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CASIMIRS OF THE GOLDMAN LIE ALGEBRA OF A
CLOSED SURFACE
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1. INTRODUCTION

Let 3 be a connected closed oriented surface of genus g. In 1986 Goldman
[Go] attached to ¥ a Lie algebra L = L(X), later shown by Turaev ([Tul)
to have a natural structure of a Lie bialgebra. It is defined as follows. As
a vector space, L has a basis e, labeled by conjugacy classes 7 in the fun-
damental group m1(X), geometrically represented by closed oriented curves
on ¥ without a base point. To define the commutator [e,,,e,], one needs
to bring the two curves 1,72 into general position by isotopy, and then
for each intersection point p; of the two curves, define ~y3; to be the curve
obtained by tracing v; and then 7o starting and ending at p;. Then one
defines [e,,, e, to be Y. eje,,,, where g; = 1 if v, approaches 7 from the
right at p; (with respect to the orientation of ¥), and —1 otherwise.

The combinatorial structure of L has been much studied; see e.g. [C|
Tu]. However, many problems about the structure of L remained open.
In particular, in 2001, M. Chas and D. Sullivan communicated to me the
following conjecture.

Conjecture 1.1. The center of L is spanned by the element e;, where
1 € m(X) is the trivial loop.

In this paper, we will prove this conjecture. In fact, we prove a more
general result.

Theorem 1.2. The Poisson center of the Poisson algebra S®L is Z = Cley].

The proof of the theorem occupies the rest of the paper.

Remark. A quiver theoretical analog of Theorem [ is given in [CEG]. Tt
claims that if IT is the preprojective algebra of a quiver () which is not Dynkin
or affine Dynkin, then the Poisson center of S®L (where L = II/[II, II] is the
necklace Lie algebra attached to II) consists of polynomials in the vertex
idempotents.

2. PROOF OF THE THEOREM

2.1. Moduli spaces of flat bundles. We will assume that g > 1, since in
the case g < 1 the theorem is easy.
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Recall that the fundamental group I' = 71 (X) is generated by X1, ..., Xy,
Y1,...,Y, with defining relation

g
(1) [[xvix; 'yt =1
1=1

Thus we can define the scheme of homomorphisms MQ(N ) = Hom(T', GLx(C))
to be the closed subscheme in GLy(C)? defined by equation (). One can
also define the moduli scheme of representations (or equivalently, of flat con-
nections on ) to be the categorical quotient My(N) = Mg(N)/PGLN((C).

The schemes My(N) and My(N) carry the Atiyah-Bott Poisson struc-
ture; its algebraic presentation may be found in [FR] (using r-matrices) and
[AMM] (using quasi-Hamiltonian reduction); see also [Ga.

Let us recall the following known results about these schemes, which we
will use in the sequel.

Theorem 2.1. (i) ]\AJQ(N) and My(N) are reduced.

(ii) ]\79(]\[) is a complete intersection in GLy(C)%9.

(iii) MQ(N) and My(N) are irreducible algebraic varieties. Their generic
points correspond to irreducible representations of I'.

(iv) The Poisson structure on My(N) is generically symplectic.

Proof. Let M;(N ) be the algebraic variety corresponding to the scheme

My(N). It is shown in [Li] that this variety is irreducible. Moreover, it
is clear that the generic point of this variety corresponds to an irreducible
representation of I' (we can choose X;,Y; generically for ¢ < g and then
solve for X,,Y,). It is easy to show that near such a point the map p :
GL(N)* — SL(N) given by the left hand side of () is a submersion. This

implies (ii). We also see that M, (V) is generically reduced. Since it is a
complete intesection, it is Cohen-Macaulay and hence reduced everywhere.
Thus we get (i) and (iii). Property (iv) is well known and is readily seen
from [ER] or [AMM]. The theorem is proved. O

2.2. Injectivity of the Goldman homomorphism. Now let us return to
the study of the Lie algebra L. To put ourselves in an algebraic framework,
we note that L is naturally identified with A/[A, A], where A = CJ[I'] is
the group algebra of I'. Thus, elements of L can be represented by linear
combinations of cyclic words in Xiil, Yiil.

In [Go], Goldman defined a homomorphism of Poisson algebras

¢n : S°L — C[My(N)]

defined by the formula ¢n(w)(p) = Tr(p(w)), where p is an N-dimensional
representation of I' and w is any cyclic word representing an element of L.
It follows from Weyl’s fundamental theorem of invariant theory that the
Goldman homomorphism is surjective.
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Let Ly C L be the linear span of the elements e, — e;. Obviously, we
have L = L1 @ Ceq,

Proposition 2.2. For any finite dimensional subspace Y C S®L., there
exists an integer N(Y') such that for N > N(Y'), the map ¢n|y is injective.

Proof. Let K(N) be the kernel of ¢y on S®L. It is clear that K(N +1) C
K(N) (as ¢n+1(ey —e1)(p@C) = on(ey —e1)(p)). Thus it suffices to show
that ﬂNZlK(N) =0.

Assume the contrary. Then there exists an element 0 # f € S®*L such
that ¢n(f) =0 for all N.

Recall that according to [EiR], the group I' is conjugacy separable,
i.e., if elements vy, ..., 7, are pairwise not conjugate in I' then there exists
a finite quotient I'V of " such that the images of vy, ..., 7» are not conjugate
in I".

Now let v = 1 and f = P(ey, — e1,...,e4,, — €1), Where P is some
polynomial. Let IV be the finite group as above, Vi, ..., Vi be the irreducible
representations of I, and x1, ..., xs be their characters. Let V = &;N;V};
we regard V' as a representation of I' and let N = dim V. Then ¢n(f)(V) =
P(wy,...;wm), where w; = > N;j(x;(7) — x;(1)). By representation theory
of finite groups, the matrix with entries a;; = x;(vi)—x;(1) has rank m; thus,
there exist N; > 0 such that P(wi,...,wy,) # 0. For such Nj, ¢n(f) # 0,
which is a contradiction. O

2.3. Proof of Theorem Now we are ready to prove Theorem [C2l Let
z be a central element of the Poisson algebra S®L. Consider the element
¢n(z). This is a regular function on My(N) which Poisson commutes with
all other functions (since ¢y is surjective). Since by Theorem 2] the scheme
My(N) is in fact a variety, which is irreducible and generically symplectic,
any Casimir on this variety must be a scalar.

Since S°L = S*L,; ® Cley], we can write z as

= Cle) + Y _ Gl s,
j=1
were f; are linearly independent elements which belong to the augmentation
ideal of S®L,, and (,(; € C[t]. Applying ¢n to this equation, and using
that ¢pn(e1) = N, we get that

+Z<j ¢N fy

Let Y be the linear span of 1 and f;, j = 1,...,m in S*L,. By Proposition
22 for N > N(Y), we have

m

CN)+ D GIN)f =

J=1
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Thus (;(IN) = 0 for N > N(Y). Hence (; =0 for all j and z = ((e1). The
theorem is proved.
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