Bα =
[

aL
α

bR
α

,
aR
α

bL
α

]
, 0 � [bL

α, bR
α].

The multiplication of a fuzzy number A in R by a real number k > 0
can again be defined as earlier in the context of interval arithmetic, i.e.

(k · A)α = k · Aα = [kaL
α, kaR

α].
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Approach based on the Zadeh’s extension principle

Let A and B be two fuzzy numbers and ∗ be any of the arithmetic
operations described above. Then by using the Zadeh’s extension prin-
ciple, the fuzzy number A ∗ B is defined as

µA∗B(z) = sup
z=x∗y

min
(
µA(x), µB(y)

)
, for all z ∈ R.

In particular we have

µA(+)B(z) = sup
z=x+y

min
(
µA(x), µB(y)

)
,

µA(−)B(z) = sup
z=x−y

min
(
µA(x), µB(y)

)
,

µA(·)B(z) = sup
z=xy

min
(
µA(x), µB(y)

)
,

µA(:)B(z) = sup
z=x/y

min
(
µA(x), µB(y)

)
.

The arithmetic of fuzzy numbers as discussed above will be studied
again in the next section where certain special types of fuzzy numbers
and their arithmetic will be studied. As we shall see there, some of the
arithmetical formulas presented here will get further simplified because
of the special features of fuzzy numbers at hand. It is planned to present
several examples in the next section to make this point more explicit
and clear.

3.5 Special types of fuzzy numbers and their arithmetic

As the set of fuzzy numbers is rather large (uncountably infinite) and
their arithmetic is in general computationally expensive, it is impera-
tive to define and select a few special types of fuzzy numbers to be used
for real life applications. Some such special types of fuzzy numbers and
their arithmetic is being discussed here which will be used extensively
in later chapters on fuzzy mathematical programming and fuzzy games.

Definition 3.5.1 (Triangular fuzzy number (TFN)). A fuzzy
number A is called a triangular fuzzy number (TFN) if its member-
ship function µA is given by
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µA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x < al, x > au,

x − al

a − al
, al ≤ x ≤ a,

au − x
au − a

, a < x ≤ au.

The TFN A is denoted by the triplet A = (al, a, au) and has the shape
of a triangle as shown in the Figure 3.3.

x

1

A
u (x)

 L                                       R

l      u a                     a          a                a                                                   a

Fig. 3.3. A Triangular fuzzy number A = (al, a, au)

Further the α-cut of the TFN A = [al, a, au] is the closed interval

Aα = [aL
α, aR

α] =
[
(a − al)α + al, −(au − a)α + au

]
, α ∈ (0, 1].

Next let A = (al, a, au) and B = (bl, b, bu) be two TFNs then using
the α-cuts, Aα and Bα for α ∈ (0, 1] one can compute A ∗B where ∗ may
be (+), (−), (·), (:), ∨, ∧ operation. In this context it can be verified
that

A(+)B = (al + bl, a + b, au + bu),
−A = (−au, −a, −al),
kA = (kal, ka, kau), k > 0,

and,
A(−)B = (al − bu, a − b, au − bl)
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are TFNs but A−1, A(·)B, A(:)B, (A ∨ B), (A ∧ B) need not be a TFN.
We now consider the following examples.

Example 3.5.1. (Kaufmann and Gupta [32]) Let A = (−3, 2, 4) and
B = (−1, 0, 5) be two TFNs. Then using the formulas for the addition
and subtraction of TFNs we get

A(+)B = (−3, 2, 4)(+)(−1, 0, 5) = (−4, 2, 9),

and
A(−)B = (−3, 2, 4)(−)(−1, 0, 5) = (−8, 2, 5).

The same result for A(+)B and A(−)B could have also been obtained by
the first principle, i.e. using the α-cuts Aα and Bα. To verify the same,
let us evaluate Aα and Bα for the given fuzzy numbers A and B. We
have

Aα = [aL
α, aR

α] = [(a − al)α + al, −(au − a)α + au], α ∈ (0, 1]
= [(2 + 3)α − 3, −(2α) + 4]
= [5α − 3, −2α + 4],

Bα = [bL
α, bR

α] = [(b − bl)α + bl, −(bu − b)α + bu], α ∈ (0, 1]
= [α − 1, −5α + 5].

Therefore

Aα(+)Bα = [5α − 3, −2α + 4](+)[α − 1, 5α + 5]
= [6α − 4, −7α + 9] = [cL

α, cR
α] (say) .

To find the membership function µA(+)B(x) of A(+)B, we have to find
the range of x ∈ R where α-level sets are valid. Thus from cL

α,

x = 6α − 4⇒ α = (x + 4)/6,

and from cR
α ,

x = −7α + 9⇒ α = (9 − x)/7.

Further α becomes 1 for x = 2. Therefore the membership function of
A(+)B comes out to be

µA(+)B(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 , x < −4 or x > 9,
(x + 4)

6
, −4 ≤ x ≤ 2,

(−x + 9)
7

, 2 < x ≤ 9,

which is nothing but the TFN (-4,2,9) as shown in the below given
figure.
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1

B

        

         

u(x)

x3−  −4

A

A( )B

7        8          9−2      −1                        1          2           3         4             5           6

Fig. 3.4. A TFN A(+)B

Example 3.5.2. (Kaufmann and Gupta [32]) Let A = (2, 3, 5) and
B = (1, 4, 8) be two TFNs in R+. As noted earlier and can also be seen
in this example, the product A(·)B need not be a TFN in general, and
therefore one has to compute A(·)B by the first principle, i.e. by using
α-cuts Aα and Bα. Here we have

Aα = [α + 2, −2α + 5], Bα = [3α + 1, −4α + 8].
Aα(·)Bα = [(α + 2)(3α + 1), (−2α + 5)(−4α + 8)]

= [3α2 + 7α + 2, 8α2 − 36α + 40] = [cL
α, cR

α].

For α = 0, A0(·)B0 = [2, 40] and for α = 1, A1(·)B1 = [12, 12] = 12.
Therefore the membership function of A(·)B takes the value 1 for x = 12
and is zero for x < 2 and also for x > 40. Also in between 2 and 12,
and also between 12 and 40, the segments of the membership function
are not straight lines, but parabola. Although it is intuitively clear
from the presence of quadratic expressions in Aα(·)Bα, one can obtain
exact expressions for these parabolic segments. For this we need to
find the range of x ∈ R+ where the α-level sets are valid. This can
be accomplished from cL

α by solving the equation x = 3α2 + 7α + 2 i.e.
3α2 + 7α + (2 − x) = 0, i.e. α = (−7 ± √25 + 12x)/6. Here only + sign
will be taken because at x = 12, α = 1 and α can not be negative.
Similarly for cR

α, one has to solve the equation 8α2 − 36α + 40 = x i.e.
8α2 − 36α + (40 − x) = 0 and get α = (9 − √1 − 2x)/5. Therefore the
membership function of A(·)B is given by
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µA(·)B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 , x < 2 or x > 40,
(−7 +

√
25 + 2x)

6
, 2 ≤ x ≤ 12,

(9 − √1 − 2x)
5

, 12 < x ≤ 40,

which is clearly not the membership function of a TFN. This can be
visualized by the following diagram

1

u(x)

1      2    3      4       5      6    7       8     9     10      11      12

x

B

40

A A( )B.

Fig. 3.5. A(·)B is not a TFN

Sometimes in practice, the fuzzy numbers A(·)B, A(:)B, A−1, A ∨ B
and A ∧ B which are not necessarily TFN can be approximated by a
suitable TFN using the concept of left and right divergence. The TFN
so obtained is called the triangular approximation of the given fuzzy
number. A possible triangular approximation of A(·)B in our example
here is the TFN (2,12,40). For more details on triangular approximation
of fuzzy numbers one has to refer to Kauffmann and Gupta ([32], [33])
and Dubois and Prade ([14], [15]).

Definition 3.5.2 (Trapezoidal fuzzy number (TrFN)). A fuzzy
number A is called a trapezoidal fuzzy number if its membership func-
tion is given by
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µA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x < al, x > au,
x − al

a − al
, al ≤ x < a ,

1 , a ≤ x ≤ a,
au − x
au − a

, a < x ≤ au.

The TrFN A is denoted by the quadruplet A = (al, a, a, au) and has the
shape of a trapezoid as shown in the figure 3.6.

x

1

a

u (x)A

      ul a                       a        a                  a                            aL                                            R

Fig. 3.6. A TrFN A = (al, a, a, au)

Further the α-cut of the TrFN A = (al, a, a, au) is the closed interval
Aα = [aL

α, aR
α] = [(a − al)α + al, −(au − a)α + au], α ∈ (0, 1].

Next let A = (al, a, a, au) and B = (bl, b, b, bu) be two TrFN, then
using the α-cuts one can compute A∗B where ∗may be (+), (−), (·), (:), ∨
or ∧ operation. In this context it can be verified that

A(+)B = (al + bl, a + b, a + b, au + bu),
−A = (−au, −a, −a, −al),

A(−)B = (al − bu, a − b, a − b, au − bl),

and,
kA = (kal, ka, ka, kau), k > 0,

are TrFNs but A−1, A(·)B, A(:)B, A∨B and A∧B need not be a TrFN.
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Definition 3.5.3 (L-R Fuzzy number). A fuzzy number A is called
a L-R fuzzy number if its membership function µA : R→ [0, 1] has the
following form:

µA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
(

x − a
α

)
, (a − α) ≤ x < a, α > 0,

1 , a ≤ x ≤ b,

R
(

x − b
β

)
, b < x ≤ (b + β), β > 0,

0 , otherwise,

where L(.) and R(.) are piecewise continuous functions, L(.) is increas-
ing, R(.) is decreasing and L(0) = R(0) = 1. The L-R fuzzy number A
as described above will be represented as A = (a, b, α, β)LR. Here L
and R are called as the left and right reference functions, a and b are
respectively called starting and end points of the flat interval, α is called
the left spread and β is called the right spread. The general shape of a
L-R fuzzy number A = (a, b, α, β)LR will be as follows

1

x

R( x−b/      )

                                              

L( x−a/    )

          a  −                      a                         b                                               b +                                                                        

u(x)

Fig. 3.7. L-R Fuzzy number A

Let A = (a1, b1, α, β)LR and B = (a2, b2, γ, δ)LR be two L-R fuzzy
numbers. Then it can be verified that
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A(+)B = (a1 + a2, b1 + b2, α + γ, β + δ)LR

and

−A = −(a1, b1, α, β) = (−b1, −a1, β, α)RL.

For defining the difference A(−)B the original number B should be
a R-L fuzzy number so that −B becomes a L-R fuzzy number and one
can compute A(−)B as A(+)(−B). Therefore for A = (a1, b1, α, β)LR
and B = (a2, b2, γ, δ)RL we get

A(−)B = (a1, b1, α, β)LR(+)(−(a2, b2, γ, δ)RL)
= (a1, b1, α, β)LR(+)(−b2, −a2, δ, γ)LR
= (a1 − b2, b1 − a2, α + δ, β + γ)LR.

Further, similar to TFNs and TrFNs, A−1, A(·)B, A(:)B etc. are not
L-R fuzzy numbers in general and will need certain L-R approximations
(Dubois and Prade [14] and [15]) if they are to be used as approximate
L-R fuzzy numbers.

3.6 Ranking of fuzzy numbers

Ranking of fuzzy numbers is an important issue in the study of fuzzy
set theory. Ranking procedures are also useful in various applications
and one of them will be in the study of fuzzy mathematical program-
ming and fuzzy games in later chapters. There are numerous methods
proposed in the literature for the ranking of fuzzy numbers, some of
them seem to be good in a particular context but not in general.

Our presentation here is going to be rather introductory as we de-
scribe only three simple methods for the ordering of fuzzy numbers.
However this discussion will be continued in later chapters as well, in
particular Chapter 10.

Ranking function (index) approach

Let N(R) be the set of all fuzzy numbers in R and A, B ∈ N(R).
In this approach a suitable function F : N(R) → R, called a ranking
function or ranking index is defined and F(A) ≤ F(B) is treated as
equivalent to A(≤)B. Since F(A) = F(B) will, in general, not mean A = B,
this ranking (and many others to be studied in later chapters) is to be
understood in the sense of equivalence classes only. Yager [87] proposed
the following indices.



54 3 Fuzzy numbers and fuzzy arithmetic

(i) F1(A) =

( ∫ au

al
xµA(x)dx

)
( ∫ au

al
µA(x)dx

) , where al and au are the lower and upper

limits of the support of A. The value F1(A) represents the centroid
of the fuzzy number A ∈ N(R).
If, in particular, A = (al, a, au) is a TFN then al and au are the lower
and upper limits of the support of A and a is the modal value. In
this case by actual substitution of the membership function of the
TFN A, it can be verified that F1(A) =

al + a + au

3
. Therefore given

two TFNs A = (al, a, au) and B = (bl, b, bu), A(≤)B with respect to
the index F1 if and only if (al + a + au) ≤ (bl + b + bu).

(ii) F2(A) =
( ∫ αmax

0 m[aL
α, aR

α]dα
)
, where αmax is the height of A, Aα =

[aL
α, aR

α] is an α-cut, α ∈ (0, 1], and m[aL
α, aR

α] is the mean value of
the elements of that α-cut. For a TFN A = (al, a, au), αmax = 1
and Aα = [aL

α, aR
α] = [(a − al)α + al, (a − au)α + au].

Therefore
m[aL

α, aR
α] =

(2a − al − au)α + (al + au)
2

and
F2(A) =

(al + 2a + au)
4

.

In view of the above we conclude that given two TFNs A =
(al, a, au) and B = (bl, b, bu), A(≤)B with respect to the index
F2 if and only if (al + 2a + au) ≤ (bl + 2b + bu).

k-Preference index approach

This approach has been suggested by Adamo [1]. Let A be the given
fuzzy number and k ∈ [0, 1]. The k-preference index of A is defined as

Fk(A) = max {x : µA(x) ≥ k}.
Now, using this k-preference index, for two fuzzy numbers A, B ∈

N(R), A(≤)B with degree k ∈ [0, 1] if and only if Fk(A) ≤ Fk(B).
If A = (al, a, au) and B = (bl, b, bu) are two TFNs then for a

given k ∈ [0, 1], Fk(A) = ka + (1 − k)au and Fk(B) = kb + (1 − k)bu.
Therefore A(≤)B with respect to the k-preference index if and only if(
ka + (1 − k)au

)
≤

(
kb + (1 − k)bu

)
.
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Possibility theory approach

Dubois and Prade [16] studied the ranking of fuzzy numbers in the
setting of possibility theory. To develop this, suppose we have two fuzzy
number A and B. Then in accordance with the extension principle of
Zadeh, the crisp inequality x ≤ y can be extended to obtain the truth
value of the assertion that A is less than or equal to B, as follows:

T(A(≤)B) = sup
x≤y

(
min

(
µA(x), µB(y)

))
.

This truth value T(A(≤)B) is also called the grade of possibility of
dominance of B on A and is denoted by Poss (A(≤)B).

In a similar way, the grade (or degree) of possibility that the asser-
tion “A is greater than or equal to B” is true, is given by

Poss (A(≥)B) = sup
x≥y

(
min

(
µA(x), µB(y)

))
.

Also the degree of possibility that the assertion “A is equal to B” is
denoted by Poss (A(=)B), and is defined as

Poss (A(=)B) = sup
x

(
min

(
µA(x), µB(x)

))
.

The above discussion motivates us to define A(≤)B if and only if
Poss (A(≤)B) ≥ Poss (B(≤)A). Here it may be noted that for the case
when A = (al, a, au) and B = (bl, b, bu) are TFN then a ≤ b gives
Poss (A(≤)B) = 1 and Poss (B(≤)A) = height (A ∩ B) ≤ 1.

Therefore for the case of TFNs it can be defined that A(≤)B with
respect to Poss (A(≤)B) approach if a ≤ b.

Related with the number “Poss (A(≤)B)” there is another number
“Necc(A(≤)B)” which measures the grade (or degree) of necessity of
dominance of B on A, given by

Necc(A(≤)B) = 1 − Poss (A(≥)B).

The number “Necc(A(≤)B)” can also be used for ranking of fuzzy
numbers. For this, we can define A(≤)B if and only if Necc(A(≤)B) ≥
Necc(B(≤)A).
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In case A = (al, a, au) and B = (bl, b, bu) are TFN then by actual
computation of Necc(A(≥)B) it can be defined that A(≤)B with respect
to Necc(A(≤)B) approach if a + al ≤ b + bl.

The “Poss” and “Necc” as defined above are special type of fuzzy
measures which are discussed in somewhat greater detail in Chapter
10.

3.7 Conclusions

In this chapter we have presented a very basic but brief discussion on
fuzzy numbers and fuzzy arithmetic. Since ranking of fuzzy numbers is
an important aspect in the study of fuzzy mathematical programming
and fuzzy games, we shall continue our discussion on this topic in later
chapters as well.



4

Linear and quadratic programming under
fuzzy environment

4.1 Introduction

For the linear programming problems (LPPs) in the crisp scenario, the
aim is to maximize or minimize a linear objective function under linear
constraints. But in many practical situations, the decision maker may
not be in a position to specify the objective and/or constraint func-
tions precisely but rather can specify them in a “fuzzy sense”. In such
situations, it is desirable to use some fuzzy linear programming type of
modeling so as to provide more flexibility to the decision maker. Since
the fuzziness may appear in a linear programming problem in many
ways (e.g. the inequalities may be fuzzy, the goals may be fuzzy or the
problem parameters c, A, b may be in terms of fuzzy numbers), the def-
inition of fuzzy linear programming problem is not unique. This chapter
aims to study various models of fuzzy linear programming problems and
their possible extensions for fuzzy quadratic programming.

This chapter consists of seven main sections, namely, decision mak-
ing under fuzzy environment and fuzzy linear programming, linear pro-
gramming problems with fuzzy inequalities and crisp objective function,
linear programming problems with crisp inequalities and fuzzy objec-
tive function, linear programming problems with fuzzy inequalities and
fuzzy objective function, quadratic programming under fuzzy environ-
ment: symmetric and non symmetric models, a two phase approach for
solving fuzzy linear programming problems, and linear goal program-
ming under fuzzy environment.
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4.2 Decision making under fuzzy environment and fuzzy
linear programming

A fuzzy decision making model is characterized by a set X of possible ac-
tions/alternatives, and a set of goals Gi (i = 1, 2, . . . , p), along with a set
of constraints Cj ( j = 1, 2, . . . ,n), each of which is expressed by a fuzzy
set on X. For such a model of decision making, Bellman and Zadeh [9]
in their pioneering work, proposed that a fuzzy decision is determined
by an appropriate aggregation of the fuzzy sets Gi (i = 1, 2, . . . ,m) and
Cj ( j = 1, 2, . . . ,n). In this approach the symmetry between goals and
constraints is the main feature. Keeping this in mind, they (Bellman
and Zadeh [9]) suggested the aggregation operator to be the fuzzy in-
tersection. Thus a fuzzy decision D could be defined as the fuzzy set
D = (G1 ∩G2 ∩ . . .∩Gp)∩ (C1 ∩C2 ∩ . . .∩Cn), i.e µD : X→ [0, 1] given
by µD(x) = min

i, j

(
µGi(x), µCj(x)

)
.

Once the fuzzy decision D is known, we can define x∗ ∈ X to be an
optimal decision if µD(x∗) = max

x
µD(x). Another possibility could be

to choose an α (0 < α < 1) and determine all points x∗ ∈ X for which
µD(x∗) ≥ α. These decisions x∗ will have at least α degree of membership
value.

Example 4.2.1. (Zimmermann [91]). As an illustration let us con-
sider the fuzzy decision problem in which we have to find a real number
x which is in the vicinity of 15 (fuzzy constraint C) and is substantially
larger than 10 (fuzzy goal G). For this problem, the goal and the
constraint can be expressed in terms of their membership functions as
follows

µG(x) =

⎧⎪⎪⎨⎪⎪⎩0 , x ≤ 10,(
1 + (x − 10)−2

)−1
, x > 10,

and,

µC(x) =
(
1 + (x − 15)4

)−1
.

Here it may be noted that since in this approach, goals and constraints
are symmetric, we may denote µG(x) by µC(x) and vice versa. Now as
per the Bellman and Zadeh [9] approach, the fuzzy decision D equals
G ∩ C, i.e.

µD(x) = min
(
µG(x), µC(x)

)
.
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The following diagram depicts this fuzzy decision making problem and
identifies the optimal solution x∗.

x

u

u

D

C

u
G

1

*10             15            x

u

Fig. 4.1. graphical representation of µD and x∗

We now try to understand and conceptualize fuzzy linear program-
ming models in the light of Bellman and Zadeh principle as discussed
above. The classical linear programming problem aims to find the min-
imum or maximum of a linear function under constraints which are
represented by linear inequalities or equations. The most typical linear
programming problem is stated as
(LP) max cTx

subject to,

Ax ≤ b,
x ≥ 0,

where x ∈ Rn, c ∈ Rn, b ∈ Rm, and A ∈ Rm ×Rn.
In the decision making terminology, x is referred as a vector of deci-

sion variables, b as a vector of available resources, c as a vector of cost
coefficients and A as the constraint matrix.

In the above formulation, it is assumed that all entries of A, b and
c are crisp numbers, “≤” is defined in the crisp sense and “max” is a
strict imperative. However, in many practical situations it may not be
reasonable to require that the constraints or the objective function in
linear programming problem be specified in precise crisp terms. In such
situations, it is desirable to use some type of fuzzy modeling and this
leads to the concept of fuzzy linear programming.
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When decision is to be made in a fuzzy environment, many possible
modifications of the above linear programming model exist, such as,

(i) The decision maker might not really want to maximize or mini-
mize the objective function, rather he might want to achieve some
aspiration level which might not be even definable crisply. For ex-
ample, the decision maker might want to “improve the present sales
situation considerably”.

(ii) Constraints might be vague i.e. the “≤” sign might not be meant
in the strict mathematical sense but subjectively determined vio-
lations may be acceptable. For example, the decision maker might
say “try to contact 1300 customers but it will be too bad if less
than 1200 customers are contacted”.

(iii) The entries of the vectors c, b and the matrix A may not be
crisp but rather may be fuzzy numbers and the inequalities may be
interpreted in terms of ranking of fuzzy numbers.

Thus in view of the above, fuzzy linear programming models are not
uniquely defined as it will very much depend upon the type of fuzziness
and its specification as prescribed by the decision maker. Therefore the
class of fuzzy linear programming problems can be broadly classified
as

(i) linear programming problem with fuzzy inequalities and crisp ob-
jective function,

(ii) linear programming problems with crisp inequalities and fuzzy ob-
jective function,

(iii) linear programming problems with fuzzy inequalities and fuzzy
objective function, and

(iv) linear programming problems with fuzzy resources and fuzzy co-
efficient, also termed as linear programming problems with fuzzy
parameters, i.e. elements of c, b and A are fuzzy numbers.

The class of fuzzy linear programming problems can also be classified as
symmetric or non symmetric. The symmetric models are based on the
definition of fuzzy decision as proposed by Bellman and Zadeh [9] and
discussed here in Section 4.2. The basic feature being the symmetry
of objectives and constraints, this approach gives the decision set as a
fuzzy set resulting from the intersection of the fuzzy sets corresponding
to the objective and constraints. On the other hand, the non symmet-
ric models keep distinction between the objective and constraints. Here
usually two approaches are followed. In the first approach a fuzzy set
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of decisions is determined and then the (crisp) objective function is
“maximized” over this fuzzy set. This approach leads to a parametric
linear programming problem. In the second approach, after determin-
ing the fuzzy set of decisions, a suitable membership function of the
objective function is determined and then the problem is solved similar
to the symmetric case.

In the next two sections now, we discuss some of the most common
models of fuzzy linear programming problems. Though these models
look simple, they have wide applications and have been used extensively
in the literature. The class of fuzzy linear programming problems for
which entries of c, b and A are fuzzy numbers, are not discussed here,
instead they are studied in Chapters 6, 7, 8 and 10.

4.3 LPPs with fuzzy inequalities and crisp objective
function

The general model of a linear programming problem with fuzzy in-
equalities and crisp objective function is as follows:

max cTx
subject to,

Aix � bi, (i = 1, 2 . . . ,m),
x ≥ 0,

where � is called “fuzzy less than or equal to” and is to be understood
in terms of a suitably chosen membership function.

In Verdegay’s terminology, such fuzzy linear programming problems
are said to be of “type P1” and therefore we shall now onwards denote
the above problems as (P1-FLP).

Verdegay’s approach : a non symmetric model

Verdegay ([74], [75]) showed that the problem (P1-FLP) is equiva-
lent to a crisp parametric linear programming problem and therefore
we can use parametric programming methods to solve such fuzzy lin-
ear programming problems. Here the fuzzy constraints are transformed
into crisp constraints by choosing appropriate membership function for
each constraint. To motivate for a meaningful choice of membership
function, it is argued that if Aix ≤ bi then the ith constraint is abso-
lutely satisfied, where as if Aix ≥ bi + pi, where pi is the maximum
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tolerance from bi, as determined by the decision maker, then the ith

constraint is absolutely violated. For Aix ∈ (bi, bi+pi), the membership
function is monotonically decreasing. If this decrease is along a linear
function then it makes sense to choose the membership function of the
ith constraint (i = 1, 2, . . . ,m) as

µi(Aix) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi,

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi,

where Ai (i = 1, 2, . . . ,m) denotes the ith row of A.
Now, for α ∈ [0, 1] let Xα = { x ∈ Rn : x ≥ 0 and µi(Aix) ≥ α, (i =

1, 2, . . . ,m) } then the problem (P1-FLP) is equivalent to
max cTx
subject to,

x ∈ Xα.

We can substitute the expression for the membership functions
µi(Aix) and obtain the following problem:
(LP)α max cTx

subject to,

Aix ≤ bi + (1 − α)pi, (i = 1, 2, . . . ,m),
x ≥ 0,
α ∈ [0, 1],

which is equivalent to a standard parametric linear programming prob-
lem, with θ = (1 − α). Thus the fuzzy linear programming problem
(P1-FLP) can be solved by solving an equivalent crisp parametric linear
programming problem. Here, it may be noted that we have an optimal
solution for each α ∈ [0, 1], so the solution with α grade of membership
is actually fuzzy.

Werners’ approach : a symmetric model

Werners [79] proposed that for the problems of the type (P1-FLP),
the objective function should be fuzzy because of fuzzy inequality con-
straints. Further, to construct a membership function for the objective
function, he suggested to solve the following two linear programming
problems (LP(b)) and (LP(b + p))
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(LP(b)) max cTx
subject to,

Ax ≤ b,
x ≥ 0,

(LP(b + p)) max cTx
subject to,

Ax ≤ b + p,
x ≥ 0.

Here as before, p = (p1, p2, . . . , pm)T is the vector of tolerances for the
m constraints of (P1-FLP). Let Z0 and Z1 be optimal values of (LP(b))
and (LP(b + p)) respectively.

We can now construct a continuously nondecreasing linear mem-
bership function µ0 for the objective function by using Z0 and Z1 as
follows

µ0(cTx) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , cTx > Z1,

1 − Z1 − cTx
Z1 − Z0

, Z0 ≤ cTx ≤ Z1,

0 , cTx > Z0.

The membership functions of the constraints are the same as in
Verdegay’s approach, i.e.

µi(Aix) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi,

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi.

Now using the above membership functions, µi (i = 0, 1, . . . ,m) and
following Bellman and Zadeh principle, the problem (P1-FLP) is solved
by solving the following crisp linear programming problem

max α
subject to,

µ0(x) ≥ α,
µi(x) ≥ α, (i = 1, 2, . . . ,m),
α ∈ [0, 1],
x ≥ 0,
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which on substitution for µi (i = 0, 1, 2, . . . ,m) becomes
max α
subject to,

cTx ≥ Z1 − (1 − α)(Z1 − Z0),
Aix ≤ bi + (1 − α)pi,
α ∈ [0, 1],
x ≥ 0.

4.4 LPPs with crisp inequalities and fuzzy objective
functions

A linear programming problem with crisp inequalities and fuzzy objec-
tive function is described as

˜max cTx
subject to,

Ax ≤ b,
x ≥ 0,

and then following Verdegay’s notations ([74], [75]), it is denoted by
(P2-FLP).

Let the membership function of the fuzzy objective be given by

φ(c) = inf
j
φ j(cj),

where φ j : R→ [0, 1], j = 1, 2, . . . ,n.
Verdegay [74] argued that a fuzzy solution of (P2-FLP) could be

found by solving the crisp linear programming problem
(LP)(φ, α) max cTx

subject to,

φ(c) ≥ (1 − α),
Ax ≤ b,

x ≥ 0,
α ∈ [0, 1].

In general, it may not be easy to solve (LP)(φ, α) so we express it an
equivalent way as per the theorem given below. For this we introduce
the problem (LP)β as follows
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(LP)β max η(β)Tx
subject to,

Ax ≤ b,
x ≥ 0,
β ∈ [0, 1],

where η(β) is a vector function
(
η1(β), . . . , η j(β)

)
with η j : [0, 1]→ R.

Theorem 4.4.1 In the problem (P2-FLP), let the membership func-
tions φ j : R→ [0, 1], ( j = 1, 2, . . . ,n), be continuous and strictly mono-
tone. Then the fuzzy solution of (P2-FLP) is given by the parametric
solution of the parametric linear programming problem (LP)β.

Proof. We have to solve the following problem to obtain the solution
of (P2-FLP)
(LP)(φ, α) max cTx

subject to,

φ(c) ≥ 1 − α,
Ax ≤ b,

x ≥ 0,
α ∈ [0, 1],

where φ(c) = inf
j

(
φ j(cj)

)
. But φ j is continuous and strictly monotone,

giving that φ−1
j exists, and φ j(cj) ≥ (1 − α)⇒ cj ≥ φ−1

j (1 − α).
Therefore the problem (LP)(φ, α) can be written as

max
n∑

j=1

cjxj

subject to,

cj ≥ φ−1
j (1 − α), ( j = 1, 2, . . . ,n),

Ax ≤ b,
x ≥ 0,
α ∈ [0, 1],

which is equivalent to

max
n∑

j=1

cjxj

subject to,
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cj = φ−1
j (1 − α), ( j = 1, 2, . . . ,n),

Ax ≤ b,
x ≥ 0,
α ∈ [0, 1].

Thus the fuzzy linear programming (P2-FLP) can be solved by solving
the (crisp) linear programming problem

max
n∑

j=1

(
φ−1

j (1 − α)
)
xj

subject to,

Ax ≤ b,
x ≥ 0,
α ∈ [0, 1],

which is the same as the problem (LP)β with β = (1 − α) and η j(β) =
φ−1

j (1 − α).

Remark 4.4.1. Since the parameterizations used here do not effect
any change in the feasible region, the problems of the type (P2-FLP)
are probably easier to solve than the problems of type (P1-FLP). In fact
there is a complete duality between these two types of linear program-
ming problems as any problem of type (P1-FLP) could be transformed
into a problem of type (P2-FLP) and vice versa. This suggests a dual
approach of solving fuzzy linear programming problems which we shall
discuss in Chapter 5.

Example 4.4.2. (Verdegay[74]). Consider the fuzzy linear program-
ming problem (P2-FLP) as

˜max c1x1 + c2x2
subject to,

3x1 − x2 ≤ 2,
x1 + 2x2 ≤ 3,

x1, x2 ≥ 0,

where c2 = 75 (crisp) and the membership function φ1 for c1 is given by

φ1(c1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , c1 < 40,
(c1 − 40)2

5625
, 40 ≤ c1 ≤ 115,

1 , c1 > 115.
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To solve the given fuzzy linear programming problem, we have to solve
the crisp problem

max
n∑

j=1

(
φ−1

j (1 − α)
)
xj

subject to,

Ax ≤ b,
x ≥ 0.

Since here, only one membership function, namely φ1(c), is taking part,
we have to solve the problem

max
(
φ−1

1 (1 − α)
)
x1 + 75x2

subject to,

3x1 − x2 ≤ 2,
x1 + 2x2 ≤ 3,

x1, x2 ≥ 0.

But from the definition of φ1(c), we have φ−1
1 (1−α) =

(
40 + 75

√
(1 − α)

)
and therefore the above problem becomes

max
(
40 + 75

√
(1 − α)

)
x1 + 75x2

subject to,

3x1 − x2 ≤ 2,
x1 + 2x2 ≤ 3,

x1, x2 ≥ 0,
α ∈ [0, 1].

The optimal solution of the above parametric linear programming prob-
lem is x∗1 = 1, x∗2 = 1 and therefore the fuzzy solution, i.e. the fuzzy set
of the values of the objective function, is obtained as{

(75 + c1),
(c1 − 40)2

5625

}
, 40 ≤ c1 ≤ 115.

4.5 LPPs with fuzzy inequalities and objective function

The general model of a linear programming problem with fuzzy objec-
tive and fuzzy constraints is formulated as:

˜max cTx
subject to,
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Ax � b,
x ≥ 0,

where we need to explain the fuzzifiers “�” and ˜max in the context of
the model under consideration. In the terminology of Verdegay ([74],
[75]), we shall denote the above fuzzy linear programming problem as
(P3-FLP).

Zimmermann’s approach : a symmetric model

In this approach, the fuzzy constraints are handelled exactly in the
same manner as in the earlier case described in Section 4.3. But for the
objective function the fuzzifier ˜max is understood in the sense of the
satisfaction of an aspiration level Z0 as best as possible.

In view of the above, we can describe the problem (P3-FLP) as fol-
lows
(FSI) Find x such that

cTx � Z0,
Ax � b,

x ≥ 0.

To solve the above problem, we should first choose an appropriate
membership function for each of the fuzzy inequality and then employ
Bellman and Zadeh principle to identify the fuzzy decision. In partic-
ular, let µ0 denote the membership function for the objective function
and µi (i = 1, 2, . . . ,m) denote the membership function for the ith con-
straint. Let p0 and pi (i = 1, 2, . . . ,m) respectively be the permissible
tolerances for the objective function and the ith constraint. Then we
may decide µ0 and µi (i = 1, 2, . . . ,m) to be nondecreasing and contin-
uous linear membership functions as per the choice given below

µ0(cTx) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , cTx > Z0,

1 − Z0 − cTx
p0

, Z0 − p0 ≤ cTx ≤ Z0,

0 , cTx < Z0 − p0,

and

µi(Aix) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi,

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi.
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Now we use the Bellman and Zadeh’s principle to identify the fuzzy
decision to solve the fuzzy system of inequalities (FSI) corresponding
to the problem (P3-FLP). This leads to the following crisp linear pro-
gramming problem,

max α
subject to,

µ0(cTx) =
(
1 − Z0 − cTx

p0

)
≥ α,

µi(Aix) =
(
1 − Aix − bi

pi

)
≥ α, (i = 1, 2, . . . ,m),

α ∈ [0, 1],
x ≥ 0,

or
max α
subject to,

cTx ≥ Z0 − (1 − α)p0,
Aix ≤ bi + (1 − α)pi, (i = 1, 2, . . . ,m),
α ∈ [0, 1],
x ≥ 0,

If (x∗, λ∗) is an optimal solution of the above (crisp) linear program-
ming problem then x∗ is said to be an optimal solution of the problem
(P3-FLP) and λ∗ is the degree up to which the aspiration level Z0 of the
decision maker is met.

Remark 4.5.1. If the problem (P3-FLP) has fuzzy as well as crisp con-
straints, then in the equivalent (crisp) linear programming problem,
the original crisp constraints will not have any change as for them the
tolerances are zero.

Example 4.5.2. (Zimmermann [90]). Consider the fuzzy linear pro-
gramming problem (P3-FLP) as

˜max x1 + x2
subject to,

−x1 + 3x2 � 21,
x1 + 3x2 � 27,

4x1 + 3x2 � 45,
3x1 + x2 ≤ 30,

x1, x2 ≥ 0,
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Here it is given that Z0 = 14.5, p0 = 2, p1 = 3, p2 = 6, and p3 = 6. Fol-
lowing Zimmermann’s approach, to solve the given problem (P3-FLP),
we need to solve the following (crisp) linear programming problem:

max α
subject to,

x1 + x2 ≥ 14.5 − 2(1 − α),
−x1 + 3x2 ≤ 21 + 3(1 − α),

x1 + 3x2 ≤ 27 + 6(1 − α),
4x1 + 3x2 ≤ 45 + 6(1 − α),
3x1 + x2 ≤ 30,

α ≤ 1,
x1, x2, α ≥ 0.

i.e
max α
subject to,

2α − x1 − x2 ≤ −12.5,
3α − x1 + 3x2 ≤ 24,
6α + x1 − 3x2 ≤ 33,

6α + 4x1 + 3x2 ≤ 51,
α ≤ 1,

x1, x2, α ≥ 0.

By using Simplex algorithm, we can solve the above linear program-
ming problem and obtain the solution x∗1 = 6, x∗2 = 7.75, z∗ = 13.75 and
λ∗ = 0.625.

Chanas’ approach : a non symmetric model

We have seen that for solving fuzzy linear programming problems of
type (P3-FLP) by Zimmermann’s approach, we need the aspiration level
Z0 for the objective function and its associated tolerance p0. Chanas
[12] argued that because of lack of knowledge about the fuzzy feasible
region, it may not be easy to specify the aspiration level Z0, and its
tolerance p0. He therefore suggested first to solve the following problem
(P1-FLP), and then present the results to the decision maker to deter-
mine Z0 and p0.
(P1 − FLP) max z = cTx

subject to,
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Ax � b,
x ≥ 0,

For the given tolerances pi (i = 1, 2, . . . ,m), we may choose the mem-
bership functions µi as before, i.e.

µi(Aix) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi,

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi.

Employing the Verdegay’s approach, the problem (P1-FLP) is equiv-
alent to the following parametric linear programming problem (LP)θ:
(LP)θ max z = cTx

subject to,

Ax ≤ b + θp,
x ≥ 0,
θ ∈ [0, 1],

where θ = (1 − α) is a parameter and p = (p1, p2, . . . , pm)T is the vector
of tolerances for each of the m fuzzy constraints.

Let for a given θ, x∗(θ) be an optimal solution of (LP)θ and the
corresponding optimal value be z∗(θ). Then the constraint Ax ≤ b+ θp
means, Aix ≤ bi + (1 − α)pi, (i = 1, 2, . . . ,m), which is equivalent to the
statement that for each i = 1, 2, . . . ,m, µi

(
Aix∗(θ)

)
≥ α = (1 − θ), holds.

Also there exists at least one i for which µi

(
Aix∗(θ)

)
= α = (1−θ). This

is because in (LP)θ at least one constraint should be active at x∗(θ) as
x∗(θ) can not be an interior point of the feasible region.

Therefore the common degree of satisfaction of these constraints is
the minimum of µi

(
Aix∗(θ)

)
over i, i.e. µc

(
Ax∗(θ)

)
= min

i
µi

(
Aix∗(θ)

)
=

(1 − θ).
Hence, for every θ we obtain an optimal solution x∗(θ) with the

optimal value z∗(θ), (if one exists) which satisfies jointly the constraints
with degree (1−θ). This optimal solution of (LP)θ is then presented to
the decision maker who, in the light of this information, choose Z0 and
corresponding p0. We can then construct the membership function µ0
of the objective function as follows

µ0(cTx∗(θ)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , cTx∗(θ) > Z0,

1 − Z0 − cTx∗(θ)
p0

, Z0 − p0 ≤ cTx∗(θ) ≤ Z0,

0 , cTx∗(θ) < Z0 − p0.
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Now from the expression of µ0

(
cTx∗(θ)

)
, we observe that it is a piece-

wise linear function of θ as depicted in the Figure 4.2. Also the common
degree of satisfaction of the constraints is µc

(
Ax∗(θ)

)
= (1−θ), which is

also depicted in Figure 4.2. Therefore the optimal solution of the prob-
lem (P3-FLP) is taken x∗(θ∗) with the optimal value z∗(θ∗) where θ∗ is
chosen such that µD(θ∗) = max

θ
µD(θ) = max

θ

(
min

(
µ0(θ), µc(θ)

))
.

Here µ0(θ) and µc(θ) are in fact µ0

(
x∗(θ)

)
and µc

(
x∗(θ)

)
respectively.

The optimal choice of θ∗ and associated value µD(θ∗) are again shown
in Figure 4.2.

0     c
u  , u

1

D

u0

c
u = 1− O

u (0*)

0 0 1 0

Fig. 4.2. The membership functions µ0, µc and θ∗.

4.6 Quadratic programming under fuzzy environment

In contrast with the vast literature on modeling and solution proce-
dures for linear programming in a fuzzy environment, the studies in
general mathematical programming (even in quadratic programming)
under fuzzy environment and its solution are pretty rare. In this sec-
tion we make an attempt to study quadratic programming under fuzzy
environment along the lines of fuzzy linear programming as discussed
in Sections 4.3, 4.4, and 4.5. The results presented here are based on
[5].

In the literature, a classical quadratic programming problem is
stated as follows:
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(QPP) min cTx + 1
2 xTHx

subject to,

Ax ≤ b,
x ≥ 0,

where c ∈ Rn, x ∈ Rn, A ∈ Rm×Rn is an m×n matrix, and b ∈ Rm. Also,
H is a symmetric n × n matrix which is positive semi definite. Thus,
the quadratic form xTHx is convex and hence the objective function is
convex. We also make the assumption that the feasible region of (QPP)
is bounded.

Several methods, e.g. Wolfe [80] and Beale [3], are available in the
literature for solving such quadratic programming problems. However
to study quadratic programming in a fuzzy environment from a solu-
tion point of view we require a solution procedure for solving a linear
programming problem with one quadratic constraint, i.e. a special op-
timization problem in which the objective function and all constraints
are linear except one constraint which is quadratic. Van de Panne [73]
suggested a finite step method that uses linear programming and para-
metric quadratic programming to solve such problems. We now describe
Van de Panne’s method very briefly.

The mathematical model of such a special optimization problem is
as follows:
(SLP) max cTx

subject to,

dTx + 1
2 xTQx ≤ β,

Ax ≤ b,
x ≥ 0,

where d ∈ Rn, Q ∈ Rn ×Rn a positive semi definite matrix, and β ∈ R
is known in advance. Other notations are same as used in (QPP).

Van de Panne [73] developed the following two phase method to
solve the optimization problem (SLP) in a finite number of steps.

Phase 1: In (SLP), we ignore the quadratic constraint to get the
following ordinary linear programming problem, which is then solved
under the assumption that it has an optimal solution.
(LP) max cTx

subject to,

Ax ≤ b,
x ≥ 0.
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Let x0 be optimal solution of the above linear programming problem
(LP). If this optimal solution satisfies the quadratic constraint, that is
if

dTx0 +
1
2 xT

0 Qx0 ≤ β,
then we have obviously found the optimal solution of the original prob-
lem, i.e. x = x0 is the optimal solution to (SLP).

If however x0 does not satisfy the quadratic constraint, that is if
dTx0 +

1
2 xT

0 Qx0 > β,
then we move on to next phase of the technique.
Phase 2: In this phase we construct the following problem (QPP)λ
(QPP)λ max dTx + 1

2 xTQx
subject to,

Ax ≤ b,
cTx ≥ λ,

x ≥ 0,

where λ is a parameter and it is assigned different values in the course
of computations assuming that λ0 = cTx0 to start with.

Van de Panne [73] solved the problem (QPP)λ by decreasing λ para-
metrically from λ0 to lower values. Then Phase 2 can terminate in one
of the two ways:
(i) it may terminate when for a certain value λ∗ of λ, corresponding to
x = x∗, the objective function has become equal to β. In this case an
optimal solution to (SLP) has been found.
(ii) it may terminate when for a certain value of λ, say λ∗∗, the con-
straint cTx ≥ λ ceases to be binding for the optimal solution of the
problem (QPP)λ with dTx+ 1

2 xTQx being still larger than β. This means
that for no value of λ, a solution exists giving a minimum value of the
objective dTx + 1

2 xTQx less than or equal to β.
In this case, in (SLP), the quadratic constraint is incompatible with

the linear constraints and no feasible solution to (SLP) exists.
Now when we fuzzify the classical quadratic programming problem

(QPP) as in the case of linear programming , then we get the two mod-
els, namely, the symmetric fuzzy and non symmetric fuzzy quadratic
programming problems. In order to find a solution we transform each
of them into the crisp programming problem of the type (SLP).

The fuzzy version of the classical quadratic program (QPP) can be
written as
(FQP) m̃in Z = cTx + 1

2 xTHx
subject to,
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Aix � bi, (i = 1, 2, . . . ,m),
x ≥ 0,

where as before, the fuzzification is to be understood in terms of the
appropriate membership functions.

Symmetric fuzzy quadratic programming

We consider the following symmetric version of (FQP), say (FQP1)
(FQP1) Find x such that,

cTx + 1
2 xTHx � Z0,

Aix � bi, (i = 1, 2, . . . ,m),
x ≥ 0,

where Z0 is the aspiration level of the decision maker. Now taking the
tolerances pi (i = 0, 1, . . . ,m) for the objective and constraint functions
and following Zimmermann’s [90] approach the membership functions
µi (i = 0, 1, . . . ,m) are defined as

µ0(Z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Z < Z0,

1 − Z − Z0

p0
, Z0 ≤ Z ≤ Z0 + p0,

0 , Z ≥ Z0 + p0,

and

µi(Aix) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi,

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi,

Then on the lines of Zimmermann [90], an optimal solution to
(FQP1) is obtained by solving

max xn+1
subject to,

µ0(Z) =
(
1 − Z − Z0

p0

)
≥ xn+1,

µi(Aix) =
(
1 − Aix − bi

pi

)
≥ xn+1, (i = 1, 2, . . . ,m),

xn+1 ∈ [0, 1],
x ≥ 0,
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i.e.
(SLP1) max xn+1

subject to,

cTx + 1
2 xTHx + p0xn+1 ≤ p0 + Z0,

Aix + pixn+1 ≤ pi + bi, (i = 1, 2 . . .m),
xn+1 ≤ 1,
xn+1 ≥ 0,

x ≥ 0.

Now clearly (SLP1) is of the type (SLP) and hence can be solved
using Van de Panne’s method as described above.

Non-symmetric fuzzy quadratic programming

We now consider the non symmetric version of the fuzzy quadratic
programming problem:
(FQP2) min Z = cTx + 1

2 xTHx
subject to,

Aix � bi, (i = 1, 2, . . . ,m),
x ≥ 0.

Let pi (i = 1, 2, . . . ,m) denote the tolerances for the constraint func-
tions. Then following Werners [79], we construct the membership func-
tion of the quadratic objective function by defining Z0 and Z1 as follows:

Z0 = min cTx + 1
2 xTHx

subject to,

Aix ≤ bi, (i = 1, 2, . . .m),
x ≥ 0,

and,
Z1 = min cTx + 1

2 xTHx
subject to,

Aix ≤ bi + pi, (i = 1, 2, . . . ,m),
x ≥ 0.

Thus, we can construct a continuously nondecreasing linear mem-
bership function for the objective by use of Z0 and Z1as follows
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µ0(Z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Z < Z0,

1 − Z − Z0

Z1 − Z0
, Z0 ≤ Z ≤ Z1,

0 , Z ≥ Z1.

Now using the same membership functions for the constraints as
were used for the symmetric approach and along with the membership
function of the objective defined above, we proceed in a similar manner
as before to get the equivalent crisp programming problem as
(SLP2) max xn+1

subject to,

cTx + 1
2 xTHx + (Z1 − Z0)xn+1 ≤ Z1,

Aix + pixn+1 ≤ pi + bi, (i = 1, 2, . . . ,m),
xn+1 ≤ 1,
xn+1 ≥ 0,

x ≥ 0,

which is once again of the type (SLP) and hence can be solved using
Van de Panne’s method.

Example 4.6.1. Consider the fuzzy symmetric quadratic program-
ming problem of the form (FQP1) as follows:

Find (x1, x2) ∈ R2 such that

2x1 + x2 + 4x2
1 + 4x1x2 + 2x2

2 � 51.88,
4x1 + 5x2 � 20,
5x1 + 4x2 � 20,

x1 + x2 � 30,
x1, x2 ≥ 0.

Let the tolerances be given as p0 = 2.12, p1 = 2, p2 = 1, p3 = 3. Then
on the lines of (SLP1), we have the crisp equivalent of this problem as

max x3
subject to,

2x1 + x2 + 4x2
1 + 4x1x2 + 2x2

2 + 2.12x3 ≤ 54,
4x1 + 5x2 − 2x3 ≥ 18,
5x1 + 4x2 − x3 ≥ 19,

x1 + x2 + 3x3 ≤ 33,
x3 ≤ 1,

x1, x2, x3 ≥ 0.
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Then in Phase 1, the linear programming problem is as follows
max x3
subject to,

4x1 + 5x2 − 2x3 ≥ 18,
5x1 + 4x2 − x3 ≥ 19,
x1 + x2 + 3x3 ≤ 33,

x3 ≤ 1,
x1, x2, x3 ≥ 0.

The optimal solution of the above linear programming problem is x∗1 =
2.22, x∗2 = 2.22, x∗3 = 1.
In Phase 2, the quadratic programming problem (QPP)λ that we solve
parametrically is as follows

min 2x1 + x2 + 4x2
1 + 4x1x2 + 2x2

2 + 2.12x3
subject to,

4x1 + 5x2 − 2x3 ≥ 18,
5x1 + 4x2 − x3 ≥ 19,
x1 + x2 + 3x3 ≤ 33,

x3 ≤ 1,
x3 ≥ λ,

x1, x2, x3 ≥ 0.

Here we start with λ0 = cTx0 = 1 and decrease it parametrically as
suggested in Van de Panne [73]. An optimal solution of the above
quadratic programming problem is x∗1 = 0.99, x∗2 = 3.73, x∗3 = 0.86
and the minimum value of the objective function is 54. Therefore an
optimal solution of the given fuzzy quadratic programming problem is
x∗1 = 0.99, x∗2 = 3.73. Also the level of satisfaction of this solution is
x∗3 = 0.86.

4.7 A two phase approach for solving fuzzy linear
programming problems

In the earlier sections we have discussed several methods for solving
the fuzzy linear programming problems. These methods are based on
the well known Bellman and Zadeh principle and primarily use the
max-min operator to obtain a crisp equivalent of the given fuzzy linear
programming problem. If the resulting crisp linear programming prob-
lem has only one optimal solution then this solution has to be a fuzzy
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efficient compromise solution for the given fuzzy problem. However, if
the resulting crisp linear programming problem has multiple optimal
solutions then there are examples, e.g. Werners [79] to show that the
solution given by the max-min operator may not be efficient but at
least one of the multiple optimal solutions is certainly a fuzzy efficient
compromise solution.

In this section, we present a two phase approach due to Guu and
Wu [21] to take care of the situation where the max-min operator does
not produce a fuzzy efficient compromise solution. This method is dif-
ferent from the other two phase methods available in the literature e.g.
Lee and Li [46] and Guu and Wu [20]. In this two phase method, the
crisp linear programming problem resulting from the max-min operator
is solved in Phase I, while in Phase II a solution is obtained which is
at least “better” than the solution obtained by the max-min operator.
Further the solution resulting by this two phase approach is always a
fuzzy efficient compromise solution and that every membership func-
tion is at least as large as the one provided by the max-min operator.
Thus by using this two phase approach, we not only achieve the high-
est membership degree in the objective, but also provide for a better
utilization of available resources (constraints).

Let us now recall the Werners’ approach (Section 4.3) for solving
the fuzzy linear programming problem
(P1-FLP1) max cTx

subject to,

Ax � b,
x ≥ 0.

Here we first determine the possible range [Z0,Z1] for the objective
function of P1-FLP1 by solving the linear programming problems
(LP(b)) max cTx

subject to,

Ax ≤ b,
x ≥ 0,

and
(LP(b + p)) max cTx

subject to,

Ax ≤ b + p,
x ≥ 0.
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Then the membership function of the objective function is taken as

µ0(cTx) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , cTx < Z0,

1 −
(

Z1 − cTx
Z1 − Z0

)
, Z0 ≤ cTx ≤ Z1,

1 , cTx > Z1.

Also the membership function of the ith constraint (i = 1, 2, . . . ,m)
is chosen as

µi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix < bi

1 − Aix − bi

pi
, bi ≤ Aix ≤ bi + pi,

0 , Aix > bi + pi,

where Ai (i = 1, 2, . . . ,m) denotes the ith row of A and pi denotes the
corresponding tolerance level.

Now employing the above membership functions µi (i = 0, 1, . . . ,m)
and following Bellman and Zadeh principle, the max-min operator re-
sults in the following crisp linear programming problem for the problem
(P1-FLP1) max α

subject to,

µi(x) ≥ α, (i = 0, 1, 2, . . . ,m),
α ≤ 1,
x ≥ 0,
α ≥ 0.

Here we are using the symbol µi(x) uniformly for all i but actually
µ0(x) refers to µ0(cTx) and, for i = 1, 2, . . . ,m., µi(x) refers to µi(Aix) as
described above.

Let us call the above as Phase I linear programming problem and
denote it by (Phase I-LPP). Let (x∗, α∗) be an optimal solution of (Phase
I-LPP). In Phase II, we now construct the linear programming problem,
(Phase II-LPP) as follows

(Phase II-LPP) max
m∑

i=0

αi

subject to,
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µi(x) ≥ αi , (i = 0, 1, . . . ,m),
µi(x∗) ≤ αi , (i = 0, 1, . . . ,m),
αi ≥ 0, (i = 0, 1, . . . ,m),
αi ≤ 1, (i = 0, 1, . . . ,m),
x ≥ 0.

Let (x∗∗, α∗∗0 , α
∗∗
1 , . . . , α

∗∗
m) be an optimal solution of the problem (Phase

II-LPP). Also let (MOP) denote the multi objective optimization prob-
lem,
(MOP) max

x≥0

(
µ0(x), µ1(x), . . . , µm(x)

)
,

and call an efficient solution of (MOP) as a fuzzy efficient compromise
solution of the problem (P1-FLP1). Then we have the following theorem.

Theorem 4.7.1 The optimal solution x∗∗ of the problem (Phase II-
LPP) is a fuzzy efficient compromise solution of the problem (P1-FLP1).

Proof. If possible, let x∗∗ be not a fuzzy efficient compromise solution
of (MOP). Then there exist a solution x̄ of (MOP), i.e x̄ ≥ 0, such that

µi(x∗∗) ≤ µi(x̄), for all i = 0, 1 . . . ,m,
and

µk(x∗∗) < µk(x̄), for some k.
Since (x∗∗, α∗∗0 , α

∗∗
1 , . . . , α

∗∗
m) is optimal and the coefficient in the objec-

tive function of (Phase II-LPP) are positive, we have α∗∗i = µi(x∗∗), (i =
0, 1, . . . ,m).Now choosing ᾱi = µi(x̄), (i = 0, 1 . . . ,m), we have (x̄, ᾱ0, ᾱ1,
. . . , ᾱm) feasible for (Phase II-LPP) and

m∑
i=0

α∗∗i =
m∑

i=0

µi(x∗∗) <
m∑

i=0

µi(x̄) =
m∑

i=0, i�k

ᾱi + αk.

But this implies that (x∗∗, α∗∗0 , α
∗∗
1 , . . . , α

∗∗
m) is not an optimal solution of

(Phase II-LPP), which is a contradiction.

Remark 4.7.1. The linear programming problem (Phase II-LPP) can
be simplified to a somewhat simpler form as follows:

max
m∑

i=0

µi(x)

subject to,

µi(x) ≥ µi(x∗), (i = 0, 1, . . . ,m),
µi(x) ≤ 1, (i = 0, 1, . . . ,m),

x ∈ X,

where X denotes the feasible region of the crisp constraints (if-any) in
the original fuzzy problem (P1-FLP1).
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We now illustrate the two phase approach for solving the fuzzy linear
programming (P1-FLP1) with the help of the following example.

Example 4.7.2. (Guu and Wu [21]).) Consider the fuzzy linear pro-
gramming problem of the type (P1-FLP1):

max 4x1 + 5x2 + 9x3 + 11x4
subject to,

x1 + x2 + x3 + x4 � 15,
7x1 + 5x2 + 3x3 + 2x4 � 80,

3x1 + 4.4x2 + 10x3 + 15x4 � 100,
x1, x2, x3, x4 ≥ 0,

with p1 = 5, p2 = 40, and p3 = 30. Let the objective function be denoted
by Z(x) and the three constraint functions be denoted by g1(x), g2(x),
and g3(x) respectively. Then for each of the three fuzzy constraints we
may take the membership functions as

µ1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , g1(x) ≤ 15,
20 − g1(x)

5
, 15 ≤ g1(x) ≤ 20,

0 , g1(x) > 20,

µ2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , g2(x) < 80,
120 − g2(x)

40
, 80 ≤ g2(x) ≤ 120,

0 , g2(x) > 120,

and,

µ3(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , g3(x) < 100,
130 − g3(x)

30
, 100 ≤ g3(x) ≤ 130,

0 , g1(x) > 130.

Now, following Werners’ approach, we solve the problems LP(b) and
LP(b + p) to get Z0 = 99.29 and Z1 = 130. Therefore the membership
function of the objective function can be taken as

µ0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , Z(x) > 130,
Z(x) − 99.29
130 − 99.29

, 99.29 ≤ Z(x) ≤ 130,

0 , Z(x) < 99.29.

Then using the max-min operator and following Zimmermann’s ap-
proach we solve the problem (Phase I-LPP)
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(Phase I-LPP) max α
subject to,

4x1 + 5x2 + 9x3 + 11x4 ≥ 130 − 30.71(1 − α),
x1 + x2 + x3 + x4 ≤ 15 + 5(1 − α),

7x1 + 5x2 + 3x3 + 2x4 ≤ 80 + 40(1 − α),
3x1 + 4.4x2 + 10x3 + 15x4 ≤ 100 + 30(1 − α),

α ≤ 1,
x1, x2, x3, x4, α ≥ 0.

An optimal solution of the above Phase I problem is x∗1 = 8.57, x∗2 =
0, x∗3 = 8.93, x∗4 = 0, α∗ = 0.5. Further Z(x∗) = 114.65, g1(x∗) =
17.5, g2(x∗) = 86.78, g3(x∗) = 115.01. This gives µ0(x∗) = µ1(x∗) =
µ3(x∗) = 0.5 and µ2(x∗) = 0.83.
We now construct the (Phase II-LPP) given by
(Phase II-LPP) max α0 + α1 + α2 + α3

subject to,

4x1 + 5x2 + 9x3 + 11x4 ≥ 130 − 30.71(1 − α0),
x1 + x2 + x3 + x4 ≤ 15 + 5(1 − α1),

7x1 + 5x2 + 3x3 + 2x4 ≤ 80 + 40(1 − α2),
3x1 + 4.4x2 + 10x3 + 15x4 ≤ 100 + 30(1 − α3),

0.5 ≤ α0 ≤ 1,
0.5 ≤ α1 ≤ 1,

0.83 ≤ α0 ≤ 1,
0.5 ≤ α0 ≤ 1,

x1, x2, x3, x4 ≥ 0.

An optimal solution of the above problem is x∗∗1 = 4.05, x∗∗2 = 5.65, x∗∗3 =
7.8, x∗∗4 = 0. Also Z(x∗∗) = Z(x∗) = 114.65 and g1(x∗∗) = 17.5, g2(x∗∗) =
80.00, g3(x∗∗) = 115.01. This gives µ0(x∗∗) = µ1(x∗∗) = µ3(x∗∗) = 0.5 and
µ2(x∗∗) = 1.
Thus by using the two phase approach we get an optimal solution x∗∗
which not only achieves the optimal objective value but also gives a
higher membership value in µ2, as µ2(x∗∗) = 1 and µ2(x∗) = 0.83.

4.8 Linear goal programming under fuzzy environment

The (crisp) multiobjective linear programming problems can be stated
as
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max (cT
1 x, cT

2 x, . . . , cT
r x)

subject to,

Ax ≤ b,
x ≥ 0,

where x ∈ Rn, b ∈ Rm, A ∈ Rm × Rn, C ∈ Rr × Rn with cT
k denoting

the kth row of C, (k = 1, 2, . . . , r). Since there are k objectives to be
“maximized”, we have also to specify the sense of this “maximization”,
e.g. efficiency or proper efficiency etc.

For studying goal programming under fuzzy environment, we pre-
scribe an imprecise aspiration level to each of the p objectives and
term these fuzzy objectives as fuzzy goals. Let gk be the aspiration
level assigned to the kth objective (k = 1, 2, . . . , r). Then a linear goal
programming problem under fuzzy environment, in short called fuzzy
goal programming and denoted by (FGP), can be described as follows:
(FGP) Find x ∈ Rn so as to satisfy,

cT
k x � gk, (k = 1, 2, . . . , r),

subject to,

Ax ≤ b,
x ≥ 0.

Here the symbol ‘�’ is to be understood in the fuzzy sense with respect
to a chosen membership function. The fuzzy constraints of the form ‘�’
and ‘�’ can be treated similarly.

In the literature there are many approaches to solve the problem
(FGP) and we wish to discuss some of these in the sequel.

Zimmermann’s approach

In this approach, we choose the standard Zimmermann’s linear
membership function for each of the r fuzzy goals and use the max-
min operator to derive the crisp equivalent of the given fuzzy goal
programming problem (FGP). Specifically, for k = 1, 2, . . . , r, we choose

µk(cT
k x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , cT

k x ≥ gk,

fk(cT
k x) =

cT
k x − lk
gk − lk

, lk ≤ cT
k x < gk,

0 , cT
k x < lk,
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where lk is the lower tolerance level for the kth fuzzy goal. If we are
using the usual symbol pk for the tolerance level of the kth fuzzy goal
then lk = gk − pk.

Now using the max-min operator, Zimmermann’s model [90] for the
problem (FGP) is obtained as
(ZLP) max λ

subject to,

λ ≤ cT
k x − lk
gk − lk

, (k = 1, 2, . . . , r),

Ax ≤ b,
λ ≤ 1,

x, λ ≥ 0.

Here fk(cT
k x) =

cT
k x − lk
gk − lk

is linear, but in general it can be piecewise

linear that is concave or quasi concave. In the literature there are ex-
tensions of Zimmermann’s model for the case when fk(cT

k x) is concave
or quasi-concave e.g. Narsimhan ([58], [59]) and Hannan ([23], [24]) for
the concave case, and Nakumura [57] and Yang et al. [88], Inuiguchi et
al. [25], Li and Yu [43], Wang and Fu [78], and Lin and Chen [47] for
the quasi concave case.

An immediate extension of Zimmermann’s approach is the two phase
approach of Li [44]. In Section 4.7, we have already learnt a two phase
approach for the case when there is a single objective only. Here we
describe a similar approach for the multiobjective scenario. In this ap-
proach, the first phase utilizes Zimmermann’s approach and solves the
resulting crisp problem (ZLP) as described above. Let (x∗, λ∗) be an
optimal solution of (ZLP). If x∗ is unique, then it is taken as an optimal
solution of the fuzzy goal programming problem (FGP), otherwise, in
Phase II, the following linear programming problem is formulated:

max
r∑

k=1

λk

r
subject to,

λ∗k ≤ λk ≤ fk(cT
k x), (k = 1, 2, . . . , r),

Ax ≤ b,
x ≥ 0.

If (x̄, λ̄) is an optimal solution of the above linear programming
problem then x̄ is an efficient solution of the multiobjective linear pro-
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gramming problem (MOP) where
max

(
µ1(x), µ2(x), . . . , µr(x)

)
subject to,

Ax ≤ b,
x ≥ 0,

where, as before, µk(x) actually stands for µk(cT
k x) for k = 1, 2, . . . , r.

Weighted max-min approach

In the context of fuzzy goal programming, it is important to note
that in actual applications the objectives have different level of impor-
tance and therefore are not equally preferable. In such a situation, the
Zimmermann’s approach ([90], [91]) as described above is not suitable
and a weighted max-min approach seems to be very natural. Keeping
this in mind Lai and Hwang [36] proposed the following problem to
solve the given fuzzy goal programming problem (FGP)

max λ + δ
r∑

k=1

wk fk(cT
k x)

subject to,

λ ≤ fk(cT
k x), (k = 1, 2, . . . , r),

Ax ≤ b,
x ≥ 0.

Here wk is the relative weight of the kth objective and δ is a sufficiently
small positive number. Also eTw = 1, where eT = (1, 1, . . . , 1) ∈ Rr.

Though the above model takes into consideration the relative weights
of the objectives, it does not give importance to objectives with higher
weights as δ is a very small positive number. In fact this model of Lai
and Hwang [36] will give the same solution as that of Zimmermann’s
problem (ZLP). To counter this difficulty, Lin [45] presented another
weighted max-min model which is based on the logic that when the de-
cision maker provides relative weights for fuzzy goals together with ap-
propriate membership functions, the ratio of the achieved levels should
be close to the ratio of the objective weights as best as possible. This
aim can be achieved by solving the following weighted Zimmermann’s
type linear programming problem (WZLP).
(WZLP) max λ

subject to,
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wkλ ≤ fk(cT
k x), (k = 1, 2, . . . , r),

Ax ≤ b,
x, λ ≥ 0.

Here it may be noted that in the above problem there is no condition
that λ ≤ 1. In fact λ can be more than unity because wk < 1. But the
actual achieved level for each objective will never exceed unity, which
can be computed by solving the above problem to get (x∗, λ∗) and
then utilizing the definition of the membership function µk(cT

k x), for
k = 1, 2, . . . , r.

We now try to argue that the above weighted max-min model
achieves the objective of obtaining an optimal solution so that the ratio
of the achieved levels of objectives is close to the ratio of the weights
as best as possible. For this, let sk denote the slack variable for the kth

constraint wkλ ≤ µk(cT
k x), i.e. for k = 1, 2, . . . , r, we have

wkλ + sk ≤ µk(cT
k x).

Also let us recollect that while searching for an optimal solution of
the linear programming problem we tend to use as many recourses as
possible, i.e. we tend to reduce the slack and surplus variables as best as
possible. Since the membership functions µk(cT

k x), (k = 1, 2, . . . , r), are
bounded quasi concave functions, the problem (WZLP) can not have
unbounded solutions. Therefore in (WZLP), as λ is maximized the slack
variables sk (k = 1, 2, . . . , r) are minimized, i.e. the constraint λwk ≤
µk(cT

k x) becomes close to an equality. In other words, the achieved level
of the kth objective µk(cT

k x) becomes close to λwk as best as possible. In
ideal case, all slack variables sk will be zero and so the ratio of achieved
levels will be same as the ratio of the weights.

The following example illustrates the above discussion:

Example 4.8.1. (Lin [45], Hannan [23]).
Find x ∈ R3 to satisfy,

Z1 = 3x1 + x2 + x3 � 7,
Z2 = x1 − x2 + 2x3 � 8,
Z3 = x1 + 2x2 � 5,

subject to,

4x1 + 2x2 + 3x3 ≤ 10,
x1 + 3x2 + 2x3 ≤ 8,

x3 ≤ 5,
x1, x2, x3 ≥ 0.
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Let the membership functions for the three goals be given by the fol-
lowing concave piecewise linear membership functions:

µ1(Z1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 , Z1 ≥ 7,
0.2(Z1 − 6) + 0.8 , 6 ≤ Z1 < 7,
0.3(Z1 − 5) + 0.5 , 5 ≤ Z1 < 6,
0.5(Z1 − 4) , 4 ≤ Z1 < 5,
0 , Z1 < 4,

µ2(Z2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Z2 ≥ 8,
0.15(Z2 − 4) + 0.4 , 4 ≤ Z2 < 8,
0.2(Z2 − 2) , 2 ≤ Z2 < 4,
0 , Z2 < 2,

µ1(Z3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Z3 ≥ 5,
0.2(Z3 − 4) + 0.8 , 4 ≤ Z3 < 5,
0.4(Z3 − 2) , 2 ≤ Z3 < 4,
0 , Z3 < 2,

Also, let the decision maker prescribe the relative weights of the three
objective as w1 = 0.4, w2 = 0.35 and w3 = 0.25.
Now from the given data, and following Yang et al. [88] the weighted
max-min model leads to the following weighted Zimmermann type lin-
ear programming problem (WZLP):

max λ
subject to,

0.4λ ≤ 0.2(Z1 − 6) + 0.8,
0.4λ ≤ 0.3(Z1 − 5) + 0.5,
0.4λ ≤ 0.5(Z1 − 4),

0.35λ ≤ 0.15(Z2 − 4) + 0.4,
0.35λ ≤ 0.2(Z2 − 2),
0.25λ ≤ 0.2(Z3 − 4) + 0.8,
0.25λ ≤ 0.4(Z3 − 2),

4x1 + 2x2 + 3x3 ≤ 10,
x1 + 3x2 + 2x3 ≤ 8,

x3 ≤ 5,
x1, x2, x3 ≥ 0.

where Z1 = 3x1 + x2 + x3, Z2 = x1 − x2 + 2x3, Z3 = x1 + 2x2.
The above linear programming problem has an optimal solution λ∗ =
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0.82, x∗1 = 0.60, x∗2 = 0.95 and x∗3 = 1.89. For this solution Z1 =
4.656, Z2 = 3.435 and Z3 = 2.513. Also the achieved levels of goals are
µ1 = 0.328, µ2 = 0.287 and µ3 = 0.205. It can be verified that

µ1

w1
=

0.328
0.4

= 0.82,

µ2

w2
=

0.287
0.35

= 0.82,

and
µ3

w3
=

0.205
0.25

= 0.82,

where λ∗ = 0.82 is the optimal achieved level of the problem (WZLP).

If this problem is also solved by the Zimmermann’s approach, i.e.
by solving the problem (ZLP), we obtain x∗1 = 0.50, x∗2 = 1.08,
x∗3 = 1.95, λ∗ = 0.789. This gives Z1 = 4.526, Z2 = 3.315, Z3 =
2.658, µ1 = 0.263 = µ2 = µ3. Here it may be noted that in (ZLP)
we do not assign weights to different objectives i.e. take all objectives
equally important. Therefore in (WZLP) if we take w1 = w2 = w3, we
shall get the same solution as given by the Zimmermann’s problem
(ZLP). In fact the problem of Lai and Hwang [36] will also give the
same solution as that of (ZLP) because δ > 0 is small.

Comparing these two solutions, i.e. the solutions of (WZLP) and
(ZLP), we observe that the weighted max-min approach of Lin [45] as
described above, finds an optimal solution that gives the objective func-
tion Z1 a higher level of achievement (0.328) in comparison to the other
two objectives . This is because it has been given more weight than the
other two objectives. Also this solution has the property that the ra-
tio of achieved levels is the same as the ratio of the weights of objectives.

A crisp goal programming approach

Mohamed [54] recently proposed a different approach to solve the fuzzy
goal programming problem (FGP). This approach is based on various
models for solving the crisp linear goal programming problem (e.g. Taha
[72]), and is based on the argument that as the maximum value of any
membership function µk(cT

k x) in the problem (ZLP) is 1, maximizing
any of these is equivalent to making it close to 1 as best as possible.
This can be achieved by minimizing its negative deviational variable
d−k from 1. Thus here only the negative (under) deviation variable d−k
is required to be minimized to achieve the aspired levels of the fuzzy
goals. In this context it may be noted that any other (positive) devia-
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tion from a fuzzy goal indicates the full achievement of the membership
value as the value can not be more than 1.

We know that for k = 1, 2, . . . , r, the Zimmermann’s type member-
ship function µk(cT

k x) of the fuzzy goal Zk = cT
k x � gk is given by

µk(cT
k x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , cT

k x ≥ gk,
cT

k x − lk
gk − lk

, lk ≤ cT
k x < gk,

0 , cT
k x < lk.

Since we wish to achieve the aspired levels of the fuzzy goals, we
have to keep µk(cT

k x), (k = 1, 2, . . . , r), close to 1 as best as possible.
Thus we have to minimize the under deviational variable d−k for each
of the k fuzzy goals. This requirement we express in the form of the
following constraints

Zk(x) − lk
gk − lk

+ d−k − d+k = 1,

d−k .d
+
k = 0,

d−k ≥ 0,
d+k ≥ 0,

and introduce a suitable measure of negative deviations d−k so that d−k
is minimized for all k = 1, 2, . . . , r.

In conventional (crisp) goal programming problem GP, the under
and/or over deviational variables d−k and d+k are included in the achieve-
ment function (objective function) for minimizing them but here, as
explained, only d−k will be included. Since there are many choices of the
objective function for the (crisp) linear goal programming problem we
have similar formulations for the fuzzy goal programming problem as
well. In particular, if we choose the minsum GP as the model, then the
equivalent optimization problem for the given fuzzy goal programming
problem (FGP) is given by

min
r∑

k=1

w−k d−k

subject to,

Zk(x) − lk
gk − lk

+ d−k − d+k = 1, (k = 1, 2, . . . , r),

Ax ≤ b,
d−k .d

+
k = 0, (k = 1, 2, . . . , r),

x, d−k , d
+
k ≥ 0.
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But, for (k = 1, 2, . . . , r), Zk(x) = cT
k x and hence we have

cT
k x − lk
gk − lk

+ d−k − d+k = 1,

i.e. cT
k x + (gk − lk)d−k − (gk − lk)d+k = gk.

Therefore the above minsum GP becomes

min
r∑

k=1

w−k d−k

subject to,

cT
k x + pkd−k − pkd+k = gk, (k = 1, 2, . . . , r),

Ax ≤ b,
d−k .d

+
k = 0, (k = 1, 2, . . . , r),

x, d−k , d
+
k ≥ 0.

Here pk = gk − lk is the admissible violation for the kth goal.
To solve the above optimization problem we have to choose the

weights w−k for the variable d−k . These weights can either be cho-
sen subjectively or as suggested by Mohamed [54] can be chosen as

w−k =
1

gk − lk
=

1
pk

. This crisp formulation of the given fuzzy goal pro-

gramming (FGP) is not unique as we can choose other objective func-
tions corresponding to linear goal programming, e.g. the max-min, lex-
icographical form etc. In the min-max form the objective is to minimize
the maximum of d−k , (k = 1, 2, . . . , r). Therefore if we take u = max

k
(d−k ),

then the optimization problem to be solved is
min u
subject to,

cT
k x + pkd−k − pkd+k = gk, (k = 1, 2, . . . , r),

u ≥ d−k , (k = 1, 2, . . . , r),
Ax ≤ b,

d−k .d
+
k ≥ 0, (k = 1, 2, . . . , r),

x, d−k , d
+
k ≥ 0.

Example 4.8.2. Consider the following fuzzy goal programming prob-
lem (FGP):

Find (x1, x2) ∈ R2 to satisfy

Z1 = −x1 + 2x2 � 14,
Z2 = 2x1 + 3x2 � 21,
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subject to,

−x1 + 3x2 ≤ 21,
x1 + 3x2 ≤ 27,

4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,

x1, x2 ≥ 0.
Here g1 = 14 and g2 = 21. Let p1 = 8 and p2 = 10. Then to solve
the above fuzzy goal programming problem, using the Zimmermannn’s
approach, we have to solve the problem (ZLP) given below.
(ZLP) max λ

subject to,

λ ≤ 1 − (14 + x1 − 2x2)
8

,

λ ≤ 1 − (21 − 2x1 − x2)
10

,

−x1 + 3x2 ≤ 21,
x1 + 3x2 ≤ 27,

4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,
x1, x2, λ ≥ 0.

It can be verified that an optimal solution of (ZLP) is x∗1 = 4.53, x∗2 =
7.49 and λ∗ = 0.56.

The given fuzzy linear programming problem can also be solved by
using the Mohamed’s approach. In particular we can take the min-max
form of the (crisp) linear goal programming problem as,

min u
subject to,

−x1 + 2x2 + 8d−1 − 8d+1 = 14,
2x1 + x2 + 10d−2 − 10d+2 = 21,

u ≥ d−1 ,
u ≥ d−2 ,−x1 + 3x2 ≤ 21,

x1 + 3x2 ≤ 27,
4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,

d−1 .d
+
1 = 0,

d−2 .d
+
2 = 0,

x1, x2, d−1 , d
+
1 , d
−
2 , d
+
2 ≥ 0.
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The above problem can be solved to get x∗1 = 4.53, x∗2 = 7.49 and
u∗ = 0.44. It is not surprising to note that this solution is the same as
the one obtained by solving (ZLP) where u∗ = (1 − λ∗). This is because
of an equivalence theorem established by Mohamed [54].
In case we are solving the minsum form of the (crisp) linear program-
ming problem, then the corresponding problem for the given fuzzy goal
programming problem is

min
1
8

d−1 +
1

10
d−2

subject to,

−x1 + 2x2 + 8d−1 − 8d+1 = 14,
2x1 + x2 + 10d−2 − 10d+2 = 21,

−x1 + 3x2 ≤ 21,
x1 + 3x2 ≤ 27,

4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,

d−1 .d
+
1 = 0,

d−2 .d
+
2 = 0,

x1, x2, d−1 , d
+
1 , d
−
2 , d
+
2 ≥ 0.

Remark 4.8.3. Pal et al. [63] have recently extended the (crisp) lin-
ear goal programming approach of Mohamed [54] for solving fuzzy goal
programming problems with linear fractional objectives. Although for
the linear fractional case the constraint

Zk(x) − lk
gk − lk

+ d−k − d+k = 1,

is inherently nonlinear, as Zk(x) =
cT

k x + αk

hT
k x + βk

with hT
k x + βk > 0, a suit-

able linearization procedure can be carried out to express the above
constraint as

HT
k x +D−k −D+k = Gk.

Here D−k = (hT
k x + βk)d−k , D+k = (hT

k x + βk)d+k , Gk = L
′
kβk − Lkαk, Hk =

Lkck − L
′
khk, Lk =

1
gk − lk

and L
′
k = 1+ Lklk. Also as d−k ≤ 1, there will be

an additional constraint of the form
D−k

hT
k x + βk

≤ 1 i.e. −hT
k x +D−k ≤ βk.

There is of course no such condition required for d+k .
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4.9 Conclusions

In this chapter we have discussed various models for studying fuzzy
linear programming problems. Here no attempt has been made to be
exhaustive but certainly some of the most basic models available in the
literature have been included. Some other important models of fuzzy de-
cision making, e.g. modality constrained programming and fuzzy (val-
ued) relations approach to fuzzy linear programming are not discussed
here as these are included in Chapter10. As far as multiobjective linear
programming in fuzzy environment is concerned, we have discussed only
the goal programming approach and have not even attempted to dis-
cuss other approaches. An appropriate references for this chapter is the
excellent book by Lai and Hwang [37] which has many other references
for single as well as multiobjective fuzzy linear programming problems.
Further a detailed study of fuzzy multiobjective decision making is
available in Lai and Hwang [38].



5

Duality in linear and quadratic programming
under fuzzy environment

5.1 Introduction

In Chapter 1, we have already seen the important role played by the
linear programming duality in the context of (crisp) two person zero-
sum matrix game theory. Realizing this importance, it is imperative
to look for “similar” duality results for linear programming in fuzzy
environment so as to use them for solving fuzzy matrix games.

This chapter discusses some of the most basic models available in
the literature for studying duality in fuzzy linear programming while
some recent ones will be presented in Chapter 7 and Chapter 10 where
they are probably more relevant. In this context, it may be noted that
though there is a vast literature on modeling and solution procedures
in fuzzy linear programming the studies on duality have been rather
scarce until very recently.

This chapter consists of four main sections, namely, duality in lin-
ear programming under fuzzy environment: Rödder and Zimmermann’s
model, a modified linear programming duality under fuzzy environment,
Verdegay’s dual for fuzzy linear programming, and duality for quadratic
programming under fuzzy environment.

5.2 Duality in LP under fuzzy environment:
Rödder-Zimmermann’s model

It is known that the classical linear programming duality can be un-
derstood in terms of the maxmin and the minmax problems of the
associated Lagrangian function L(x,u). Specifically, for the linear pro-
gramming problem
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(LP) max cTx
subject to,

Ax ≤ b,
x ≥ 0,

we associate the Lagrangian L : Rn
+ × Rm

+ → R given by L(x, u) =
cTx+uT(b−Ax) and obtain (LP) and its dual (LD) as “max

x≥0
min
u≥0

L(x,u)”

and “min
u≥0

max
x≥0

L(x, u)” respectively. This later problem can further be

simplified to get
(LD) min bTu

subject to,

ATu ≥ c,
u ≥ 0.

Here x ∈ Rn, c ∈ Rn, b ∈ Rm, u ∈ Rm and A ∈ Rm ×Rn.
Rödder and Zimmermann [67] generalized these classical maxmin

and minmax problems, which are associated with L(x,u), to take into
consideration the fuzzy environment. In the crisp case for every deci-
sion x of the primal (say, Industry and denote it by (I)) there exists
a decision u of the dual (say, Market and denote it by (M)) and vice
versa. When we fuzzify the case, there is a fuzzy set on the solution
space X, that is to each x in X there corresponds a grade of member-
ship which represents the satisfaction of the decision maker (I) with the
decision x. Also corresponding to each x in X there exists a fuzzy set
on U, that is to each x in X there exists a grade of membership for
each decision u which represents the satisfaction of the decision maker
(I) with the decision u. Thus we have a fuzzy set

{
(x, µI(x)) : x ∈ X

}
on

X and a family of fuzzy sets
{
(u, µI

x(u)) : u ∈ U
}

on U with the param-
eter x ∈ X. Specifically in our case, µI(x) is the membership function
of (I) on {x : x ≥ 0} and µI

x(u) is the membership function of (I) on
{u : u ≥ 0} for any given x ≥ 0. Now we define another fuzzy set on U,
called mixture of µI and µI

x, having the membership function as
vI(u) = max

x≥0
min (µI(x), µI

x(u)).

This “mixture”, having membership function vI(u), demands (I) to de-
termine a family of decisions x(u) such that for each decision u ≥ 0 of
the competitor (M), the optimum of µI(x) and µI

x(u) is reached.
Similarly, if µM(u) is the membership function of (M) on {u : u ≥ 0}

and µM
u (x) is the membership function of M on {x : x ≥ 0} for any given
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u ≥ 0, then for (M), we have to consider the mixture of fuzzy sets µM

and µM
u and get

ξM(x) = max
u≥0

min (µM(x), µM
u (x)).

Rödder and Zimmermann [67] suggested the following choices for
the functions µI, µI

x, µ
M, µM

u

µI(x) =
{

1 , cTx0 ≤ cTx,
1 − (cTx0 − cTx) , otherwise,

µI
x(u) =

{
0 , uT(b − Ax) ≤ 0,
uT(b − Ax) , otherwise,

µM(u) =
{

1 , bTu ≤ bTu0,
1 − (bTu − bTu0) , otherwise,

and

µM
u (x) =

{
0 , xT(c − ATu) ≤ 0,
−xT(c − ATu) , otherwise.

Here cTx0 is the aspiration level of (I) and bTu0 is the aspiration
level of (M). Substituting the membership functions µI, µI

x, µ
M, µM

u
as above, we obtain the following linear programming problems for (I)
and (M) respectively
(FP)u max λ1

subject to,

λ1 ≤
(
1 − (cTx0 − cTx)

)
,

λ1 ≤ uT(b − Ax), (for any given u ≥ 0),
x ≥ 0,

(FD)x min (−λ2)
subject to,

λ2 ≥
(
(bTu − bTu0) − 1

)
,

λ2 ≥ xT(c − ATu), (for any given x ≥ 0),
u ≥ 0.
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Here λ1 = min (µI(x), µI
x(u)) and (−λ2) = η = min (µM(u), µM

u (x)).
Also depending upon u ≥ 0 (respectively x ≥ 0), we have a problem
of type (FP) (respectively (FD)), and therefore to emphasize this point
and make it more explicit we have denoted these problems as (FP)u and
(FD)x respectively.

The above pair (FP)u-(FD)x is called the fuzzy primal-dual pair of
linear programming problems.

Lemma 5.2.1. If there exist x̂ feasible for (FP)u such that cTx̂ > 0 and
−uTAx̂ > 0, then (FP)u has an unbounded solution.

Proof Since x̂ is feasible for (FP)u we have λ1 ≤ (1 − cTx0) + cTx̂ and
λ1 ≤ uT(b − Ax̂): As cTx̂ > 0, we can choose ε > 0 large enough and
have λ1 ≤ (1− cTx0)+ cT(εx̂). Similarly, we also have λ1 ≤ uTb−uTAx̂ ≤
uTb−uTA(εx̂) as −uTAx̂ > 0. Therefore for ε > 0, large enough, (εx̂, λ1)
is feasible for (FP)u. Since ε > 0 can be made arbitrarily large, λ1 can be
allowed to take any arbitrarily large value and so (FP)u has unbounded
solution.

Definition 5.2.1 (A set of reasonable decisions). The set U0 =
{ u ≥ 0 : � x ≥ 0 such that cTx > 0 and − uTAx > 0 } is called the set
of reasonable decisions u for (M).

In view of Lemma 5.2.1, a decision u for (M) should always be in U0.
Otherwise (I) can increase the value of its membership function arbi-
trary; and therefore the word “reasonable” is very appropriate. Simi-
larly the set X0 = { x ≥ 0 : � u ≥ 0 such that bTu < 0 and −uTAx < 0 }
is called the set of reasonable decisions x for (I), and x must always be
in X0 otherwise (M) can decrease the value of its membership function
arbitrary.

We now consider two more sets U1 and X1 given by

U1 = { u ≥ 0 : ∀ x ≥ 0, cTx ≥ 0 ⇒ uTAx ≥ 0 },
and

X1 = { x ≥ 0 : ∀ u ≥ 0, bTu ≤ 0 ⇒ uTAx ≤ 0 }.
Lemma 5.2.2. For the sets U1 and X1 we have U1 ⊂ U0 and X1 ⊂ X0,
the containment being proper.

Proof. The proof follows by noting that the sets U0 and X0 can also be
expressed as

U0 = { u ≥ 0 : ∀ x ≥ 0, cTx > 0 ⇒ uTAx ≥ 0 }
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and,
X0 = { x ≥ 0 : ∀ u ≥ 0, bTu < 0 ⇒ uTAx ≤ 0 }.

Now it can be argued that by restricting the decisions u to U1 and de-
cisions x to X1, we do not loose any economically relevant information.
This is because the only additional condition U1 has with respect to
U0 is that, for x ≥ 0, cTx = 0 ⇒ uTAx ≥ 0. But such a decision u
of (M) does not make (FP)u unbounded and so it does not allow (I) to
increase its membership value arbitrarily. Similar arguments hold for
the choice of X1 as well.

Next, we aim to characterize the sets U1 and X1. For thus we use
the well known Farkas lemma (Mangasarian [53]).

Lemma 5.2.3. (Farkas lemma). Let A be a given (m×n) real matrix
and b be a given n vector. The inequality bT y ≥ 0 holds for all vectors
y ∈ Rn satisfying Ay ≥ 0 if and only if there exists an m vector ρ, ρ ≥ 0
such that ATρ = b.

Lemma 5.2.4. The sets U1 and X1 have the following representation:

U1 = { u ≥ 0 : ∃ α ∈ R, α ≥ 0 such that αc ≤ ATu }
and,

X1 = { x ≥ 0 : ∃ β ∈ R, β ≥ 0 such that Ax ≤ βb }.
Proof. Let u ∈ U1. Then x ≥ 0, cTx ≥ 0 implies (uTA)x ≥ 0. Hence by
Farkas lemma, there exists an (n + 1) vector ρ, ρ ≥ 0 such that(

1
cT

)T

ρ = (uTA)T.

Let ρ =
(
βn
α

)
. Then we have

(
1 c

) (
βn
α

)
= ATu,

i.e.
βn + cα = ATu.

Since ρ ≥ 0, we have βn ≥ 0 and thus ATu ≥ cα. The proof for X1 is
similar.
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In view of above discussion, it makes sense to call following two
problems as fuzzy primal-dual pair of linear programming problems
and attempt to establish possible duality relations for them.
(FP1)u max λ1

subject to,

λ1 ≤ 1 − (cTx0 − cTx),
λ1 ≤ uT(b − Ax), (for any given u ≥ 0),
αc ≤ ATu,
Ax ≤ βb,

x, α, β ≥ 0,

and
(FD1)x min (−λ2)

subject to,

λ2 ≥ (bTu − bTu0) − 1,
λ2 ≥ xT(c − ATu), (for any given x ≥ 0),

ATu ≥ αc,
Ax ≤ βb,

u, α, β ≥ 0.

For this, we note from the definition of sets U1 and X1 that for every
(x, u) ∈ X1×U1, there exist α, β ∈ R+ such that αc ≤ ATu and Ax ≤ βb.
This gives α(cTx) ≤ uTAx ≤ β(bTu). Hence for the optimal solutions of
(FP1)u and (FD1)x we have

α
(
cTxopt(u)

)
≤ β(u)(bTu),

and,
α(x)(cTx) ≤ β

(
bTuopt(x)

)
.

Here we should note that as per the definition of sets X1 and U1, α
depends on x while β depend on u.

Now for the economically meaningful cases, α and β are non-zero
and therefore the above inequalities give

α
β(u)

(
cTxopt(u)

)
≤ (bTu),

and,

cT(x) ≤ β

α(x)

(
bTuopt(x)

)
,

which are the generalizations of the usual (crisp) weak duality theorem.

Remark 5.2.5. In the classical duality theory of linear programming,
the optimal values of both, the primal and the dual, linear program-
ming problems are same. For duality in fuzzy linear programming, since
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violations are permitted and the criterion being the fulfilling of certain
aspiration levels, it should not be expected that the optimal values of
the fuzzy primal-dual pair should be equal.

5.3 A modified linear programming duality under fuzzy
environment

In the above construction of Rödder and Zimmermann, the membership
functions µI(x), µM(u) take values in (−∞, 1], while µI

x(u) and µM
u (x)

take values in [0,∞). This is not in conformity with the usual practice
that the membership function should take values in [0,1]. Further, if
λ1 = 1 and −λ2 = 1 in (FP)u and (FD)x, respectively, then uT(b−Ax) ≥ 1
and xT(c − ATu) ≤ −1, whereas in the crisp scenario one should have
uT(b − Ax) ≥ 0 and xT(c − ATu) ≤ 0. This suggests that the fuzzy dual
formulation of Section 5.2 should be modified suitably so that the crisp
results follow as a special case. We present this modified construction
in this section which is based on Bector and Chandra [4].

We already know that the crisp pair of primal-dual linear program-
ming problems is
(LP) max cTx

subject to,

Ax ≤ b,
x ≥ 0,

(LD) min bTw
subject to,

ATw ≥ c,
w ≥ 0.

To construct the fuzzy pair of such problems it seems natural to
consider the fuzzy version problems (LP) and (LD) in the sense of Zim-
mermann [90]. Let us call them as (L̃P) and (L̃D). Then
(L̃P) Find x ∈ Rn such that,

cTx � Z0,
Ax � b,

x ≥ 0,

and,
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(L̃D) Find w ∈ Rm such that,

bTw �W0,
ATw � c,

w ≥ 0.

Here “�” and � are fuzzy version of symbols “≥” and “≤” respectively
and have interpretation of “essentially greater than” and “essentially
less than” in the sense of Zimmermann [90]. Also Z0 and W0 are the
aspiration levels of the two objectives cTx and bTw.

Now let p0, pi (i = 1, 2, . . . ,m) be subjectively chosen constants of
admissible violations associated with the objective function and con-
straints of (LP). Then we can choose Zimmermann’s [90] type linear
membership function µi(x), (i = 0, 1, 2, . . . ,m) as follows

µo(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , cTx ≥ Z0,

1 − Z0 − cTx
p0

, Z0 − p0 ≤ cTx < Z0,

0 , cTx < Z0 − p0,

and,

µi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aix ≤ bi,

1 − Aix − bi

pi
, bi < Aix ≤ bi + pi,

0 , Aix > bi + pi.

Hence using these membership functions µi and following Zimmer-
mann [90], the crisp equivalent of the fuzzy linear programming prob-
lem (L̃P) is
(CP) max λ

subject to,

(λ − 1)p0 ≤ cTx − Z0,
(λ − 1)pi ≤ bi − Aix, (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,

where Ai is the ith row of matrix A and bi is the ith component of b
(i = 1, 2, . . . ,m).

Similarly, let qj ( j = 0, 1, 2, . . . ,n) be subjectively chosen constants of
the admissible violations of the objective and the constraint functions
of (LD). Then the crisp equivalent of the problem (L̃D) is
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(CD) min −η
subject to,

(η − 1)q0 ≤W0 − bTw,
(η − 1)qj ≤ AT

j w − cj, ( j = 1, 2, . . . ,n),
η ≤ 1,

x, η ≥ 0,

where AT
j denotes the jth row of the matrix AT and cj is the jth compo-

nent of c ( j = 1, 2, . . . ,n). Since all pi and qj are positive, the problems
(CP) and (CD) can be written as
(EP) max λ

subject to,

λ ≤ 1 +
(cTx − Z0)

p0
,

λ ≤ 1 +
(bi − Aix)

pi
, (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,

and,
(ED) min −η

subject to,

η ≤ 1 +
(W0 − bTw)

q0
,

η ≤ 1 +
(AT

j w − cj)

qj
, ( j = 1, 2, . . . ,n),

η ≤ 1,
w, η ≥ 0.

The pair (CP)-(CD) (or equivalently (EP)-(ED))is termed as the mod-
ified fuzzy pair of primal-dual linear programming problems. We shall
now prove certain modified duality theorems for the pair (CP)-(CD) (or
equivalently (EP)-(ED)) which take into consideration the fact that the
problems (L̃P) and (L̃D) are fuzzified version of problems (LP) and (LD).

Theorem 5.3.1 (Modified weak duality theorem ). Let (x, λ) be
feasible for (CP) and (w, η) be feasible for (CD). Then,

(λ − 1)pTw + (η − 1)qTx ≤ (bTw − cTx),

where pT = (p1, p2, . . . , pm) and qT = (q1, q2, . . . , qn).
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Proof. Since (x, λ) is feasible for (CP) and (w, η) is feasible for (CD),
we have

(λ − 1)p ≤ b − Ax, x ≥ 0,
and,

(η − 1)q ≤ ATw − c, w ≥ 0,
which imply

(λ − 1)pTw + xTATw ≤ bTw,
and,

(η − 1)qTx − wTAx ≤ −cTx.
But wTAx = xTATw and therefore the above inequalities yield

(λ − 1)pTw + (η − 1)qTx ≤ (bTw − cTx).

Remark 5.3.1. When λ = 1 and η = 1 (i.e. when the original problems
are crisp) the inequality in Theorem 5.3.1 reduces to cTx ≤ bTw, which
is the standard weak duality theorem in the crisp linear programming
duality theory. Also for 0 ≤ λ < 1 and 0 ≤ η < 1, the situation remains
fuzzy which, for given tolerance levels p and q, is quantified in the
expression (λ − 1)pTw + (η − 1)qTx.

Remark 5.3.2. In addition to the above inequality of the modified
weak duality theorem, using the constraints of (CP) and (CD), we can
also show that (λ − 1)p0 + (η − 1)q0 ≤ (cTx − bTw) + (W0 − Z0). This
inequality relates the relative difference of aspiration levels Z0 of cTx,
and W0 of bTw, respectively, in terms of their tolerance levels p0 and
q0.

Corollary 5.3.1 Let (x̄, λ̄) be feasible for (CP) and (w̄, η̄) be feasible
for (CD) such that

(i) (λ̄ − 1)pTw̄ + (η̄ − 1)qTx̄ = (bTw̄ − cTx̄),
(ii) (λ̄ − 1)p0 + (η̄ − 1)q0 = (cTx̄ − bTw̄) + (W0 − Z0),
(iii) the aspiration levels Z0 and W0 satisfy Z0 −W0 ≤ 0.

Then (x̄, λ̄) is optimal to (CP) and (w̄, η̄) be optimal to (CD).

Proof. Let (x, λ) be feasible for (CP) and (w, η) be feasible for (CD).
Then by Theorem 5.3.1

(λ − 1)pTw + (η − 1)qTx − (bTw − cTx) ≤ 0.
From (i) we are given that

(λ̄ − 1)pTw̄ + (η̄ − 1)qTx̄ = (bTw̄ − cTx̄).
These relations imply that, for any feasible solution (x, λ) of (CP) and
for any feasible solution (w, η) of (CD), we have
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(λ−1)pTw+(η−1)qTx−(bTw−cTx) ≤ (λ̄−1)pTw̄+(η̄−1)qTx̄−(bTw̄−cTx̄).
This implies, that (x̄, λ̄, w̄, η̄) is optimal to the following problem
whose maximum value is zero.
(MP) max [(λ − 1)pTw + (η − 1)qTx − (bTw − cTx)]

subject to,

(λ − 1)p0 ≤ cTx − Z0,
(η − 1)q0 ≤W0 − bTw,
(λ − 1)pi ≤ bi − Aix, (i = 1, 2, . . . ,m),
(η − 1)qj ≤ AT

j w − cj, ( j = 1, 2, . . . ,n),
λ, η ≤ 1,
x,w ≥ 0,
λ, η ≥ 0.

Now, from the given condition (i),
(λ̄ − 1)pTw̄ + (η̄ − 1)qTx̄ − (bTw̄ − cTx̄) = 0.

Also from the given condition (ii), we have
(λ̄ − 1)p0 + (η̄ − 1)q0 − (W0 − Z0) − (cTx̄ − bTw̄) = 0.

Equating the above two expressions, we get
(λ̄ − 1)pTw̄ + (η̄ − 1)qTx̄ + (λ̄ − 1)po + (η̄ − 1)qo + (Zo −Wo) = 0.

But each term in the above sum is non-positive (because λ̄, η̄ ≤ 1) and
therefore, each of these should separately be equal to zero, i.e.

(λ̄ − 1)pTw̄ = 0,
(η̄ − 1)qTx̄ = 0,
(λ̄ − 1)p0 = 0,
(η̄ − 1)q0 = 0,

(Z0 −W0) = 0.
Since,

(λ − 1)p0 ≤ 0 and (η − 1)q0 ≤ 0,
these imply,

(λ − 1)p0 ≤ (λ̄ − 1)p0,

(η − 1)q0 ≤ (η̄ − 1)q0.

But, p0 > 0 and q0 > 0, so cancelling p0 and q0 we see λ ≤ λ̄ and
−η ≥ −η̄.
Remark 5.3.3. Since (CP) and (CD) are not duals in the conven-
tional sense but are only the crisp equivalents of fuzzy pairs (L̃P) and
(L̃D), there may not be any direct or converse duality theorem be-
tween them. Thus in the fuzzy scenario, we should not expect any
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strong duality theorem or equality of two objectives of (EP) and (ED)
for respective optimal solutions (x̄, λ̄) and (w̄, η̄). However, by fol-
lowing the usual arguments of linear programming duality, one can
prove that if (CP)(respectively (CD)) has an optimal solution then
(CD)(respectively (CP)) will certainly have an feasible solution. Fur-
thermore, if the feasible region of (CP)(respectively (CD)) is bounded,
then (CD)(respectively (CP)) will have an optimal solution, but the
value of the two objective functions will not be equal in general.

Now, the constraints of (EP) can be written as
λpi ≤ pi + (bi − Aix), (i = 1, 2 . . . ,m).

Therefore for any w ∈ Rm
+ , w � 0 from the above inequalities we

have λpiwi ≤ piwi + (bi − Aix)wi, (i = 1, 2 . . . ,m). Now summing over i,

we have λ
m∑

i=1

piwi ≤
m∑

i=1

piwi +

m∑
i=1

wi(bi − Aix), which for w ∈ Rm
+ , w � 0

yields λ ≤ 1 +
wT(b − Ax)

wTp
.

Therefore, the problem (EP) becomes
(EP1) max λ

subject to,

λ ≤ 1 +
(cTx − Z0)

p0
,

λ ≤ 1 +
wT(b − Ax)

wTp
, (for any given w ≥ 0, w � 0),

λ ≤ 1,
x ≥ 0,
λ ≥ 0.

Similarly, the problem (ED) can be written as
(ED1) min (-η)

subject to,

η ≤ 1 +
(W0 − bTw)

q0
,

η ≤ 1 +
xT(ATw − c)

qTx
(for any given x ≥ 0, x � 0),

η ≤ 1,
x ≥ 0,
η ≥ 0.
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It is interesting to see that problems (EP1) and (ED1) are very sim-
ilar to problems (FP) and (FD) of Section 5.2 and are obtained if the
membership functions µI(x), µI

x(w), µM(x), µM
w (x) are modified suitably.

Example 5.3.4. We now present a simple numerical example.
(LP) max 2x

subject to,

x ≤ 1,
x ≥ 0.

and,
(LD) min w

subject to,

w ≥ 2,
w ≥ 0.

Now taking p0 = 2, p1 = 2 and Z0 = 1 for (LP), the corresponding
problem (CP) becomes
(CP) max λ

subject to,

2λ − 2x ≤ 1,
2λ + x ≤ 3,

λ ≤ 1,
x ≥ 0,
λ ≥ 0.

The optimal solution of (CP) is at x∗ = 1
2
, λ∗ = 1, and the optimal

value of the (CP) is λ∗ = 1.
Now taking q0 = 1, q1 = 3 and W0 = 1 for (LD), the corresponding
problem (CD) becomes
(CD) min (−η)

subject to,

η + w ≤ 2,
3η − w ≤ 1,

η ≤ 1,
η ≥ 0,
w ≥ 0.
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The optimal solution of (CD) is at w∗ = 5
4
, η∗ = 3

4
, and the optimal

value of the (CD) is −η∗ = −3
4 .

Also, the optimal value of (MP) is non-positive (≤ 0) for x∗ = 1
2
, λ∗ =

1, w∗ = 5
4
, η∗ = 3

4
, and it will remain so far all feasible solutions of

(CP) and (CD).

5.4 Verdegay’s dual for fuzzy linear programming

Let us recall from Chapter 4 the approach of Verdegay [74] to solve
fuzzy linear programming problems. Specifically it has been shown
there that a linear programming problem with fuzzy constrains could
be solved by converting it into a linear programming with fuzzy ob-
jective function and vice-versa. This intuitively suggests that there is
some duality between these two classes of fuzzy linear programming
problems and in this section we attempt to bring out this fact more
explicitly. For this, we shall continue with the notations of Section
4.4 and denote linear programming problems with fuzzy constraints
by (P1 − FLP) and linear programming problems with fuzzy objective
function by (P2 − FLP).

Theorem 5.4.1 For a fuzzy linear programming problem of the type
(P1-FLP) there always exists another one of the type (P2-FLP) having
the same fuzzy solution.

Proof. Consider a fuzzy linear programming of the type (P1-FLP) as
follows
(P1-FLP1) max cTx

subject to,

Ax � b,
x ≥ 0,

where c ∈ Rn, b ∈ Rm, A ∈ Rm × Rn and x ∈ Rn. Also the fuzziness
of the constraints is understood in the sense of following membership
functions µi (i = 1, 2, . . . ,m), where

µi(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , v ≤ bi,

1 +
bi − v

pi
, bi < v ≤ bi + pi,

0 , v > bi + pi,
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pi (i = 1, 2, . . . ,m) being the violation which the decision maker allows in
the fulfillment of the ith constraint. Then as discussed in Chapter 4, by
following Zimmermann’s approach, the given fuzzy linear programming
problem (P1-FLP1) can be solved by determining an optimal solution
of linear parametric problem
(LP)α max cTx

subject to,

Ax ≤ b + (1 − α)p,
x ≥ 0,
α ∈ [0, 1],

where p = (p1, p2, . . . , pm)T is the vector of tolerances.
But (LP)α is a standard linear parametric problem whose dual is

(LD)α min
(
b + (1 − α)p

)T
u

subject to,

ATu ≥ c,
u ≥ 0,
α ∈ [0, 1].

Let us next, denote the set {u ∈ Rn : ATu ≥ c, u ≥ 0} by S. Then
(LD)α can equivalently be rewritten as
(ELD)α min aTu

subject to,

a = b + (1 − α)p,
u ∈ S,
α ∈ [0, 1].

If we now agree to take β = (1 − α) and treat a as a variable (de-
pending parametrically on β) then (ELD)α becomes
(ELD)β min aTu

subject to,

a ≤ b + βp,
u ∈ S,
β ∈ [0, 1].

Here it may be noted that in (ELD)β, the first constraint can be taken
as an inequality rather than equality because any optimal solution of
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(ELD)β is also an optimal solution of (ELD)α. But for i = 1, 2, . . . ,m, ai ≤
bi+βpi means (bi+pi−ai) ≥ (1−β)pi i.e. 1+

(bi − ai)
pi

≥ (1−β). Therefore

from the definition of µi, we can express (ELD)β equivalently as
(ELD)β min aTu

subject to,

µi(ai) ≥ 1 − β, (i = 1, 2, . . . ,m),
u ∈ S,
β ∈ [0, 1],

which is the (crisp) linear parametric problem for the fuzzy linear pro-
gramming problem of the type (P2-FLP), say (P2-FLD1), where,
(P2-FLD1) m̃in aTu

subject to,

ATu ≥ c,
u ≥ 0.

Since, by the crisp linear programming duality problem (LP)α and
(LD)α have the same parametric optimal values, the problems (P1-FLP1)
and (P2-FLD1) have the same fuzzy solution with β = (1 − α).

Remark 5.4.1. The converse of the Theorem 5.4.1 also holds, i.e. for
a fuzzy linear programming problem of the type (P2-FLP), there always
exists another of the type (P1-FLP) having the same fuzzy solutions.
The proof follows on the lines of the proof of Theorem 5.4.1. Therefore
the pair (P1-FLP1) and (P2-FLD1) is called the Verdegay’s primal-dual
pair of fuzzy linear programming problems.

Although the duality result between (P1-FLP1) and (P2-FLD1) has
been proved by taking the membership functions µi (i = 1, 2, . . . ,m)
as linear, it can be shown that the proof does not depend on this
assumption about µi. This we state in the form of the following theorem.

Theorem 5.4.2 For a fuzzy linear programming problem of the type
(P1-FLP) (respectively (P2-FLP)) with continuous and strictly monotone
membership functions for the constraints (respectively objective func-
tion) there always exists another fuzzy linear programming problem of
the type (P2-FLP) (respectively (P1-FLP)), called the dual of the given
problem, such that both problems have the same fuzzy solution.
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Proof. let µi : R → [0, 1], (i = 1, 2, . . . ,m), be continuous and strictly
increasing function of the given fuzzy linear programming problem,

max cTx
subject to,

Ax � b,
x ≥ 0.

We shall find its fuzzy solution from every α-cut of the fuzzy constraints
set µ(Ax, b) ≥ α, α ∈ [0, 1]. But then by the assumptions on µ, we have
µ(Ax, b) ≥ α⇔ Ax ≤ φ(α) = µ−1(α), and then the proof follows exactly
the same way as in Theorem 5.4.1.

Example 5.4.2. (Verdegay [74]). Let us verify Theorem 5.4.1 and
Theorem 5.4.2 for the following problem:

max z = x1 + x2
subject to,

4x1 − x2 � 10,
x1 + 2x2 � 15,

5x1 + 2x2 � 20,
x1, x2 ≥ 0.

Let us take the membership functions as

µ1(4x1 − x2, 10) =
(15 − 4x1 + x2)2

25
, 10 ≤ 4x1 − x2 ≤ 15,

µ2(x1 + 2x2, 15) =
(23 − x1 − 2x2)2

64
, 15 ≤ x1 + 2x2 ≤ 23,

µ3(5x1 + 2x2, 20) =
(30 − 5x1 − 2x2)2

100
, 20 ≤ 5x1 + 2x2 ≤ 30,

where µi (i = 1, 2, 3) takes value 0 and 1 outside these intervals, as usual.
On solving the given fuzzy linear programming problem (which is of
the type (P1-FLP1)) by employing the above membership functions, we
get

x∗1 =
7 − 2

√
α

4
, x∗2 =

85 − 30
√
α

8
, α ∈ [0, 1].

Thus, z∗ = x∗1 + x∗2 =
99 − 34

√
α

8
∈

[65
8
,

99
8

]
, and the fuzzy solution

becomes the fuzzy set
{ (

x, µ(x)
)

: x ∈
[65

8
,

99
8

]
, µ(x) =

(99 − 8x
34

)2 }
.
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If we now write the dual of the given problem to get (P2-FLD1), we
get

min w = (15−5
√
α)u1+(23−8

√
α)u2+(30−10

√
α)u3)

subject to,

4u1 + u2 + 5u3 ≥ 1,
−u1 + 2u2 + 2u3 ≥ 1,

α ∈ [0, 1],
u1, u2, u3 ≥ 0.

On solving the above parametric problem we get u∗1 = 0, u∗2 =
3
8
, u∗3 =

1
8

and w∗ = (15 − 5
√
α)u∗1 + (23 − 8

√
α)u∗2 + (30 − 10

√
α)u∗3 =

(99−34
√
α) ∈

[65
8
,

99
8

]
, α ∈ [0, 1] and the corresponding fuzzy solution

is the fuzzy set
{ (

x, µ(x)
)

: x ∈
[65

8
,

99
8

]
, µ(x) =

(99 − 8x
34

)2 }
which is

the same as obtained earlier for the given primal problem.

5.5 Duality for quadratic programming under fuzzy
environment

In this section, we extend the approach of Section 5.3 to study duality
for quadratic programming under fuzzy environment . In the crisp case,
quadratic programming duality is well established, (e.g. Mangasarian
[53]) for the primal-dual pair (QP) − (QD) where
(QP) max cTx − 1

2 xTHx
subject to,

Ax ≤ b,
x ≥ 0,

and,
(QD) min bTu + 1

2 wTHw
subject to,

ATu +Hw ≥ c,
u ≥ 0,
w ≥ 0.

Here u ∈ Rm, w ∈ Rn, H ∈ Rn × Rn is a positive semidefinite matrix.
The other symbols c, b, x and A are as described in Section 5.3.
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Now taking aspiration levels for the objective functions of (QP) and
(QD) as Z0 and W0 respectively, we consider the fuzzy version of these
problems

(
say (Q̃P) and (Q̃D)

)
as follows:

(Q̃P) Find x ∈ Rn such that

cTx − 1
2 xTHx � Zo

Ax � b,
x ≥ 0,

and,
(Q̃D) Find (u,w) ∈ Rm ×Rn such that,

bTu + 1
2 wTHw �Wo

ATu +Hw � c,
u ≥ 0,
w ≥ 0.

Here as in Section 5.3, “�” and “�” are fuzzy version of symbols
“essentially greater than” and “essentially less than” as explained there.

Now let f (x) = cTx − 1
2 xTHx and F(u,w) = bTu + 1

2 wTHw. Also let
pi > 0 (i = 0, 1, . . . ,m) be subjectively chosen constants of admissible
violations such that p0 is associated with the objective function and
pi (i = 1, 2, . . . ,m) is associated with the ith constraint of (QP). Then, as
in Section 5.3, using the membership function which increases linearly
over the “tolerance interval” pi (i = 0, 1, 2, . . . ,m), the crisp formula-
tion of the fuzzy quadratic programming problem (Q̃P) is as follows
(Zimmermann [90]).
(MP) max λ

subject to,

(λ − 1)p0 ≤ f (x) − Zo,
(λ − 1)pi ≤ bi − Aix, (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,

where Ai (i = 1, 2, . . . ,m) denotes the ith row of the matrix A and
bi (i = 1, 2, . . . ,m) denotes the ith component of b.

Similarly, let qj > 0 ( j = 0, 1, . . . ,n) be subjectively chosen constants
of admissible violations of the objective and the constraints of (QD).
Then the crisp formulation of the problem (Q̃D) is as follows
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(MD) min (−η)
subject to,

(η − 1)q0 ≤Wo − F(u,w),
(η − 1)qj ≤ HT

j w + AT
j u − cj, ( j = 1, 2, . . . ,n),

η ≤ 1,
x,w, η � 0,

where HT
j and AT

j ( j = 1, 2, . . . ,n) denote the jth row of the matrix HT

and AT respectively, and cj ( j = 1, 2, . . . ,n) denotes the jth component
of c. Since the tolerances pi (i = 0, 1, . . . ,m) and qj ( j = 0, 1, . . . ,n) are
positive, problems (MP) and (MD) can be rewritten as
(MP1) max λ

subject to,

λ ≤ 1 +
f (x) − Z0

p0
,

λ ≤ 1 +
bi − Aix

pi
, (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,

and
(MD1) min (−η)

subject to,

η ≤ 1 +
W0 − F(u,w)

q0
,

η ≤ 1 +
HT

j w + AT
j u − cj

qj
, ( j = 1, 2, . . . ,n),

η ≤ 1,
w, η ≥ 0.

The pair (MP)-(MD) (or equivalently (MP1)-(MD1)) are termed as
the fuzzy pair of primal-dual quadratic programming problems.

Now similar to results on fuzzy linear programming (Theorem 5.3.1),
we shall prove certain duality theorems for the pair (MP)-(MD) (or
(MP1)-(MD1)) which take into consideration that the problems (Q̃P)
and (Q̃D) are the fuzzified version of problems (QP) and (QD).

Theorem 5.5.1 (Weak duality). Let (x, λ) be feasible for (MP1)
and (u, w, η) be feasible for (MD1). Then,
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(i) (λ − 1)
m∑

i=1

piui + (η − 1)
n∑

j=1

qjxj ≤ F(u,w) − f (x).

(ii) (λ − 1)p0 + (η − 1)q0 ≤ ( f (x) − F(u,w)) + (W0 − Z0).

Proof. The proof is similar to that of Theorem 5.3.1.

We can also prove other duality related results for (MP1)-(MD1) on
the lines of those proved in Section 5.3 for the case of fuzzy linear
programming.

Remark 5.5.1. The weak duality theorem takes into consideration the
fuzzy scenario. This can be checked from the fact for λ = 1 and η = 1
(i.e. when the original problems are crisp) the inequality reduces to
f (x) ≤ F(u,w), which is the standard weak duality theorem in a crisp
quadratic program. For 0 ≤ λ < 1 and 0 ≤ η < 1, the situation remains
fuzzy which, for the given tolerance levels pi (i = 1, 2, . . .m), and qj ( j =

1, 2, . . .n), is quantified in the expression (λ− 1)
m∑

i=1

piwi + (η− 1)
n∑

j=1

qjxj.

Remark 5.5.2. Similar to fuzzy linear programming case there may
not be any direct or converse duality theorem between the pair (MP1)-
(MD1) and the two objective function values may not be equal.

Remark 5.5.3. For the case when H = 0, the problems (QP) and (QD)
become the linear programming problems (LP)-(LD). In this situation,
results of this section reduce to those of Section 5.3.

Example 5.5.4. In this section we present a simple numerical example
to illustrate the construction of the fuzzy primal-dual pair and to verify
the modified weak duality theorem. For this, we consider the problem
(QP) and its dual (QD) as follows.
(QP) max f (x) = 2x − 1

2 x2

subject to,

x ≤ 1,
x ≥ 0,

and,
(QD) min F(u,w) = u + 1

2 w2

subject to,

u + w ≥ 2,
u,w ≥ 0.
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Now taking p0 = 2, p1 = 2 and Z0 = 1 for (QP), the corresponding
problem (MP1) becomes
(MP1) max λ

subject to,

2λ − 2x + 1
2 x2 ≤ 1,

2λ + x ≤ 3,
λ ≤ 1,

x, λ ≥ 0.

The optimal solution of (MP1) is at x∗ = 1, λ∗ = 1, and the optimal
value of the (MP1) is λ∗ = 1.

Now taking q0 = 1, q1 = 3 and W0 = 1 for (QD), the corresponding
problem (MD1) becomes
(MD1) min (−η)

subject to,

η + u + 1
2 w2 ≤ 2,

3η − u − w ≤ 1,
η ≤ 1,

u, η,w ≥ 0.

The optimal solution of (MD1) is at η∗ = 0.875, u∗ = 0.625, w∗ = 1 and
the optimal value of the (MD1) is −η∗ = −0.875.

5.6 Conclusions

In this chapter we have presented certain very basic models of linear and
quadratic programming duality under fuzzy environment. The discus-
sion on fuzzy linear programming duality will be continued in Chapter 7
as well where linear programming problems with fuzzy parameters will
be considered and appropriate duality results will be proved. We shall
come back to this topic again in Chapter 10 where the results will be
established in a more general setting of fuzzy (valued) relations etc. In
the crisp scenario, the duality results have been applied to study sen-
sitivity analysis/post optimality analysis in linear programming, e.g.
Bazaraa et al. [2]. Such a study is also possible for linear programming
problems under fuzzy environment, for which an appropriate reference
is Hamacher et al. [22].



6

Matrix games with fuzzy goals

6.1 Introduction

Let us recall our discussion on (crisp) two-person zero-sum matrix game
theory from Chapter 1 and take note of one of the most celebrated and
useful result which asserts that every two person zero sum matrix game
is equivalent to two linear programming problems which are dual to
each other. Thus, solving such a game amounts to solving any one of
these two mutually dual linear programming problems and obtaining
the solution of the other by using linear programming duality theory.

Although various attempts have been made in the literature to study
two person zero sum fuzzy matrix games (for example, Campos [10],
Nishizaki and Sakawa [61] and Sakawa and Nishizaki [68]) but they
do not take into consideration the fuzzy linear programming duality
aspects. In this context it may be noted that the fuzzy linear program-
ming duality results are available in the literature and some of these
have already been discussed in Chapter 5 but unlike their crisp counter
parts, they have not been used for the study of fuzzy matrix game
theory until very recently.

Now, similar to fuzzy linear programming problems, fuzziness in
matrix games can also appear in so many ways but two cases of fuzzi-
ness seem to be very natural. These being the one in which players
have fuzzy goals and the other in which the elements of the pay-off
matrix are given by fuzzy numbers. These two classes of fuzzy matrix
games are referred as matrix games with fuzzy goals and matrix games
with fuzzy pay-offs respectively. However in our presentation, the term
fuzzy matrix game will often be used in a general sense and the context
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will specify if the goals are fuzzy or the pay-offs are fuzzy or goals and
pay-offs, both are fuzzy.

This chapter presents two models for conceptualizing a two person
zero sum game with fuzzy goals; one due to Nishizaki and Sakawa
[61] and the other due to Bector, Chandra and Vijay [6]. Although
these two models are similar in their approaches, the Nishizaki and
Sakawa’s model does not use fuzzy linear programming duality and is
also somewhat restricted because it needs certain modifications of the
matrix game to capture the crisp scenario as well. The other model [6]
is more general and it shows that as in the crisp environment, in the
fuzzy environment as well, there is a complete equivalence between a
matrix game with fuzzy goals and a primal-dual pair of fuzzy linear
programming problems.

This chapter is divided into three main sections, namely, two person
zero sum matrix game with fuzzy goals: a generalized model, two person
zero sum matrix game with fuzzy goals: Nishizaki and Sakawa’s model,
and special cases.

6.2 Matrix game with fuzzy goals: a generalized model

The required literature regarding two person zero sum (crisp) matrix
game theory and duality in linear programming under fuzzy environ-
ment in the sense of Bector and Chandra [4] has already been discussed
in Chapter 1 and Chapter 5 respectively. Therefore, let Sm, Sn and A
be as introduced in Section 1.3. Let v0, w0 be scalers representing the
aspiration levels of Player I and Player II respectively. Then a two per-
son zero-sum matrix game with fuzzy goals, denoted by FG, is defined
as

FG = (Sm, Sn, A, v0, �, ; w0, �),
where as explained earlier, ‘�’ and ‘�’ are fuzzified versions of ≥ and ≤
respectively. Therefore the game FG gets fixed only when the specific
choices of membership functions are made to define ‘�’ and ‘�’ in the
sense of Zimmermann [91].

Let t be a real variable and a ∈ R. Let p > 0, then the fuzzy set F
defining the fuzzy statement t �p a, to be read as “t essentially greater
than or equal to a with tolerance error p ”, is to be understood in terms
of the following membership function
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µF(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , t ≥ a

1 − a − t
p
, (a − p) ≤ t < a

0 , t < (a − p).

Lemma 6.2.1, as stated below, follows from the definition of µF(t).

Lemma 6.2.1. Let t1 �p a, t2 �p a, α ≥ 0, β ≥ 0 and α + β = 1. Then
αt1 + βt2 �p a.

Proof. Relations t1 �p a, and t2 �p a, can be written as
t1 ≥ a − (λ − 1)p
t2 ≥ a − (λ − 1)p.

Then
αt1 + βt2 ≥ (α + β)a − (λ − 1)(α + β)p,

which gives
αt1 + βt2 ≥p a.

In view of the above discussion we include tolerances p0 and q0 for
Player I and Player II respectively in our definition of the fuzzy game
FG and therefore take FG as

FG = (Sm, Sn, A, v0, �, p0, w0, �, q0).
Now we define the meaning of the “solution” of the fuzzy matrix

game FG.

Definition 6.2.1 (Solution of the fuzzy matrix game FG). A
point (x̄, ȳ) is called a solution to the fuzzy matrix game FG if

(x̄)TAy �p0 v0, for all y ∈ Sn,

and,
xTAȳ �q0 w0, for all x ∈ Sm.

Since Sm and Sn are convex polytopes, for the choice of membership
functions of type µF(t), Lemma 6.2.1 guarantees that in the Defini-
tion 6.2.1 it is sufficient to consider only the extreme points (i.e. pure
strategies) of Sm and Sn. This observation leads to the following two
fuzzy linear programming problems, (FP-1) and (FP-2), for Player I and
Player II respectively
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(FP-1) Find x ∈ Rm such that,
m∑

i=1

aijxi �p0 v0, ( j = 1, 2, . . . ,n),

m∑
i=1

xi = 1,

x ≥ 0,

and
(FP-2) Find y ∈ Rn such that,

n∑
j=1

aijyj �q0 w0, (i = 1, 2, . . . ,m),

n∑
j=1

yj = 1,

y ≥ 0.

Now noting that for j = 1, 2, . . . ,n, Aj denotes the jth column of A,
the jth constraint of (FP-1) can be written as AT

j x �p0 v0. Similarly the

ith constraint of (FD-2) can be written as Aiy �q0 w0 for i = 1, 2, . . . ,m.
Therefore as per the requirement for the use of Lemma 6.2.1, we de-
fine the membership function µ j(AT

j x), ( j = 1, 2, . . . ,n) which gives the

degree to which x satisfies the fuzzy constraint AT
j x �p0 v0, as follows:

µ j(AT
j x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 , AT
j x ≥ v0

1 −
v0 − AT

j x

p0
, (v0 − p0) ≤ AT

j x < v0

0 , AT
j x < (v0 − p0).

This choice of µ j(AT
j x) gives the crisp formulation of the fuzzy linear

programming (FP-1) as:
(FLP) max λ

subject to,

λ ≤ 1 −
v0 − AT

j x

p0
, ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0.
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Similarly the membership function νi(Aiy) (i = 1, 2, ...,m), which de-
fines the degree to which y satisfies the constraint Aiy �q0 w0, is taken
as:

νi(Aiy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aiy ≤ w0,

1 − Aiy − w0

q0
, w0 < Aiy ≤ w0 + q0,

0 , Aiy > w0 + q0,

and this gives the crisp formulation of (FD-2) as:

(FLD) max η
subject to,

η ≤ 1 − (Aiy − w0)
q0

, (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0.

From the above discussion we now observe that for solving the fuzzy
matrix game FG we have to solve the crisp linear programming prob-
lems (FLP) and (FLD) for Player I and Player II respectively. Also if
(x∗, λ∗) is an optimal solution of (FLP) then x∗ is an optimal strategy for
Player I and λ∗ is the degree to which the aspiration level v0 of Player I
can be met by choosing to play the strategy x∗. Similar interpretations
can also be given to an optimal solution (y∗, η∗) of (FLD). This leads
to the following theorem.

Theorem 6.2.1 The pair (FLP) and (FLD) constitutes a fuzzy primal-
dual pair in the sense of Theorem 5.3.1.

Proof. The proof follows by noting that (FLD) can be written as,
(FLP) −min (−η)

subject to,

η ≤ 1 +
(w0 − Aiy)

q0
, (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,
y ≥ 0,
η ≥ 0,
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and the comparing (FLP)-(FLD) with (CP)-(CD) as described in Section
5.3.

All the results discussed in this section can now be summarized in
the form of Theorem 6.2.2 given below.

Theorem 6.2.2 The fuzzy matrix game FG described by FG = (Sm, Sn,
A, v0, �, p0, w0, �, q0) is equivalent to two crisp linear programming
problems (FLP) and (FLD) which constitute a primal-dual pair in the
sense of duality for linear programming in a fuzzy environment [4].

Remark 6.2.2. It is important to note that the crisp problems (FLP)
and (FLD) do not constitute a primal-dual pair in the conventional
sense of duality in linear programming but are dual in “fuzzy” sense as
explained above.

Remark 6.2.3. If both players have the same aspiration levels, i.e.
v0 = w0 and in the optimal solutions of (FLP) and (FLD) λ∗ = η∗ = 1,
then the fuzzy game reduces to the crisp two person zero sum game
G. Thus for v0 = w0, λ∗ = η∗ = 1, FG reduces to G; the pair (FLP)-
(FLD) reduces to the pair (LP)-(LD); and as it should be, Theorem
6.2.2 reduces to Theorem 1.4.1.

6.3 Matrix game with fuzzy goals: Nishizaki and Sakawa
model

This model is based on the maxmin and minmax principles of the crisp
matrix game theory. In the crisp matrix game theory, for any pair
(x, y) ∈ Sm × Sn, xTAy is the expected pay-off and the solution of the
game is defined via the maxmin and minmax principles as described in
Chapter 1.

Now we define the meaning of a fuzzy goal and try to explain how
the players will play the game in a fuzzy environment.

Definition 6.3.1 (Fuzzy goal ). Let D = {xTAy : (x, y) ∈ Sm × Sn} ⊆
R. Then a fuzzy goal for Player I is a fuzzy set on D characterized
by a membership function µ1 : D −→ [0, 1]. Similarly, a fuzzy goal
for Player II is also a fuzzy set on D, characterized by a membership
function µ2 : D −→ [0, 1].

A membership function value for a fuzzy goal can be interpreted
as the degree of attainment of the fuzzy goal for the pay-off. Therefore
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when a player has two different payoffs, he prefers the payoff possessing
the higher membership function value in comparison to the other. It
means that Player I aims to maximize the degree of attainment for his
fuzzy goal.

We assume that Player I supposes that Player II will choose a strat-
egy y so as to minimize Player I’s degree of attainment of the fuzzy
goal. Assuming that Player I chooses x ∈ Sm, the least degree of at-
tainment of his goal will be v(x) = min

y∈Sn
µ1(xTAy). Hence Player I will

choose a strategy so as to maximize his degree of attainment of the
fuzzy goal v(x). In short, we assume that Player I behaves according
to the maxmin principle in terms of degree of attainment of his fuzzy
goal. Similar arguments hold for Player II as well.

Definition 6.3.2 (Maxmin value). The maxmin value with respect
to a degree of attainment of the fuzzy goal for Player I is defined as

max
x∈Sm

min
y∈Sn

µ1(xTAy).

Similarly the maxmin value with respect to a degree of attainment of
the fuzzy goal for Player II is defined as

max
y∈Sn

min
x∈Sm

µ2(xTAy).

Here it may be noted that in Nishizaki and Sakawa [61], for Player
II, the minmax value is suggested but later it has been corrected to
maxmin value for Player II as it should be.

Thus Player I (respectively Player II) wishes to determine x∗ ∈ Sm

(respectively y∗ ∈ Sn) such that the maxmin value with respect to the
degree of attainment of the fuzzy goal for Player I (respectively Player
II) is attained. This is another analogue of Definition 6.2.1 for the fuzzy
matrix game FG.

We now analyze the optimization problems for Player I and Player
II so as to obtain a solution of the given fuzzy game. For this we assume
that membership functions of fuzzy goals µ1(xTAy) and µ2(xTAy) for
Player I and Player II respectively are linear.

Optimization problem for Player I

Consider the membership function of the fuzzy goal µ1(xTAy) for
Player I described below,
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µ1(xTAy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , xTAy ≤ a,

1 − ā − xTAy
ā − a

, a < xTAy ≤ ā,

1 , ā < xTAy,

where ā and a are the pay-offs giving the best and worst degree of
satisfaction to Player I.

It is suggested in Nishizaki and Sakawa [61], that parameters ā and
a can be taken as

a = min
x

min
y

xTAy = min
i

min
j

ai j

ā = max
x

max
y

xTAy = max
i

max
j

ai j

Theorem 6.3.1 For the two person zero-sum fuzzy game FG, let the
membership function µ1 for Player I be linear as described above. Then
Player I’s maxmin solution with respect to the degree of attainment of
the fuzzy goal is obtained by solving the following linear programming
problem

max λ
subject to,

m∑
i=1

aij

ā − a
xi − a

ā − a
≥ λ, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0.

Proof. The maxmin problem for Player I is

max
x∈Sm

min
y∈Sn

µ1(xTAy),

which can be transformed into

max
x∈Sm

min
y∈Sn

(
1 − ā − xTAy

ā − a

)
= max

x∈Sm
min
y∈Sn

( m∑
i=1

n∑
j=1

âi jxiyj + c
)

= max
x∈Sm

min
y∈Sn

n∑
j=1

( m∑
i=1

âi jxi + c
)
yj

= max
x∈Sm

min
j∈J

( m∑
i=1

âi jxi + c
)
,
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where âi j =
aij

ā − a
and c = − a

ā − a
.

Therefore taking min
j

( m∑
i=1

âi jxi + c
)
= λ, the maxmin problem for

Player I reduces to the desired linear programming problem.

Optimization Problem for Player II

Next, we consider Player II’s maxmin solution with respect to the
degree of attainment of his fuzzy goal. The membership function for
the fuzzy goal µ2(xTAy) can be represented as

µ2(xTAy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , xTAy ≤ a,

1 − xTAy − a
ā − a

, a < xTAy ≤ ā,

0 , ā < xTAy.

Theorem 6.3.2 For the two person zero-sum fuzzy game FG, let the
membership function µ2 for Player II be linear as described above. Then
Player II’s maxmin solution with respect to the degree of attainment of
the fuzzy goal is obtained by solving the following linear programming
problem:

min λ
subject to,

n∑
j=1

aij

ā − a
yj − a

ā − a
≤ λ, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0.

Proof. The maxmin problem for Player II is

max
y∈Sn

min
x∈Sm
µ2(xTAy),

which becomes,
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max
y∈Sn

min
x∈Sm

(
1 − xTAy − a

ā − a

)
= max

y∈Sn
min
x∈Sm

(
−

m∑
i=1

n∑
j=1

âi jxiyj + 1 − c
)

= max
y∈Sn

min
i∈I

(
−

n∑
j=1

âi jyj + 1 − c
)
,

where as before âi j =
aij

ā − a
and c = − a

ā − a
.

The strategy y∗ satisfying the above is obtained by solving the fol-
lowing linear programming problem:

max η
subject to,

n∑
j=1

aij

(ā − a)
yj − a

(ā − a)
≤ 1 − η, (i = 1, 2, ...,m),

eT y = 1,
y ≥ 0,

which by taking (1 − η) = λ, is equivalent to the linear programming
problem given in the statement of the theorem.

In Nishizaki and Sakawa [61], there is small discrepancy in the sense
that η is taken as λ rather than (1−λ). Because of this, it is also men-
tioned there that the two linear programming problems corresponding
to Player I’s and Player II’s problems are dual to each other in crisp
sense. This is obviously not true as explained below in Section 6.4.

6.4 Special cases

It has already been explained in Remark 6.2.3 that various results of
crisp two person zero sum matrix game theory follow as a special case
of the fuzzy matrix game FG. In this section certain other special cases
are presented so as to bring out the clear cut differences and similari-
ties between the generalized model discussed in Section 6.2 and those
presented here in Section 6.3.

Case 1

Let us use the notation of Section 6.3 so as to take v0 = ā,w0 =
a, p0 = (ā − a), i.e. ā ( respectively a) is the aspiration level of Player I
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(respectively Player II) and both the Players have the same tolerance
level namely, (ā− a). This later assumption, that both players have the
same tolerance level, (ā − a) appears to be rather restrictive. Now for
this special case, (FLP) and (FLD) reduce to
(FLP1) max λ

subject to,

( AT
j

ā − a

)
x − ā

ā − a
≥ λ, ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and
(FLD1) max η

subject to,(
Ai

ā − a

)
y − a

ā − a
≤ 1 − η, (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0.

These problems (FLP1) and (FLD1) are precisely the same problems
as obtained in Section 6.3 for the very special case when both players
have the same tolerance level of (ā − a). It may be pointed out here
that the approach taken in Section 6.2 and 6.3 are essentially similar.
However it is mentioned in Section 6.3 that problems (FLP1) and (FLD1)
are dual to each other in the crisp sense, i.e., (FLD1) is the conventional
dual of (FLP1) and vice-versa, obviously is not correct. Therefore in
contrast with what has been mentioned in Section 6.3, the degrees
of attainment of two Players can not be equal. In fact even for this
restricted case if λ∗ is the degree of attainment of Player I then the
degree of attainment for Player II will be η∗ = 1 − λ∗. This follows by
calling (1−η) as ξ and then converting the (FLD1) into the minimization
form. As has been established in Section 6.2 (FLP1) and (FLD1), being
the special case (FLP) and (FLD), constitute a fuzzy primal-dual pair
of linear programming problems.

Now if (x∗, λ∗) and (y∗, η∗) are optimal solutions of (FLP1) and
(FLD1) respectively then for λ∗ = η∗ = 1, the fuzzy matrix game of
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Section 6.3 should reduce to the crisp matrix game G. In that case the
constraints of (FLP1) and (FLD1) become

m∑
i=1

aijx∗i ≥ ā, ( j = 1, 2, . . . ,n),

m∑
i=1

x∗i = 1,

x∗ ≥ 0,

and

n∑
j=1

aijy∗j ≤ a, (i = 1, 2, . . . ,m),

n∑
j=1

y∗j = 1,

y∗ ≥ 0,

which do not guarantee the fact that x∗ and y∗ are optimal strategies
for Player I and Player II respectively. From the above constraints we
see that this can happen only when ā = a = value of the game. In this
case the tolerance ā− a = 0, which is not possible and therefore (FLP1)
and (FLD1) are not defined. Furthermore, if ā and a are taken as

ā = max
i

max
j

ai j

and
a = min

i
min

j
ai j,

then ā = a implies that A is a constant matrix.
Therefore the fuzzy game formulation of Sakawa and Nishizaki [68]

does not seem to capture the crisp scenario unless some modifications
are made in it. The construction of the fuzzy matrix game FG as pre-
sented here seems to be the appropriate generalization for this purpose.

Case 2

If Player I and Player II specify the same aspiration level v0 = w0 =
v̂(say), then, irrespective of the fact whether p0 and q0 are same or
different, the problems
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(FLP2) max λ
subject to,

λ ≤ 1 −
(v̂ − AT

j x)

p0
, ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and
(FLD2) max η

subject to,

η ≤ 1 − (Aiy − v̂)
q0

, (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0,

are still dual to each other in “fuzzy” sense.
These special cases are now illustrated through the following nu-

merical examples.

Example 6.4.1. Consider the two person zero-sum crisp matrix game
G whose pay-off matrix A is

A =
(

1 3
4 0

)
.

It can be verified that the solution of the game G is (x∗, y∗, v∗) where
x∗ = (2/3, 1/3)T, y∗ = (1/2, 1/2)T and v∗ = 2.

Next let us consider the fuzzy versions of the game G.
(i) Let v0 = w0 = 2, p0 = 1, q0 = 2. For this choice (FLP) and (FLD)
come out to be

max λ
subject to,

−λ + x1 + 4x2 ≥ 1
−λ + 3x1 ≥ 1

λ ≤ 1
x1 + x2 = 1
λ, x1, x2 ≥ 0,
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and
max η
subject to,

2η + y1 + 3y2 ≤ 4
η + 2y1 ≤ 2

η ≤ 1
y1 + y2 = 1
η, y1, y2 ≥ 0,

respectively.
The optimal solutions of these problems are

(
x∗ = (2/3, 1/3)T, λ∗ = 1

)
and

(
y∗ = (1/2, 1/2)T, η∗ = 1

)
respectively. As v0 = w0 and λ∗ = η∗ = 1,

the situation is not really fuzzy and therefore FG coincides with G and
the solutions of both the games are also same.
(ii) Let v0 = 5/2, w0 = 3, p0 = 1 and q0 = 1/2. This choice corresponds
to the situation where Player I aspires to win more than 5/2 but is
satisfied (with varying degree) if he wins more than 3/2. Similarly,
Player II aspires not to loose more than 3 but he will be satisfied (with
varying degree) if he loses at most 7/2. For this case (FLP) and (FLD)
are

max λ
subject to,

−λ + x1 + 4x2 ≥ 7/2
−λ + 3x1 ≥ 7/2

λ ≤ 1
x1 + x2 = 1
λ, x1, x2 ≥ 0,

and
max η
subject to,

η + 2y1 + 6y2 ≤ 7
η + 8y1 ≤ 7

η ≤ 1
y1 + y2 = 1
η, y1, y2 ≥ 0,

respectively.
The optimal solutions of these linear programming problems are

(
x∗ =
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(2/3, 1/3)T, λ∗ = 1/2
)

and
(
y∗ = (3/4, 1/4)T, η∗ = 1

)
respectively and

the two problems are dual to each other in the “fuzzy” sense as has
been discussed earlier.

Example 6.4.2. This example depicts the situation considered in Sec-
tion 6.3. Let

A =
(

10 8
6 2

)
Then v0 = ā = 10, w0 = a = 2, and p0 = ā − a = q0 = 8. In this case
(FLP) and (FLD) become

max λ
subject to,

−8λ + 10x1 + 6x2 ≥ 2
−8λ + 8x1 + 2x2 ≥ 2

λ ≤ 1
x1 + x2 = 1
λ, x1, x2 ≥ 0,

and
max η
subject to,

8η + 10y1 + 8y2 ≤ 10
8η + 6y1 + 2y2 ≤ 10

η ≤ 1
y1 + y2 = 1
η, y1, y2 ≥ 0,

respectively.
The optimal solutions of these problems are

(
x∗ = (1, 0)T, λ∗ = 3/4

)
and

(
y∗ = (0, 1)T, η∗ = 1/4) respectively. Here, in variance with what is

mentioned in Nishizaki and Sakawa [61], neither λ∗ and η∗ are same nor
the above two problems constitute the usual primal-dual pair of linear
programming problems. Thus this example illustrates our discussion of
Remark 6.2.2.

6.5 Conclusions

In this chapter we have presented two models for studying two person
zero sum matrix games with fuzzy goals. The main result established
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here is the equivalence of such a game with a primal-dual pair of fuzzy
linear programming problems.

Since, in general, the strategy spaces of Player I and Player II could
be polyhedral sets, we may also conceptualize constrained fuzzy ma-
trix game on the lines of crisp constrained matrix games discussed in
Chapter 1. Some relevant references in this direction are Li ([40], [41])
and Vijay [76].



7

Matrix games with fuzzy pay-offs

7.1 Introduction

In the last chapter, we have discussed matrix games with fuzzy goals
and, based on duality in fuzzy linear programming, outlined a proce-
dure to find a solution for the same. The main result proved there, gives
complete equivalence of such a game with a suitable pair of primal-dual
fuzzy linear programming problems.

The next topic to study in this sequel is matrix game with fuzzy
payoffs which has earlier been studied by Campos [10] and later ex-
tended by Nishizaki and Sakawa [61] for the multiobjective situation.
In the literature there are many models of matrix games with fuzzy
payoffs but most of them seem to have taken inspiration from Campos
[10] only, as it still remains the most basic work on this topic. Here
in this chapter, as well as in the next chapter we present three such
models which deal with the same problem but from totally different
approaches. Specifically, the first model (Bector, Chandra and Vijay
[7]) uses a suitable defuzzification function to establish certain duality
for linear programming with fuzzy parameters and employs the same
to solve matrix games with fuzzy pay-offs. The proposed algorithm is
essentially the same as that of Campos [10] but certain modifications
are needed to justify various steps involved therein. These results, in
a sense, complement/supplement the basic ideas of Campos [10] and
help in having a better understanding of the same. The second model,
called Maeda’s model [50], is based on fuzzy max order to define three
kinds minimax equilibrium strategies whose properties help in the de-
velopment of a solution procedure for solving such games. The third
and the last model is due to Li [39] which presents a multiobjective



134 7 Matrix games with fuzzy pay-offs

linear programming approach to solve such games when the elements
of the pay-off matrix are triangular fuzzy numbers.

While this chapter is devoted to the study of the first model (Bector,
Chandra and Vijay [7]) the other two models, namely, Maeda’s model
[50] and Li’s model [39] will be discussed in Chapter 8. We shall also
attempt to extend some of these models so as to take into consideration
the matrix games with fuzzy goals as well as fuzzy pay-offs.

This chapter has five main sections, namely; definitions and prelimi-
naries, duality in linear programming with fuzzy parameters, two person
zero sum matrix game with fuzzy pay-offs: a defuzzification function ap-
proach, Campos’ model: some comments, and matrix game with fuzzy
goals and fuzzy pay-offs via a defuzzification function approach.

7.2 Definitions and preliminaries

In addition to various definitions and preliminaries as introduced in
Section 1.3 with regard to the crisp matrix game G = (Sm, Sn, A)
we need to understand the concept of double fuzzy constraints, i.e.,
constraints which are expressed as fuzzy inequalities involving fuzzy
numbers. For this, let N(R) be the set of all fuzzy numbers. Also let Ã,
b̃ and c̃ respectively be (m×n) matrix, (m×1) and (n×1) vector having
entries from N(R), and the double fuzzy constraints under consideration
be given by Ãx �p̃ b̃ and ÃT y �q̃ c̃, with adequacies p̃ and q̃ respectively.

Based on a resolution method proposed in [87], the constraint
Ãx �p̃ b̃ is expressed as Ãx ©≤ b̃ + p̃(1 − λ), λ ∈ [0, 1] where for
i = (1, 2, . . . ,m) the ith component of the fuzzy vector p̃, namely p̃i,
measures the adequacy between the fuzzy numbers Ãix and b̃i which
are the ith component of fuzzy vectors Ãx and b̃ respectively. Similarly,
the constraint ÃT y �q̃ c̃ is expressed as ÃT y ©≥ c̃ − q̃(1 − η), η ∈ [0, 1],
where for j = (1, 2, . . . ,n) the jth component of the fuzzy vector q̃,
namely q̃ j, measures the adequacy between the fuzzy numbers ÃT

j y and

c̃ j which are the jth component of fuzzy vectors ÃT y and c̃ respectively.
Here ©≤ and ©≥ are relations between fuzzy numbers which preserve the
ranking when fuzzy numbers are multiplied by positive scalars. For ex-
ample, this could be with respect to any ranking function F : N(R)→ R
taken in Campos [10] such that ã ©≤ b̃ implies F(ã) ≤ F(b̃). There is also
an implicit additional assumption of linearity of F in Campos [10] which
is being taken here as well. Since in subsequent sections, the function F
is used to defuzzify the given fuzzy linear programming problems, here
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onwards it is called as defuzzification function rather than a ranking
function.

Therefore, the double fuzzy constraints of the type Ãx �p̃ b̃ and
ÃT y �q̃ c̃ are to be understood as

Ãix ©≤ b̃i + (1 − λ)p̃i for 0 ≤ λ ≤ 1 and (i = 1, 2, . . . ,m),

and
ÃT

j y ©≥ c̃ j − (1 − η)q̃ j for 0 ≤ η ≤ 1 and ( j = 1, 2, . . . ,n);

which in turn means
F(Ãix) ≤ F(b̃i) + (1 − λ)F(p̃)

and
F(ÃT

j y) ≥ F(c̃ j) − (1 − η)F(q̃).

Now, let ãi j, b̃i, p̃i, c̃ j and q̃ j are triangular fuzzy numbers (TFNs)
and F is the Yager’s [87] first index given by

F(D) =

∫ du

dl
xµD(x)dx∫ du

dl
µD(x)dx

,

where dl and du are the lower limits and upper limits of the support of
the fuzzy number D. Then for the special case of TFNs the constraints
Ãx �p̃ b̃ and ÃT y �q̃ c̃ respectively mean

n∑
j=1

(
(aij)l + aij + (aij)u

)
xj ≤

(
(bi)l + bi + (bi)u

)
+ (1 − λ)

(
(pi)l + pi + (pi)u

)
and

m∑
i=1

(
(aij)l + aij + (aij)u

)
yi ≥

(
(cj)l + cj + (cj)u

)
− (1 − η)

(
(qj)l + qj + (qj)u

)
for λ ∈ [0, 1], η ∈ [0, 1], i = 1, . . . ,m and j = 1, . . . ,n.

Here ãi j =
(
(aij)l, aij, (aij)u

)
, b̃i =

(
(bi)l, bi, (bi)u

)
, p̃i =

(
(pi)l, pi, (pi)u

)
,

c̃ j =
(
(cj)l, cj, (cj)u

)
and q̃ j =

(
(qj)l, qj, (qj)u

)
are TFNs.

7.3 Duality in linear programming with fuzzy
parameters

Taking motivation from the usual crisp pair of primal-dual linear pro-
gramming problems, we consider a very natural fuzzy version of the
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usual primal and dual problems as given below and explain their mean-
ing. Specifically these problems are
(FP1) max c̃Tx

subject to,

Ãx � b̃,
x ≥ 0,

and
(FD1) min b̃T y

subject to,

ÃT y � c̃,
y ≥ 0.

Here, Ã is an (m×n) matrix of fuzzy numbers, and b̃ and c̃ respectively
are (m × 1) and (n × 1) vectors of fuzzy numbers. The symbols ‘�’
and ‘�’ are fuzzy versions of the symbols ‘≤’ and ‘≥’ respectively, and
have the linguistic interpretation “essentially less than or equal to”
and “essentially greater than or equal to” as explained in Zimmermann
[90]. Also, the double fuzzy constraint Ãx � b̃ and ÃT y � c̃ are to be
understood with respect to a suitable defuzzification function F and
adequacies p̃ and q̃, in the sense as explained in Section 7.2. It should
further be noted that the defuzzification function F once chosen is to be
kept fixed for all development in this sequel. Therefore, if F : N(R)→ R
is the chosen defuzzification function of fuzzy numbers for constraints
in (FP1) and (FD1) then utilizing the same defuzzification function F
for the objective functions in (FP1) and (FD1), we get (FP2) and (FD2)
as follows
(FP2) max F(c̃Tx)

subject to,

F(Ãx) ≤ F(b̃) + (1 − λ)F(p̃),
λ ≤ 1,

x, λ ≥ 0,

and
(FD2) min F(b̃T y)

subject to,

F(ÃT y) ≥ F(c̃) − (1 − η)F(q̃),
η ≤ 1,

y, η ≥ 0.
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Here p̃ and q̃ respectively measure the adequacies in the primal and
dual constraints as explained earlier.

The pair (FP2) and (FD2) is termed as the fuzzy pair of primal-dual
linear programming problems.

We shall now prove the following modified weak duality theorem for
the pair (FP2) and (FD2).

Theorem 7.3.1 Let (x, λ) be (FP2)-feasible and (y, η) be (FD2)-
feasible. Then

F(c̃Tx) − F(b̃T y) ≤ (1 − λ)F(p̃T y) + (1 − η)F(q̃Tx).

Proof. Since (x, λ) is (FP2)-feasible and (y, η) is (FD2)-feasible, we
have

F(Ãx) ≤ F(b̃) + (1 − λ)F(p̃), x ≥ 0,

and
F(ÃT y) ≥ F(c̃) − (1 − η)F(q̃), y ≥ 0.

Now because of the properties of relations ©≤ and ©≥ , the defuzzification
function F preserves the ranking when fuzzy numbers are multiplied by
non-negative scalars, the above relations imply

F(xTÃT y) ≤ F(b̃T y) + (1 − λ)F(p̃T y),

and
F(yTÃx) ≥ F(c̃Tx) − (1 − η)F(q̃Tx).

Therefore,

F(b̃T y) + (1 − λ)F(p̃T y) ≥ F(c̃Tx) − (1 − η)F(q̃Tx),

because
F(xTÃT y) = F(yTÃx),

as
xTÃT y = yTÃx.

Combining the above, we obtain

F(b̃T y) − F(c̃Tx) ≥ (λ − 1)F(p̃T y) + (η − 1)F(q̃Tx).

Remark 7.3.1. In case Ã, c̃ and b̃ are crisp and λ = 1 and η = 1 then
the pair (FP2)-(FD2) reduces to the usual crisp primal-dual pair and
Theorem 7.3.1 becomes the usual weak duality theorem.
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Remark 7.3.2. In a very recent work, Inuiguchi et al. [29] studied
fuzzy linear programming duality in the setting of “fuzzy (valued) re-
lations”. The approach described above is different from that of [29]
as here a defuzzification function F is used and results are stated in
terms of this function only. In Chapter 10, we shall have opportunity
to discuss the approach of Inuiguchi et al. [29] along with some other
recent approaches for studying fuzzy duality e.g. Wu [82].

The above discussion on duality can further be extended to include
even those linear programming problems in which both the parameters
as well as the constraints are fuzzy. For this, we consider the following
pair of fuzzy linear programming problems
(GFP1) Find x ∈ Rn such that

c̃Tx � Z̃0,
Ãx � b̃,

x ≥ 0,

and,
(GFD1) Find y ∈ Rm such that

b̃T y � W̃0,
ÃT y � c̃,

y ≥ 0.

Here Z̃0 and W̃0 are fuzzy quantities which represent aspiration
levels for the objective functions in problems (GFP1) and (GFD1) re-
spectively. Further, p̃0 (respectively q̃0) measures the adequacy between
the objective function c̃Tx (respectively b̃T y) and the aspiration level
Z̃0 (respectively W̃0). Rest of the symbols and notations have the same
meaning as explained earlier in the context of problems (FP1) and (FD1)
in Section 7.3.

Now, if F : N(R)→ R is the chosen defuzzification function of fuzzy
numbers for constraints in (GFP1) and (GFD1), we get (GFP2) and
(GFD2) as
(GFP2) max λ

subject to,

F(c̃Tx) ≥ F(Z̃0) − F(p̃0)(1 − λ),
F(Ãix) ≤ F(b̃i) + F(p̃i)(1 − λ), (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,
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and
(GFD2) max η

subject to,

F(b̃T y) ≤ F(W̃0) + F(q̃0)(1 − η)
F(ÃT

j y) ≥ F(c̃ j) − F(q̃ j)(1 − η), ( j = 1, 2, . . . ,n),
η ≤ 1,

y, η ≥ 0,

which could further be written as follows
(GFP3) max λ

subject to,

λ ≤ 1 +
F(c̃T)x − F(Z̃0)

F(p̃0)
,

λ ≤ 1 +
F(b̃i) − F(Ãi)x

F(p̃i)
, (i = 1, 2, . . . ,m),

λ ≤ 1,
x, λ ≥ 0,

and
(GFD3) min (−η)

subject to,

η ≤ 1 +
F(W̃0) − F(b̃T)y

F(q̃0)
,

η ≤ 1 +
F(ÃT

j )y − F(c̃ j)

F(q̃ j)
, ( j = 1, 2, . . . ,n),

η ≤ 1,
y, η ≥ 0.

The pair (GFP3) and (GFD3) is termed as the fuzzy pair of primal-
dual linear programming problems in the sense of Bector and Chandra

[4] as discussed in Chapter 5. Let F(p̃) =
(
F(p̃1),F(p̃2), . . . ,F(p̃m)

)T
and

F(q̃) =
(
F(q̃1),F(q̃2), . . . ,F(q̃n)

)T
. Then the following duality theorem fol-

lows from Bector and Chandra [4].

Theorem 7.3.2 Let (x, λ) be (GFP3)-feasible and (y, η) be (GFD3)-
feasible. Then (λ − 1)F(p̃)T y + (η − 1)F(q̃)Tx ≤

(
F(b̃)T y − F(c̃)Tx

)
.
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7.4 Two person zero sum matrix games with fuzzy
pay-offs: main results

Let Sm, Sn be as introduced in Section 1.3 and Ã be the pay-off matrix
with entries as fuzzy numbers. Then a two person zero-sum matrix
game with fuzzy pay-offs is the triplet

FG = (Sm, Sn, Ã).
In the following, we shall often call a two person zero-sum matrix

game with fuzzy pay-offs simply as fuzzy matrix game. Now, we define
the meaning of the solution of the fuzzy matrix game FG.

Definition 7.4.1 (Reasonable solution of the game FG). Let
ṽ, w̃ ∈ N(R). Then (ṽ, w̃) is called a reasonable solution of the fuzzy
matrix game FG if there exists x∗ ∈ Sm, y∗ ∈ Sn satisfying

(x∗)TÃy � ṽ, ∀y ∈ Sn

and
xTÃy∗ � w̃, ∀x ∈ Sm.

If (ṽ, w̃) is a reasonable solution of FG then ṽ (respectively w̃) is called
a reasonable value for Player I ( respectively Player II).

Definition 7.4.2 (Solution of the game FG). Let T1 and T2 be the
set of all reasonable values ṽ and w̃ for Player I and Player II respec-
tively where ṽ, w̃ ∈ N(R). Let there exist ṽ∗ ∈ T1, w̃∗ ∈ T2 such that

F(ṽ∗) ≥ F(ṽ) , ∀ṽ ∈ T1
and

F(w̃∗) ≤ F(w̃) , ∀w̃ ∈ T2.
Then (x∗, y∗, ṽ∗, w̃∗) is called the solution of the game FG where ṽ∗ (re-
spectively w̃∗) is the value of the game FG for Player I (respectively
Player II) and x∗ (respectively y∗) is called an optimal strategy for
Player I (respectively Player II).

By using the above definitions for the game FG, we now construct
the following pair of fuzzy linear programming problems for Player I
and Player II
(FP3) max F(ṽ)

subject to,

xTÃy �p̃ ṽ, for all y ∈ Sn,
x ∈ Sm,

and
(FD3) min F(w̃)
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subject to,

xTÃy �q̃ w̃, for all x ∈ Sm,
y ∈ Sn.

Now recalling the explanation of the double fuzzy constraints as ex-
plained in Section 7.2 and noting that the relations ©≥ and ©≤ preserve
the ranking when fuzzy numbers are multiplied by positive scalars, it
makes sense to consider only the extreme points of sets Sm and Sn in
the constraints of (FP3) and (FD3). Therefore the above problems (FP3)
and (FD3) will be converted into
(FP4) max F(ṽ)

subject to,

xTÃj �p̃ ṽ, ( j = 1, 2, . . . ,n),
eTx = 1,

x ≥ 0,

and
(FD4) min F(w̃)

subject to,

Ãiy �q̃ w̃, (i = 1, 2, . . . ,m),
eT y = 1,

y ≥ 0.

Here Ãi (respectively Ãj) denotes the ith row (respectively jth column)
of Ã (i = 1, 2, · · · ,m; j = 1, 2, · · · , n).

By using the resolution procedure for the double fuzzy constraints
in (FP4) and (FD4), we obtain
(FP5) max F(ṽ)

subject to,

m∑
i=1

ãi jxi ©≥ ṽ − (1 − λ)p̃, ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and
(FD5) min F(w̃)

subject to,
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n∑
j=1

ãi jyj ©≤ w̃ + (1 − η)q̃, (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0,

Now by utilizing the defuzzification function F : N(R) → R for the
constraints (FP5) and (FD5), these problems can further be written as
(FP6) max F(ṽ)

subject to,
m∑

i=1

F(ãi j)xi ≥ F(ṽ) − (1 − λ)F(p̃), ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and
(FD6) min F(w̃)

subject to,
n∑

j=1

F(ãi j)yj ≤ F(w̃) + (1 − η)F(q̃), (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0.

From the above discussion we observe that for solving the fuzzy
matrix game FG we have to solve the crisp linear programming prob-
lems (FP6) and (FD6) for Player I and Player II respectively. Also, if
(x∗, λ∗, ṽ∗) is an optimal solution of (FP6) then for Player I, x∗ is an
optimal strategy, ṽ∗ is the fuzzy value and (1 − λ∗)p̃ is the measure of
the adequacy level for the double fuzzy constraints in (FP5). Similar
interpretation can also be given to an optimal solution (y∗, η∗, w̃∗) of
the problem (FD6). Further the results of Section 7.3 show that for the
pair (FP6) and (FD6) the following theorem holds:

Theorem 7.4.1 The pair (FP6)-(FD6) constitutes a fuzzy primal-dual
pair in the sense of Theorem 7.3.1.

All the results discussed in this section can now be summarized in the
form of Theorem 7.4.2 given below.
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Theorem 7.4.2 The fuzzy matrix game FG described by FG = (Sm, Sn,
Ã) is equivalent to two crisp linear programming problems (FP6) and
(FD6) which constitute a primal-dual pair in the sense of duality for
linear programming with fuzzy parameters.

Remark 7.4.1. It is important to note that the crisp problems (FP6)
and (FD6) do not constitute a primal-dual pair in the conventional
sense of duality in linear programming but are dual in “fuzzy” sense
as explained above. Therefore if (x∗, λ∗, ṽ∗) is optimal to (FP6) and
(y∗, η∗, w̃∗) is optimal to (FD6) then in general one should not expect
that F(ṽ∗) = F(w̃∗).

Remark 7.4.2. If all the fuzzy numbers are to be taken as crisp num-
bers i.e. ãi j = aij, b̃i = bi, c̃ j = cj and in the optimal solutions of (FP6)
and (FD6), λ∗ = η∗ = 1, then the fuzzy game FG reduces to the crisp
two person zero sum game G. Thus if Ã, b̃, c̃ are crisp numbers and
λ∗ = η∗ = 1, FG reduces to G; the pair (FP6)-(FD6) reduces to the
pair (LP)-(LD); and as it should be, Theorem 7.4.2 reduces to Theorem
1.4.1.

Remark 7.4.3. In general it may be difficult to obtain exact member-
ship functions for fuzzy values ṽ∗ and w̃∗ because of the large number of
parameters involved in their representation. For example, if ṽ is a TFN
(vl, v, vu) then to determine ṽ completely we need all of these three
variables. Therefore, purely from the computational point of view it
becomes easier to take F(ṽ) and F(w̃) as real variables V and W respec-
tively and modify problems (FP6) and (FD6) as follows
(FP7) max V

subject to,

m∑
i=1

F(ãi j)xi ≥ V − (1 − λ)F(p̃), ( j = 1, 2, . . . ,n),

eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and
(FD7) min W

subject to,



144 7 Matrix games with fuzzy pay-offs

n∑
j=1

F(ãi j)yj ≤W + (1 − η)F(q̃), (i = 1, 2, . . . ,m),

eT y = 1,
η ≤ 1,

y, η ≥ 0.

In this situation, in-spite of knowing that the value for Player I
(respectively Player II) is fuzzy with certain membership function, we
shall only get numerical values V∗ (respectively W∗) for Player I (re-
spectively Player II) and the actual fuzzy value for Player I and Player
II will be “close to” V∗ and W∗ respectively. Thus we shall not get exact
membership functions for the fuzzy values of Player I and Player II even
though these are very much desirable. In the particular case when F is
Yager’s first index [87], the numerical values V∗ (respectively W∗) will
represent the “centroid” or “average” value for Player I (respectively
Player II).

7.5 Campos’ model: some comments

Campos [10] also considered the fuzzy game model FG = (Sm, Sn, Ã)
earlier and taking motivation from the crisp case, suggested following
linear programming problems (FP8) and (FD8) for Player I and Player
II respectively
(FP8) max v

subject to,

m∑
i=1

ãi jxi � v, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0,

and
(FD8) min w

subject to,

n∑
j=1

ãi jyj � w, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0,



7.5 Campos’ model: some comments 145

where v,w ∈ R and the double fuzzy inequalities in (FP8) and (FD8)
are to be understood as discussed here in Section 7.2.

Further, following a parallel way to the classical crisp case, Campos
[10] argued that v,w can be taken to be strictly positive. Therefore,
one can define u ∈ Rm

+ , s ∈ Rn
+ such that ui =

xi

v
(i = 1, 2, . . . ,m) and

sj =
yj

w
( j = 1, 2, . . . ,n) and that gives

v =
1

m∑
i=1

ui

, w =
1

n∑
j=1

sj

.

Also, then problems (FP8) and (FD8) respectively get transferred to,

(FP9) min
m∑

i=1

ui

subject to,
m∑

i=1

ãi jui � 1, ( j = 1, . . . ,n),

ui ≥ 0, (i = 1, . . . ,m),

and

(FD9) max
n∑

j=1

sj

subject to,
n∑

j=1

ãi jsj � 1, (i = 1, . . . ,m),

sj ≥ 0, ( j = 1, . . . ,n).

Now expressing the double fuzzy constraints in (FP9) and (FD9) in
terms of adequacies p̃ and q̃ as described in Section 7.2, we can rewrite
these problems as

(FP10) min
m∑

i=1

ui

subject to,
m∑

i=1

ãi jui ©≥ 1 − (1 − α)p̃ j, ( j = 1, . . . ,n),

ui ≥ 0, (i = 1, . . . ,m),
α ∈ [0, 1],
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and

(FD10) max
n∑

j=1

sj

subject to,

n∑
j=1

ãi jsj ©≤ 1 + (1 − β)q̃i, (i = 1, . . . ,m),

sj ≥ 0, ( j = 1, . . . ,n),
β ∈ [0, 1],

where the scalar 1 in the right hand side of (FP10) and (FD10) is
to be taken as the fuzzy number 1 i.e. bi = (bi)l = (bi)u = 1 for all
i = 1, 2, . . . ,m.

Now, in case ãi j, p̃i, q̃ j are triangular fuzzy numbers and Yager’s
[87] index is used for the relation ©≤ and ©≥ in the above problems then
(FP10) and (FD10) reduce to

(FP11) min
m∑

i=1

ui

subject to,

m∑
i=1

(
(ãi j)l + ãi j + (ãi j)u

)
ui ≥ 3 −

(
(pj)l + pj + (pj)u

)
(1 − α), ( j = 1, . . . ,n),

ui ≥ 0, (i = 1, . . . ,m),
α ∈ [0, 1],

and

(FD11) max
n∑

j=1

sj

subject to,

n∑
j=1

(
(ãi j)l + ãi j + (ãi j)u

)
sj ≤ 3 +

(
(qi)l + qi + (qi)u

)
(1 − β), (i = 1, . . . ,m),

sj ≥ 0, ( j = 1, . . . ,n),
β ∈ [0, 1].

Looking at the above development and other results mentioned in
Campos [10] we make the following observations for the Campos’ model
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(i) In this model, though the pay-off matrix is fuzzy, as its elements
are fuzzy numbers, the value of the game for Player I and Player II,
namely v and w, are assumed to be crisp numbers. This is certainly
obvious from the fact that in (FP8) and (FD8) v and w respectively
are being minimized and maximized and later to get (FP9) and
(FD9) there is division by v and w to get ui, (i = 1, 2, . . . ,m) and
sj, ( j = 1, 2, . . . ,n). Purely from the logical point of view it seems
natural that if the pay-off matrix is fuzzy then the values for Player
I and Player II should also be fuzzy, an argument that has been fol-
lowed by Werners [79] in the context of fuzzy linear programming
and discussed earlier in Chapter 4 In fact later Campos [10] also
mentions that the value of the game FG = (Sm, Sn, A) will be fuzzy
and it will be around v(1) and w(1).
Thus in Campos [10] model if one takes v and w as fuzzy num-
bers then problems (FP8) and (FD8) can not be given any mean-
ing as such and also the division by v and w to get ui and sj
(i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) becomes meaningless. Our effort
here is to start with fuzzy values for Player I and Player II and
make appropriate modifications in (FP8) and (FD8) so that these
problems become meaningful in both physical and mathematical
terms. However, as noted in Remark 7.4.3, in actual practice one
may not be able to get exact membership function for fuzzy values
and be satisfied with representative values F(ṽ) and F(w̃).

(ii) There is no justification to assume that v, w > 0 except that it is
similar to the crisp situation. In crisp situation it is true because if
v is the value of the game for the matrix A then v+α is the value of
the game for the matrix A(α) = (aij + α). It is not very clear if this
happens for the fuzzy case as well. In fact as such, there seems to
be no easy way to check it because a formal definition of the value
of the fuzzy game is not given in Campos [10].

(iii) The constraints
m∑

i=1

ãi jxi � v are simply written as
m∑

i=1

ãi jui � 1 by

dividing both sides with v > 0. This is correct if the constraints are
crisp but may not be true if the constraints are fuzzy. It will be
very much dependent upon the membership function and tolerance
chosen. For example, if x�pa denotes the fuzzy relation that x is
“essentially more than a” with tolerance p and α > 0, then for the
linear membership function, it gives αx �αp αa and not αx �p αa.
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(iv) The fuzzy linear programming problems (FP10) and (FD10) as
obtained in Campos [10], do not constitute a pair of primal-dual
problems in contrast with the usual crisp case. But as shown here
in Section 7.4 if one starts with the correct conceptualization of
fuzzy game then one can formulate a pair of linear programming
problems which are dual to each other in fuzzy sense.

(v) In Campos’ formulation, if we identify v and w as F(ṽ) and F(w̃)
respectively then the basic linear programming problems obtained
there come out to be similar to (FP7) and (FD7) obtained here for
the variables V = F(ṽ) and W = F(w̃). But then the subsequent
development does not seem to be correct in view of the observation
(3) above.

Example 7.5.1. Consider the fuzzy game defined by the matrix of
fuzzy numbers :

A =
[ ˜180 ˜156

9̃0 ˜180

]
where ˜180 = (175, 180, 190), ˜156 = (150, 156, 158), 9̃0 = (80, 90, 100).
Assuming that Player I and Player II have the margins p̃1 = p̃2 =
(0.08, 0.10, 0.11),
and q̃1 = q̃2 = (0.14, 0.15, 0.17).

According to Theorem 7.4.2, to solve this game we have to solve
following two crisp linear programming problems (LP1) and (LD1) for
Player I and Player II respectively:
(LP1) max

vl + v + vu

3

subject to,
545x1 + 270x2 ≥ (vl + v + vu) − (1 − λ)(0.29)
464x1 + 545x2 ≥ (vl + v + vu) − (1 − λ)(0.29)

x1 + x2 = 1
λ ≤ 1

x1, x2, λ ≥ 0,
and
(LD1) min

wl + w + wu

3
subject to,

545y1 + 464y2 ≤ (wl + w + wu) + (1 − η)(0.46)
270y1 + 545y2 ≤ (wl + w + wu) + (1 − η)(0.46)

y1 + y2 = 1
η ≤ 1
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y1, y2, η ≥ 0.
Now to get the full membership representation of the fuzzy value for
Player I (respectively Player II) one needs that in the optimal solu-
tion of (LP1) (respectively (LD1)) all variables vl, v, vu (respectively
wl,w,wu) come out to be non zero; i.e. they are basic variables. This
seems to be most unlikely as there are much less number of con-
straints and therefore many of the variables are going to be non-basic
and hence take zero values only. This observation motivates us to
take V =

vl + v + vu

3
, W =

wl + w + wu

3
and consider following problems

(LP2) and (LD2) for the variables V and W
(LP2) max V

subject to,
545x1 + 270x2 ≥ 3V − (1 − λ)(0.29)
464x1 + 545x2 ≥ 3V − (1 − λ)(0.29)

x1 + x2 = 1
λ ≤ 1

x1, x2, λ ≥ 0,
and
(LD2) min W

subject to,
545y1 + 464y2 ≤ 3W + (1 − η)(0.46)
270y1 + 545y2 ≤ 3W + (1 − η)(0.46)

y1 + y2 = 1
η ≤ 1.

y1, y2, η ≥ 0.
Solving the above Linear Programming Problems, we obtain, (x∗1 =
0.7725, x∗2 = 0.2275, V = 160.91, λ∗ = 0) and (y∗1 = 0.2275, y∗2 =
0.7725, W = 160.65, η∗ = 0).
Therefore we obtain optimal strategies for Player I and Player II as
(x∗1 = 0.7725, x∗2 = 0.2275) and (y∗1 = 0.2275, y∗2 = 0.7725) respectively.
Also, the fuzzy value of the game for Player I is “close to” 160.91. In a
similar manner, the fuzzy value of the game for Player II is “close to”
160.65.
Here it may be noted that this solution of the given fuzzy game matches
with that of Campos [10] though apparently different problems are be-
ing solved in [10]. This is basically because in this case one can assume

that V = F(ṽ) =
vl + v + vu

3
and W = F(w̃) =

wl + w + wu

3
are positive,

and therefore by defining u1 =
x1

F(ṽ)
,u2 =

x2

F(ṽ)
, s1 =

y1

F(w̃)
and s2 =

y2

F(w̃)
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problems (LP2) and (LD2) can be rewritten as
(LP3) min u1 + u2

subject to,

545u1 + 270u2 ≥ 1 − (1 − λ)(0.29)
F(ṽ)

464u1 + 545u2 ≥ 1 − (1 − λ)(0.29)
F(ṽ)

λ ≤ 1
u1, u2, λ ≥ 0,

and
(LD3) max s1 + s2

subject to,

545s1 + 464s2 ≤ 1 − (1 − η)(0.46)
F(w̃)

270s1 + 545s2 ≤ 1 − (1 − η)(0.46)
F(w̃)

η ≤ 1
s1, s2, η ≥ 0.

Now, following the arguments similar to Campos [10], it can be shown
that solution of (LP3) and (LD3) will be obtained for λ∗ = 1 and η∗ = 1,
the final result of (LP3) and (LD3) is bound to be the same as that
of (LP1) and (LD1). Thus we may conclude that by the modifications
as suggested here, the division can be performed to get problems of
the type discussed in Campos [10]. It seems that in Campos [10], the
division operation for the constraints is not done at the right place in
the right manner and that creates some difficulty in getting the correct
conceptualization of the corresponding linear programming problems
for the given fuzzy game.

7.6 Matrix games with fuzzy goals and fuzzy payoffs

Let Sm, Sn be as introduced in Section 1.3 and Ã be the pay-off matrix
with entries as fuzzy numbers. Let ṽ, w̃ be fuzzy numbers respectively
the aspiration levels of Player I and Player II. Then a two person zero-
sum matrix game with fuzzy goals and fuzzy payoffs, denoted by FG, is
defined as:

FG = (Sm, Sn, Ã, ṽ, �, p̃, w̃, �, q̃),
where, ‘�’ and ‘�’ have their meanings as explained in Section 7.2 and,
p̃ and q̃ are fuzzy tolerance levels for Player I and Player II respectively.
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Now onwards we shall call a two person zero-sum matrix game with
fuzzy goals and fuzzy pay-offs simply as fuzzy matrix game.

We now define the meaning of the solution of the fuzzy matrix game
FG.

Definition 7.6.1 A point (x̄, ȳ) ∈ Sm × Sn is called a solution of the
fuzzy matrix game FG if

(x̄)TÃy �p̃ ṽ, for all y ∈ Sn

and,
xTÃȳ �q̃ w̃, for all x ∈ Sm.

Here x̄ is called an optimal strategy for Player I and ȳ is called an
optimal strategy for Player II.

By using the above definitions for the game FG, we construct the
following pair of fuzzy linear programming problems for Player I and
Player II:
(GFP4) Find x ∈ Sm such that,

xTÃy �p̃ṽ, for all y ∈ Sn,

and
(GFD4) Find y ∈ Sn such that,

xTÃy �q̃w̃, for all x ∈ Sm.

Now employing the resolution method of Yager [87] for the double
fuzzy constraints (as discussed here in Section 7.2) and following Zim-
mermann’s approach [90], the above pair of fuzzy linear programming
problems reduces to
(GFP5) max λ

subject to,

xTÃy ©≥ ṽ − p̃(1 − λ), for all y ∈ Sn,
x ∈ Sm,
λ ∈ [0, 1],

and,
(GFD5) max η

subject to,

xTÃy ©≤ w̃ + q̃(1 − η), for all x ∈ Sm,
y ∈ Sn,
η ∈ [0, 1].
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Next, we utilize the defuzzification function F : N(R) → R for the
constraints of (GFP5) and (GFD5), to get
(GFP6) max λ

subject to,

F(xTÃy) ≥ F(ṽ) − F(p̃)(1 − λ), for all y ∈ Sn,
eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and,
(GFD6) max η

subject to,

F(xTÃy) ≤ F(w̃) + F(q̃)(1 − η), for all x ∈ Sm,
eT y = 1,
η ≤ 1,

y, η ≥ 0.

As we have mentioned earlier, the defuzzification function F pre-
serves the ranking when fuzzy numbers are multiplied by non-negative
scalars, the problems (GFP6) and (GFD6) respectively become
(GFP7) max λ

subject to,

xTF(Ã)y ≥ F(ṽ) − F(p̃)(1 − λ), for all y ∈ Sn,
eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and,
(GFD7) max η

subject to,

xTF(Ã)y ≤ F(w̃) + F(q̃)(1 − η), for all x ∈ Sm,
eT y = 1,
η ≤ 1,

y, η ≥ 0,

where F(Ã) is a (crisp) (m × n) matrix having entries as F(ãi j), i =
1, 2, . . . ,m and j = 1, 2, . . . ,n.

Since Sm and Sn are convex polytopes, it is sufficient to consider only
the extreme points (i.e. pure strategies) of Sm and Sn in the constraints
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of (GFP7) and (GFD7). This observation leads to the following two
fuzzy linear programming problems, (GFP8) and (GFP8), for Player I
and Player II respectively
(GFP8) max λ

subject to,

xTF(Ã) j ≥ F(ṽ) − F(p̃)(1 − λ), ( j = 1, 2, . . . ,n),
eTx = 1,
λ ≤ 1,

x, λ ≥ 0,

and,
(GFD8) max η

subject to,

F(Ã)iy ≤ F(w̃) + F(q̃)(1 − η), (i = 1, 2, . . . ,m),
eT y = 1,
η ≤ 1,

y, η ≥ 0.

Here F(Ã)i (respectively F(Ã) j) denotes the ith row (respectively jth

column) of F(Ã) where i = 1, 2, . . . ,m, and j = 1, 2, . . . ,n.
From the above discussion we now observe that for solving the fuzzy

matrix game FG we have to solve the crisp linear programming prob-
lems (GFP8) and (GFD8) for Player I and Player II respectively. Also,
if (x∗, λ∗) is an optimal solution of (GFP8) then x∗ is an optimal strat-
egy for Player I and λ∗ is the degree to which the aspiration level F(ṽ)
of Player I can be met by choosing to play the strategy x∗. Similar
interpretation can also be given to an optimal solution (y∗, η∗) of the
problem (GFD8). All the results discussed in this section can now be
summarized in the form of Theorem 7.6.1 given below.

Theorem 7.6.1 The fuzzy matrix game FG described by FG = (Sm, Sn,
Ã, ṽ, �, p̃, w̃, �, q̃) is equivalent to two crisp linear programming
problems (GFP8) and (GFD8) which constitute a primal-dual pair in
the sense of duality for linear programming in a fuzzy environment.

Remark 7.6.1. It is important to note that the crisp problems (GFP8)
and (GFD8) do not constitute a primal-dual pair in the conventional
sense of duality in linear programming but are dual in “fuzzy” sense as
explained above. Therefore if (x∗, λ∗) is optimal to (GFP8) and (y∗, η∗) is
optimal to (GFD8) then in general one should not expect that λ∗ = η∗.
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Remark 7.6.2. If both players have the same aspiration level, i.e.
F(ṽ) = F(w̃) and in the optimal solutions of (GFP8) and (GFD8)
λ∗ = η∗ = 1, then the fuzzy game FG reduces to the crisp two per-
son zero sum game G. Thus for F(ṽ) = F(w̃), λ∗ = η∗ = 1, FG reduces
to G; the pair (GFP8)-(GFD8) reduces to the crisp primal-dual pair
(LP)-(LD).

Now the solution procedure for solving such a game FG is illustrated
through the following numerical example:

Example 7.6.3. Consider the fuzzy game defined by the matrix of
fuzzy numbers :

Ã =
[ ˜180 ˜156

9̃0 ˜180

]
where ˜180 = (175, 180, 190), ˜156 = (150, 156, 158) and 9̃0 = (80, 90, 100).
Assuming that Player I and Player II have the tolerance levels p̃1 =
p̃2 = (14, 16, 20), and q̃1 = q̃2 = (13, 15, 22). The aspiration levels for the
Player I and Player II are ṽ = (155, 165, 175) and w̃ = (170, 180, 190)
respectively.
According to Theorem 7.6.1, to solve this game we have to solve fol-
lowing two crisp linear programming problems (GFP1) and (GFD1) for
Player I and Player II respectively:
(GFP8) max λ

subject to,

545x1 + 270x2 ≥ 495 − (1 − λ)(50)
464x1 + 545x2 ≥ 495 − (1 − λ)(50),

x1 + x2 = 1,
λ ≤ 1

x1, x2, λ ≥ 0,

and
(GFD8) min −η

subject to,

545y1 + 464y2 ≤ 540 + (1 − η)(50)
270y1 + 545y2 ≤ 540 + (1 − η)(50)

y1 + y2 = 1
η ≤ 1

y1, y2, η ≥ 0.
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Solving the above linear programming problems, we obtain (x∗1 =
0.7725, x∗2 = 0.2275, λ∗ = 0.5486) and (y∗1 = 0.0545, y∗2 = 0.9455, η∗ =
1). Therefore we obtain optimal strategies for Player I and Player II as
(x∗1 = 0.7725, x∗2 = 0.2275) and (y∗1 = 0.0545, y∗2 = 0.9455) respectively
and the two problems are dual to each other in the “fuzzy” sense as
has been discussed earlier.

7.7 Conclusion

This chapter is mainly devoted to the study of matrix games with
fuzzy pay-offs via a ranking (defuzzification) function approach. For
this, first a suitable duality is established for linear programming prob-
lems with fuzzy parameters and then the same is employed to develop a
solution procedure for solving two person zero sum matrix games with
fuzzy pay-offs. The whole development presented here depends heavily
on the resolution method of analyzing the system of double fuzzy in-
equalities of the type Ãx � b̃. In the literature, there are many other
approaches for analyzing the system of double fuzzy inequalities of the
type Ãx � b̃, the most notable being that of “modalities” due to Dubois
and Prade [16] which has been extended directly to linear programming
problems by Inuiguchi et al. ([26], [27], [28]). Recently, Inuiguchi et al.
[29] advocated yet another approach for the system Ãx � b̃ which is
based on fuzzy (valued) relations. In this chapter we have deliberately
followed the Zimmermann type approach as discussed above for the
system Ãx � b̃ so as to be in complete conformity with the notations
and terminology of Campos [10]. Further, it may be noted that the
ranking function approach as presented here to solve matrix games
with both fuzzy goals as well as fuzzy pay-offs, is significantly different
from that of Nishizaki and Sakawa [61]. In Nishizaki and Sakawa [61]
the solution of such game is obtained by solving a somewhat difficult
optimization problem in which the constraints are fractional, but here
only two simple linear programming problems need to be solved. Of
course there may be some difficulty in choosing an appropriate rank-
ing function for the given fuzzy scenario. But once a “good” choice of
ranking function has been made, then this approach seems to be at-
tractive because of its simplicity. This discussion is further continued
in Chapter 8 where some more models are presented for studying such
fuzzy matrix games.
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More on matrix games with fuzzy pay-offs

8.1 Introduction

This chapter is in continuation with the last chapter, and is devoted
to the study of two more models of matrix games with fuzzy pay-offs.
These models are Maeda’s model [50] and Li’s model [39]. The first
model (Maeda [50]) is based on fuzzy max order to define three kinds
of minmax equilibrium strategies so as to relate a (crisp) bi-matrix
game with the given fuzzy matrix game, while the model due to Li [39]
solves a matrix game with fuzzy pay-offs by solving a pair of related
multi objective linear programming problems. These models seem to
have some advantage over those prescribed in Chapter 7 because in
certain situations it may be difficult to choose a suitable defuzzification
(ranking) function.

This chapter has three main sections, namely, definitions and pre-
liminaries, a (crisp) bi-matrix game approach for matrix games with
fuzzy pay-offs: Maeda’s model, and, a two level linear programming ap-
proach for matrix games with fuzzy pay-offs: Li and Yang’s model.

8.2 Definitions and preliminaries

In this section, we recall some definitions and preliminaries introduced
in earlier chapters and also introduce some new ones which are used
here.

Definition 8.2.1 (Symmetric triangular fuzzy number). Let m ∈
R and h > 0. Then a fuzzy number ã is called a symmetric triangular
fuzzy number if its membership function is given by
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µã(x) =

⎧⎪⎪⎨⎪⎪⎩1 −
∣∣∣∣x −m

h

∣∣∣∣ , x ∈ [m − h, m + h],

0 , otherwise

Here m is called the center and h is called the deviation parameter of
ã. A symmetric triangular fuzzy number will be denoted by ã = (m, h)T.
Clearly a triangular fuzzy number ã = (al, a, au) will be symmetric if
a − al = au − a and in that case m = a and h = a − al = au − a, i.e.
ã = (m − h, m, m + h) = (m, h)T.

Let us recall that for a fuzzy number ã its α-cuts are given by
Aα = { x ∈ R : µã(x) ≥ α }, α ∈ (0, 1].

In the context of fuzzy numbers sometimes it is convenient to denote
Aα by [ã]α, α ∈ (0, 1]. Since α = 0 is not covered in this definition, we
define A0 (or equivalently [ã]0) separately as follows.

For α = 0, the set [ã]0 is defined as the closure of the set { x ∈ R :
µã(x) > 0 }. Thus for each α ∈ [0, 1], the set [ã]α is a closed interval
[aL
α, aR

α] where aL
α = inf [ã]α and aR

α = sup [ã]α

For defining various minmax equilibrium strategies we shall need to
compare two given elements of Rn. This comparison will be done in
accordance with the following understanding (Mangasarian [53]).

For x, y ∈ Rn, we shall write

(i) x � y if and only if xi � yi, (i = 1, 2 . . . ,n)
(ii) x ≥ y if and only if x � y, and, x � y, and,
(iii) x > y if and only if xi > yi, (i = 1, 2 . . . ,n)

These notations are normally used in the context of multiobjective
optimization only and, unless otherwise stated, we shall restrict their
usage in this chapter only.

Definition 8.2.2 (Ordering between fuzzy numbers). Let ã and
b̃ two fuzzy numbers. Then treating (aL

α, aR
α) and (bL

α, bR
α) as vectors in

R2 and following Mangasarian’s [53] notations, we define the fuzzy max
order ‘�’, the strict fuzzy max order ‘�’ and strong fuzzy max order ‘�’
as follows

(i) ã � b̃ if (aL
α, aR

α)T � (bL
α, bR

α)T, for all α ∈ [0, 1],
(ii) ã � b̃ if (aL

α, aR
α)T ≥ (bL

α, bR
α)T, for all α ∈ [0, 1],

(iii) ã � b̃ if (aL
α, aR

α)T > (bL
α, bR

α)T, for all α ∈ [0, 1].

The following theorem gives a characterization of above orders for
the case of symmetric triangular fuzzy numbers.
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Theorem 8.2.1 (Furukawa [19]). Let ã = (a, α)T and b̃ = (b, β)T be
two symmetric triangular fuzzy numbers. Then

(i) ã � b̃⇐⇒ |α − β| � (a − b)
(ii) ã � b̃⇐⇒ |α − β| < (a − b)

8.3 A bi-matrix game approach: Maeda’s model

Consider a two person zero-sum matrix game with fuzzy pay-offs de-
scribed by FG = (Sm, Sn, Ã), where the symbols have their usual
meanings as explained in Chapter 7. We now have the following three
types of concepts of equilibrium strategies for the game FG (Maeda
[50]).

Definition 8.3.1 (Minmax equilibrium strategy). An element
(x̄, ȳ) ∈ Sm × Sn is called a minmax equilibrium strategy of the game
FG = (Sm, Sn, Ã) if

(i) xTÃȳ � x̄TÃȳ, for all x ∈ Sm, and
(ii) x̄TÃȳ � x̄TÃy, for all y ∈ Sn.

In this case the scalar ṽ = x̄TÃȳ is said to be the (fuzzy) value of the
game FG and the triplet (x̄, ȳ, ṽ) is said to be a solution of FG under
the fuzzy max order ‘�’.

Definition 8.3.2 (Non-dominated minmax equilibrium strat-
egy). An element (x̄, ȳ) ∈ Sm × Sn is said to be a non-dominated
minmax equilibrium strategy of the game FG = (Sm, Sn, Ã) if

(i) there does not exist any x ∈ Sm such that x̄TÃȳ � xTÃȳ, and
(ii) there does not exist any y ∈ Sn such that x̄TÃy � x̄TÃȳ.

Definition 8.3.3 (Weak non-dominated minmax equilibrium
strategy.) An element (x̄, ȳ) ∈ Sm × Sn is said to be a weak non-
dominated minmax equilibrium strategy of the game FG = (Sm, Sn, Ã)
if

(i) there does not exist any x ∈ Sm such that x̄TÃȳ ≺ xTÃȳ, and
(ii) there does not exist any y ∈ Sn such that x̄TÃy ≺ x̄TÃȳ.

Remark 8.3.1. Minmax equilibrium strategy ⇒ non-dominated min-
max equilibrium strategy⇒ weak non-dominated minmax equilibrium
strategy.
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Remark 8.3.2. If Ã is crisp, i.e. the game FG is the usual two per-
son zero sum matrix game G = (Sm, Sn, A), then all the above three
definitions coincide and become the definition of the usual saddle point.

We now assume that the elements ãi j of the pay-off matrix Ã = (ãi j)
are symmetric triangular fuzzy numbers given by ãi j = (aij, hij)T and
A = (aij) and H = (hij) are two (m×n) crisp matrices resulting from the
fuzzy matrix Ã.

If we now agree to denote by [Ã]α = ([ãi j]α) where [ãi j]α is the α-level
set of the fuzzy number ãi j then for the symmetric TFN case

[Ã]α =
(
A − (1 − α)H, A + (1 − α)H

)
.

Here it may be noted that [Ã]α is not a matrix in the conventional
sense but rather it is an arrangement of (m × n) intervals of the type(
aij − (1 − α) hij, aij + (1 − α) hij

)
, (i = 1, 2 . . . ,m, j = 1, 2 . . . ,n).

Further, let fuzzy matrix games with symmetric TFN’s pay-offs be
denoted by SFG = (Sm, Sn, Ã).

The following theorem now gives a characterization of the minmax
equilibrium strategy of the game FG = (Sm, Sn, Ã) for the case of
symmetric TFN’s, i.e. for the game SFG.

Theorem 8.3.1 A point (x̄, ȳ) ∈ Sm × Sn is a minmax equilibrium
strategy of the game SFG = (Sm, Sn, Ã), Ã = (ãi j) with ãi j = (aij, hij)T,
if and only if

(i) xT(A +H)ȳ � x̄T(A +H)ȳ � x̄T(A +H)y, and
(ii) xT(A −H)ȳ � x̄T(A −H)ȳ � x̄T(A −H)y,

hold for all x ∈ Sm, y ∈ Sn.

Proof. Let (x̄, ȳ) ∈ Sm × Sn be a minmax equilibrium strategy of the
game SFG. Then from Theorem 8.2.1 we have

| x̄THȳ − xTHȳ | � x̄TAȳ − xTAȳ,
and

| x̄THy − x̄THȳ | � x̄TAy − x̄TAȳ,
for all x ∈ Sm, y ∈ Sn.
The result now follows directly by employing the definition of the mod-
ulus function and appropriate rearrangement of terms.

Remark 8.3.3. In view of the above theorem if we wish to solve the
game SFG, then we have to consider a pair of crisp two person zero-
sum games G1 = (Sm, Sn, A + H) and G2 = (Sm, Sn, A − H), and
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attempt to determine a point (x̄, ȳ) ∈ Sm×Sn which is simultaneously a
saddle point of G1 and G2. Since this is not going to happen in general,
the next best thing will be to look for solution in accordance with
the non-dominated minmax equilibrium strategy (Definition 8.3.2) or
weak non-dominated minmax equilibrium strategy (Definition 8.3.3).
The development given below asserts that the game SFG certainly has
a solution in these situations.

Theorem 8.3.2 Let xTAy be defined as the ordered pair(
xT(A +H)y, xT(A −H)y

)
∀x ∈ Sm, y ∈ Sn.

Then an element (x̄, ȳ) ∈ Sm × Sn is a non-dominated minmax equilib-
rium strategy of the game SFG if and only if

(i) there does not exist any x ∈ Sm such that x̄TAȳ ≤ xTAȳ, and
(ii) there does not exist any y ∈ Sn such that x̄TAy ≤ x̄TAȳ.

Proof. We shall first prove the direct part. For this let us assume that
(x̄, ȳ) ∈ Sm×Sn is a non-dominated minmax equilibrium strategy of the
game SFG. If possible, let there exist x̂ ∈ Sm such that x̄TAȳ ≤ (x̂)TAȳ.
This, by definition, implies(

x̄T(A −H)ȳ, x̄T(A +H)ȳ
)T ≤

(
x̂T(A −H)ȳ, x̂T(A +H)ȳ

)T
.

Now by appropriately rearranging terms in the above inequality we get(
x̄TAȳ − x̂TAȳ, x̄TAȳ − x̂TAȳ

)T ≤
(
x̄THȳ − x̂THȳ, x̂THȳ − x̄THȳ

)T
.

As both components on the L.H.S are same but on the R.H.S, they are
negative of the other, we have

x̄TAȳ − (x̂)TAȳ < 0,

i.e
x̄TAȳ < x̂TAȳ.

Also in view of the specific understanding of the symbol ‘≤’, the above
inequality with some obvious manipulations, gives that for all α ∈ [0, 1],

(
x̄T(A − (1 − α)H)ȳ, x̄T(A + (1 − α)H)ȳ

)T ≤
(
x̂T(A − (1 − α)H)ȳ, x̂T(A+

(1 − α)H)ȳ
)T
,
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which by Definition 8.2.2 implies that x̄TÃy � x̂TÃȳ. But this is a
contradiction to the fact that (x̄, ȳ) is a non-dominated minmax equi-
librium strategy. Similarly we can show that there does not exist any
y ∈ Sn such that x̄TAy ≤ x̄TAȳ.
Conversely, let (x̄, ȳ) ∈ Sm × Sn be such that conditions (i) and (ii) of
above theorem hold. We have to show that (x̄, ȳ) is a non-dominated
minmax equilibrium strategy of the game SFG.
For this, if possible, let there exist x̂ ∈ Sm such that x̄TÃȳ � x̂TÃȳ.
This, by definition, gives(

x̄T(A −H)ȳ, x̄T(A +H)ȳ
)T ≤

(
x̂T(A −H)ȳ, x̂T(A +H)ȳ

)T
,

which implies that
x̄TAȳ ≤ (x̂)TAȳ,

but this is a contradiction to the condition (i) of the theorem. Similarly
we can show that if there exists ŷ ∈ Sn such that x̄TÃŷ ≤ (x̄)TÃȳ then
condition (ii) of the theorem is contradicted.

Theorem 8.3.3 An element (x̄, ȳ) ∈ Sm×Sn is a weak non-dominated
minmax equilibrium strategy of the game SFG if and only if

(i) there does not exist any x ∈ Sm such that x̄TAȳ < xTAȳ, and
(ii) there does not exist any y ∈ Sn such that x̄TAy < x̄TAȳ.

The proof of Theorem 8.3.3 is similar to that of Theorem 8.3.2.
In view of Theorems 8.3.1-8.3.3, it is natural to define the bi-matrix
game BG(λ, µ) =

(
Sm, Sn, A(λ), −A(µ)

)
for λ, µ ∈ [0, 1], where A(λ) =

A + (1 − 2λ)H, and A(µ) = A + (1 − 2µ)H. Here it may be noted that
A(0) = A + H, A(1) = A − H, and for λ = µ, BG(λ, µ) becomes the
matrix game

(
Sm, Sn, A(λ)

)
.

We now recall the following from Chapter 1.

Definition 8.3.4 (Nash equilibrium strategy). Let λ, µ ∈ [0, 1].
A point (x̄, ȳ) ∈ Sm × Sn is called a Nash equilibrium strategy of the
game BG(λ, µ) if

(i) xTA(λ)ȳ � x̄TA(λ)ȳ, for all x ∈ Sm, and
(ii) x̄TA(µ)ȳ � x̄TA(µ)y, for all y ∈ Sn.

Theorem 8.3.4 An element (x̄, ȳ) ∈ Sm×Sn is a non-dominated min-
max equilibrium strategy of the game SFG if and only if there exist
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positive real numbers λ, µ ∈ (0, 1) such that (x̄, ȳ) is a Nash equilib-
rium strategy of the (crisp) bi-matrix game BG(λ, µ).

Proof. Let (x̄, ȳ) ∈ Sm × Sn be a non-dominated minmax equilibrium
strategy of the game SFG. Therefore, by Theorem 8.3.2, there does not
exist any x ∈ Sm such that x̄TAȳ ≤ xTAȳ i.e. there does not exist any
x ∈ Sm such that(

x̄T(A −H)ȳ, x̄T(A +H)ȳ
)T ≤

(
xT(A −H)ȳ, xT(A +H)ȳ

)T
.

But this implies (Steuer [71]) that there exist positive scalars λ1, λ2
with λ1 + λ2 = 1 such that for all x ∈ Sm,

x̄T
(
λ1(A +H) + λ2(A −H)

)
ȳ � xT

(
λ1(A +H) + λ2(A −H)

)
ȳ.

Now by taking λ2 = λ and λ1 = (1 − λ), the above inequality becomes

x̄T
(
A + (1 − 2λ)H

)
ȳ � xT

(
A + (1 − 2λ)H

)
ȳ, for all x ∈ Sm.

Similarly the second condition of Theorem 8.3.2 gives (Steuer [71]) that
there exists 0 < µ < 1 such that

x̄T
(
A + (1 − 2µ)H

)
ȳ � x̄T

(
A + (1 − 2µ)H

)
y, for all y ∈ Sn.

The above two inequalities therefore imply that (x̄, ȳ) is a Nash equi-
librium strategy of the bi-matrix game BG(λ, µ).
Conversely let λ, µ ∈ (0, 1) and (x̄, ȳ) be a Nash equilibrium strategy
of the game BG(λ, µ). Then by Definition 8.3.4

x̄T
(
A + (1 − 2λ)H

)
ȳ � xT

(
(A + (1 − 2λ)H

)
ȳ, for all x ∈ Sm,

and

x̄T
(
A + (1 − 2µ)H

)
y � x̄T

(
A + (1 − 2µ)H

)
ȳ, for all y ∈ Sn.

But
A + (1 − 2λ)H = λ(A −H) + (1 − λ)(A +H)

and
A + (1 − 2µ)H = µ(A −H) + (1 − µ)(A +H).

Therefore the above inequalities imply that for λ, µ ∈ (0, 1),

x̄T
(
λ(A−H)+ (1−λ)(A+H)

)
ȳ � xT

(
λ(A−H)+ (1−λ)(A+H)

)
ȳ, x ∈ Sm,
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and

x̄T
(
µ(A−H)+ (1−µ)(A+H)

)
y � x̄T

(
µ(A−H)+ (1−µ)(A+H)

)
ȳ, y ∈ Sn,

which again means (Steuer [71]) that there is no x ∈ Sm such that(
x̄T(A −H)ȳ, x̄T(A +H)ȳ

)T ≤
(
xT(A −H)ȳ, xT(A +H)ȳ

)T
,

and also there is no y ∈ Sn such that(
x̄T(A −H)y, x̄T(A +H)y

)T ≤
(
x̄T(A −H)ȳ, x̄T(A +H)ȳ

)T
.

The above inequalities now imply that (x̄, ȳ) is a non-dominated min-
max equilibrium strategy of the game SFG.

Theorem 8.3.5 An element (x̄, ȳ) ∈ Sm×Sn is a weak non-dominated
minmax equilibrium strategy, of the fuzzy matrix game SFG if and only
if there exist real numbers λ, µ ∈ [0, 1] such that (x̄, ȳ) is a Nash
equilibrium strategy of the bi-matrix game BG(λ, µ).

The proof of the above theorem is similar to that of Theorem 8.3.4.

Theorem 8.3.6 For the fuzzy matrix game SFG the following is true

(i) there exists at least one non-dominated minmax equilibrium strat-
egy,

(ii) there exists at least one weak non-dominated minmax equilibrium
strategy.

The proof of Theorem 8.3.6 follows because the existence of a Nash
equilibrium strategy for the (crisp) bi-matrix BG(λ, µ) is always guar-
anteed as stated in Theorem 1.5.1.

In view of Theorems 8.3.4 and 8.3.5, for finding a non-dominated
(weak non-dominated) minmax equilibrium strategy of the fuzzy ma-
trix game SFG we have to find Nash equilibrium strategies of the (crisp)
bi-matrix game BG(λ, µ).

Example 8.3.4. (Maeda [50]). Let us consider the fuzzy matrix
game SFG where the pay off matrix Ã is given by

Ã =
(

(180, 5)T (156, 6)T
(90, 10)T (180, 5)T

)
.

Now as explained in Theorem 8.3.4, to solve the fuzzy matrix game
SFG, we have to consider the (crisp) bi- matrix game BG(λ, µ) =



8.4 A multiobjective programming approach: Li’s model 165(
Sm, Sn, A(λ), −A(µ)

)
, where λ, µ ∈ (0, 1) and A(λ) = A + (1 − 2λ)H

and A(µ) = A + (1 − 2µ)H. For the given fuzzy matrix Ã, we have

A(λ) =
(

185 − 10λ 162 − 12λ
100 − 20λ 185 − 10λ

)
,

and

A(µ) =
(

185 − 10µ 162 − 12µ
100 − 20µ 185 − 10µ

)
.

Also for the (crisp) bi-matrix game BG =
(
Sm, Sn, A(λ), −A(µ)

)
, an ele-

ment (x∗, y∗) ∈ S2×S2 with x∗ = (x∗1, x∗2) =
(

85 + 10µ
108 + 12µ

,
23 + 2µ

108 + 12µ

)
, y∗ =

(y∗1, y∗2) =
( 23 + 2λ
108 + 12λ

,
85 + 10λ

108 + 12λ

)
, gives a Nash equilibrium strategy

of the game BG(λ, µ) =
(
S2, S2, A(λ), −A(µ)

)
.

Therefore, from Theorem 8.3.4 the set NDM of all non-dominated min-
max equilibrium strategies of the fuzzy matrix game SFG is given by

NDM = {(x∗, y∗)} =
{ (

(x∗1, x∗2
)
,
(
y∗1, y

∗
2)

)
: λ, µ ∈ (0, 1)

}
,

where x∗ and y∗ are as determined earlier.
In a similar manner, from Theorem 8.3.5, the set WNDM of all weak
non-dominated minmax equilibrium strategies is given by

WNDM =
{ (

(x∗1, x∗2
)
,
(
y∗1, y∗2

)
: λ, µ ∈ [0, 1]

}
.

Remark 8.3.5. For λ = µ, the bi-matrix game BG(λ, µ) of the above
example becomes the two person zero sum game G =

(
S2, S2, A(λ)

)
, λ ∈

(0, 1) and x∗ = (x∗1, x
∗
2), y∗ = (y∗1, y∗2) become optimal strategies for

Player I and II respectively. As shown by Maeda [50], this result is the
same as that of Campos [10]. However as the basic idea in Campos [10],
is to convert a fuzzy matrix game to matrix game with crisp pay-offs,
this approach can not be used for the case λ � µ. In this sense, Maeda’s
[50] approach is different from Campos [10] and is more general.

8.4 A multiobjective programming approach: Li’s model

In this section we present Li’s model [39] for solving the fuzzy ma-
trix game FG = (Sm, Sn, Ã), where Ã = (ãi j) with ãi j being a TFN.
The approach taken by Li [39] is different from Maeda [50] as it uses
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a different “ordering” for fuzzy numbers and also constructs a pair of
(crisp) multiobjective linear programming problems for the given fuzzy
game FG. These multiobjective linear programming problems are then
solved to obtain a “solution” of the given fuzzy matrix game FG. As it
happens, the solution procedure of Li [39] does not provide the com-
plete solution of the game FG. However Li and Yang [42] very recently
proposed a new two level linear programming approach to solve these
multiobjective linear programming problems so as to provide a com-
plete solution of the fuzzy matrix game FG. The presentation described
below is based on Li [39] and Li and Yang [42].

Definition 8.4.1 (Ordering of TFN’s). Let ã = (al, a, au) and b̃ =
(bl, b, bu) be two TFN’s. Then ã ≤̃ b̃ if al � bl, a � b, au � bu. The
symbol ã ≥̃ b̃ is defined similarly.

Remark 8.4.1. The ordering of triangular fuzzy numbers as described
above is a special case of ordering of general fuzzy numbers as intro-
duced by Ramik and Rimanek [65]. Specifically, given two fuzzy num-
bers ã and b̃ in accordance with Ramik and Rimanek [66], ã ≤̃ b̃ if for
α ∈ [0, 1],

(i) sup [ã]α � sup [b̃]α, and,
(ii) inf [ã]α � inf [b̃]α.

Here [ã]α, α ∈ [0, 1], is the α-cut of the fuzzy number ã as described in
Section 8.2. For the case where ã and b̃ are TFN’s (following Ramik and
Rimanek’s [66] notations ã = (m, α, β), b̃ = (n, ν, δ)) this definition
reduces to m � n, ν − α � n − m, β − δ � n − m, i.e. m � n, m −
α � n − ν, m + β � n + δ. In our notation, ã = (al, a, au), i.e. a =
m, al = m − α, au = m + β and similarly for b̃ = (bl, b, bu), we have
i.e. b = n, bl = n − ν, bu = n + δ. Therefore for the specific case of
TFN’s, the definition of ordering of Ramik and Rimanek [66] becomes
Definition 8.4.1.

We shall now introduce the concept of the solution of the fuzzy matrix
game FG = (Sm, Sn, Ã) under the chosen ordering of TFN’s. Here
Ã = (ãi j), and ãi j = ((ãi j)l, ãi j, (ãi j)u) (i = 1, 2, . . . ,m, j = 1, 2, . . . ,n) are
TFN’s.

Definition 8.4.2 (Reasonable solution of FG). Let ṽ = (vl, v, vu)
and w̃ = (wl, w, wu) be TFN’s. Then (ṽ, w̃) is called a reasonable
solution of the fuzzy matrix fame FG if there exist x̄ ∈ Sm, ȳ ∈ Sn such
that
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(i) x̄TÃy ≥̃ ṽ for all y ∈ Sn, and
(ii) xTÃȳ ≤̃ w̃ for all x ∈ Sm.

If (ṽ, w̃) is a reasonable solution of FG then ṽ (respectively w̃) is called
the reasonable value of Player I (respectively Player II).

Let V (respectively W) be the set of all reasonable values ṽ (respectively
w̃) for Player I (respectively Player II). Then we have the following
definition.

Definition 8.4.3 (Solution of the game FG). An element (ṽ∗, w̃∗) ∈
V ×W is called a solution of the game FG if

(i) ṽ∗ ≥̃ ṽ for all ṽ ∈ V, and
(ii) w̃∗ ≤̃ w̃ for all w̃ ∈W.

In fact, a much better way will be to call (x∗, y∗, ṽ∗, w̃∗) as a solution of
the game FG, where x∗ ∈ Sm, y∗ ∈ Sn are strategies for which (ṽ∗, w̃∗) is
a reasonable solution of the game FG. In that case x∗ (respectively y∗)
will be called an optimal strategy for Player I (respectively Player II),
and ṽ∗ (respectively w̃∗) the value of the game for Player I (respectively
Player II).

In view of Definitions 8.4.2 and 8.4.3, to solve the fuzzy matrix game
FG we should solve the following fuzzy optimization problems (FOP1)
and (FOP2) for Player I and Player II respectively
(FOP1) max ṽ

subject to,

xTÃy ≥̃ ṽ, for all y ∈ Sn,
x ∈ Sm,

and
(FOP2) min w̃

subject to,

xTÃy ≤̃ w̃, for all x ∈ Sm,
y ∈ Sn.

Since x ∈ Sm, y ∈ Sn and fuzzy inequalities ‘≥̃’ and ‘≤̃’ are preserved
under positive multiplication, it makes sense to consider only extreme
points of sets Sm and Sn in problems (FOP1) and (FOP2). This leads to
problems
(FOP3) max ṽ

subject to,
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m∑
i=1

ãi jxi ≥̃ ṽ, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0,

and
(FOP4) min w̃

subject to,

n∑
j=1

ãi jyj ≤̃ w, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0.

As ãi j (i = 1, 2, . . . ,m j = 1, 2, . . . ,n) are TFN’s, so should be ṽ
and w̃, because only then the constraints of (FOP1) and (FOP2)

(
i.e.

of (FOP3) and (FOP4)
)

will be meaningful. Let ṽ = (vl, v, vu), and
w̃ = (wl, w, wu) be TFN’s then problems (FOP3) and (FOP4) can
respectively be rewritten as
(FOP5) max (vl, v, vu)

subject to,

m∑
i=1

(aij)lxi � vl, ( j = 1, 2, . . . ,n),

m∑
i=1

aijxi � v, ( j = 1, 2, . . . ,n),

m∑
i=1

(aij)uxi � vu, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0,

and
(FOP6) min (wl, w, wu)

subject to,
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n∑
j=1

(aij)lyj � wl, (i = 1, 2, . . . ,m),

n∑
j=1

aijyj � w, (i = 1, 2, . . . ,m),

n∑
j=1

(aij)uyj � wu, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0.

Now (FOP5) and (FOP6) are (crisp) multiobjective linear program-
ming problems. The main question now is that in what sense we should
define the “solution” of (FOP5) (and (FOP6)) so that the “solution” so
obtained is consistent with Definitions 8.4.1 and 8.4.3. It is not difficult
to see that this will happen for example, if we say that (x∗, v∗) is optimal
to (FOP5) provided v∗l � vl, v∗ � v, v∗u � vu for all (x, v) feasible to
(FOP5), where v∗ = (v∗l , v∗, v∗u) and v = (vl, v, vu). This means that if
we denote the set of all feasible solutions of (FOP5) by T then the three
scalar optimization problems, namely max

T
vl, max

T
v, max

T
vu achieve

their optimal value for the same (x∗, v∗). This is something which is go-
ing to happen very rarely. Similar arguments hold for problem (FOP6)
as well. Therefore probably the very definition of the solution of the
game FG (Definition 8.4.3) should be modified.

Since the multiobjective programming problems are most satisfacto-
rily discussed for the case of Pareto optimal solutions, we should define
the “solutions of the game FG” in this sense only. This leads to the
following definition.

Definition 8.4.4 (Solution of the game FG). An element
(
ṽ∗ =

(v∗l , v
∗, v∗u), w̃∗ = (w∗l ,w

∗,w∗u)
)
∈ V ×W is called a solution of the game

FG if

(i) there does not exist any ṽ = (vl, v, vu) ∈ V such that (vl, v, vu) ≥
(v∗l , v∗, v∗u), and

(ii) there does not exist any w̃ = (wl, w, wu) ∈ V such that (wl, w, wu) ≤
(w∗l , w∗, w∗u).

Here the orderings ‘≥’ and ‘≤’ in Rn are to be understood in the
sense as discussed in Section 8.2 (Magasarian [53]).

Now to be in conformity with the above definition of the solution
of the fuzzy matrix game FG, we should therefore take the multiobjec-
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tive linear programming problems (FOP5) and (FOP6) and attempt
to obtain their Pareto optimal solutions

(
x∗, ṽ∗ = (v∗l , v∗, v∗u)

)
and(

y∗, w̃∗ = (w∗l , w∗, w∗u)
)
. These solutions will give (x∗, y∗, v∗,w∗) which

could then be taken as “a solution of the fuzzy matrix game FG” in the
sense of Definition 8.4.4. As problems (FOP5) and (FOP6) are (crisp)
multiobjective linear programming problems it is better to denote them
(MOP1) and (MOP2). Thus (MOP1) and (MOP2) are
(MOP1) max (vl, v, vu)

subject to,

m∑
i=1

(aij)lxi � vl, ( j = 1, 2, . . . ,n),

m∑
i=1

aijxi � v, ( j = 1, 2, . . . ,n),

m∑
i=1

(aij)uxi � vu, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0,

and
(MOP2) min (wl, w, wu)

subject to,

n∑
j=1

(aij)lyj � wl, (i = 1, 2, . . . ,m),

n∑
j=1

aijyj � w, (i = 1, 2, . . . ,m),

n∑
j=1

(aij)uyj � wu, (i = 1, 2, . . . ,m),

eT y = 1,
y ≥ 0.

respectively.
Li and Yang [42] suggested a two level linear programming approach

to find solutions of (MOP1) and (MOP2) in the sense of Pareto opti-
mality. We below discuss this approach for solving (MOP1); the details
of solving (MOP2) will be similar and can be described on the same
lines.
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Level 1 : Consider the following scalar linear programming problem,
namely Level-1: LPP,

max v
subject to,

m∑
i=1

(aij)lxi � vl, ( j = 1, 2, . . . ,n),

m∑
i=1

aijxi � v, ( j = 1, 2, . . . ,n),

m∑
i=1

(aij)uxi � vu, ( j = 1, 2, . . . ,n),

eTx = 1,
x ≥ 0,

Here the decision variables are x = (x1, x2, . . . xn) and (vl, v, vu). Let
an optimal solution of (Level-1: LPP) be obtained as (x∗, vo

l , v∗, vo
u).

Level 2: Construct the following scalar linear programming problem,
namely Level-2: LPP,

max (vl, vu)
subject to,

vl �
m∑

i=1

(aij)lx∗i , ( j = 1, 2, . . . ,n),

vu �
m∑

i=1

(aij)ux∗i , ( j = 1, 2, . . . ,n).

Here vl and vu are decision variables. Since constraints for vl and
vu are independent, the (Level-2: LPP) can be decomposed into the
following linear programming problem
(Level-2: LPP1) max vl

subject to,

vl �
m∑

i=1

(aij)lx∗i , ( j = 1, 2, . . . ,n)

and,
(Level-2: LPP2) max vu

subject to,



172 8 More on matrix games with fuzzy pay-offs

vu �
m∑

i=1

(aij)ux∗i , ( j = 1, 2, . . . ,n).

Let optimal solutions of these two LPP’s be given by v∗l and v∗u
respectively.
Level 3: Stop, as a Pareto optimal solution of (MOP1), namely
(x∗1, x∗2, v∗l , v∗, v∗u), has been obtained.

Remark 8.4.2. Once a Pareto optimal solution
(
x∗, (v∗l , v∗, v∗u)

)
of

(MOP1) has been obtained, the fuzzy game FG = (Sm, Sn, Ã) has been
solved with x∗ as an optimal strategy for Player I and ṽ∗ = (v∗l , v∗, v∗u)
as (fuzzy) value for Player I. Similar arguments hold for Player II as
well and a two level linear programming approach for solving (MOP2)
can be described to get an optimal strategy y∗, and a fuzzy value
w̃∗ = (w∗l , w∗, w∗u) for Player II.

We now illustrate the above procedure with the help of following
numerical example.

Example 8.4.3. (Li and Yang [42], Campos [10]). Consider the
fuzzy matrix game FG = (S2, S2, Ã), where

Ã =
(

(175, 180, 190) (150, 156, 158)
(80, 90, 100) (175, 180, 190)

)
.

As per our discussion above, to solve the fuzzy matrix game FG, we
have to solve following multiobjective linear programming problems
(MOP1) and (MOP2) in the sense of Pareto optimality
(MOP1) max (vl, v, vu)

subject to,

175x1 + 80x2 � vl
150x1 + 175x2 � vl
180x1 + 90x2 � v

156x1 + 180x2 � v
190x1 + 100x2 � vu
158x1 + 190x2 � vu

x1 + x2 = 1
x1, x2 ≥ 0,

and
(MOP2) min (wl, w, wu)

subject to,
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175y1 + 150y2 � wl
80y1 + 175y2 � wl

180y1 + 156y2 � w
90y1 + 180y2 � w

190y1 + 158y2 � wu
100y1 + 190y2 � wu

y1 + y2 = 1
y1, y2 ≥ 0.

We now solve (MOP1) by the two level linear programming approach.
For this, we first consider the (Level-1: LPP) as follows

max v
subject to,

175x1 + 80x2 � vl
150x1 + 175x2 � vl
180x1 + 90x2 � v

156x1 + 180x2 � v
190x1 + 100x2 � vu
158x1 + 190x2 � vu

x1 + x2 = 1
x1, x2 ≥ 0,

This (Level-1: LPP) can be solved by the simplex algorithm to obtain
its optimal solution x∗ = (0.7895, 0.2105), v∗ = 161.05, vo

l = 61.398 and
vo

u = 163.63.
Next we construct two Level-2 linear programming problems as follows
(Level-2: LPP1) max vl

subject to,

vl � 175(0.7895) + 80(0.2105),
vl � 150(0.7895) + 175(0.2105),

and
(Level-2: LPP2) max vu

subject to,

vu � 190(0.7895) + 158(0.2105),
vu � 158(0.7895) + 190(0.2105).

These Level-2 LPP’s can further be simplified to following two linear
programming problems
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max vl
subject to,

vl � 155.0025,
vl � 155.2625,

and,
max vu
subject to,

vu � 183.264,
vu � 164.736,

whose optimal solutions are v∗l = 155.0025 and v∗u = 164.736 re-
spectively. Therefore (x∗, v∗) with x∗ = (0.7895, 0.2105) and ṽ∗ =
(v∗l , v∗, v∗u) = (155.0025, 161.05, 164.736) is a Parteo optimal solu-
tion of (MOP1).
Similarly, (y∗, w∗) with y∗ = (0.2105, 0.7895) and w̃∗ = (w∗l , w∗, w∗u) =
(155.264, 161.05, 171.052) is a Pareto optimal solution of (MOP2).

From the above discussion we conclude that the given fuzzy game has
optimal strategies for Player I and Player II as (0.7895, 0.2105) and
(0.2105, 0.7895) respectively, and, values of the game for Player I and
Player II are (155.0025, 161.05, 164.736) and (155.264, 161.05, 171.052)
respectively.

Here it must be noted that because the given matrix game is fuzzy,
Player I and Player II will have fuzzy values only as indicated above.
Further, we also know the complete membership function of ṽ∗ and w̃∗,
unlike the earlier results obtained in Chapter 7 where only representa-
tive values F(ṽ∗) and F(w̃∗) were obtained.

8.5 Conclusions

Continuing with our discussion from Chapter 7, in this chapter we
have presented Maeda’s model and Li’s model along with Li and Yang’s
model for matrix games with fuzzy pay-offs. These model do not require
any priori choice of the ranking function and therefore seemingly are
more useful for the fuzzy scenario. However, unlike the ranking function
approach, these models do not seem to provide any equivalence in terms
of duality in fuzzy linear programming.
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Fuzzy Bi-Matrix Games

9.1 Introduction

In this chapter, bi-matrix games in fuzzy scenario are considered and
an attempt is made to conceptualize the meaning of an equilibrium so-
lution for such games. The fuzzy scenario could be in terms of fuzzy
goals or fuzzy pay-offs, or both. It is assumed that each player tries to
maximize some “measure” of attainment for his goal and the aim is to
find an equilibrium solution with respect to that “measure” of attain-
ment of these fuzzy goals. As in fuzzy linear programming and fuzzy
matrix games, this analysis will lead to an equivalent (crisp) mathe-
matical programming problem whose solution will render the desired
equilibrium solution for the fuzzy case.

The contents of this chapter are based on Maeda [49], Nishizaki
and Sakawa [61] and Vijay, Chandra and Bector [77]. This chapter
is divided into five main sections, namely bi-matrix games with fuzzy
goals: Nishizaki and Sakawa’s model, bi-matrix games with fuzzy goals:
another approach, bi-matrix games with fuzzy pay-offs: a ranking func-
tion approach, bi-matrix games with fuzzy goals and fuzzy pay-offs, and
bi-matrix games with fuzzy pay-offs: a possibility measure approach.

9.2 Bi-matrix games with fuzzy goals: Nishizaki and
Sakawa’s model

Nishizaki and Sakawa [61] defined a bi-matrix game with fuzzy goals
as

BFG = (Sm, Sn, A, B, µG1 , µG2 , a, ā, b, b̄),
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where Sm, Sn, A and B are as defined in Chapter 1, and a, ā (ā > a) are
scalars which are used in defining the fuzzy goal G1 and it’s associated
membership function µG1 for Player I. In a similar manner, the scalars
b, b̄ (b̄ > b) and the membership function µG2 are to be understood for
Player II.

Although a, ā, b and b̄ could be any scalars with ā > a and
b̄ > b; Nishizaki and Sakawa [61] has suggested a = min

i
min

j
ai j, ā =

max
i

max
j

ai j, b = min
i

min
j

bi j and b̄ = max
i

max
j

bi j with the inter-

pretation that a (respectively b) gives the worst degree of satisfaction
and ā (respectively b̄) gives the best degree of satisfaction for Player I
(respectively Player II).

Definition 9.2.1 (Fuzzy goal for Player I). Let D1 = {xTAy : x ∈
Sm, y ∈ Sn} and v ∈ D1. Then a fuzzy goal for Player I is a fuzzy set
G1 with the membership function µG1 : D1 −→ [0, 1]. The fuzzy goal
G1 can also be symbolically written as v �p0 ā, where the tolerance p0
equals (ā − a).

Definition 9.2.2 (Fuzzy goal for Player II). Let D2 = {xTBy : x ∈
Sm, y ∈ Sn} and w ∈ D2. Then a fuzzy goal for Player II is a fuzzy
set G2 with the membership function µG2 : D2 −→ [0, 1]. The fuzzy goal
G2 can also be symbolically written as w �q0 b̄, where the tolerance q0
equals (b̄ − b).

Now on wards for the sake of convenience, we shall write µ1 and µ2
for µG1 and µG2 respectively.

Definition 9.2.3 (Equilibrium solution of BFG). A pair (x∗, y∗) ∈
Sm × Sn is said to be an equilibrium solution of BFG if

µ1(x∗TAy∗) ≥ µ1(xTAy∗), ∀ x ∈ Sm,
and

µ2(x∗TBy∗) ≥ µ2(x∗TBy), ∀ y ∈ Sn.

Thus an equilibrium solution for BFG is defined with respect to the
degree of attainment of the fuzzy goals.

If the membership functions of the fuzzy goals G1 and G2 are linear
then they can be represented as

µ1(xTAy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , xTAy ≤ a,

1 − ā − xTAy
ā − a

, a < xTAy < ā,

1 , xTAy ≥ ā,



9.2 Bi-matrix games with fuzzy goals: Nishizaki and Sakawa’s model 177

and

µ2(xTBy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , xTBy ≤ b,

1 − b̄ − xTBy
b̄ − b

, b < xTBy < b̄,

1 , xTBy ≥ b̄.

Now,

1 −
(

ā − xTAy
ā − a

)
=

( −a
ā − a

)
+ xT

(
A

ā − a

)
y

and

1 −
(

b̄ − xTBy
b̄ − b

)
=

( −b

b̄ − b

)
+ xT

(
B

b̄ − b

)
y.

Therefore letting

Â =
A

ā − a
, B̂ =

B
b̄ − b

, c1 = − a
ā − a

and c2 = − b

b̄ − b
,

the membership functions µ1(xTAy) and µ2(xTBy) can be rewritten as

µ1(xTAy) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , xTAy ≤ a,
c1 + xTÂy , a ≤ xTAy ≤ ā,
1 , ā ≤ xTAy,

and

µ2(xTBy) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , xTBy ≤ b,
c2 + xTB̂y , b ≤ xTBy ≤ b̄,
1 , b̄ ≤ xTBy,

respectively.
We now consider the (crisp) bi-matrix games BG = (Sm, Sn, A, B)

and B̂G = (Sm, Sn, Â, B̂). The following theorem states that bi-matrix
games BG and B̂G have the same set of equilibrium solutions.

Theorem 9.2.1 The pair (x∗, y∗) ∈ Sm × Sn is an equilibrium solution
of BG = (Sm, Sn, A, B) if and only if it is also an equilibrium solution
of B̂G = (Sm, Sn, Â, B̂).

Proof. First, we will prove that a pair of strategies (x∗, y∗) which is an
equilibrium solution of BG is also an equilibrium solution of B̂G. Now
(x∗, y∗) being an equilibrium solution of BG, we have
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x∗TAy∗ ≥ xTAy∗, ∀ x ∈ Sm,

and

x∗TBy∗ ≥ x∗TBy, ∀ y ∈ Sn.

This implies

x∗T
(

A
ā − a

)
y∗ ≥ xT

(
A

ā − a

)
y∗, ∀ x ∈ Sm,

and

x∗T
(

B
b̄ − b

)
y∗ ≥ x∗T

(
B

b̄ − b

)
y, ∀ y ∈ Sn,

which gives that (x∗, y∗) is an equilibrium solution of B̂G. The converse
follows by just going backward.

Our next theorem states that an equilibrium solution of the (crisp)
bi-matrix game BG (or B̂G) is also an equilibrium solution with respect
to the degree of attainment of the fuzzy goals for the fuzzy bi-matrix
game BFG.

Theorem 9.2.2 Let (x∗, y∗) be an equilibrium solution of the (crisp)
bi-matrix game BG (or B̂G). Also let the membership functions µ1 and
µ2 for fuzzy goals G1 and G2 be linear as described above. Then (x∗, y∗)
is also an equilibrium solution of the fuzzy bi-matrix game BFG in the
sense of Definition 9.2.3.

Proof. Let (x∗, y∗) be an equilibrium solution of the (crisp) bi-matrix
game BG. Then by Theorem 9.2.1 it is also an equilibrium solution of
the (crisp) bi-matrix game B̂G. Therefore we have

x∗TAy∗ ≥ xTAy∗, ∀ x ∈ Sm,

x∗TBy∗ ≥ x∗TBy, ∀ y ∈ Sn,

x∗TÂy∗ ≥ xTÂy∗, ∀ x ∈ Sm,

and
x∗TB̂y∗ ≥ x∗TB̂y, ∀ y ∈ Sn.

We also recall that
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µ1(xTAy) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , xTAy ≤ a,
c1 + xTÂy , a ≤ xTAy ≤ ā,
1 , ā ≤ xTAy.

Now we consider the following cases and observe that
Case 1. If xTAy∗ ≤ x∗TAy∗ ≤ a, then

µ1(x∗TAy∗) = µ1(xTAy∗) = 0.
Case 2. If xTAy∗ ≤ a ≤ x∗TAy∗, then

µ1(x∗TAy∗) ≥ µ1(xTAy∗) = 0.
Case 3. If a ≤ xTAy∗ ≤ x∗TAy∗ ≤ ā, then

µ1(xTAy∗) = xTÂy∗ + c1,
µ1(x∗TAy∗) = x∗TÂy∗ + c1,

which because of x∗TÂy∗ ≥ xTÂy∗, gives
µ1(x∗TAy∗) ≥ µ1(xTAy∗).

Case 4. If xTAy∗ ≤ ā ≤ x∗TAy∗, then
µ1(xTAy∗) ≤ 1 and µ1(x∗TAy∗) = 1.

Therefore
1 = µ1(x∗TAy∗) ≥ µ1(xTAy∗).

Case 5. If ā ≤ xTAy∗ ≤ x∗TAy∗, then
µ1(x∗TAy∗) = µ1(xTAy∗) = 1.

The above cases imply that for all x ∈ Sm, µ1(x∗TAy∗) ≥ µ1(xTAy∗).
Similarly for all y ∈ Sn, we have µ2(x∗TBy∗) ≥ µ2(xTBy∗).

Now similar to the crisp case, we have the following theorem which
states that if (x∗, y∗) is an optimal solution of the quadratic program-
ming problem Q̂PP then (x∗, y∗) is an equilibrium solution of the fuzzy
bi-matrix game BFG.

Theorem 9.2.3 Let (x∗, y∗, p∗, q∗) be an optimal solution of the fol-
lowing quadratic programming problem B̂FG

max xTÂy + xTB̂y − p − q
subject to,

Ây ≤ pe,
B̂Tx ≤ qe,
eTx = 1,
eT y = 1,

x ≥ 0,
y ≥ 0.

Then (x∗, y∗) is an equilibrium solution of the fuzzy bi-matrix game
(BFG).
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Proof. Given that (x∗, y∗, p∗, q∗) is a solution of Q̂PP, Theorem 1.6.1
implies that (x∗, y∗) is an equilibrium solution of the (crisp) bi-matrix
game B̂G = (Sm, Sn, Â, B̂). But, by Theorem 9.2.2, this means that
(x∗, y∗) is an equilibrium solution of the fuzzy bi-matrix game BFG in
the sense of Definition 9.2.3.

Remark 9.2.1. Once an optimal solution (x∗, y∗, p∗, q∗) of Q̂PP has
been obtained, (x∗, y∗) gives an equilibrium solution of the fuzzy bi-
matrix game (BFG). The degree of attainment of fuzzy goals G1 and G2
can then be determined by evaluating x∗TAy∗ (or x∗TÂy∗) and x∗TBy∗
(or x∗TB̂y∗) and then employing the membership functions µ1 and µ2.

9.3 Bi-matrix games with fuzzy goals: another approach

In the last section, we have presented Nishizaki and Sakawa’s [61] ap-
proach to study bi-matrix games with fuzzy goals BFG. In this section,
we conceptualize such a game in a manner which is somewhat different
than that of Nishizaki and Sakawa [61] and show its equivalence to
a special type of nonlinear programming problem in which the objec-
tive function as well as all constraint functions are linear except two
quadratic constraint functions. This new bi-matrix game with fuzzy
goals is denoted by BGFG and the results reported here for BGFG are
based on Vijay, Chandra and Bector [77].

Let Sm, Sn, A and B be as introduced in the Section 9.2. Let v0, w0
be scalars representing the aspiration levels of Player I and Player II
respectively. Then the bi-matrix game with fuzzy goals under consid-
eration here is, denoted by BGFG, and is defined as

BGFG = (Sm, Sn, A, B, v0, �, w0, �),

where ‘�’ and ‘�’ are the fuzzified versions of ‘≤’ and ‘≥’ respectively.
Therefore the game BGFG gets fixed only when the specific choices
of membership functions are made to define fuzzy inequalities ‘�’ and
‘�’. Here we shall interpret ‘�’ and ‘�’ in the sense of Zimmerman [91]
although a more general interpretation in terms of modalities and fuzzy
relations can also be taken.

Let t be a real variable and a ∈ R. Let p̂ > 0. We now recall the
notation “t �p̂ a” from Chapter 6 and note that this is to be read as
“t is essentially greater or equal to a with tolerance p̂”, and is to be
understood in terms of the following membership function
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µD(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , t ≥ a,

1 −
(

a − t
p̂

)
, (a − p̂) ≤ t ≤ a,

0 , t < (a − p̂).

We also recall the below given lemma from Chapter 6.

Lemma 9.3.1. Let t1�p̂a, t2�p̂a, α ≥ 0, β ≥ 0 and α + β = 1. Then
αt1 + βt2 �p̂ a.

In view of the above discussion we include tolerances p0, p′0 for Player
I, and, q0 and q′0 for Player II respectively in our definition of the fuzzy
bi-matrix game BGFG and therefore take BGFG as

BGFG = (Sm, Sn, A, B, v0, p0, p′0, w0, q0, q′0, �, �).

Now we define the meaning of an “equilibrium solution” of the fuzzy
bi-matrix game BGFG.

Definition 9.3.1 (Equilibrium solution of BGFG). A point (x∗, y∗) ∈
Sm × Sn is called an equilibrium solution of the fuzzy bi-matrix game
BGFG if

xTAy∗ �p0 v0, ∀ x ∈ Sm,
x∗TBy �q0 w0, ∀ y ∈ Sn,

x∗TAy∗ �p′0 v0,

x∗TBy∗ �q′0 w0.

Remark 9.3.2. For the crisp scenario above inequalities become

xTAy∗ ≤ v0,∀x ∈ Sm,

x∗TBy ≤ w0,∀y ∈ Sn,

x∗TAy∗ ≥ v0,

and
x∗TBy∗ ≥ w0.

Therefore for all x ∈ Sm, y ∈ Sn we have xTAy∗ ≤ x∗TAy∗ and x∗TBy ≤
x∗TBy∗ which is the same as the definition for an equilibrium solution
for the (crisp) bi-matrix game BG.
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In the Definition 9.3.1, the sets Sm and Sn are convex polytopes, there-
fore in view of Lemma 9.3.1, for the specific choice of membership
functions of type µD(t), it is sufficient to consider only the extreme
points (i.e. pure strategies) of Sm and Sn. This observation leads to the
following fuzzy non-linear programming problem (FNP)
(FNP) Find (x, y) such that

Aiy �p0 v0, (i = 1, 2, . . . ,m),
Bj

Tx �q0 w0, ( j = 1, 2, . . . ,n),
xTAy �p′0 v0,
xTBy �q′0 w0,

x ∈ Sm,
y ∈ Sn,

where for i = 1, 2, . . . ,m, Ai denotes the ith row of A and for j =
1, 2, , . . . ,n, Bj denotes the jth column of B.

Now as per the requirement for the use of Lemma 9.3.1, we have
to define the specific linear membership functions of type µD(t) for
all the fuzzy constraints. Therefore membership function µi(Aiy), (i =
1, 2, . . . ,m), which gives the degree to which y satisfies fuzzy constraint
Aiy �po vo and ν j(BT

j x), ( j = 1, 2, . . . ,n), which gives the degree to which

x satisfies the fuzzy constraint BT
j x �po wo, are given as

µi(Aiy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , Aiy ≤ v0,

1 − Aiy − v0

p0
, v0 ≤ Aiy ≤ v0 + p0,

0, , Aiy ≥ v0 + p0,

and

ν j(Bj
Tx) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , Bj

Tx ≤ w0,

1 − Bj
Tx − w0

q0
, w0 ≤ Bj

Tx ≤ w0 + q0,

0 , Bj
Tx ≥ w0 + q0,

respectively.
Similarly, linear membership functions for the fuzzy constraints

xTAy �p′0 v0 and xTBy �q′0 w0 are defined as follows

µ0(xTAy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , xTAy ≥ v0,

1 − v0 − xTAy
p′0

, v0 ≥ xTAy ≥ v0 − p′0,

0 , xTAy ≥ v0 − p′0,
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and

ν0(xTBy) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 , xTBy ≥ w0,

1 − w0 − xTBy
q′0

, w0 ≥ xTBy ≥ w0 − q′0,

0, , xTBy ≤ w0 − q′0.

Now employing the above mentioned membership functions and fol-
lowing Zimermann’s approach [90], we obtain the crisp equivalent of the
fuzzy non-linear programming (FNP) as
(NLP) max λ

subject to,

λ ≤ 1 − Aiy − v0

p0
, (i = 1, 2, . . . ,m),

λ ≤ 1 − Bj
Tx − w0

q0
, ( j = 1, 2, . . . ,n),

λ ≤ 1 +
xTAy − v0

p′0
,

λ ≤ 1 +
xTBy − w0

q′0
,

x ∈ Sm,
y ∈ Sn,
λ ∈ [0, 1].

The above discussion leads to the following theorem:

Theorem 9.3.1 Let (x∗, y∗, λ∗) be an optimal solution to the problem
(NLP). Then (x∗, y∗) is an equilibrium solution of the fuzzy bi-matrix
game BGFG and λ∗ is the least degree up to which the respective aspi-
ration levels (goals) v0 and w0 of Player I and Player II are met.

Remark 9.3.3. Let (x∗, y∗, λ∗) be a solution to the (NLP) with λ∗ =
1. Then BGFG becomes the (crisp) bi-matrix game BG and (x∗, y∗)
becomes its equilibrium solution. Therefore various results of (crisp)
bi-matrix game theory follow as a special case of fuzzy bi-matrix game
theory. Further, for λ∗ = 1, the non-linear programming problem (NLP)
reduces to the system
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Aiy ≤ v0, (i = 1, 2, . . . ,m),
Bj

Tx ≤ w0, ( j = 1, 2, . . . ,n),
xTAy = v0,
xTBy = w0,

x ∈ Sm,
y ∈ Sn,

which implies Theorem 1.6.1.

Special Cases:

It has already been explained in Remark 9.3.3 that various results of
crisp bi-matrix game theory follow as a special case of fuzzy bi-matrix
game theory. In the following certain other special cases are presented
so as to bring out differences/similarities between the results of this
section with that of Nishizaki and Sakawa as presented in Section 9.2.

1. Let us recall from Section 9.2 that if (x∗, y∗, p∗, q∗) is a solution of
the quadratic programming problem (QPP) then it is also an equi-
librium solution of the fuzzy bi-matrix game BFG, where

(QPP): max xT
(

A
ā − a

)
y + xT

(
B

b̄ − b

)
y − p − q

subject to, (
A

ā − a

)
y ≤ pe,(

BT

b̄ − b

)
x ≤ qe,

eTx = 1,
eT y = 1,
x, y ≥ 0.

Now from Mangasarian and Stone [52] and also from results of
Section 9.2, it is known that if (x∗, y∗, p∗, q∗) is an optimal so-
lution to the above quadratic programming problem (QPP) then
x∗TAy∗ = p(ā − a) and x∗TBy∗ = q(b̄ − b). Therefore to obtain (crisp)
bi-matrix game as a special case of the fuzzy bi-matrix game (BFG),
the membership function values µ1(x∗TAy∗) and µ2(x∗TBy∗) should
be equal to 1. Therefore we should have x∗TAy∗ ≥ ā and x∗TBy∗ ≥ b̄;
which can be written as p(ā − a) ≥ ā and q(b̄ − b) ≥ b̄. Since no
relationship between ā and p(ā− a), and also between b̄ and q(b̄− b),
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is given in Nishizaki and Sakawa [61] the results of crisp bi-matrix
game do not seem to follow from the fuzzy bi-matrix game BFG.

2. As has been observed in Chapter 1, a crisp two person zero-sum
matrix game is a special case of crisp bi-matrix game. More ex-
plicitly, the quadratic programming problem given by Mangasar-
ian and Stone [52] decomposes itself into a pair of two primal-
dual linear programming problems for the case A = −B. Since

assumption A = −B does not imply
A

ā − a
=

B
b̄ − b

in general the

above quadratic programming problem (QPP) given by Nishizaki
and Sakawa may not always decompose in this manner. There is
similar difficulty with the fuzzy bi-matrix (BGFG) as well. However
if we choose ā = max

i
max

j
ai j, a = min

i
min

j
ai j, b̄ = max

i
max

j
bi j

and b = min
i

min
j

bi j then (QPP) decomposes itself into two linear

programming problems which are dual to each other. In a similar
manner if λ∗ = 1, αo = −βo then for the case B = −A, an optimal
solution (x∗, y∗, λ∗ = 1) gives xTAy∗ ≤ x∗T Ay∗ ≤ x∗T Ay for all x ∈ Sm

and y ∈ Sn, thereby implying that (x∗, y∗) is a saddle point of the
(crisp) matrix game G = (Sm, Sn, A).

9.4 Bi-matrix games with fuzzy pay-offs: a ranking
function approach

In Chapter 7, we have already seen a ranking function approach to
matrix games with fuzzy pay-offs. Here we attempt to extend the same
to bi-matrix games with fuzzy pay-offs . Let Sm, Sn be as in Section 9.2
and, Ã and B̃ be the pay-off matrices with entries as fuzzy numbers for
Player I and Player II respectively. Then a bi-matrix game with fuzzy
pay-offs, denoted by BGFP, is defined as

BGFP = (Sm, Sn, Ã, B̃).

Now, we define the meaning of an “equilibrium solution” of the fuzzy
bi-matrix game BGFP. For this we first have the following definition.

Definition 9.4.1 (Reasonable solution of BGFP). Let ṽ, w̃ ∈
N(R). Then (ṽ, w̃) is called a reasonable solution of the fuzzy bi-matrix
game BGFP if there exists x∗ ∈ Sm, y∗ ∈ Sn such that
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xTÃy∗ �p̃ ṽ, ∀x ∈ Sm,
x∗TB̃y �q̃ w̃, ∀y ∈ Sn,

x∗TÃy∗ �p̃′ ṽ,
x∗TB̃y∗ �q̃′ w̃.

If (ṽ, w̃) is a reasonable solution of BGFP then ṽ (respectively w̃) is
called a reasonable value for Player I ( respectively Player II).

Definition 9.4.2 (Equilibrium solution of BGFP). Let T1 and T2
be the set of all reasonable values ṽ and w̃ for Player I and Player II
respectively where ṽ, w̃ ∈ N(R). Let there exist ṽ∗ ∈ T1, w̃∗ ∈ T2 such
that

F(ṽ∗) ≥ F(ṽ), ∀ṽ ∈ T1,
and

F(w̃∗) ≥ F(w̃),∀w̃ ∈ T2,
where F : N(R) → R is the chosen defuzzification function. Then the
pair (x∗, y∗) is called an equilibrium solution of the game BGFP. Also
ṽ∗ (respectively w̃∗) is called the value of the game BGFP for Player I
(respectively Player II).

By using the above definitions for the game BGFP, we now construct
the following fuzzy non-linear programming problem
(FNP1) max F(ṽ) + F(w̃)

subject to,

xTÃy �p̃ ṽ, ∀x ∈ Sm,
xTB̃y �q̃ w̃, ∀y ∈ Sn,
xTÃy �p̃′ ṽ,
xTB̃y �q̃′w̃,

x ∈ Sm,
y ∈ Sn,

ṽ, w̃ ∈ N(R).

Now recalling the explanation of the double fuzzy constraints as ex-
plained in Chapter 7 and noting that the relations ©≥ and ©≤ preserve
the ranking when fuzzy numbers are multiplied by positive scalars, it
makes sense to consider only the extreme points of sets Sm and Sn in
the constraints of (FNP1). Therefore the above problem (FNP1) will be
converted into

(FNP2) max F(ṽ) + F(w̃)
subject to,
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Ãiy �p̃ṽ, (i = 1, 2, . . . ,m),
xTB̃j �q̃w̃, ( j = 1, 2, . . . ,n),

xTÃy �p̃′ ṽ,
xTB̃y �q̃′w̃,

x ∈ Sm,
y ∈ Sn,

ṽ, w̃ ∈ N(R).

Here Ãi denotes the ith row of Ã and B̃j denotes the jth column of
B̃, (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n).

By using the resolution procedure for the double fuzzy constraints
in (FNP2) as discussed in Chapter 7, we obtain
(FNP3) max F(ṽ) + F(w̃)

subject to,

n∑
j=1

ãi jyj ©≤ ṽ + (1 − λ)p̃, (i = 1, 2, . . . ,m),

m∑
i=1

b̃i jxi ©≤ w̃ + (1 − η)q̃, ( j = 1, 2, . . . ,n),

xTÃy ©≥ ṽ − (1 − λ)p̃′,
xTB̃y ©≥ w̃ − (1 − η)q̃′,

x ∈ Sm,
y ∈ Sn,

λ, η ∈ [0, 1],
ṽ, w̃ ∈ N(R).

Now by utilizing the chosen defuzzification function for the con-
straints in (FNP3), the problem can further be written as
(NLP1) max F(ṽ) + F(w̃)

subject to,

n∑
j=1

F(ãi j)yj ≤ F(ṽ) + (1 − λ)F(p̃), (i = 1, 2, . . . ,m),

m∑
i=1

F(b̃i j)xi ≤ F(w̃) + (1 − η)F(q̃), ( j = 1, 2, . . . ,n),

F(xTÃy) ≥ F(ṽ) − (1 − λ)F(p̃′),
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F(xTB̃y) ≥ F(w̃) − (1 − η)F(q̃′),
x ∈ Sm,
y ∈ Sn,

λ, η ∈ [0, 1],
ṽ, w̃ ∈ N(R).

From the above discussion we observe that for solving the fuzzy bi-
matrix game BGFP we have to solve the crisp non-linear programming
problem (NLP1). Also, if

(
x∗, λ∗, ṽ∗, y∗, η∗, w̃∗

)
is an optimal solution

of the crisp non-linear programming problem (NLP1), then (x∗, y∗) is
an equilibrium solution of the game BGFP.

These results can now be summarized in the form of the following
theorem.

Theorem 9.4.1 The fuzzy bi-matrix game BGFP described by BGFP =
(Sm, Sn, Ã, B̃) is equivalent to the crisp non-linear programming prob-
lem (NLP1) in which the objective as well as all constraint functions
are linear except two constraint functions, which are quadratic.

Remark 9.4.1. If all the fuzzy numbers are to be taken as crisp num-
bers i.e. ãi j = aij, b̃i j = bij, ṽ = v, w̃ = w and in the optimal solution
of (NLP1), λ∗ = η∗ = 1, then the fuzzy game BGFP reduces to the crisp
bi-matrix game BG. Thus if Ã, B̃, ṽ and w̃ are crisp and λ∗ = η∗ = 1,
then BGFP reduces to BG and the crisp non-linear programming prob-
lem (NLP1) reduces to the non-linear programming problem (NLP2)
(NLP2) max v + w

subject to,

Ay ≤ ve,
BTx ≤ we,

xTAy ≥ v,
xTBy ≥ w,

x ∈ Sm,
y ∈ Sn,

v,w ∈ R.
For the case B = −A, the bi-matrix game BG reduces to the matrix
game G = (Sm, Sn, A) and the problem (NLP2) reduces to the system
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Ay ≤ ve,
ATx ≥ −we,

v + w = 0,
x ∈ Sm,
y ∈ Sn,

v,w ∈ R.
The above system is equivalent to the usual primal-dual pair of lin-
ear programming problems corresponding to the matrix game G =
(Sm, Sn, A).

Remark 9.4.2. In general it will be difficult to solve the problem
(NLP1) and obtain exact membership functions for fuzzy values ṽ∗ and
w̃∗ because the decision variables ṽ and w̃ are fuzzy and their repre-
sentation will involve large number of parameters. For example, if ṽ
is a TFN (vl, v, vu) then to determine ṽ completely we need all of
these three variables. Therefore, from the computational point of view
it becomes necessary to take F(ṽ) and F(w̃) as real variables V and W
respectively and modify problem (NLP1) as follows
(NLP3) max V +W

subject to,

n∑
j=1

F(ãi j)yj ≤ V + (1 − λ)F(p̃), (i = 1, 2, . . . ,m),

m∑
i=1

F(b̃i j)xi ≤W + (1 − η)F(q̃), ( j = 1, 2, . . . ,n),

F(xTÃy) ≥ V − (1 − λ)F(p̃′),
F(xTB̃y) ≥W − (1 − η)F(q̃′),

x ∈ Sm,
y ∈ Sn,

V,W ∈ R.
λ, η ∈ [0, 1].

In this situation, in spite of knowing that the “values” for Player I
and Player II are fuzzy with appropriate membership functions, we
shall only get numerical values V∗ and W∗ for Player I and Player
II respectively and the actual fuzzy value for Player I and Player II
will be “close to” V∗ and W∗ respectively. Thus we shall not get exact
membership functions for the fuzzy values of Player I and Player II even
though these may be very much desirable. In the particular case when F
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is Yager’s first index [87], the numerical values V∗ (respectively W∗) will
represent the “centroid” or “average” value for Player I (respectively
Player II).

9.5 Bi-matrix Game with Fuzzy Goals and Fuzzy
Pay-offs

Let Sm, Sn, Ã and B̃ be as introduced in Section 9.4. Let ṽ, w̃ be fuzzy
numbers representing the aspiration levels of Player I and Player II
respectively. Then a bi-matrix game with fuzzy goals and fuzzy payoffs,
denoted by BGFGFP, is defined as:

BGFGFP = (Sm, Sn, Ã, B̃, ṽ, p̃, p̃′, w̃, q̃, q̃′, �, �),

where, ‘�’ and ‘�’ have their meanings as explained in Section 9.3 and,
p̃, p̃′, and, q̃′, q̃ are fuzzy tolerance levels for Player I and Player II
respectively.

We now define the meaning of an equilibrium solution of the fuzzy
bi-matrix game BGFGFP.

Definition 9.5.1 (Equilibrium solution of BGFGFP). A point (x∗, y∗) ∈
Sm × Sn is called an equilibrium solution to the fuzzy bi-matrix game
BGFGFP if

xTÃy∗ �p̃ ṽ, ∀ x ∈ Sm,
x∗TB̃y �q̃ w̃, ∀ y ∈ Sn,

x∗TÃy∗ �p̃′ ṽ,
x∗TB̃y∗ �q̃′ w̃.

By using the above definition for the game BGFGFP, we construct
the following fuzzy non-linear programming problem (FNP4) for Player
I and Player II
(FNP4) Find (x, y) ∈ Rm × Rn such that

xTÃy �p̃ ṽ, ∀ x ∈ Sm,
xTB̃y �q̃ w̃, ∀ y ∈ Sn,
xTÃy �p̃′ ṽ,
xTB̃y �q̃′ w̃,

x ∈ Sm,
y ∈ Sn.

Now employing the resolution method of Yager [87] for the dou-
ble fuzzy constraints (as discussed here in Section 9.4) and following
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Zimmermann’s approach [90], the above fuzzy non-linear programming
problems (FNP4) reduces to
(FNP5) max λ

subject to,

xTÃy ©≤ ṽ + p̃(1 − λ), ∀ x ∈ Sm,
xTB̃y ©≤ w̃ + q̃(1 − λ), ∀ y ∈ Sn,
xTÃy ©≥ ṽ − p̃′(1 − λ),
xTB̃y ©≥ w̃ − q̃′(1 − λ),

x ∈ Sm,
y ∈ Sn.

Next, we utilize the defuzzification function F : N(R) → R for the
constraints of (FNP5), to get
(NLP4) max λ

subject to,

F(xTÃy) ≤ F(ṽ) + F(p̃)(1 − λ), ∀ x ∈ Sm,
F(xTB̃y) ≤ F(w̃) + F(q̃)(1 − λ), ∀ y ∈ Sn,
F(xTÃy) ≥ F(ṽ) − F(p̃′)(1 − λ),
F(xTB̃y) ≥ F(w̃) − F(q̃′)(1 − λ),

x ∈ Sm,
y ∈ Sn.

As we have mentioned earlier, the defuzzification function F pre-
serves the ranking when fuzzy numbers are multiplied by non-negative
scalars, and therefore problem (NLP4) becomes
(NLP5) max λ

subject to,

xTF(Ã)y ≤ F(ṽ) + F(p̃)(1 − λ), ∀ x ∈ Sm,
xTF(B̃)y ≤ F(w̃) + F(q̃)(1 − λ), ∀ y ∈ Sn,
xTF(Ã)y ≥ F(ṽ) − F(p̃′)(1 − λ),
xTF(B̃)y ≥ F(w̃) − F(q̃′)(1 − λ),

x ∈ Sm,
y ∈ Sn.

Since Sm and Sn are convex polytopes, it is sufficient to consider
only the extreme points (i.e. pure strategies) of Sm and Sn in the con-
straints of (NLP5). This observation leads to the following non-linear
programming problem, for Player I and Player II
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(NLP6) max λ
subject to,

F(Ã)iy ≤ F(ṽ) + F(p̃)(1 − λ), (i = 1, 2, . . . ,m),
xTF(B̃) j ≤ F(w̃) + F(q̃)(1 − λ), ( j = 1, 2, . . . ,n),

xTF(Ã)y ≥ F(ṽ) − F(p̃′)(1 − λ),
xTF(B̃)y ≥ F(w̃) − F(q̃′)(1 − λ),

x ∈ Sm,
y ∈ Sn,
λ ∈ [0, 1].

Here F(Ã)i denotes the ith row of F(Ã) and F(B̃) j denotes the jth

column of F(B̃) where i = 1, 2, . . . ,m, and j = 1, 2, . . . ,n.
From the above discussion we now observe that for solving the fuzzy

bi-matrix game BGFGFP we have to solve the crisp non-linear program-
ming problem (NLP6). Also, if (x∗, y∗, λ∗) is an optimal solution of
(NLP6) then (x∗, y∗) is an equilibrium solution for the game BGFGFP
and λ∗ is the degree to which the aspiration levels F(ṽ) and F(w̃) of
Player I and Player II can be met.

All the results discussed in this section can now be summarized in
the form of Theorem 9.5.1 given below.

Theorem 9.5.1 The fuzzy bi-matrix game BGFGFP described by

BGFGFP = (Sm, Sn, Ã, B̃, ṽ, p̃, p̃′, w̃, q̃, q̃′, �, �)

is equivalent to the crisp non-linear programming problem (NLP6).

Remark 9.5.1. The (crisp) equivalents of fuzzy nonlinear program-
ming problems (FNP), (FNP1) and (FNP4), namely (NLP), (NLP1)
and (NLP6) have a special structure. Specifically, the problems (NLP),
(NLP1) and (NLP6) are linear expect for two constraints which are
quadratic in nature. This observation can possibly be exploited to de-
velop satisfactory solution procedures for solving these structured non-
linear programming problems. In this context, it may be noted that
there already exists an efficient LP based solution procedure to solve
linear programming problems with one quadratic constraint, e.g. Van
De Panne [73].
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9.6 Bi-matrix game with fuzzy pay-offs: A possibility
measure approach

In this section, we present Maeda’s [49] possibility measure approach to
characterize an equilibrium solution of a bi-matrix game with fuzzy pay-
offs. Let us recall that if ã and b̃ are two fuzzy numbers then Poss (ã ≥ b̃)
is defined as

Poss (ã ≥ b̃) = sup
x≥y

(
min

(
µã(x), µb̃(y)

))
.

Also, if ã and b̃ are symmetric TFNs and α ∈ (0, 1] then Poss (ã ≥
b̃) ≥ α if and only if aR

α ≥ bL
α, where [aL

α, aR
α] and [bL

α, bR
α] are α-cuts of

ã and b̃ respectively. Similarly Poss (ã ≥ b̃) ≤ α if aR
α ≤ bL

α. This later
result follows because Necc (ã > b̃) ≥ α if and only if aL

1−α ≥ bR
1−α and

Poss (ã ≥ b̃) = 1 − Necc (b̃ > ã). Although Maeda’s [49] presentation
is valid in somewhat more generality (i.e. L fuzzy numbers) we have
deliberately taken the fuzzy numbers to be symmetric TFNs.

We now consider the bi-matrix game with fuzzy pay-offs, denoted
by BFP, and define its equilibrium solution in the sense of a possibility
measure. Specifically, let BFP = (Sm, Sn, Ã, B̃) where the elements ãi j

and b̃i j of pay-off matrices A and B respectively, are symmetric TFN’s.
Also, if the need be, let a real number v be identified as a TFN ṽ =
(v, v, v). Therefore we shall be writing the real number v and also its
TFN equivalent ṽ = (v, v, v) with out causing any confusion as the
meaning will be clear from the given context.

Definition 9.6.1 (A (v, w)-possible Nash equilibrium strategy).
Let v,w ∈ R. An element (x̄, ȳ) ∈ Sm × Sn is called a (v, w)-possible
Nash equilibrium strategy if

Poss (x̄TÃȳ ≥ ṽ) ≥ Poss (xTÃȳ ≥ ṽ), ∀x ∈ Sm,

and
Poss (x̄TB̃ȳ ≥ w̃) ≥ Poss (x̄TB̃y ≥ w̃), ∀y ∈ Sn.

Here as agreed, ṽ = (v, v, v) and w̃ = (w, w, w).

It may now be observed that for given v, w ∈ R, any x̄ ∈ Sm, ȳ ∈ Sn

such that Poss (x̄TÃȳ ≥ ṽ) = 1 = Poss (x̄TB̃ȳ ≥ w̃), is certainly a (v,w)-
possible Nash equilibrium strategy.
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Definition 9.6.2 (An (α, β)-Nash equilibrium strategy). Let
α, β ∈ [0, 1]. An element (x̄, ȳ) ∈ Sm × Sn is said to be an (α, β)-Nash
equilibrium strategy of BFP if

x̄TAR
α ȳ ≥ xTAR

α ȳ, ∀x ∈ Sm,

and
x̄TBR

β ȳ ≥ x̄TBR
β y, ∀y ∈ Sn.

Here AR
α is a matrix whose entries are (ãi j)R

α and [(ãi j)R
α, (ãi j)L

α] is the
α-cut of ãi j. The matrix BR

β is defined similarly.

For the fuzzy bi-matrix game BFP, we have the following theorem which
connects a (v, w)-possible Nash equilibrium strategy with (α, β)-Nash
equilibrium strategy.

Theorem 9.6.1 Let v, w ∈ R and (x̄, ȳ) ∈ Sm × Sn be any (v, w)-
possible Nash equilibrium strategy for the fuzzy matrix game BFP. Let
α = Poss (x̄TÃȳ ≥ ṽ), β = Poss (x̄TB̃ȳ ≥ w̃) and α, β ∈ (0, 1). Then (x̄, ȳ)
is also an (α, β)-Nash equilibrium strategy. In that case v = x̄TAR

α ȳ and
w = x̄TBR

β ȳ.
Conversely, for any α, β ∈ [0, 1], let (x̄, ȳ) be an (α, β)-Nash equi-

librium strategy of the game BFP. Then (x̄, ȳ) is also a (v, w)-possible
Nash equilibrium strategy where v = x̄TAR

α ȳ, w = x̄TBR
β ȳ.

Proof. Given that (x̄, ȳ) ∈ Sm×Sn is a (v, w)-possible Nash equilibrium
strategy for BFP, we have

Poss (x̄TÃȳ ≥ ṽ) ≥ Poss (xTÃȳ ≥ ṽ), ∀x ∈ Sm,

and
Poss (x̄TB̃ȳ ≥ w̃) ≥ Poss (x̄TB̃y ≥ w̃), ∀y ∈ Sn.

Now setting,
α = Poss (x̄TÃȳ ≥ ṽ),

and
β = Poss (x̄TB̃ȳ ≥ w̃),

the above inequations imply

Poss (xTÃȳ ≥ ṽ) ≤ α, ∀x ∈ Sm,

and
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Poss (x̄TB̃y ≥ w̃) ≤ β, ∀y ∈ Sn,

which by the definition of possibility for the case of symmetric TFNs
means

xTAR
α ȳ ≤ vL

α, ∀x ∈ Sm,

and
x̄TBR

β y ≤ wL
β, ∀y ∈ Sn.

But Poss (x̄TÃ ȳ ≥ ṽ) = α means x̄TAR
α ȳ = vL

α = v as ṽ = (v, v, v).
Therefore

xTAR
α ȳ ≤ x̄TAR

α ȳ, ∀x ∈ Sm.

Similarly, x̄TBR
β ȳ = wL

β = w and

x̄TBR
β y ≤ x̄TBR

β ȳ, ∀y ∈ Sn,

implying that (x̄, ȳ) is an (α, β)-Nash equilibrium strategy of the fuzzy
game BFP.
Conversely let (x̄, ȳ) be an (α, β)-Nash equilibrium strategy. We have
to show that (x̄, ȳ) is also a (v, w)-possible Nash equilibrium strategy
where v = x̄TAR

α ȳ and w = x̄TBR
β ȳ.

Now for α = β = 1, it is obvious that (x̄, ȳ) is a (v, w)-possible Nash
equilibrium strategy. So without any loss of generality we assume that
α < 1. If possible, let there exist x ∈ Sm such that Poss (xTÃȳ ≥ ṽ) =
ᾱ > α holds. Then we have

xTAR
α ȳ > xTAR

ᾱ ȳ ≥ vL
α = v = x̄TAR

α ȳ,

which is a contradiction. Therefore

Poss (x̄TÃȳ ≥ ṽ) ≥ Poss (xTÃȳ ≥ ṽ), ∀x ∈ Sm.

Similarly,

Poss (x̄TB̃ȳ ≥ w̃) ≥ Poss (x̄TB̃y ≥ w̃), ∀y ∈ Sn.

Therefore (x̄, ȳ) is a (v, w)-possible Nash equilibrium strategy.

We now have the following results on the existence of Nash equilibrium
strategies for the fuzzy bi-matrix game BFP.

Theorem 9.6.2 Every fuzzy bi-matrix game BFP has a (α, β)-Nash
equilibrium strategy (x̄, ȳ) for every α, β ∈ [0, 1].
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Theorem 9.6.3 Let α, β ∈ [0, 1]. Then a point (x̄, ȳ) ∈ Sm × Sn is
an (α, β)-Nash equilibrium strategy of BFP if and only if (x̄, ȳ, v̄ =
x̄TAR

α ȳ, w̄ = x̄TBR
β ȳ) is an optimal solution of the following quadratic

programming problem
max xT(AR

α + BR
α)y − v − w

subject to,
AR
αy ≤ ev,

(BR
β )Tx ≤ ew,
eTx = 1,
eT y = 1,
x, y ≥ 0,
v,w ∈ R.

The proofs of above two theorems follow from Definition 9.6.2, Theorem
1.5.1 and Theorem 1.6.1 of Chapter 1.

The next theorem in this sequel states that the fuzzy bi-matrix game
BFP has at least one (v, w)-possible Nash equilibrium strategy for every
v,w ∈ R.

Theorem 9.6.4 For every v,w ∈ R the fuzzy bi-matrix game BFP has
at least one (v,w)-Nash equilibrium strategy.

Proof. The proof of the above theorem follows similar to that of the
crisp case. For this we consider the problem
(FLP)(v, w) max Poss (xTÃȳ ≥ ṽ) + Poss (x̄TB̃y ≥ w̃)

subject to,

(x, y) ∈ Sm × Sn,

and denote by F(x̄, ȳ) as the set of all optimal solutions of (FLP)(v, w). It
can be shown that the set valued map F : Sm × Sn → Sm × Sn is upper
semi-continuous, closed and convex and therefore, by Kakutani’s fixed
point theorem has a fixed point i.e. there exists (x̄, ȳ) ∈ Sm × Sn such
that (x̄, ȳ) ∈ F(x̄, ȳ). The rest of the proof is now similar to Theorem
1.5.1.

Now instead of problem (FLP)(v, w), it is convenient to consider the
following problem P(v, w):
(P)(v, w) max Poss (xTÃȳ ≥ ṽ) + Poss (x̄TB̃y ≥ w̃) − α − β

subject to,
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Poss (Ãy ≥ eṽ) ≤ α,
Poss (B̃Tx ≥ ew̃) ≤ β,

eTx = 1,
eT y = 1,
x, y ≥ 0,
α, β ∈ [0, 1].

The following theorem seems to be very natural in this context.

Theorem 9.6.5 Let v,w ∈ R and a point (x̄, ȳ) ∈ Sm × Sn be a (v, w)-
possible Nash equilibrium strategy for the game BFP. Then (x̄, ȳ, ᾱ, β̄)
is an optimal solution of P(v, w), where ᾱ = Poss (x̄TÃȳ ≥ ṽ) and β̄ =
Poss (x̄TB̃ȳ ≥ w̃).
Conversely, let (x̄, ȳ, ᾱ, β̄) be an optimal solution of the problem P(v, w).
Then (x̄, ȳ) is a (v, w)-possible Nash equilibrium strategy of BFP. Also,

ᾱ = Poss (x̄TÃȳ ≥ ṽ),

and
β̄ = Poss (x̄TB̃ȳ ≥ w̃).

Proof. Let us first note that for any feasible solution (x, y, α, β) of the
problem
(P)(v, w) Poss (xTÃy ≥ ṽ) + Poss (xTB̃y ≥ w̃) − α − β ≤ 0.
We now prove necessary part. For this let (x̄, ȳ) ∈ Sm × Sn be a
(v, w)-possible Nash equilibrium strategy of the game BFP. Also let
ᾱ = Poss (x̄TÃȳ ≥ ṽ) and β̄ = Poss (x̄TB̃ȳ ≥ w̃). From the fact that for
any feasible solution of P(v, w) the objective function value is less than
or equal to zero, it is enough to prove that (x̄, ȳ, ᾱ, β̄) is feasible to
P(v, w). But this is obvious for the case ᾱ = β̄ = 1. Therefore without
any loss of generality let ᾱ, β̄ ∈ [0, 1).
Then as (x̄, ȳ) is a (v, w)-Nash equilibrium strategy and ᾱ = Poss (x̄TÃȳ ≥
ṽ), β̄ = Poss (x̄TB̃ȳ ≥ w̃), we have by definition that

xTAR
ᾱ ȳ ≤ v, ∀x ∈ Sm,

and
x̄TBR

β̄
y ≤ w, ∀y ∈ Sn.

Therefore AR
α ȳ ≤ ev and (BR

β )Tx̄ ≤ ew and hence Poss (Ãȳ ≥ ṽe) ≤ ᾱ and

Poss (B̃Tx̄ ≥ w̃e) ≤ β̄. This gives that (x̄, ȳ, ᾱ, β̄) is feasible to P(v, w).
Conversely, let (x̄, ȳ, ᾱ, β̄) be an optimal solution of P(v, w). We shall
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show that (x̄, ȳ) is a (v, w)-Nash equilibrium strategy of the fuzzy
matrix game BFP. The optimality of (x̄, ȳ, ᾱ, β̄) to P(v, w) gives
Poss (x̄TÃȳ ≥ ṽ) = ᾱ and Poss (x̄TB̃ȳ ≥ w̃) = β̄. In case ᾱ = β̄ = 1,
the proof is obvious. So let us now assume that ᾱ, β̄ ∈ [0, 1). Then,
the feasibility of (x̄, ȳ, ᾱ, β̄) to P(v, w) gives Poss (Ãȳ ≥ eṽ) ≤ ᾱ and
Poss (B̃Tx̄ ≥ ew̃) ≤ β̄. But these imply AR

ᾱ ȳ ≤ ev and (BR
β̄

)T x̄ ≤ ew, i.e.

xTAR
ᾱ ȳ ≤ v, ∀x ∈ Sm,

and
x̄TBR

β̄
y ≤ w, ∀y ∈ Sn.

From the above inequalities it follows by definition, that

Poss (xTÃȳ ≥ ṽ) ≤ ᾱ = Poss (x̄TÃȳ ≥ ṽ), ∀x ∈ Sm,

and
Poss (x̄TB̃y ≥ w̃) ≤ β̄ = Poss (x̄TB̃ȳ ≥ w̃), ∀y ∈ Sn.

This proves that (x̄, ȳ) is a (v, w)-possible Nash equilibrium strategy
of the game BFP.

9.7 Conclusions

In this chapter we have studied fuzzy bi-matrix games having fuzzy
goals or fuzzy pay-offs or both. While for the case when only goals are
fuzzy, the main model presented is due to Nishizaki and Sakawa [61]
which is very much in the spirit of Mangasarian and Stone [52] for the
crisp case. For the case when pay-offs are fuzzy or goals and pay-offs
both are fuzzy, a ranking function approach is developed to solve such
fuzzy bi-matrix games. This approach is different from that of Nishizaki
and Sakawa [61] and seems to be simple provided we can choose a
ranking function appropriately. We have not discussed Nishizaki and
Sakawa’s model for the general (when goals as well as pay-offs are fuzzy)
fuzzy scenario where a different and seemingly more difficult mathemat-
ical programming problem needs to be solved. Nevertheless, it is an
important development and for that we need to refer to Nishizaki and
Sakawa [61]. Another direction in which fuzzy bi-matrix games have
been studied is the Maeda’s [49] possibility measure approach which
we have discussed here in Section 9.6. A close look at the Maeda’s for-
mulation suggests that this approach could possibility be investigated
for fuzzy matrix games as well and results could be related to fuzzy
linear programming duality in a possibility measure setting.
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Modality and other approaches for fuzzy linear
programming

10.1 Introduction

Fuzzy Mathematical programming problems can be classified on the
basis of two concepts. The first concept is the fuzziness of the decision
maker’s aspirations with respect to goals and/or constraints. The other
one is the ambiguity of the coefficients of the objective function and/or
constraints. Combination of these two concepts gives us different types
of fuzzy mathematical programming problems and some of these have
been studied in Chapter 4.

In this chapter we follow a more general approach of introducing
a broad class of fuzzy linear programming problems, which embeds
the classical (crisp) linear programming problems as well as various
other fuzzy linear programming problems discussed in Chapter 4. This
chapter is divided in seven main sections, namely, fuzzy measure, fuzzy
preference relations, modality constrained programming problems, val-
ued relations and their fuzzy extensions, fuzzy linear programming via
fuzzy relations, duality in fuzzy linear programming via fuzzy relations,
duality in fuzzy linear programming with fuzzy coefficients: Wu’s model.

10.2 Fuzzy measure

A fuzzy measure describes the uncertainty or imprecision in assigning
a particular element to certain given crisp subsets. In order to describe
this type of uncertainty, a value is assigned to each of these crisp sub-
sets. This value signifies the degree of evidence or belief of that partic-
ular element’s membership in the set. Such type of representation of
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uncertainty is known as a fuzzy measure. There is a conceptual differ-
ence between a fuzzy measure and a fuzzy set. In the case of a fuzzy
set, a value is assigned to each element of the universal set signifying
its degree of membership in a particular set whose boundaries are not
sharp, where as in the case of a fuzzy measure, the sets are crisp and
therefore have well defined boundaries. Here the value assigned to each
crisp set of the universal set represents the degree of evidence or belief
that a particular element, which is not fully characterized, is in the set.
We formally define a fuzzy measure as follows:

Definition 10.2.1 (Fuzzy measure). Let X be a universal set and
P(X) be the power set of X. Then a fuzzy measure on P(X) is a function
g : P(X)→ [0, 1] satisfying the following:

(i) g(φ) = 0 and g(X) = 1 (boundary conditions),
(ii) for any A, B ∈ P(X), if A ⊆ B then g(A) ≤ g(B) (monotonicity),
(iii) for any increasing sequence A1 ⊆ A2 ⊆ . . . in P(x),

lim
i→∞ g(Ai) = g

⎛⎜⎜⎜⎜⎜⎝
∞⋃

i=1

Ai

⎞⎟⎟⎟⎟⎟⎠
(continuity from below),

(iv) for any decreasing sequence A1 ⊇ A2 ⊇ . . . in P(x),

lim
i→∞ g(Ai) = g

⎛⎜⎜⎜⎜⎜⎝
∞⋂

i=1

Ai

⎞⎟⎟⎟⎟⎟⎠
(continuity from above).

This function g assigns a number g(A) in the unit interval [0, 1] to
each crisp subset A of X.

The number g(A) represents the degree of the available evidence or
our belief that a given element of X, which is not fully characterized,
belongs to the subset A. A typical example could be the classification
of an item as ”satisfactory” or ”unsatisfactory” for a job. Suppose it
requires a large number of cumbersome measurements to classify this
item exactly in one of these two classes, but by having some simple
preliminary measurements we may be able to have a guess that the
item in question belongs to the class ”satisfactory” with the belief 0.75
and it belongs to the class ”unsatisfactorily” with the belief 0.45. Then
if S denotes the set of all satisfactory items and U denotes the set of all
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unsatisfactorily items, then g(S) = 0.75 and g(U) = 0.45 define a fuzzy
measure.

From the above definition it is observed that

g(A ∪ B) ≥ max (g(A), g(B))

and
g(A ∩ B) ≤ min (g(A), g(B)).

This is because

(A ∩ B) ⊆ A ⊆ (A ∪ B), (A ∩ B) ⊆ B ⊆ (A ∪ B)

and g is monotonic.
There are three special forms of fuzzy measures; namely evidence

theory, possibility theory and probability theory, out of which we dis-
cuss here only the first two.

Evidence theory

This theory explains two dual measures i.e. belief measures and
plausibility measures which are defined below.

Definition 10.2.2 (Belief measure). A belief measure is a function
bel : P(X)→ [0, 1] such that bel is a fuzzy measure and

bel

⎛⎜⎜⎜⎜⎜⎜⎝
n⋃

j=1

Aj

⎞⎟⎟⎟⎟⎟⎟⎠ ≥
∑

j

bel(Aj)−
∑
j<k

bel
(
Aj

⋂
Ak

)
+. . .+(−1)n+1bel

⎛⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

Aj

⎞⎟⎟⎟⎟⎟⎟⎠
where A1,A2, . . . ,An are n crisp subsets of the universe X.

Definition 10.2.3 (Plausibility measure). A plausibility measure
is a mapping pl : P(X)→ [0, 1] such that pl is a fuzzy measure and

pl

⎛⎜⎜⎜⎜⎜⎜⎝
n⋂

j=1

Aj

⎞⎟⎟⎟⎟⎟⎟⎠ ≥
∑

j

pl (Aj) −
∑
j<k

pl
(
Aj

⋃
Ak

)
+ . . . + (−1)n+1pl

⎛⎜⎜⎜⎜⎜⎜⎝
n⋃

j=1

Aj

⎞⎟⎟⎟⎟⎟⎟⎠
where A1,A2, . . . ,An are n crisp subsets of the universe X.

We can verify the following from the above definitions:

(i) bel (A) = 1 − pl (Ā), pl (A) = 1 − bel (Ā).
(ii) bel (A) + bel (Ā) ≤ 1, pl (A) + pl (Ā) ≥ 1.
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(iii) bel (A) ≤ pl (A).

The above results can be given meaningful interpretations. For ex-
ample, bel (A) + bel (Ā) ≤ 1 indicates that the lack of belief in x ∈ A
does not mean a strong belief in x ∈ Ā.

Now both belief and plausibility measures can be characterized
by only one function namely m : P(X) → [0, 1] with m(φ) = 0 and∑
A∈P(X)

m(A) = 1. This function is called basic probability assignment.

The value m(A), for A ∈ P(X) is called A’s basic probability number
and is considered as the degree of evidence indicating that a specific
element of X belongs to the set A alone but not to any special subset
of A.

Here it may be noted that a basic probability assignment m is dif-
ferent from a probability distribution function because a probability
distribution function is defined on X where as m is defined on P(X).
Also, m is not necessarily a fuzzy measure because we do not require
that m(X) = 1 or that it is monotonic.

Now given a basic assignment m, a belief measure and a plausibility
measure can uniquely be determined by

bel (A) =
∑
B⊆A

m(B),

and
pl (A) =

∑
B∩A�φ

m(B),

for all A ∈ P(X).
The relationship between m(A), bel (A) and pl (A) can now be sum-

marized as

(i) m(A) measures the belief that the element in question, namely x ∈ X
belongs to the set A alone.

(ii) bel (A) gives the total evidence or belief that the element x ∈ X
belongs to the set A and to the various special subsets of A.

(iii) pl (A) represents the total evidence or belief that the element
x ∈ X belongs to the set A or to any of the various special sub-
sets of A together with the additional evidence or belief associated
with the sets that overlap with A. This again explains the relation
pl (A) ≥ bel (A).
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Possibility theory

In evidence theory, we have two mutually dual measures i.e. belief and
plausibility measures, where as in possibility theory, the counterparts of
belief measure and plausibility measure are defined as necessity measure
and possibility measure respectively. These are defined as follows:

Definition 10.2.4 (Necessity measure). A necessity measure Necc
is a fuzzy measure such that

Necc (A ∩ B) = min(N(A),N(B)) for all A,B ∈ P(X).

Definition 10.2.5 (Possibility measure). A possibility measure Poss
is a fuzzy measure such that

Poss (A ∪ B) = max(P(A),P(B)) for all A,B ∈ P(X).

On the basis of the previous results of plausibility measure and be-
lief measure, the following results for possibility measure and necessity
measure hold

Necc (A) + Necc (Ā) ≤ 1,

Poss (A) + Poss (Ā) ≥ 1,

Necc (A) = 1 − Poss (Ā),

Poss (A) = 1 − Necc (Ā),

Necc (A) > 0⇔ Poss (Ā) = 1,

and
Poss (Ā) < 1⇔ Necc (A) = 0.

For a given possibility measure Poss on P(X), a possibility dis-
tribution function associated with Poss is defined by the function
r : X → [0, 1] where r(x) = Poss ({x}) for all x ∈ X. Hence, every
possibility measure is uniquely represented by the associated possibil-
ity distribution function. For finite universal sets, this property gives
Poss (A) = max

x∈A
r(x) for each A ∈ P(X).

In crisp scenario, let A and B be two sets and a variable x be in
A. Now if A ∩ B � φ holds then it can be said that x ∈ B is possible
under the information x ∈ A. But if A ⊆ B holds, then it can be said
that x ∈ B is necessary under the information x ∈ A. Thus in the crisp
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scenario, we can define a possibility measure as follows:

PA(B) =
{

1, A ∩ B � φ,
0, otherwise.

Similarly, a necessary measure can be defined as

NA(B) =
{

1, A ⊆ B,
0, otherwise.

The above discussion motivates to define possibility and necessity
measures for fuzzy sets A and B as follows:

PA(B) = sup
x

min
{
µA(x), µB(x)

}
,

NA(B) = inf
x

max
{
(1 − µA(x)), µB(x)

}
,

where µA and µB are membership functions of fuzzy sets A and B. Here-
after these indices, namely PA(B) and NA(B), will be called modalities
because the degree of belonging of x to the fuzzy set B is considered
from the modal point of view.

10.3 Fuzzy preference relations

Dubois and Prade [16] have used modalities to extend relations between
real numbers to relations between fuzzy numbers. For this, let R be a
relation between elements in X. Here we first study the extension of R
to a relation between an element and a fuzzy set and then the extension
of R to a relation between two fuzzy sets in the sense of Dubois and
Prade [16].

Extension to relations between an element and a fuzzy set

These relations are as follows:

(i) The relation PlR with the membership function µPlR, where x is
possibly preferable to B, is given by:

µPlR(x,B) = sup
y
{µB(y) ∧ µR(x, y)}.
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(ii) The relation NlR with the membership function µNlR, where x is
necessarily preferable to B, is given by:

µNlR(x,B) = inf
y

{(
1 − µB(y)

)
∨ µR(x, y)

}
.

(iii) The relation P fR with the membership function µP f R, where B is
possibly preferable to x, is given by:

µP f R(B, x) = sup
y
{µB(y) ∧ µR(y, x)}.

(iv) The relation N fR with the membership function µN f R, where B is
necessarily preferable to x, is given by:

µN f R(B, x) = inf
y

{(
1 − µB(y)

)
∨ µR(y, x)

}
.

Here the notations Pl (respectively Nl) and P f (respectively N f )
means possibility (respectively necessity) operator with respect to lat-
ter and former arguments respectively to the ordered pairs.

Extension to relations between fuzzy sets

In order to extend the relation R to a relation between fuzzy sets,
we use the above mentioned extended fuzzy preference relations and
obtain

(i) The relation P f PlR with the membership function µP f PlR, where it
is possible for A to be possibly preferable to B; or, equivalently,
the relation PlP fR with the membership function µPlP f R where it is
possible for B to be a fuzzy set to which A is possibly preferable:

µP f PlR(A,B) = sup
x,y

{
µA(x) ∧ µB(y) ∧ µR(x, y)

}
= µPlP f R(A,B).

(ii) The relation P f NlR with the membership function µP f NlR, where it
is possible for A to be necessarily preferable to B:

µP f NlR(A,B) = sup
x

inf
y

{
µA(x) ∧

{(
1 − µB(y)

)
∨ µR(x, y)

}}
.

(iii) The relation N f PlR with the membership function µN f PlR, where it
is necessary for A to be possibly preferable to B:

µN f PlR(A,B) = inf
x

sup
y

{(
1 − µA(x)

)
∨ {µB(y)

)
∧ µR(x, y)}

}
.
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(iv) The relation N f NlR with the membership function µN f NlR, where it
is necessary for A to be necessarily preferable to B; or, equivalently,
the relation NlN fR with the membership function µNlN f R where it is
necessary for B to be a fuzzy set to which A is necessarily preferable:

µN f NlR(A,B) = infx,y
{(

1 − µA(x)
)
∨

(
1 − µB(y)

)
∨ µR(x, y)

}
= µNlN f R(A,B).

(v) The relation NlP fR with the membership function µNlP f R, where it
is necessary for B to be a fuzzy set to which A is possibly preferable:

µNlP f R(A,B) = inf
y

sup
x

{(
1 − µB(y)

)
∨ {µA(x)

)
∧ µR(x, y)}

}
.

(vi) The relation PlN fR with the membership function µPlN f R, where it is
possible for B to be a fuzzy set to which A is necessarily preferable:

µPlN f R(A,B) = sup
y

inf
x

{
µB(y) ∧

{(
1 − µA(x)

)
∨ µR(x, y)

}}
.

10.4 Modality constrained programming problems

In this section, we present a modality approach to study fuzzy math-
ematical programming problems having coefficients as fuzzy numbers
(possibility distributions) and term the resulting problems as modal-
ity constrained programming problems. Most of the results on modality
constrained programming are due to Inuiguchi et al. ([26], [27] and [28])
and this presentation is based on the work reported in [28]. A typical
problem of this class could be described as
(FMP) optimize Φ1(x)

optimize Φ2(x)
...

optimize Φp(x)
subject to,

Fi(x) ζi Gi(x), i = 1, 2, . . . ,m,
x ≥ 0,

where x ∈ Rn, Φk(x) = Φk1(x)×Φk2(x)×. . .×Φkq(x), (k = 1, 2, . . . , p), Φkj :
Rn → P(R), (i = 1, 2, . . . , p), ( j = 1, 2, . . . , q), Fi(x) = Fi1(x) × . . . ×
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Fir(x), Gi(x) = Gi1(x)× . . .×Gir(x), (i = 1, 2, . . . ,m), Fij : Rn → P(R),Gij :
Rn → P(R), (i = 1, 2, . . . ,m), ( j = 1, 2, . . . , ri), and P(R) is a set of pos-
sibility distributions in R. Thus Φi j(x), Fij(x) and Gij(x) are possibility
distribution in R. Further, ζi, (i = 1, 2, . . . ,m) are binary relations in
Rri which are assumed as fuzzy preference relations.

In (FMP) if there is no objective function then it will be called a
system of fuzzy constraints. Also, if p > 1 then it is called a fuzzy
multiobjective programming problem.

To formulate the fuzzy mathematical programming problem (FMP),
we first present a method to handle a constraint of type F(x) ζ G(x),
where F(x) and G(x) both are possibility distributions and the relation
ζ is a fuzzy preference relation. This type of constraints are called
preference constraints.

In order to simplify the preference constraint F(x)ζ G(x), the fuzzy
preference relation ζ between the possibility distributions can be under-
stood by modalities suggested by Dubois and Prade as given in Section
10.3. Therefore, we get following modality constraints:

µP f Plζ
(F(x),G(x)) ≥ λ1,

µP f Nlζ
(F(x),G(x)) ≥ λ2,

µN f Plζ
(F(x),G(x)) ≥ λ3,

µN f Nlζ
(F(x),G(x)) ≥ λ4,

µNlP f ζ
(F(x),G(x)) ≥ λ5,

µPlN f ζ
(F(x),G(x)) ≥ λ6,

where λi, i = 1, 2, . . . , 6 are predetermined levels. These constraints are
called modality constraints. Here it may be emphasized that in this
approach, the solution does not satisfy the constraints perfectly but
rather it satisfies only up to a predetermined level.

Now similar to the chance constrained programming (Stancu-Min-
asian[70]), the modality constraints are also reduced to their deter-
ministic equivalents. This we describe for the case where F(x) =∑

Ajxj, G(x) =
∑

Bjxj, ζ is given by “≥̃” and Aj and Bj, ( j = 1, 2, . . . ,n),
are L-R fuzzy numbers defined by
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µAj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LAj

(a1
j − x

α1
j

)
, x ≤ a1

j ,

1 , a1
j ≤ x ≤ a2

j ,

RAj

(x − a2
j

α2
j

)
, x ≥ a2

j ,

and

µBj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LBj

⎛⎜⎜⎜⎜⎜⎝b1
j − x

β1
j

⎞⎟⎟⎟⎟⎟⎠ , x ≤ b1
j ,

1 , b1
j ≤ x ≤ b2

j ,

RBj

⎛⎜⎜⎜⎜⎜⎝x − b2
j

β2
j

⎞⎟⎟⎟⎟⎟⎠ , x ≥ b2
j ,

respectively.
Here LAj , RAj , LBj and RBj are reference functions. Let us recall

that a reference function L : [0,∞)→ [0, 1] is a strictly decreasing and
upper semi-continuous function such that L(0) = 1 and lim

x→∞L(x) = 1.

Thus L-R fuzzy numbers Aj and Bj are denoted by (a1
j , a

2
j , α

1
j , α

2
j ) and

(b1
j , b

2
j , β

1
j , β

2
j ) respectively.

Then the preference constraint F(x)ζG(x) has six modality con-
straints representations whose deterministic equivalents are

µP f Plζi(Fi(x),Gi(x)) ≥ λ⇔
n∑

j=1

aR
j (λ)xj ≥

n∑
j=1

bL
j (λ)xj + ν

∗(λ)

µP f Nlζi(Fi(x),Gi(x)) ≥ λ
µNlP f ζi(Fi(x),Gi(x)) ≥ λ

⎫⎪⎪⎬⎪⎪⎭⇔
n∑

j=1

aR
j (λ)xj ≥

n∑
j=1

bR
j (1 − λ)xj + ν

∗(λ)

µN f Plζi(Fi(x),Gi(x)) ≥ λ
µPlN f ζi(Fi(x),Gi(x)) ≥ λ

⎫⎪⎪⎬⎪⎪⎭⇔
n∑

j=1

aL
j (1 − λ)xj ≥

n∑
j=1

bL
j (λ)xj + ν

∗(λ)

µN f Nlζi(Fi(x),Gi(x)) ≥ λ⇔
n∑

j=1

aL
j (1 − λ)xj ≥

n∑
j=1

bR
j (1 − λ)xj + ν

∗(λ)

where aL
j , aR

j , bL
j bR

j and ν∗ are defined by
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aL
j (λ) = a1

j − α1
j L
∗
Aj

(λ), j = 1, 2, . . . ,n,
aR

j (λ) = a2
j + α

2
j R
∗
Aj

(λ), j = 1, 2, . . . ,n,
bL

j (λ) = b1
j − β1

j L
∗
Bj

(λ), j = 1, 2, . . . ,n,
bR

j (λ) = b2
j + β

1
j R
∗
Bj

(λ), j = 1, 2, . . . ,n,

L∗Aj
(λ) = sup

{
x | LAj(x) ≥ λ

}
, j = 1, 2, . . . ,n,

R∗Aj
(λ) = sup

{
x | RAj(x) ≥ λ

}
, j = 1, 2, . . . ,n,

L∗Bj
(λ) = sup

{
x | LBj(x) ≥ λ

}
, j = 1, 2, . . . ,n,

R∗Bj
(λ) = sup

{
x | RBj(x) ≥ λ

}
, j = 1, 2, . . . ,n,

and
ν∗(λ) = inf

{
x − y | µζi(x, y) = ν(x − y) ≥ λ

}
.

Here it may be noted that for full derivation of these deterministic
equivalents we have to refer to Inuiguchi et al. [28].

We next discuss the treatment of the objective function in the con-
text of modality constrained programming. Although, in the literature,
there are various approaches in this regard e.g. transformation of objec-
tive function into constraints, optimization of modalities, optimization
of the fractile and minimization of ambiguity etc. Here we discuss only
the one which transform the objective function into a constraint. In this
context, we note that the fuzzy mathematical programming problem
(FMP) can be expressed as a system of fuzzy constraints because the
optimization of Φ(x) can be transformed as Φ(x)ζ0Φ0 where Φ0 is an
appropriate fuzzy target. Therefore we can take the following formula-
tion for (FMP)
(FMP1) Find x such that

Fi(x) ζi Gi(x), i = 0, 1, 2, . . . ,m,
x ≥ 0,

where F0(x) = Φ(x) and G0(x) = Φ0.
In (FMP1) we have to find a solution x for which the degree of

satisfaction of all constraints is the most. This leads to the following
modality constrained programming problem (MCP)
(MCP) max Ψ (λ1,1, . . . , λ1,m, . . . , λ6,1, . . . , λ6,m)

subject to,
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µP f Plζi(Fi(x),Gi(x)) ≥ λ1,i, (i = 1, 2, . . . ,m),
µP f Nlζi(Fi(x),Gi(x)) ≥ λ2,i, (i = 1, 2, . . . ,m),
µN f Plζi(Fi(x),Gi(x)) ≥ λ3,i, (i = 1, 2, . . . ,m),
µN f Nlζi(Fi(x),Gi(x)) ≥ λ4,i, (i = 1, 2, . . . ,m),
µNlP f ζi(Fi(x),Gi(x)) ≥ λ5,i, (i = 1, 2, . . . ,m),
µPlN f ζi(Fi(x),Gi(x)) ≥ λ6,i, (i = 1, 2, . . . ,m),

x ≥ 0,

where Ψ is a nondecreasing function representing the degree of sat-
isfaction. In practice “Ψ (λ1,1, . . . , λ1,m, . . . , λ6,1, . . . , λ6,m)” is taken as
“min (λ1,1, . . . , λ1,m, . . . , λ6,1, . . . , λ6,m)”

and in that case (MCP) reduces to
(MCP1) max λ

subject to,

µP f Plζi(Fi(x),Gi(x)) ≥ λ1,i, (i = 1, 2, . . . ,m),
µP f Nlζi(Fi(x),Gi(x)) ≥ λ2,i, (i = 1, 2, . . . ,m),
µN f Plζi(Fi(x),Gi(x)) ≥ λ3,i, (i = 1, 2, . . . ,m),
µN f Nlζi(Fi(x),Gi(x)) ≥ λ4,i, (i = 1, 2, . . . ,m),
µNlP f ζi(Fi(x),Gi(x)) ≥ λ5,i, (i = 1, 2, . . . ,m),
µPlN f ζi(Fi(x),Gi(x)) ≥ λ6,i, (i = 1, 2, . . . ,m),

x ≥ 0,

In the special case, when Aj and Bj are triangular fuzzy numbers
i.e. Aj = (aj, α1

j , α
2
j ) and Bj = (bj, β1

j , β
2
j ) with

µAj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − aj + α1
j

α1
j

, aj − α1
j ≤ x ≤ aj,

aj + α2
j − x

α2
j

, aj ≤ x ≤ aj + α2
j ,

0, otherwise,

and

µBj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − bj + β1
j

β1
j

, bj − β1
j ≤ x ≤ bj,

bj + β2
j − x

β2
j

, bj ≤ x ≤ bj + β2
j ,

0, otherwise,
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we have,
aL

j (λ) = aj − α1
j (1 − λ),

aR
j (λ) = aj + α

2
j (1 − λ),

bL
j (λ) = bj − β1

j (1 − λ),

bR
j (λ) = bj + β

2
j (1 − λ).

Hence for the fuzzy preference relation ‘�’ the deterministic equiv-
alents of modality constraints will be somewhat simplified. This we
illustrate with the help of following example.

Example 10.4.1. (Inuiguichi et al. [28]). Let us consider the fol-
lowing fuzzy linear programming problem:

˜max C1x2 + C2x2
subject to,

A1 � Bi1x1 + Bi2x2, (i = 1, 2, 3),
x1, x2 ≥ 0,

where Ci’s, Ai’s and Bij’s are triangular fuzzy numbers i.e. C1 =
(4, 0.5, 0.5), C2 = (5, 1, 1), A1 = (330, 10, 10), A2 = (440, 5, 5), A3 =
(230, 2, 2), B11 = (2.5, 0.7, 0.7), B12 = (5, 0.5, 0.5), B21 = (5, 0.9, 0.9), B22 =
(6, 1.2, 1.2), B31 = (3, 0.6, 0.6) and B11 = (2, 0.4, 0.4). Further the fuzzy
preference relation �pi is defined as follows:

µ�pi
(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, x ≥ y,

1 +
x − y

pi
, x ≥ y − pi,

0, otherwise,

where p1 = 10, p2 = 15 and p3 = 8.
In order to transform the objective function into a constraint, we use
the given target value Φ0 = 400 along with the tolerance p0 = 30 and
employ the membership function of the fuzzy relation �p0 as described
above. This reduces the given fuzzy optimization problem to the fol-
lowing system of fuzzy constraints

C1x2 + C2x2 �p0 400,
Ai �pi Bi1x1 + Bi2x2, (i = 1, 2, 3),

x1, x2 ≥ 0.
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Now this problem will be formulated by the following modality con-
strained programming problem:

max λ
subject to,

µP f Pl�0(C1x1 + C2x2, 400) ≥ λ,
µP f Nl�1 (A1,B11x1 + B12x2) ≥ λ,
µN f Pl�2 (A2,B21x1 + B22x2) ≥ λ,
µN f Nl�3 (A3,B31x1 + B32x2) ≥ λ,

x1, x2 ≥ 0,

whose deterministic equivalent is
max λ
subject to,

(4.5 − 0.5λ)x1 + (6 − λ)x2 ≥ 370 + 30λ,
(2.5 + 0.7λ)x1 + (5 + 0.5λ)x2 ≥ 350 − 20λ,

(4.1 − 0.9λ)x1 + (4.8 + 1.2λ)x2 ≥ 455 − 20λ,
(3 + 0.6λ)x1 + (2 + 0.4λ)x2 ≥ 238 − 10λ,

x1, x2 ≥ 0.

The above problem can be solved by a suitable numerical (crisp) opti-
mization technique to get x∗1 = 42.99, x∗2 = 41.42 and λ∗ = 0.77.

10.5 Valued relations and their fuzzy extensions

In this section we present a fuzzy relation approach for studying fuzzy
linear programming problems. This approach is due to Inuiguchi et
al. [29] and is quite general so as to include many well known models
available in the literature.

Let X and Y be arbitrary non-empty sets. Then we know that a
binary relation P between the elements of X and Y is a subset of the
cartesian product X×Y i.e. P ⊂ X×Y. In the following we study various
extensions of this definition to fuzzy scenario. For this let F(X), F(Y)
and F(X×Y) be set of all fuzzy subsets of X, Y and X×Y respectively.

Definition 10.5.1 (Valued relation). A fuzzy subset P ⊂ F(X × Y)
is called a valued relation on X × Y i.e. P : X × Y→ [0, 1].
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Definition 10.5.2 (Fuzzy relation). A valued relation P on F(X) ×
F(Y) is called a fuzzy relation on X×Y and it is denoted by P̃. In other
words, a fuzzy reaction P̃ on X×Y is a fuzzy subset of F(X)× F(Y) i.e.
P̃ : F(X) × F(Y)→ [0, 1].

Definition 10.5.3 (Fuzzy extension of a valued relation P). Let
P be a valued relation on X × Y. A fuzzy relation Q̃ on X × Y with
µQ̃(x, y) = µP(x, y) ∀x ∈ X, y ∈ Y is called a fuzzy extension of the
relation P.

Here, it may be recalled that x and y in µP(x, y) belong to the sets
X and Y and, x and y in µQ̃(x, y) are elements of F(X) and F(Y) respec-
tively with the understanding that x ∈ X (respectively y ∈ Y) can be
considered a fuzzy subset of X (respectively Y) with the characteristic
function χx (respectively χy) as the membership function.

Definition 10.5.4 (Dual fuzzy extension of a valued relation
P). Let X be a non-empty set and P be a valued relation on X. Let µcP
be the membership function of the valued relation cP given by

µcP(x, y) = 1 − µP(x, y) for all x, y ∈ X.
Let Q̃ be a fuzzy extension of relation cP. Then a fuzzy relation Q̃d on
X defined by

µQ̃d(A,B) = 1 − µQ̃(B,A) for all A,B ∈ F(X),
is called the dual fuzzy extension of the valued relation P.

For a given valued relation P, there might be considered many fuzzy
extensions and hence many dual extensions. For an specific valued rela-
tion P, its fuzzy extension is denoted by P̃; and its dual fuzzy extension
is denoted by Q̃d.

Let X, Y be non-empty sets, T be a t-norm and S be a t-conorm. Let
P be a valued relation on X×Y. This valued relationP is extended to the
following fuzzy extensions by t-norms and t-conorms. These extension
are inspired by Dubois and Prade [16] as given in Section 10.3.

(i) A fuzzy relation P̃T on X×Y defined for all A ∈ F(X) and B ∈ F(Y) by
µP̃T (A,B) = sup

x∈X,y∈Y
{T(µP(x, y),T(µA(x), µB(y))}

(ii) A fuzzy relation P̃S on X×Y defined for all A ∈ F(X) and B ∈ F(Y) by
µP̃S

(A,B) = inf
x∈X,y∈Y

{
S
(
S
(
1 − µA(x), 1 − µB(y)

)
, µP(x, y)

)}



214 10 Modality and other approaches for fuzzy linear programming

(iii) A fuzzy relation P̃T,S on X×Y defined for all A ∈ F(X) and B ∈ F(Y)
by

µP̃T,S(A,B) = sup
x∈X

{
inf
y∈Y

{
T(µA(x),S(1 − µB(y), µP(x, y)))

}}
(iv) A fuzzy relation P̃T,S on X×Y defined for all A ∈ F(X) and B ∈ F(Y)

by
µP̃T,S

(A,B) = inf
y∈Y

{
sup
x∈X

{
S(T(µA(x), µP(x, y))), 1 − µB(x, y))

}}
(v) A fuzzy relation P̃S,T on X×Y defined for all A ∈ F(X) and B ∈ F(Y)

by
µP̃S,T (A,B) = sup

y∈Y

{
inf
x∈X

{
T(S(1 − µA(x), µP(x, y)), µB(y))

}}
(vi) A fuzzy relation P̃S,T on X×Y defined for all A ∈ F(X) and B ∈ F(Y)

by
µP̃S,T

(A,B) = inf
x∈X

{
sup
y∈Y

{
S(1 − µA(x),T(µB(x, y), µP(x, y)))

}}
All the above fuzzy extensions of a valued relation are fuzzy extensions
in the sense of Definition 10.5.3. In the above, the fuzzy relations P̃T and
P̃S are respectively called the T-fuzzy extension and S-fuzzy extension
of relation P.

Let P be the classical binary relation “less than or equal to” denoted
by ‘≤’ on R, T be the ‘min’ and S be the ‘max’. Let us denote P̃T by
≤̃M and P̃S by ≤̃M. Then

µ≤̃M(A,B) = sup
{

min
(
µA(x), µB(y), µ≤(x, y)

)
: x ∈ R, y ∈ R

}
,

µ≤̃M(A,B) = inf
{

max
(
1 − µA(x), 1 − µB(y), µ≤(x, y)

)
: x ∈ R, y ∈ R

}
.

Here we note that ≤̃M and ≤̃M are fuzzy relations which are dual to
each other.

We now state below given theorem to be used in the next section.
For proof of this theorem we shall refer to Inuiguchi et al. [29]. Let us
recall that a fuzzy set in R is called compact if all its α-cuts are compact
for all α ∈ (0, 1].

Theorem 10.5.1 Let A, B ∈ F(R) be normal and compact, T = min,
S = max and α ∈ (0, 1). Then

(i) µ≤̃T (A,B) ≥ α⇔ inf[A]α ≤ sup[B]α,
(ii) µ≤̃S

(A,B) ≥ α⇔ sup(A)1−α ≤ inf(B)1−α,
(iii) µ≤̃T,S(A,B) ≥ α⇔ µ≤̃T,S

(A,B) ≥ α⇔ sup(A)1−α ≤ sup[B]α,
(iv) µ≤̃S,T (A,B) ≥ α⇔ µ≤̃S,T

(A,B) ≥ α⇔ inf[A]α ≤ inf(B)1−α.
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10.6 Fuzzy linear programming via fuzzy relations

Before introducing the fuzzy linear programming problem to be studied
in this section, we introduce the following definitions.

Definition 10.6.1 (Quasiconcave function). Let X ⊂ R and f :
R→ [0, 1]. Then f is called quasiconcave on X if

f (λx + (1 − λ)y) ≥ min( f (x), f (y)),

for all x, y ∈ X and for all λ ∈ (0, 1) with λx + (1 − λ)y ∈ X.

Definition 10.6.2 (Strictly quasiconcave function). Let X ⊂ R
and f : R→ [0, 1]. Then f is called strictly quasiconcave on X if

f (λx + (1 − λ)y) > min( f (x), f (y)),

for all x, y ∈ X, x � y and every λ ∈ (0, 1) with λx + (1 − λ)y ∈ X.

Definition 10.6.3 (Semistrictly quasiconcave function). Let X ⊂
R and f : R → [0, 1]. Then f is called semistrictly quasiconcave on X
if f is quasiconcave on X and

f (λx + (1 − λ)y) > min( f (x), f (y)),

for all x, y ∈ X, and every λ ∈ (0, 1) with λx+ (1− λ)y ∈ X, f (λx+ (1−
λ)y) > 0 and f (x) � f (y).

Definition 10.6.4 (Fuzzy quantity). Let S be a fuzzy subset of R.
Then S is called a fuzzy quantity if S is normal, compact and has semi
strictly quasiconcave membership function.

In this context we may note that the characteristic functions of crisp
subsets of R are semistrictly qausiconcave on R but not strictly qau-
siconcave on R. Let F0(R) denote the set of all fuzzy quantities on R.
Then it may be checked that F0(R) includes all (crisp) real numbers,
crisp intervals and triangular fuzzy numbers etc. but not every fuzzy
number is a fuzzy quantity.

Lemma 10.6.1. Let ã j be a fuzzy quantity i.e. ã j ∈ F0(R) and xj ≥
0, ( j = 1, 2, . . . ,n). Then

n∑
j=1

ã jxj is also a fuzzy quantity. Here
n∑

j=1

ã jxj

is understood to be a fuzzy set on R whose membership function is
defined as per Zadeh extension principle.
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We now consider the fuzzy linear programming problem

(FLPP) ˜max
n∑

j=1

c̃ jxj

subject to,

n∑
j=1

ãi jxj P̃i b̃i, (i = 1, 2, . . . ,m),

xj ≥ 0, ( j = 1, 2, . . . ,n),

where c̃ j, ãi j and b̃i are fuzzy quantities, whose membership functions
are µc̃ j : R → [0, 1], µãi j : R → [0, 1] and µb̃i

: R → [0, 1] respectively.
Here, P̃i is a fuzzy relation on R which is used to “compare” the fuzzy

quantities
n∑

j=1

ãi jxj and b̃i (i = 1, 2, . . . ,m). Also we have to understand

the meaning of ˜max of a fuzzy quantity and that we shall discuss later
in this sequel.

For a given x, the objective function value
n∑

j=1

c̃ jxj and the left hand

side values of the constraints
n∑

j=1

ãi jxj are fuzzy quantities whose re-

spective membership functions are defined by using Zadeh’s extension
principle as follows:

µ f̃ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup

c1,...,cn∈R,

n∑
j=1

cjxj = t

{
T
(
µc̃1(c1), . . . , µc̃n(cn)

)}
, x � 0 or t = 0

0, otherwise ,

and

µg̃t(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup

a1,...an,∈R,

n∑
j=1

aijxj = t

{
T
(
µãi1(a1), . . . , µãin(an)

)}
, x � 0 or t = 0

0, otherwise.

Next in this sequel is to understand the meaning of the feasible
solution to the fuzzy linear programming problem (FLPP).
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Definition 10.6.5 (Feasible solution). Let µãi j , µb̃i
: R −→ [0, 1],

(i = 1, 2, . . . ,m), ( j = 1, 2, . . . ,n) be membership functions of fuzzy quan-
tities ãi j and b̃i respectively. Let P̃i, (i = 1, 2, . . . ,m) be fuzzy relations
on R and let TA and T be t-norms. A fuzzy set X̃, with membership
function given by

µX̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
TA

⎛⎜⎜⎜⎜⎜⎜⎝µP̃1

( n∑
j=1

ã1 jxj, b̃1

)
, . . . , µP̃m

( n∑
j=1

ãmjxj, b̃n
)⎞⎟⎟⎟⎟⎟⎟⎠ ,

xi ≥ 0, 1 ≤ j ≤ n,
0, otherwise,

is called a feasible solution of the problem (FLPP). Here t-norm TA is
used as an aggregation operator, while the t-norm T is used for extend-
ing arithmetic operations

Definition 10.6.6 (α-Feasible solution). Let X̃ be a feasible solu-
tion. Then for α ∈ (0, 1], a vector x ∈ [X̃]α is called the α-feasible
solution of (FLPP).

Definition 10.6.7 (Max-feasible solution). Let X̃ be a feasible so-
lution. A vector x̄ ∈ Rn such that µX̃(x̄) = Hgt(X̃) is called a max-feasible
solution.

From the above definitions we note that the feasible solution X̃
of (FLPP) is a fuzzy set but a α-feasible solution is a vector x̄ ∈ Rn

which belongs to α-cut of the feasible solution X̃. Further a max-feasible
solution is a α-feasible solution for which α = Hgt(X̃). If we agree to
denote by X̃i the fuzzy set of Rn with the membership function µX̃i
defined by

µX̃i
= µP̃i

(ãi1x1 + . . . + ãinxn, b̃i),

then it is interpreted as the ith fuzzy constraint (i = 1, 2, . . . ,m). The
feasible solution X̃ is obtained by aggregating all these fuzzy sets X̃i by
the t-norm TA.

Theorem 10.6.1 Let ãi j and b̃i be fuzzy quantities for i = (1, 2, . . . ,m),
j = (1, 2, . . . ,n), and xi ≥ 0. Let T = min, S = max, α ∈ (0, 1) and
‘≤’ be the usual binary relation “less than or equal to”. Then for i =
(1, 2, . . . ,m)
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(i)

µ≤̃T

( n∑
j=1

ãi jxj, b̃i

)
≥ α if and only if

n∑
j=1

āL
i j(α)xj ≤ b̄R

i (α)

(ii)

µ≤̃S

( n∑
j=1

ãi jxj, b̃i

)
≥ α if and only if

n∑
j=1

aR
ij(1 − α)xj ≤ bL

i (1 − α)

(i)

µ≤̃T,S

( n∑
j=1

ãi jxj, b̃i

)
≥ α if and only if

n∑
j=1

aR
ij(1 − α)xj ≤ b̄R

i (α)

where µ≤̃T,S = µ≤̃T,S = µ≤̃T,S
, and

(iv)

µ≤̃S,T

( n∑
j=1

ãi jxj, b̃i

)
≥ α if and only if

n∑
j=1

aL
ij(α)xj ≤ b̄L

i (1 − α)

where µ≤̃S,T = µ≤̃S,T = µ≤̃S,T
.

Here for given α ∈ [0, 1], (i = 1, 2, . . . ,m), ( j = 1, 2, . . . ,n) we have

āL
i j(α) = inf

{
a ∈ R : a ∈

[
ãi j

]
α

}
,

aL
ij(α) = inf

{
a ∈ R : a ∈

(
ãi j

)
α

}
,

āR
i j(α) = sup

{
a ∈ R : a ∈

[
ãi j

]
α

}
,

aR
ij(α) = sup

{
a ∈ R : a ∈

(
ãi j

)
α

}
.

similarly b̄L
i (α), bL

i(α), b̄R
i (α) and bR

i(α) are defined.

We shall not prove the above theorem here, but for the same one
can refer Inuiguchi et al. ([26], [27], [28], [29]).

For a given x, the objective function value f (x) =
∑

c̃ jxj is a fuzzy
quantity. In order to “maximize” the fuzzy objective function we need a
suitable ordering on F0(R) and also a suitable exogenously chosen fuzzy
goal to which the fuzzy values of the objective function can be compared
by an associated fuzzy relation P̃0 on R. Consequently, if d̃ ∈ F0(R) is
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the chosen fuzzy goal then the fuzzy objective c̃1x1+ . . .+c̃nxn is treated
as another constraint

c̃1x1+ . . .+c̃nxn P̃0 d̃.

Therefore given (FLPP) can be represented as
(FLPP1) Find x ∈ Rn such that

c̃1x1+ . . .+c̃nxn P̃0 d̃,
ãi1x1+ . . .+ãinxn P̃i b̃i, (i = 1, 2, . . . ,m),

xj ≥ 0, ( j = 1, 2, . . . ,n).

Now by utilizing the definition of feasible solution to (FLPP), we
introduce a satisficing solution.

Definition 10.6.8 (Satisficing solution). Let µc̃ j : R→ [0, 1], µãi j :
R → [0, 1] and µb̃i

: R → [0, 1], i = (1, 2, . . . ,m) j = (1, 2, . . . ,n),
be membership functions of c̃ j, ãi j and b̃i, respectively. Also let d̃ ∈
F0(R) be a fuzzy goal and TG be a t-norm. Then a fuzzy set X̃∗ with the
membership function µX̃∗ defined by

µX̃∗(x) = TG(µP̃0
(c̃1x1+ . . .+c̃nxn, d̃), µX̃(x)), x ∈ Rn,

where µX̃(x) is the membership function of the feasible solution X̃, is
called a satisficing solution.
In the above definition the t-norm TG has been used for aggregation of
the fuzzy set of the feasible solution X̃ with the fuzzy set of the objective
X̃0 where

µX̃0
(x) = µP̃0

(c̃1x1+ . . .+c̃nxn, d̃), x ∈ Rn.

Hence, the membership function of satisficing solution X̃∗ for all x ∈ Rn

can be obtained as

µX̃∗(x) = TG(µX̃0
(x), µX̃(x)).

For α ∈ (0, 1] a vector x ∈ [X̃∗]α is called the α-satisficing solution of
fuzzy linear programming problem (FLPP).

A vector x∗ ∈ Rn with the property

µX̃∗(x
∗) = Hgt(X̃∗)

is called the max-satificing solution.
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Now, consider membership functions of the fuzzy objective and
fuzzy constraints of fuzzy linear programming problem (FLPP) as

µX̃0
(x) = µP̃0

(c̃1x1+ . . .+c̃nxn, d̃),

and
µX̃i

(x) = µP̃i
(ãi1x1+ . . .+ãinxn, b̃i),

for each x ∈ Rn and i = (1, 2, . . . ,m). Also, TG = TA = min. Then the
following theorem can be stated (Inuiguchi et al. [29]).

Theorem 10.6.2 A vector (λ∗, x∗) ∈ Rn+1 is an optimal solution of
the optimization problem

max λ
subject to,

λ ≤ µX̃i
(x), (i = 0, 1, . . . ,m),

xj ≥ 0, ( j = 1, . . . ,n),

if and only if x∗ ∈ Rn is a max-satisficing solution of fuzzy linear pro-
gramming problem (FLPP).

10.7 Duality in fuzzy linear programming via fuzzy
relations

This section is devoted to the study of duality in fuzzy linear program-
ming by using fuzzy (valued) relations. Here we introduce a pair of
primal dual fuzzy linear programming problems (FLPP) and (DFLPP)
as given below
(FLPP) ˜max c̃1x1+ . . . + c̃nxn

subject to,

ãi1x1+ . . .+ãinxn P̃i b̃i, (i = 1, 2, . . . ,m),
xj ≥ 0, ( j = 1, 2, . . . ,n),

and
(DFLPP) m̃in b̃1y1 + . . . + b̃nyn

subject to,

ãi1y1+ . . .+ãinyn Q̃d
i c̃i, ( j = 1, 2, . . . ,n),

yj ≥ 0, (i = 1, 2, . . . ,m).
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Here the coefficients c̃ j, ãi j and b̃i are as introduced in Section 10.5.
The above (FLPP) is called primal fuzzy linear programming problem,
while the problem (DFLPP) is called its dual. Also P̃i is the fuzzy ex-
tension of a valued relation Pi on R and Q̃i

d
is the dual fuzzy extension

of Pi.
If we consider fuzzy relation P̃ as ≤̃T then the corresponding dual

fuzzy relation Q̃d will be ≥̃S, which will give us the following pair of
primal dual fuzzy linear programming problems
(FLPP1) ˜max c̃1x1+ . . .+c̃nxn

subject to,

ãi1x1 + . . .+ãinxn ≤̃T b̃i, (i = 1, 2, . . . ,m),
xj ≥ 0, ( j = 1, 2, . . . ,n),

and
(DFLPP1) m̃in b̃1y1+ . . .+b̃mym

subject to,

ã1 jy1+ . . .+ãmjym ≥̃S c̃j, ( j = 1, 2, . . . ,n),
yj ≥ 0, (i = 1, 2, . . . ,m).

Theorem 10.7.1 Let for all i = 1, 2, . . . ,m, j = 1, 2, . . . ,n, c̃ j, ãi j and
b̃i be fuzzy quantities. let ≤̃T be the T-fuzzy extension of the binary
relation ≤ on R and ≥̃S be the S-fuzzy extension of the relation ≥ on
R. Let X̃ be a feasible solution of (FLPP1), Ỹ be a feasible solution of
(DFLPP1), and α ∈ [0.5, 1). If x = (x1, . . . , xn) ≥ 0 belong to

[
X̃

]
α

and

y = (y1, . . . , ym) ≥ 0 belongs to
[
Ỹ
]
α
, then∑

( j=1,2,...,n)

c̄R
j (1 − α)xj ≤

∑
(i=1,2,...,m)

b̄R
j (1 − α)yj.

Proof. From the strict convexity and normality, for all (i = 1, 2, . . . ,m),
( j = 1, 2, . . . ,n), we have c̄L

j = cL
j , c̄

R
j = cR

j , ā
L
i j = aL

ij, āR
i j = aR

ij, b̄L
i = bL

i

and b̄R
i = bR

i . Let x ∈
[
X̃

]
α

and y ∈
[
Ỹ
]
α
, xj ≥ 0, yj ≥ 0 for all (i =

1, 2, . . . ,m), ( j = 1, 2, . . . ,n). Then by Theorem 10.6.1 we obtain∑
(i=1,2,...,m)

āL
i j(1−α)yi =

∑
(i=1,2,...,m)

aL
ij(1−α)yi ≥ cR

j (1−α) =
∑

(i=1,2,...,m)

c̄R
j (1−α).

Since α ≥ 0.5, it follows that 1 − α ≤ α, hence
[
X̃

]
α
⊂

[
X̃

]
1−α. Again by

above Theorem 10.6.1 we obtain for all (i = 1, 2, . . . ,m)
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(i=1,2,...,m)

āL
i j(1 − α)xj ≤ b̄R

i (1 − α).

Multiplying both sides of these equations by xj ≥ 0 and yj ≥ 0, respec-
tively, and summing up the result, we obtain∑
( j=1,2,...,n)

c̄R
j (1−α)xj ≤

∑
( j=1,2,...,n)

∑
(i=1,2,...,m)

āL
i j(1−α)yixj ≤

∑
(i=1,2,...,m)

b̄R(1−α)yi.

which is the desired result.

10.8 Duality in fuzzy LPPs with fuzzy coefficients: Wu’s
model

We have already discussed some models for studying duality in fuzzy
linear programming problems with fuzzy coefficients e.g. the ranking
function approach discussed in Chapter 6 and the fuzzy relations ap-
proach discussed here in Section 10.4. In this section we present Wu’s
approach [82] for studying duality in fuzzy linear programming which
is based on the concept of fuzzy scalar product and looks very similar
to the crisp linear programming duality. Although theoretically it looks
very general, in actual practice there are certain limitations as we shall
see later in this section.

Let us recall that for a fuzzy number ã, its α-cut [ã]α, for α ∈ [0, 1],
is denoted by the interval [aL

α, aR
α]. Therefore if ã and b̃ are two fuzzy

numbers with α-cuts, as [aL
α, aR

α], and [bL
α, bR

α] respectively, then ã(+)b̃
and ã(·)b̃ are also fuzzy numbers with respective α-cuts as

[ã(+)b̃]α = [aL
α + bL

α, aR
α + bR

α],
and
[ã(·)b̃]α = [min(aL

αbL
α, aL

αbR
α, aR

αbL
α, aR

αbR
α), max(aL

αbL
α, aL

αbR
α, aR

αbL
α, aR

αbR
α)].

In the following, sometimes if there is no possibility of confusion,
then the fuzzy sum ã(+)b̃ and the fuzzy product ã(·)b̃ will be denoted
by ã + b̃ and ã · b̃ only.

Definition 10.8.1 (Nonnegative/nonpositive fuzzy number). Let
ã be a fuzzy number. Then ã is called a nonnegative fuzzy number if
µã(x) = 0 for all x < 0. Similarly ã is called nonpositive fuzzy number if
µã(x) = 0 for all x > 0.

Here it may be observed that if ã is a nonnegative fuzzy number
then aL

α and aR
α are nonnegative real numbers for all α ∈ [0, 1]. Now
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for the given fuzzy number ã, we define a fuzzy number ã+ with the
following membership function

µã+(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
µã(r) , r > 0,
1 , r = 0 and µã(r) < 1 for all r > 0,
µã(0) , r = 0 and ∃ r > 0 such that µã(r) = 1,
0 , otherwise.

From the above it is clear that ã+ is a nonnegative fuzzy number.
Similarly we define a nonpositive number ã− with the following mem-
bership function

µã−(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
µã(r) , r < 0,
1 , r = 0 and µã(r) < 1 for all r < 0,
µã(0) , r = 0 and ∃ r < 0 such that µã(r) = 1,
0 , otherwise.

Here it can be verified that ã = ã+(+)ã−. Thus every fuzzy number
ã can be written as the sum of fuzzy numbers ã+ and ã−which are
respectively called the positive part and the negative part of ã.

In the following we shall treat a crisp number m also as a fuzzy
number ã with membership function as its characteristic function, i.e.

µã(r) =
{

1, r = m,
0, r � m,

and use the notation 1̃(m) for its representation.

Definition 10.8.2 (Ordering of fuzzy numbers). Given two fuzzy
numbers ã and b̃ we write b̃ � ã if bL

α ≥ aL
α and bR

α ≥ aR
α for all α ∈ [0, 1].

We write ã � b̃ if b̃ � ã.

Further ã � b̃ is defined as ã � b̃ and ã � b̃, i.e. ã � b̃ and there
exists an α ∈ [0, 1] such that aL

α > bL
α or aR

α > bR
α . Also if H is a set of

fuzzy numbers then we use the symbol H � k̃ if h̃ � k̃ for all h̃ ∈ H. In a
similar manner, if H and K are two sets of fuzzy numbers then H � K
is understood as H � k̃ for all k̃ ∈ K.

We note that Definition 10.8.2 above is the same as Definition 8.2.2
except a notational change that for scalars a, b ∈ R we are writing
b ≥ a rather than b � a as these are same statements. Let Fn(R) =
F(R) × . . . × F(R) and x̃ ∈ Fn(R), i.e. x̃ = (x̃1, . . . , x̃n) with x̃i ∈ F(R)
for i = 1, 2, . . . ,n. Let xL

α = (xL
1α, . . . , x

L
nα), xR

α = (xR
1α, . . . , x

R
nα) where
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xL
iα = (xi)L

α and xR
iα = (xi)R

α. Then for x̃, ỹ ∈ Fn(R) we define x̃(+)ỹ
as x̃(+)ỹ = (x̃1(+)ỹ1, . . . , x̃n(+)ỹn). Also if x̃+ = (x̃+1 , . . . , x̃

+
n ) and x̃− =

(x̃−1 , . . . , x̃
−
n ) then x̃ = x̃+(+)x̃−. We now have the following definition.

Definition 10.8.3 (Fuzzy scalar product). Let x̃, ỹ ∈ Fn(R). Then
the fuzzy scalar product of x̃ and ỹ, denoted by � x̃, ỹ�, is defined by

� x̃, ỹ�= ((x̃1(·)ỹ1)(+) . . . (+)(x̃n(·)ỹn)).

We now introduce an appropriate primal-dual pair of fuzzy linear
programming problems and establish relevant duality theorems for the
same. For this let c̃ ∈ Fn(R), b̃ ∈ Fm(R) and Ã = (ãi j) be a (m× n) fuzzy
matrix with ãi j ∈ F(R). Let Ãi (i = 1, 2 . . . ,m) and Ãj ( j = 1, 2 . . . ,n)
respectively be the ith row and jth column of Ã. We now consider the
following problems (L̃P) and (L̃D)
(L̃P) min (c̃1(·)Ĩx1)(+)(c̃2(·)Ĩx2)(+) . . . (+)(c̃n(·)Ĩxn)

subject to,

(ãi1(·)Ĩx1)(+) . . . (+)(ãin(·)Ĩxn) � b̃i, (i = 1, 2 . . . ,m),
x1, x2, . . . , xn ≥ 0.

(L̃D) max (b̃1(·)Ĩy1)(+)(b̃2(·)Ĩy2) . . . (+)(b̃n(·)Ĩyn)
subject to,

(ã1 j(·)Ĩy1)(+) . . . (+)(ãmj(·)Ĩym) � c̃ j, ( j = 1, 2 . . . ,n),
y1, y2, . . . , ym ≥ 0.

In terms of our notations for fuzzy scalar product, problems (L̃P)
and (L̃D) can also be expressed as
(L̃P1) min � c̃, x�

subject to,

Ãx � b̃,
x ≥ 0,

and
(L̃D1) max � b̃, y�

subject to,

ÃT y � c̃,
y ≥ 0.

Here in the scalar product � c̃, x � (respectively � b̃, y �) x (re-
spectively y) is treated as x̃ (respectively ỹ) with membership function
of x̃ (respectively ỹ) as the characteristic function of x (respectively y).
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Definition 10.8.4 (Feasible region of (L̃P1)). Let X = { x ∈ Rn :
� Ãi, x�� b̃i, (i = 1, 2, . . . ,m), x ≥ 0 } i.e. X = {x ∈ Rn : Ãx � b̃, x ≥ 0}.
Then X is called the feasible region of (L̃P1).

Definition 10.8.5 (Solution of (L̃P1)). A point x∗ ∈ Rn is called a
solution of the problem (L̃P1) if there does not exist any x (� x∗) such
that � c̃, x∗ � � � c̃, x �. In that case the set {� c̃, x∗ �: x∗ is a
solution of (L̃P1)} is denoted by MinP(Ã, b̃, c̃).

In a similar manner we define the feasible region of (L̃D1) as Y = {y ∈
Rm : � Ãj, y �� c̃ j, ( j = 1, 2 . . . n), y ≥ 0} i.e. Y = {y ∈ Rm : ÃT y �
c̃, y ≥ 0}. Further a point y∗ ∈ Rm is called a solution of the (L̃D1) if
there does not exist any y (� y∗) such that � b̃, y∗ ��� b̃, y �. In
that case the set {� b̃, y∗ �: y∗ is a solution of (L̃D1)} is denoted by
MaxD(Ã, b̃, c̃).

The following lemmas will be useful in the sequel.

Lemma 10.8.1. Let Ã = (ãi j) be an m×n fuzzy matrix. Let x ∈ Rn, x ≥ 0
and y ∈ Rm, y ≥ 0. Then � ÃT y, x�=� y, Ãx�
Lemma 10.8.2. Let w ∈ Rn be nonnegative and x ∈ Fn(R). Then
� w, x̃�L

α= < w, xL
α > and � w, x�R

α = < w, xR
α > .

The proofs of above lemmas follow directly from the definitions of
(+), (·) and the fact that the addition and multiplication of closed in-
tervals are both associative and commutative.

Theorem 10.8.1 (Weak duality theorem). Let x ∈ X and y ∈ Y.
Then � c̃, x��� b̃, y�. Further MinP(Ã, b̃, c̃) �MaxD(Ã, b̃, c̃).

Proof. We observe that

� c̃, x� �� ÃT y, x�, (because ÃT y � c̃, x ≥ 0, y ≥ 0),
=� y, Ãx�, (by Lemma 10.8.1),
�� y, b̃�, (because Ãx � b̃, x ≥ 0, y ≥ 0).

Therefore � c̃, x ��� b̃, y �. As this relation holds for all feasible
solution y of (L̃D1), it implies that � c̃, x �� MaxD(Ã, b̃, c̃) for all
feasible solution x of (L̃P1). This gives MinP(Ã, b̃, c̃) � MaxD(Ã, b̃, c̃).
Here we are using the ordering between two subsets of fuzzy numbers
as per Definition 10.8.2
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Corollary 10.8.1 Let x∗ ∈ X, y∗ ∈ Y and � c̃, x∗ �=� b̃, y∗ �. Then
� c̃, x∗ ��� c̃, x � for all x ∈ X and � b̃, y∗ ��� b̃, y � for all
y ∈ Y.

Proof. Let y be an feasible solution of (L̃P1). Then by the weak du-
ality theorem (Theorem 10.8.1) we have � c̃, x∗ ��� b̃, y � i.e.
� b̃, y∗ ��� b̃, y�. The other part of the corollary is analogous.

If we agree to denote the objective functions of (L̃P1) and (L̃D1) by
fuzzy numbers P̃(x) and D̃(x) and the corresponding α-cuts by [PL

α,PR
α]

and [DL
α,DR

α] respectively, then the statement � c̃, x∗ ��� c̃, x �
for all x ∈ X means that for all α ∈ [0, 1]. PL

α ≤ DL
α and PR

α ≤ DR
α ,

i.e. �α ∈ [0, 1] such that PL
α > DL

α and PR
α > DR

α . Therefore x∗ is cer-
tainly a solution of (L̃P1) and therefore � c̃, x∗ �∈ MinP(Ã, b̃, c̃). But
� c̃, x∗ ��� c̃, x� for all x ∈ X is more than just saying that x∗ is a
solution of (L̃P1). Similar statements hold for (L̃D1) as well.

Definition 10.8.6 (No duality gap property). The pair (L̃P1) and
(L̃D1) is said to have no duality gap property (Wu [82]) if

MinP(Ã, b̃, c̃) ∩ MaxD(Ã, b̃, c̃) � φ (empty set).

Here though the sets MinP(Ã, b̃, c̃) and MaxD(Ã, b̃, c̃) are fuzzy sets,
the above intersection not being empty is to be understood in the sense
that there is a fuzzy element common to both of these fuzzy sets.

Lemma 10.8.3. Let the problems (L̃P1) and (L̃D1) have no duality gap.
Then there exist x∗ ∈ X, y∗ ∈ Y such that � c̃, x∗ ��� c̃, x � for all
x ∈ X and � b̃, y∗ ��� b̃, y� for all y ∈ Y.

Proof. Since MinP(Ã, b̃, c̃)∩MaxD(Ã, b̃, c̃) � φ, there exists x∗ ∈ X, y∗ ∈ Y
such that � c̃, x∗ � ∈ MinP(Ã, b̃, c̃), � b̃, y∗ � ∈ MaxD(Ã, b̃, c̃) and
� c̃, x∗ �=� b̃, y∗ � . The rest of the proof now follows from the
Corollary 10.8.1.

The “no duality gap property” needed to establish Lemma 10.8.3
seems to be a very strong requirement almost equivalent to the re-
sult itself. However the below given theorem shows that to estab-
lish the strong duality theorem, the requirement of “no duality gap
property” can be somewhat relaxed to the requirement that the sets
Arg-MinP(Ã, b̃, c̃) and Arg-MaxD(Ã, b̃, c̃) are nonempty.

We now introduce the sets Arg-MinP(Ã, b̃, c̃) and Arg-MaxD(Ã, b̃, c̃).
For this let AL

α (respectively AR
α) be the matrix whose (i, j)th entry is
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(aij)L
α (respectively (aij)R

α). Now corresponding to the problem (L̃P1) we
construct the following two α-level (crisp) linear programming problems
for each α ∈ [0, 1]
(LP1)L

α min � cL
α, x�

subject to,

AL
αx ≥ bL

α,
x ≥ 0,

and
(LP1)R

α min � cR
α, x�

subject to,

AR
αx ≥ bR

α,
x ≥ 0.

In a similar manner we construct α-level (crisp) linear programming
problems corresponding to (L̃D1). These are
(LD1)L

α max � bL
α, y�

subject to,

(AL
α)T y ≤ cL

α,
y ≥ 0.

and
(LD1)R

α max � bR
α, y�

subject to,

(AR
α)T y ≤ cR

α,
y ≥ 0.

Here it is to be noted that (LD1)L
α is the dual of (LP1)L

α and similarly
(LD1)R

α is the dual of (LP1)R
α . Now we define

(Arg-MinP(Ã, b̃, c̃))L
α = set of all finite optimal solutions of (LP1)L

α,
(Arg-MinP(Ã, b̃, c̃))R

α = set of all finite optimal solutions of (LP1)R
α,

(Arg-MinP(Ã, b̃, c̃)L = ∩
0≤α≤1

(Arg-MinP(Ã, b̃, c̃))L
α,

(Arg-MinP(Ã, b̃, c̃)R = ∩
0≤α≤1

(Arg-MinP(Ã, b̃, c̃))R
α,

Arg-MinP(Ã, b̃, c̃) = (Arg-MinP(Ã, b̃, c̃))L ∩ (Arg-MinP(Ã, b̃, c̃))R.

The set Arg-MaxD(Ã, b̃, c̃) is defined analogously by using the (crisp)
problems (LD1)L

α and (LD1)R
α . Also x∗ ∈ Arg-MinP(Ã, b̃, c̃) means that
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� c̃, x∗ �∈MinP(Ã, b̃, c̃). Similarly for y∗ we have y∗ ∈ Arg-MaxD(Ã, b̃,
c̃) gives � b̃, y∗ �∈MaxD(Ã, b̃, c̃).

Theorem 10.8.2 (Strong duality theorem). Let the sets Arg-MinP

(Ã, b̃, c̃) and Arg-MaxD(Ã, b̃, c̃) be nonempty. Then the problems (L̃P1)
and (L̃D1) have no duality gap.

Proof. Let x∗ ∈ Arg-MinP(Ã, b̃, c̃) and y∗ ∈ Arg-MaxD(Ã, b̃, c̃). Then
by the crisp linear programming duality, < cL

α, x∗ >=< bL
α, y∗ > and

< cR
α, x∗ >=< bR

α, y∗ > for all α ∈ [0, 1]. Since x∗ and y∗ are nonnegative,
these relations by Lemma 10.8.2, give � c̃, x∗ �=� b̃, y∗ �, which
because of Lemma 10.8.3 proves the theorem.

The next question is how to check that the sets Arg-MinP(Ã, b̃, c̃)
and Arg-MaxD(Ã, b̃, c̃) are nonempty. For this Wu [82] gave a sufficient
condition which is based on the following definition:

Definition 10.8.7 (Finite intersection property). A family {Kα}
of sets in a topological space Ω is said to have the finite intersection
property if every finite sub family of {Kα} has a nonempty intersection.

Theorem 10.8.3 If the families
{(

Arg-MinP(Ã, b̃, c̃)L
α)∩ (Arg-MinP(Ã,

b̃, c̃)R
α

)
: α ∈ [0, 1]

}
and

{(
Arg-MaxD(Ã, b̃, c̃)L

α) ∩ (Arg-MaxD(Ã, b̃, c̃)R
α

)
:

α ∈ [0, 1]
}

have the finite intersection property then problem (L̃P1) and

(L̃D1) have no duality gap.

We shall not prove the above theorem here and shall refer to Wu
[82] in this connection.

Remark 10.8.4. A close look at the discussion on strong duality the-
orem for the pair (L̃P1) and (L̃D1) suggests that the status is far from
satisfactory. Firstly there seems to be no simple way to check if the
stated families in Theorem 10.8.3 have the finite intersection property
so that the “no duality gap property” can be guaranteed. Further unlike
the crisp case where existence of optimal solution to the primal guar-
antees the existence of optimal solution to the dual, here both primal
and dual (L̃P1) and (L̃D1) are assumed to have solutions. Also there
seems to be no known general class of fuzzy linear programming prob-
lems, even with TFN data , for which these duality results are known
to hold. This puts a major limitation on this approach.
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10.9 Conclusion

In this chapter we have included comparatively newer results on fuzzy
linear programming. These results are representative of the general
direction in which the current research in the area of fuzzy linear pro-
gramming is progressing. Modality constrained programming has al-
ready established its importance in the area of fuzzy decision making
but the same can not possibly be said about duality in fuzzy linear
programming at this stage. However results are available on duality
in fuzzy nonlinear programming with fuzzy coefficients e.g. Wu ([81],
[82], [83]) and its ramifications with generalized convexity, e.g. Ramik
and Vlach [65]. Also there are some other papers on fuzzy optimization
problems, e.g. Wu([84], [85] and [86]) which use the fact that the set of
all fuzzy numbers can be embedded into a suitable Banach space so that
the fuzzy optimization problem can be transformed into a biobjective
programming problem. Employing this approach Wu [83] derived the
Karush-Kuhn-Tucker optimality conditions for the fuzzy optimization
problem with fuzzy coefficients and also obtained some computational
procedures for the same.
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